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Abstract. After a brief ‘warm-up’ discussion of osmotic pressure of foams,
the basic phenomena of foam rheology are reviewed, focusing on linear vis-
coelastic spectra (elastic and loss moduli) with brief mention of nonlinear
effects. Theoretical models for some of these properties are then described,
starting with Princen’s model for the elastic modulus G of an ordered foam
in two dimensions. There is a basic conflict between this model, which pre-
dicts a step-function onset of the modulus when droplets first contact at vol-
ume fraction ¢ = ¢y, and the experimental data (which show Gy ~ ¢—¢y).
The three dimensional ordered case is reviewed next, focusing on anhar-
monic deformation theory which predicts a logarithmic softening of the
modulus near ¢g; this is still not soft enough to explain the observations.
The 3D disordered case is then addressed; a combination of disorder and
the anharmonic effect finally seems able to explain the data. We then con-
sider the problem of the frequency-dependent loss modulus G”(w) which
describes dissipation in a foam. Somewhat alarmingly, the data suggest
behaviour incompatible with linear response theory; reconciliation is possi-
ble if one invokes some very slow relaxation processes at timescales longer
than experiment. We briefly describe the search for foam-specific slow re-
laxation mechanisms of surfactant and water transport, which so far has
yielded no viable candidates. Since similar anomalies in G”(w) are observed
in several other systems, they are instead tentatively ascribed to a generic
phenomenon: glassy dynamics. A recent model for the rheology of “soft
glassy matter” is then reviewed; though phenomenological, this suggests
that glassy dynamics may be a useful concept in foam rheology.



1. INTRODUCTION

In these lectures we examine the rheological properties of liquid/gas foams
(froths) and liquid/liquid foams (dense emulsions). We treat the foam as an
array of droplets in a continuous matrix, where the volume of each droplet
is constant in time. This neglects the compressibility of the fluid in the
droplets; this is a good approximation whenever the characteristic scale of
Laplace pressures o/R (with o surface tension and R the mean droplet
radius) is small compared to the bulk modulus of the fluid, which is usually
the case even for a froth. It also neglects coarsening effects which lead the
droplet volumes to change slowly over time.

1.1. OSMOTIC PRESSURE

As a warmup exercise, we recap ideas about the osmotic pressure in a
foam. To measure such a pressure, a foam is compressed by a semipermeable
membrane through which the continuous phase (which we take to be water)
can pass, but not the droplet phase. The force per unit area which must be
exerted on the membrane is the osmotic pressure Ilp, which depends on ¢,
the volume fraction of the droplet phase. (We stick to this notation in these
notes although others are used elsewhere in this Volume.) Alternatively Il
can be viewed as a function of V, the volume of the compressed foam.

The osmotic pressure obeys Ily(¢) = —0F/0V with the derivative taken
at fixed number of droplets. To a very good approximation (which neglects
the tiny translational entropy of the droplets), I’ = 0 A where A(V) is the
total surface area of the droplets. Hence lly(¢) is zero for ¢ < ¢y, where
¢o is the threshold at which droplets first come into contact and start to
deform. For higher volume fractions, the droplets develop flattened facets;
these are small just above the threshold but soon become fully developed
bilayer films as ¢ is further increased. The remaining water then resides
in Plateau borders along the edges of the polyhedral droplets with further
water pockets at the vertices.

2. BASIC RHEOLOGY

2.1. LINEAR VISCOELASTICITY

Linear viscoelastic theory describes the response of a material to small
deformations. Consider, for example, an imposed simple shear through a
strain angle v (assumed small) suddenly imposed at time zero and then
held constant. The resulting shear stress is

s(t) =G (1) (1)



For a Hookean solid, s = Gy and there is no time dependence; Gy is the
shear modulus of the material:
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For a Newtonian fluid, instead s = n% where 7 is the viscosity. (Formally
this corresponds to a delta-function transient for G(#).) Viscoelastic solids
show behaviour intermediate between these extremes, with a nontrivial
transient in G/(¢) followed by a plateau, G(c0) — Gy at long times. Vis-
coelastic fluids are similar but there is either no plateau or else one which
lasts a finite time before G(¢) finally decays to zero. Foams do show a well-
developed plateau, of amplitude Go which we call the plateau modulus; they
are usually viewed as viscoelastic solids.

A related experiment is oscillatory shear, v = R[ype'?], for which the
stress is

s(t) = R[G"(w)y0e™] (3)

with G*(w) = G’ (w) + i1G"(w) where G, G" are called the storage modulus
and the loss modulus. These control respectively the in-phase (elastic) re-
sponse and the out-of-phase (viscous) response, of the medium. Their ratio
obeys G /G" = tané where §(w) is the phase shift between the measured
stress and the applied strain.

Linear response theory (see e.g. [1]) shows that

GF () = iw / G(t)e™ ™! dt (4)
0
Since G/(t) is real, this requires that G'(w) = G'(—w) whereas G"(w) =
—G"(w). Thus the loss modulus is an odd function of frequency which
means that it must vanish as w — 0.

2.2. FOAM PHENOMENOLOGY

Foam are found to have a well defined elastic modulus G(t — c0) = Go(¢)
which depends interestingly on the volume fraction ¢, as well as on surface
tension o and (mean) droplet size R. Specifically, G rises smoothly from
zero as ¢ is raised above ¢g. Surprisingly perhaps, most theories cannot
explain this, and below we discuss this problem in some detail.

According to linear response theory, the plateau modulus G can also
be measured as G'(w — 0); and in most foams a limiting value can readily
be extracted from the frequency dependent spectra. However, there is a
strongly anomalous behaviour in G”(w), which, in apparent contradiction
to linear response theory, does not vanish at low frequencies but instead



seems to approach a constant value or (in some cases) even to be rising as
the frequency is lowered. (Typical G” values at low frequency are between
1/5 and 1/50 of Gy.) This is a cause for concern, to which we return in
Section 4.

2.3. NONLINEAR EFFECTS

These can arise when either the stress s or the strain v is not small. In most
foams one observes the phenomenon of yielding: if a stress s is maintained
in steady state, then for s < sy the material attains a finite deformation
and then stops moving (finite ) whereas for s > sy the steady state
motion involves finite 4 and the sample deforms indefinitely (creep). This
behaviour defines a steady-state flow curve which is a plot of stress against
strain rate 4. If the “yield stress” sy is nonzero (solid-like behaviour) the
curve comprises a vertical line segment at ¥ = 0 followed by a smooth
continuation. Although many other nonlinear measurements are possible,
in these lectures we avoid discussion of these. Moreover, up until Section 5,
we will focus exclusively on linear viscoelastic phenomena.

3. THE ELASTIC MODULUS
3.1. PRINCEN’S MODEL

The simplest model [2, 3] for foam elasticity considers an array of cylin-
drical “droplets” in a two-dimensional ordered hexagonal packing. The ge-
ometry is shown in Fig. 1. We consider a sample of unit length into the
page, in which case the free energy per cylinder is

Foy1 = 0(6L 4 27r) (5)

where (6L 4 27r) is the perimeter of the cylinder, L = a — 2r/+/3 the
facet length, a the side of a hexagonal cell and r the radius of the Plateau
borders.

The volume fraction ¢ is the ratio of the cross-sectional area of a droplet
to that of the hexagonal cell
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where R is the radius of a free (circular) cylindrical drop. The contact point
¢o is fixed by requiring @ = 2RR/+/3 and hence (after some algebra)
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Figure 1. Geometry of a “droplet” in a two-dimensional ordered hexagonal foam.

and ¢g = 0.91. Likewise one finds

Feyy = 210 R [qﬁ(l)—qb - <1 ;0¢0>1/2 (%)UQ] (8)

which is completely fixed by geometry.
We first use this result to find the osmotic pressure [y = —(0F(V)/0V)r

where I'(V) = Fgy1/¢:
- a 1—¢0 1/2
HO_EKl—qﬁ) _1] @

(This is shown in Fig. 2.) Note that Ilg ~ (0/R) f(¢) where f is a dimen-
sionless function. According to the model, this function vanishes smoothly
as ¢ — qbg' and diverges as ¢ — 1, when the Laplace pressure o/r formally
becomes infinite (since r — 0). Both features are broadly confirmed by
experiment [4, 5].

Turning now to the elastic modulus Gy, we must find the change in
surface area of the droplets when the lattice is deformed. We choose for
simplicity a shear direction parallel to the direction joining droplet centres,
and note that by the Young-Laplace law, the 120° angles between films
(extrapolated through the border regions) are preserved on deformation;
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Figure 2. Osmotic pressure of a two-dimensional ordered hexagonal foam

otherwise there would be unbalanced forces on the borders. Kach deformed
droplet therefore occupies an irregular hexagon whose corners each contain
one third of a plateau border (whose radius is still r). The resulting free
energy per cylinder is

Fcyl =20 [71'7‘ -|— L1 -|— L2 -|— Lg] (10)
where L; 5 3 are the film lengths, or equivalently

Feyi(7) = Fey1(0) = 20 [a1 + az + a3 — 3d] (11)

where @453 are the sides of the deformed hexagonal cell. Notice that for
given a, this expression is independent of volume fraction. In other words,
the area change on deformation, which is entirely attributable to stretching
of the film regions, does not depend on how large these films are originally
— except that of course the calculation breaks down for ¢ < ¢y when the
films simply do not exist.

From this calculation one can find G from the stored free energy using

F(V,v) = F(V,0) = VGoy?/2 (12)

which holds in the limit of small strain . This gives the result

o o o) 1/2_ T 1)2
Go = ﬁ =5k <%> = 0.5QSE¢> (13)

which has a finite value of 0.5250/R as ¢ — @7 . Accordingly the Princen
model predicts a step discontinuity in the elastic modulus Gy at ¢ = ¢g.
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Figure 3. Shear modulus of a biliquid foam, from [4]. The solid line is a (semi-)empirical

fit.

This contrasts with the prediction for osmotic pressure Iy (which rises lin-
early from zero) but is similar to that for the bulk modulus By = —911/9V.

The step discontinuity is not consistent with experiments on either poly-
disperse [4] or near-monodisperse [5] foams: see Fig. 3. Candidates for ex-
plaining the discrepancy include: (a) the fact that real foams are three di-
mensional; (b) the fact that they are disordered; or, (c) some combination
of these.

3.2. 3D ORDERED FOAMS

To find Gy(¢) for a three-dimensional foam is a hard task, because the
Plateau borders have a more complex geometry (see other lectures in this
volume!). There are three main approaches. The first is to guess the shape
of the borders; so long as volume constraints are respected, the resulting
surface will always have a larger area than the true one (which is the state of
least free energy and hence minimal area). So the “guessing” method gives
an upper bound on F(V') and can in principle be refined systematically,
for example by including variational parameters in the guessed shape, and
minimizing the computed area over these parameters. However, in what
follows, we shall follow Refs. [6, 7] and simply guess. The second line of
attack involves an exact analysis for the limit ¢ — ¢q in which droplets
are weakly compressed. This is informative since it addresses precisely the
region where the Princen model fails to explain the data. Finally, numerical



approaches based on the surface evolver programme [8] can be used. We
describe these aspects in turn.

Before doing this, however, we make a technical amendment to the cal-
culation: it turns out to be much easier to calculate the uniazial elongation
modulus, po(¢), than the shear modulus Go(¢). The former is defined by
stretching a unit cube of material so that the lengths of its sides become
1+¢ along the stretch direction and 1—¢/243¢?/8 along the remaining two.
(This deformation preserves volume.) In terms of the elongational strain e,
we have

F(V,e) = F(V,0) = Vuo(d)e*/2 (14)

which serves as the definition of ug. For an isotropic material such as a real
foam, one can prove Gy = io/3, whereas for an ordered array of droplets,
both Gy and pg in principle are functions of orientation. So, given that
results from an oriented model have to be compared with experimental
data on an isotropic system, it is no less valid to compute po(¢) than
Go(¢). Moreover, at least for the purpose of qualitative comparison, one
can choose the direction for our elongational distortion so as to minimise
the algebra involved.

Buzza and Cates [6] performed such a calculation with a simple cu-
bic array of droplets. Though in obvious violation of the Young Laplace
condition, this allows even more algebraic simplification and should not
qualitatively affect the nature of the singularity at ¢ — ¢y (i.e., smooth
onset versus jump discontinuity). Their guess for the droplet shape was
a truncated sphere: that is, the droplet surface is the inner envelope of
the intersection between a sphere and the deformed (cubic) unit cell. To
maintain constant droplet volume, the radius of the sphere must change as
the unit cell is deformed (Fig. 4). Results for this model (Fig. 5) show a
jump discontinuity at ¢ = ¢y = 0.52, closely resembling that of the Princen
model.

In the second approach to this problem, the limit of weak compression,
¢ — ¢ is addressed using the theory of Morse and Witten [9]. This is a
perturbative treatment which exploits the fact that at weak compression,
the droplet shape is almost spherical, with small faceted regions. Accord-
ingly it can be studied by analysing the response of a spherical drop to a
weak external force field. The latter induces pressure shifts on either side
of the droplet surface, pout(2) (where © is an angle) and pi,. The latter is
an angle-independent quantity whose value is chosen to maintain constant
volume for the droplet overall. In units where the free droplet radius R and
surface tension ¢ are both unity, the Laplace equation reads

_(VQ + Q)p(Q) = Pin — pout(Q) (15)
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Figure 4. 'Truncated sphere model. Each droplet is modelled as a truncated sphere
within a cubic unit cell. On uniaxial deformation the radius of the drop, as well as the
geometry of the unit cell, are changed.

where the left hand side is the local curvature (the 2 comes from the refer-
ence shape of a sphere) and the right hand side is the local Laplace pressure
across the interface. In this equation p(€) is the local (normal) displacement
of the droplet surface.

Morse and Witten calculated the response function G determining the
displacement field, p(Q) = G (2, ') f, in response to a point force pout(2) =
f8(2— Q). In terms of the angle 6 between © and €', this reads:

n_ —1[1 4 .9 ]
G(Q,Q) = I §+§cos¢9+c0501n (sm (0/2)) (16)
This allowed them to calculate the free energy of the weakly compressed
droplet. For a small facet subject to a localised force f, they found a free
energy contribution

58 = [ In(f/37) — 4/3 (17)
This can be compared with Hooke’s law for a spring of stiffness k, §F =
f%/2k, revealing that small facets act as logarithmically soft springs, having
an effective spring constant ke ~ —1/1In f, which tends to zero as f — 0.
The Morse-Witten effect can be incorporated into the simple cubic
model of an emulsion to find a more accurate expression for the elastic
modulus Gy near onset (also shown in Fig. 5). Although this offers a for-
mal improvement, in that the step discontinuity is replaced by a smooth
curve, the slope at ¢g remains infinite, and the prediction still has scant
resemblance to the experimental data [4, 5].
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Figure 5. Results for the truncated sphere model (upper curve) and those incorporating
the Morse-Witten correction for small compressions.

We now discuss the third approach to the problem of 3-D ordered foams:
the numerical one. Lacasse, Grest and Levine [7] used the surface evolver [8]
to study the free energy of spherical droplets squeezed into a series of n-
faced polyhedra. The case n = 2 (a droplet between parallel plates) is
an unrealistic but interesting limit, because the surface shape can then be
found exactly using the calculus of variations. As well as benchmarking the
surface-evolver calculations, the exact solution can be compared with the
Morse-Witten theory (at small compressions) and also with the truncated
sphere model. In fact, the truncated sphere model is never very good: at
small compressions the Morse-Witten result is approached whereas at larger
ones the data approach a model in which the droplet shape is a disc sur-
rounded by a toroidal “bulge” of semicircular cross-section. (Such a bulge
joins onto the films tangentially, unlike the truncated sphere, so it is not
surprising that this gives a better result; however, the extension to n > 2
is not obvious.)

For larger n, the free energy data was found to be well fit by the em-

pirical form
e

§F ~nC l(%)% - 1] (18)

where a(n) varies between 2.1 (n = 2) and 2.6 (n = 20), and C'(n) be-
tween about 7 and about 70. Here R is the free droplet radius and A the
perpendicular distance from the centroid of the polyhedron to the centre



of a face. Note that most of the n values correspond to shapes that do
not tesselate in three space: this is probably not crucial since in reality n
is not the same for all droplets in a foam. Note that because a > 2, the
model corresponds to a soft (power-law) spring interaction at contacting
facets. Using the results for simple cubic and face-centered cubic unit cells,
Lacasse et al. predicted the shear modulus and found curves rather simi-
lar to those found by Buzza and Cates using the Morse-Witten potential.
In other words, they again found a smooth curve for Gy(¢), but with an
infinite slope at ¢ = ¢¢ rather than the finite slope seen experimentally.

3.3. ROLE OF DISORDER

This was studied in two dimensions by Hutzler and Weaire [10, 11], and
Durian [12]. As emphasised long ago by Weaire and others, one would
expect the disorder to wash out the step discontinuity, replacing it with a
much smoother curve, and this indeed was seen computationally. However,
it is difficult to perform accurate simulations very close to ¢y, and these
authors did not get extremely close.

The three dimensional version was studied by Lacasse et al [13], with-
out, however, including explicitly the details of the foam structure (thereby
limiting the computational load). Instead an anharmonic pair potential was
constructed by appeal to the findings quoted above for 8/ in polyhedral
boxes:

Ud)=C K?)g - 1] (19)

where averaged parameters @ = (%) ~ 2.3 and C' = C(7) were chosen.
Here d is the distance between droplet midpoints; the U’s are summed over
droplets within range d < 2R (that is, summed over facets). This potential
was fed into a very large MD simulation and the response to compression
and shear distortions measured. Data for the shear modulus is compared
with experiment in Fig. 6; that for the osmotic pressure is also in reasonable
agreement. It appears that by combining disorder and anharmonicity, one
finally gets close to the experimental behaviour; this certainly cannot be
achieved using anharmonicity alone and arguably also cannot be achieved
solely with disorder [14]. The significance of disorder was highlighted by a
study of the individual droplet displacements under shear: these were found
to be highly non-affine (in other words, different droplets moved in different
directions).
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Figure 6. Shear modulus of a 3d foam found by simulation (+) [13] and experiment [5].

4. DISSIPATION IN FOAMS

Above we have described calculations of the linear elastic modulus Gg =
G'(w — 0). W now return to the problem of understanding the linear loss
modulus, G"(w), whose low frequency behaviour remains very puzzling.
Specifically, it shows no sign of vanishing at low frequencies, instead re-
maining constant or even increasing as frequency is lowered.

The lowest frequencies easily accessed by experiment are of order 0.1
Hz. Hence the observed anomaly might be resolved if one could find re-
laxational modes of the foam having characteristic frequencies well below
this. Candidates for such modes fall into two classes: specific relaxation
mechanisms arising from the physics of films, Plateau borders, etc., which
are restricted directly to foams; and generic mechanisms associated with
more universal aspects of disorder. In this Section we restrict attention to
the first type, and show that there are no really obvious candidates. In
Section 5 we therefore review a recent model for generic dynamics in “soft
glassy materials”, which we believe may include foams.

4.1. QUALITATIVE ANALYSIS OF SLOW MODES

If there are slow relaxation modes in foams, the observed “low fre-
quency” viscoelastic spectrum can be interpreted as shown schematically
in Fig. 7. In other words, at still lower frequencies, relaxation modes would
be seen, each causing a drop AG in G'(w) and a bump in G"(w) as the fre-
quency is tracked downward. For a simple (Maxwell) process, the maximum
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Figure 7. Sketch of viscoelastic spectrum, showing possible relaxations at frequencies
below the measurement window.

height of the bump in G" is also AG] for a distribution of relaxation times
both the drop and the bump are smeared out. Given that G” is an apprecia-
ble fraction (say 1/10) of G’ at the measured frequencies, this explanation
requires not only that the characteristic frequencies of the mode(s) be low
(say < 0.1 Hz), but also that the corresponding amplitudes AG be a rea-
sonable fraction of G.

The exact calculation of the relaxation modes is far beyond our present
capabilities. However, qualitative estimates can be made by the following
strategy. (i) Identify sources of dissipation and express these as steady
state viscosities Amn;; (ii) Identify the corresponding driving forces and
express these as amplitudes AG; (found from the excess stored free en-
ergy in the strained state); (iii) Construct the characteristic frequency as
w; = AG;/An;. The following discussion summarises that of Buzza, L.u and
Cates [15]. Numerical estimates are generally those appropriate to small-cell
biliquid foams as studied by Mason, Weitz and Bibette [5], and dissipation
estimates are quoted per unit volume.



4.2. SOURCES OF DISSTPATION

Consider first a wet foam. This has films of thickness d (so far neglected,
but finite in practice), in equilibrium with borders of mean radius r. The
Laplace pressure in the borders is balanced, within the water films, by the
disjoining pressure 114. This arises from the direct interaction between the
surfactant monolayers across the thin water film; without it, foams would
not be stable. We assume that the wet foam has B > r > d and that the
borders provide a good reservoir of surfactant. That is, we assume that static
changes in film surface area negligibly perturb the chemical potential of the
surfactant in the foam. (Transient changes may however set up temporary
gradients in the chemical potential.) Possible dissipation sources include
the following.

Fluid viscosity: In most cases, this contribution is dominated by the
shearing of the water films (as opposed to the fluid within droplets).

Diffusion resistance: 1f a diffusive current j of surfactant is driven rela-
tive to stationary water by a chemical potential gradient, there is an entropy
production. This is precisely analogous to the Joule heating by electrons
flowing down a wire from high to low chemical potential (voltage). An ex-
pression for the heat production is given later.

Intrinsic dissipation in monolayers: The surfactant monolayers are 2-D
fluid films characterised by a shear viscosity p and dilational viscosity x.
(In fact, several different x’s can be defined for films in different states of
equilibrium with a reservoir; this is discussed in Ref. [15] but ignored here.)
Rough estimates for p are in the range 107 — 107% kg s™! and for &, about
107 —10"* kg s ~!, although the latter is hard to measure (and/or define).

4.3. DRIVING FORCES

Each driving force can be associated with a free energy contribution AF =
V AG~?/2 which contributes to the elastic stress until such time as the
stored free energy relaxes.

Gibbs elasticity: For example, the free energy increment in a stretched
film is

§F = adA+ E(6A4)%/2A (20)

where I is the Gibbs elastic constant. As with &, different F’s can be defined
depending on the state of equilibrium of the film; if it is instantaneous
exchange contact with a surfactant reservoir, F is zero. But if the density
of surfactant per unit area is reduced by a sudden expansion of the film,
then a finite Gibbs elastic storage will occur until this transient density
deficit is rectified (by surfactant diffusion or some other mechanism). The
value of E used below refers to this situation.



Surface tension: We distinguish this from the surface tension gradi-
ents arising from Gibbs elasticity. The latter can become large, and may
represent a stronger driving force than surface tension itself. Pure surface
tension remains relevant, however, since it is what causes the relaxation of
a nonminimal surface toward a minimal one, under conditions where the
surfactant has reached equilibrium.

Disjoining pressure: This provides a third driving force, which drives
the equilibration of the film thickness d to the proper value (at which it
becomes balanced by Laplace pressure).

4.4. A THEOREM

To summarise the above, shear deformation requires currents of both water
and surfactants to be set up in the foam, to transport these materials from
their old to their new positions. The driving forces responsible are Gibbs
elasticity (strong), surface tension (weaker) and disjoining pressure (weak,
except in dry or nearly dry foams [15]) and the dissipations involve water
viscosity, film viscosities, and diffusion resistance.

A theorem of nonequilibrium thermodynamics [16] states in essence that
“If alternative pathways exist for relaxing the same driving force, the least
dissipative is chosen”. Note that this is only true strictly within the lin-
ear response regime — but that is enough for us. Versions of the theorem
involve the well-known variational principles of least dissipation in Stokes
equation of fluid motion and Kirchoff’s laws for resistor networks. Accord-
ingly, for qualitative purposes we should think of possible patterns of water
and surfactant fluxes and choose the least dissipative. (This is a poor mans
substitute for the full solution of the problem, which would involve finding
the full equations of motion from a variational principle, and solving these
explicitly.)

4.5. DRY LIMIT

It is easier to think of candidate flux patterns in the dry limit where the
borders are not present; the film thickness d is, however, finite. Consider a
hexagonal array under slow shearing: there are regions where films contract
and others where they expand. In the contracting (expanding) regions there
is too much (too little) of both water and surfactant. Considering the water
current first, the required transport can arise via Poiseuille type flow of
water with a film (Fig. 8). The associated dissipation rate (per unit volume)
is of order TS = nw RY?/d as may be confirmed by checking the typical
shear rate within a film (~ ¥R/d) and taking account of the film volume
fraction (=~ d/R). The driving force for this motion is essentially I14.



Figure 8. Poiseuille flow of water with a film of thickness h; the typical fluid velocity
near the film centre is of order R7%.

Because there is a nontrivial stress boundary condition at the surfactant
monolayers, the mean velocity in the centre of a moving film is, according
to this mechanism, larger than at the edges. Thus, although part of the sur-
factant is swept along with the water, this does not give the right surfactant
flux overall. An obvious way to balance the flux is by diffusion of surfactant
within the watery part of the films. For typical biliquid foams (where the
surfactant concentration in this region is very small) this is extremely dis-
sipative [15]: TS ~ RT%?/(dDeX?) with D the surfactant diffusivity and ¥
the area per molecule in a monolayer. (Note that this scales inversely with
surfactant concentration.) So if a less dissipative route can be found, the
system will choose it.

Such a route involves “Marangoni flow”, that is, collective motion of
the surfactant layers along the film surface (dragging some fluid along for
the ride). Clearly, by combining this with the Poiseuille flow in some lin-
ear combination, the required ratio of surfactant to water fluxes can be
achieved. Such a resultant flow is shown in Fig. 9: note, however, that
to get a suitable overall flow pattern requires shearing within the mono-
layers as well as within the water; the dissipation is thus found to be
TS ~ nwRY?/d + k%?/R. The driving force for this motion is essentially
Gibbs elasticity.

4.6. WET FOAM

For a wet foam, the preceding flow patterns are still possible, but an ex-
tra possibility arises. This is called Marginal Regeneration and involves the
push/pulling of fully-formed bilayer films into and out of the Plateau bor-
der regions. There is then negligible dissipation within the body of the film,



Figure 9. A superposition of Marangoni and Poiseuille flows leads to strong shear in
some films (bold arrows) and compression and dilation in others.

but dissipation arising from and water flow, diffusion resistance and surface
dilational viscosity. All three processes take place in the “neck” regions con-
necting the films to the borders. (It should be noted that in this mechanism
there is a singular limit for d — 0, in which the slow drainage of water out
of the pulled film gives a dominant dissipation [17]. So long as d remains
finite, this becomes a nonlinear effect, which is, at least formally, irrelevant
to the limit under discussion.)

The dissipation in the Marginal Regeneration mechanism is estimated
as [15] TS = (qw + T/(DeX?) + k/p)3? where p is the size of a neck
(somewhere between r and d). Comparison with the Marangoni process
described above suggests the latter to be less dissipative for typical foam
parameters. An exception is for ultra-dry foams (d — 0) where the Marginal
Regeneration mechanism becomes obligatory.

4.7. MODE STRUCTURE

With the above ideas about water and surfactant flux patterns, we can
identify the following candidate modes:



Poiseuille Mode: Driven mainly by disjoining pressure; elastic storage
modulus increment AGp ~ I[1zd/R ~ od/(Rr); viscosity increment Anp ~
nw R/d, hence relaxation frequency

AGp od?

~ 21
Anp — Rdnw 1)

wp =

For wet foams (and parameters relating to the small cell biliquid case)
AGp < Gy, and wp ~ 1—100 Hz. For dry foams, AGp ~ Gy but wp > 100
Hz.

Marangoni Mode: Driven mainly by Gibbs elasticity; elastic storage
modulus increment AGy; ~ FE/R; viscosity increment Any ~ nwR/d +
k/ R; relaxation frequency

AG FE

Any nwR?d+ &k
For wet foams, AGy ~ Go, but wy ~ 100 — 1000 Hz. For dry foams,
AGp = G but wpr >~ 100 Hz. Note that in circumstances where Marginal

Regeneration prevails (instead of the Marangoni mode), this again gives

AG ~ Gy but w > 1000 Hz.

WhM =

(22)

4.8. BOTTOM LINE

As summarised above, the authors of Ref. [15] did not find a candidate
mode which combines both a reasonable amplitude (AG of order 0.1 G,
say) with a low characteristic frequency (w < 1 Hz). Obviously the analysis
is not complete, nor quantitative. Therefore, we do not categorically rule
out slow relaxation modes associated with foam-specific dynamics; but this
approach does not look promising. It at least seems worthwhile to seek
other, more general, mechanisms for slow relaxations. This idea is also
motivated by similarities in the rheology of many soft materials.

5. SOFT GLASSY RHEOLOGY
5.1. SOFT GLASSY MATERIALS

The class of materials whose (low frequency) rheology is very similar to that
of foams and emulsions is actually quite large; clay slurries, pastes, dense
multilamellar vesicles and colloidal glasses are just a few examples [5, 18,
19, 20, 21, 22, 23]. Their elastic (G') and loss (G") moduli often depend only
weakly on frequency w, with G” being typically between one and two orders
of magnitude smaller than G’. In fact G” often shows no sign of decreasing
to zero for w — 0 (as it should if the response is truly linear) even at the
lowest frequencies that are accessible experimentally; sometimes it even



seems to rise as w decreases. These similarities also extend to nonlinear
rheology. For example, ‘flow curves’ of shear stress s versus shear (strain)
rate 4 in steady shear flow are generally well described by a relation of the
form

s=sy +ci? (23)

with an exponent p between 0.1 and 1. If there is no yield stress (sy = 0),
this is called a ‘power law fluid’, otherwise a ‘Herschel-Bulkley model’ [24,
25, 26]. Either way, the materials are ‘shear-thinning’ in that the apparent
viscosity s/ decreases as the shear rate ¥ increases.

Such qualitative similarities in the rheology of many soft materials sug-
gest an underlying common cause. An obvious candidate, common to all the
materials listed above, is (mesoscopic) structural disorder. (The importance
of this feature has been noted before for specific systems [5, 12, 13, 15, 27,
28], but we feel that its unifying role in rheological modelling has not been
properly appreciated.) In a foam, for example, the droplets are normally
arranged in a disordered fashion rather than as a regular, crystalline array.
The latter would give a lower free energy, and the disordered state is there-
fore only metastable. The dynamics of transitions between such metastable
states will be slow, because typical energy barriers for rearrangements of
droplets are much greater than kgl’. Qualitatively, the same features are
found in all the other materials that we have mentioned. More importantly,
they are very close to what we normally refer to as a glass (except that
the disorder there is on a molecular scale). We express this similarity by
referring to the class of materials, that we now consider, as “soft glassy
materials” (SGM) [29]; the “soft” is added to emphasise that they deform
and flow easily, in contrast to many ordinary glasses.

5.2. BOUCHAUD’S GLASS MODEL

We are aiming for a phenomenological model that can explain the main
features of SGM rheology (both linear and nonlinear) as described above.
To apply to a broad range of SGMs, such a model needs to be reasonably
generic. It should therefore incorporate only a minimal number of features
common to all SGMs, leaving aside as much system specific detail as possi-
ble. We start with the ‘glassiness’, i.e., the effects of structural disorder and
metastability. An intuitive picture of a glass is that it consists of local ‘ele-
ments’ (we will be more specific later) which are trapped in ‘cages’ formed
by their neighbours so that they cannot move. Occasionally, however, a
rearrangement of the elements may be possible, due to thermal activation,
for example. This idea was formalised into an effective one-element model
by Bouchaud (see Refs. [30, 31], where references to earlier work on similar



models can also be found): an individual element ‘sees’ an energy landscape
of traps of various depths F; when activated, it can ‘hop’ to another trap.

Bouchaud assumed that such hopping processes are due to thermal fluc-
tuations. In SGMs, however, this is unlikely as kgl is very small compared
to typical trap depths F (see later). We assume instead that the ‘activation’
in SGMs is due to interactions: a rearrangement somewhere in the material
can propagate and cause rearrangements elsewhere. In a mean-field spirit
we represent this coupling between elements by an effective temperature (or
noise level) z. This idea is fundamental to our model.

We can now write an equation of motion for the probability of finding
an element in a trap of depth F at time ¢:

%P(E, £) = —Toe=F/= P, 1) + I(t) p(E) (24)
In the first term on the r.h.s., which describes elements hopping out of their
current traps, I'g is an attempt frequency for hops, and exp(—#£/z) is the
corresponding activation factor. The second term represents the state of
these elements directly after a hop. Bouchaud made the simplest possible
assumption that the depth of a new trap is completely independent of that
of the old one; it is simply randomly chosen from some distribution of trap
depths p(F). The rate of hopping into traps of depth F is then p(£) times
the overall hopping rate, given by

D) =Ly (e7P/7) = 1‘0/6—15/“c P(E,t)dE (25)

Bouchaud’s main insight was that the model (24) can describe a glass transi-
tion if the density of deep traps has an exponential tail, p(F) ~ exp(—FE/z),
say. Why is this? The steady state of eq. (24), if one exists, is given by
Pey(F) ~ exp(E/z)p(F); the Boltzmann factor exp(F/z) (no minus here
because trap depths are measured from zero downwards) is proportional to
the average time spent in a trap of depth F. At z = 2,4, it just cancels the
exponential decay of p(F), and so the supposed equilibrium distribution
P.q(FE) tends to a constant for large F; it is not normalisable. This means
that, for 2 < 2, the system does not have a steady state; instead, it ‘ages’
by evolving into deeper and deeper traps [30, 31]. We therefore identify
r = x4 as the glass transition of the model (24). In the following, we choose
energy units such that this transition occurs at ¢ = z; = 1.

We now have a candidate model for describing the glassy features of
SGM. Its main advantage is that it is simple. Its disadvantages are: (i)
It has no spatial degrees of freedom, hence cannot describe flow—this we
shall fix in a moment. (ii) The assumption of an exponentially decaying
p(FE) is rather arbitrary in our context. It can be justified in systems with



‘quenched’ (i.e., fixed) disorder, such as spin glasses, using so-called ‘ex-
treme value statistics’ [32], but it is not obvious how to extend this argu-
ment to SGM. (iii) The exponential form of the activation factor in (24) was
chosen by analogy with thermal activation. But x describes noise arising
from interactions, so this analogy is by no means automatic, and functional
forms other than exponential could also be plausible. In essence, we view
(ii) together with (iii) as a phenomenological way of describing a system
with a glass transition. We now ask how such a system will flow.

5.3. MODEL FOR SGM RHEOLOGY

To describe deformation and flow, we now incorporate strain degrees of
freedom into the model [29]. As our ‘elements’ we take mesoscopic regions
of our SGM. By mesoscopic we mean that these regions must be (i) small
enough for a macroscopic piece of material to contain a large number of
them, allowing us to describe its behaviour as an average over elements;
and (ii) large enough so that deformations on the scale of an element can
be described by an elastic strain variable. For a single droplet in a foam,
for example, this would not be possible because of its highly non-affine
deformation; in this case, an element should therefore be at least a few
droplet diameters across. We choose the size of the elements as our unit
length (to avoid cumbersome factors of element volume in the expressions

below).

We denote by [ the local shear strain of an element (more generally,
the deformation would have to be described by a tensor, but we choose a
simple scalar description). This is measured from the nearest equilibrium
configuration of the element, i.e., the one it would relax to if in complete
isolation and without external stresses. When an element is deformed, [
will first increase from zero. Assuming the deformation in this regime to
be elastic, there will be a local shear stress s = kl; k is an appropriate
elastic constant, which we take to be the same for all elements. On further
deformation, however, the element must eventually yield and rearrange into
a new equilibrium configuration; the local strain [ is then again zero. This
happens when the elastic strain energy 1kI? approaches a typical yield
energy F; due to the disordered structure of the material, the value of this
yield energy will in general be different for each element. We can view
such yielding events as ‘hops’ out of a trap (or potential well), and identify
the yield energy F with the trap depth. As before, we assume that yields
(hops) are activated by interactions between different elements, resulting
in an effective temperature z. The activation barrier is now F — %le, the
difference between the typical yield energy and the elastic energy already
stored in the element.



We haven’t as yet specified how elements behave between rearrange-
ments. The simplest assumption is that their strain changes along with the
macroscopically imposed strain 7. This means that, yielding events apart,
the shear rate is homogeneous throughout the material; on the other hand,
the local strain [ and stress s are inhomogeneous because different elements
yield at different times. We therefore now need to know the joint proba-
bility of finding an element with a yield energy F and a local strain [ to
describe the state of the system. An appropriate model for this was set up
in Ref. [29]; within the model, the probability evolves in time according to

%P(E, 1) = —&%P —Loe P P n(e) p(E)S()  (26)
The first term on the r.h.s. describes the motion of the elements between
rearrangements, with a local strain rate equal to the macroscopic one, | = .
The interaction-activated yielding of elements is reflected in the second
term. The last term incorporates two assumptions about the properties of
an element just after yielding: It is unstrained (! = 0; this assumption can
be relaxed without qualitative changes to our results) and has a new yield
energy I randomly chosen from p(F), i.e., uncorrelated with its previous
one. Finally, the total yielding rate is given by the analogue of (25),

T'(t) =Ty <e-(E-%’”2)/f>P =Ty / e~ E=3k/" p(E 1 )y dEdl  (27)

Eq. (26) tells us how the state of the system, described by P(FE,1,t), evolves
for a given imposed macroscopic strain v(¢). What we mainly care about is
of course the rheological response, i.e., the macroscopic stress. This is given
by the average of the local stresses

s(t) = k(l)p = k /IP(E, 1,1) dEdl (28)

In the absence of yielding events, the equation of motion (26) then predicts
a purely elastic response: As = s(t) — s(t') = kA~. This is a consequence
of our assumption that in between rearrangements, the response of each
individual element is purely elastic. In reality, there are also viscous contri-
butions; in foams, these are due to the flow of water and surfactant caused
by the deformation of the elements. In the low frequency regime of interest
to us, such viscous effects are insignificant (see Section 4) and can be ne-
glected. At high frequencies, this is no longer true and the model (26,28)
would have to be modified appropriately to yield sensible predictions.
With (26,28), we now have a minimal model for the (low frequency)
rheology of SGM: It incorporates both the ‘glassy’ features arising from



structural disorder (captured in the distribution of yield energies £ and lo-
cal strains /) and the ‘softness’: for large macroscopic strains, the material
flows because eventually all elements yield. One interesting consequence of
this is that ‘flow interrupts aging’: Above, we saw that below the glass tran-
sition (z < 1), the system evolves into deeper and deeper traps; it ages. In
the presence of steady shear flow (4 = const), however, this doesn’t happen:
As the local strain [ increases with the macroscopic one, the activation bar-
rier K — %le of any element decreases to zero in a finite time, for any trap
depth F. The system can therefore not get stuck in progressively deeper
traps; aging is ‘interrupted’ [33] and ergodicity is restored.

5.4. PREDICTIONS FOR LINEAR RHEOLOGY

We now summarise the predictions [29] of the model defined by (26,28)
for the linear (shear) rheology of SGM. We choose units for energy and
time such that z, = I'y = 1. We also set & = 1, which can always be
achieved by a rescaling of the strain variables v and [. In these units, typ-
ical yield strains y/2F/k are of order one. Finally, for the density of yield
energies (‘trap depths’) we assume the simplest form with an exponential
tail, p(F) = exp(—F). The only parameter that distinguishes between dif-
ferent systems is then the effective noise temperature z. Note that this
is not a parameter that we can easily tune from the outside; rather, we
expect it to be determined self-consistently by the interactions in the sys-
tem. This should be borne in mind when we use expressions like “as z
increases/decreases” below.

The complex linear modulus predicted by the model [29] turns out to
be rather simple:

wr + 1

6w = (2 > (29)

This an average over Maxwell modes with relaxation times 7. The distri-
bution of 7 follows from the equilibrium distribution of energies, Psq(F) ~
exp(F/z)p(F). Here 7 is given by 7 = exp(F/z), the ‘lifetime’ (time be-
tween rearrangements) of an element with yield energy E, and this leads
to a power-law relaxation time distribution Pey(7) ~ 777 (for 7 > 1). As
x decreases towards the glass transition, the long-time tail of the spec-
trum becomes increasingly dominant and causes anomalous low frequency
behaviour of the moduli:

G" ~ w for2<uz, ~ Wl forl<az<?2

G~ w? for3<z, ~ w5l forl<az<3 (30)

These are illustrated in Fig. 10. The main point to noteis that for 1 < 2 < 2,
i.e., not too far from the glass transition, G’ and G vary as the same power



//ﬁ\\
10" ¢ 0 3
G v
—2 //
10 i // x=25 i
/
10° g
/M I E————
100 F :
G \\ r \\\
10° - N N
x=1.1 x=1.05
3 | | | | | | | |
10* 10° 10% 10' 10 10* 10° 10° 10" 10

w w

Figure 10. Linear moduli G' (solid line) and G (dashed) vs frequency w at various
noise temperatures z above the glass transition.

of frequency (w”~1); their ratio is therefore constant. Furthermore, as we
approach the glass transition (z — 1), this power law becomes increasingly
‘flat’. These predictions of the model are compatible with many experimen-
tal results [5, 18, 19, 20, 23].

The above linear results only apply for z > 1, where there is a well
defined equilibrium state around which small perturbations can be made.
However, if a cutoff Fi.x on the yield energies is introduced (which is
physically reasonable because yield strains cannot be arbitrarily large), an
equilibrium state also exists for < 1, i.e., below the glass transition.
(Strictly speaking, with the cutoff imposed there is no longer a true glass
phase; but if the energy cutoff is large enough, its qualitative features are
expected to be still present.) One then finds for the low frequency behaviour
of the linear moduli:

G' ~ const. G" ~ W't (31)

This applies as long as w is still large compared to the cutoff frequency,
Wmin = exXp(—Fmax/z). In this frequency regime, G” therefore increases
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as w decreases, again in qualitative agreement with recent experimental
observations [5, 21, 22, 23].

5.5. PREDICTIONS FOR NONLINEAR RHEOLOGY

The model of Ref. [29] can also be used to predict nonlinear rheological fea-
tures. This is especially important, because arguably the linear behaviour
described above follows inevitably from the existence of a power law distri-
bution of relaxation times: if we were only interested in the linear regime,
it would be simpler just to postulate such a power law! But in fact, an
exact (scalar) ‘constitutive equation’ relating the stress at a given time to
the strain history up to that point can be derived [34]. Therefore the model
allows one to probe the nonlinear regime in detail.

Here, we only discuss results for the flow curves, i.e., shear stress s vs
shear rate % in steady flow (Fig. 11). For high shear rates, strong shear
thinning is observed for all z; the stress increases only very slowly with
4 as s ~ (zln4)"/2. More interesting is the low shear rate (¥ < 'y = 1)



behaviour, where three different regimes can be distinguished. (i) For 2 > 2,
i.e., far above the glass transition, the behaviour is Newtonian, s = 7. The
viscosity, which is simply the average relaxation time, diverges as z — 2
(i.e., at twice the glass transition ‘temperature’). This signals the onset of
a new regime: (i) For 1 < z < 2, one has a power law fluid, s ~ 4L
The exponent decreases smoothly from 1 to 0 as the glass transition is
approached. (iii) In the glass phase (z < 1), finally, there is a nonzero yield
stress (as one would intuitively expect for a glass). This shows a linear
onset, sy ~ 1 — z, as = decreases below the glass transition temperature.
Beyond yield, the stress again increases as a power law, s — sy ~ !7%,
The behaviour of our model in regimes (ii) and (iii) therefore matches
respectively the power-law fluid [24, 25, 26] and Herschel-Bulkeley [24, 25]
scenarios as used to fit the experimental nonlinear rheology of many SGMs.

5.6. INTERPRETATION OF MODEL PARAMETERS

Our model for SGM captures important rheological features that have been
observed in a large number of experiments, at least in the region around
a ‘glass transition’. Using a mean-field (one element) picture, it is also
simple enough to be generic. The main challenge now is the interpretation
of the model parameters, namely, the ‘effective noise temperature’ z and the
‘attempt frequency’ ['g. To answer these questions, we should really start
from a proper model for the coupled nonlinear dynamics of the ‘elements’
of a SGM and then derive our present model within some approximation
scheme. At present, we do not know how to do this.

We can nevertheless interpret the activation factor exp[—(F — 3kl?)/z]
in (26) as the probability that (within a given time interval of order 1/I'y)
an element yields due to a ‘kick’ from a rearrangement elsewhere in the ma-
terial. Therefore z is the typical activation energy available from such kicks.
But while kicks can cause rearrangements, they also arise from rearrange-
ments (whose effects, due to interactions, propagate through the material).
So there is no separate energy scale for kicks: Their energy must of the
order of the energies released in rearrangements, i.e., of the order of typical
yield energies F. In our units, this means that z should be of order unity.
Note that this is far bigger than what we would estimate if 2 represented
true thermal activation. For example, the activation barrier for the simplest
local rearrangement in a foam (a T1 or neighbour-switching process) is of
the order of the surface energy of a single droplet; this sets our basic scale
for the yield energies F. Using typical values for the surface tension and a
droplet radius of the order of one ym or greater, we find £ > 10*%gT. In
our units K = O(1), so thermal activation would correspond to extremely
small values of z = k7T < 1074,



We now argue that z may not only be of order one, but in fact close
to one generically. Consider first a steady shear experiment. The rheologi-
cal properties of a sample freshly loaded into a rheometer are usually not
reproducible; they become so only after a period of shearing to eliminate
memory of the loading procedure. In the process of loading one expects a
large degree of disorder to be introduced, corresponding to a high noise tem-
perature = >> 1. As the sample approaches the steady state, the flow will
(in many cases) tend to eliminate much of this disorder [35] so that z will
decrease. But, as this occurs, the noise-activated processes will slow down,;
as x — 1, they may become negligible. Assuming that, in their absence,
the disorder cannot be reduced further, z is then ‘pinned’ at a steady-state
value at or close to the glass transition. This scenario, although extremely
speculative, is strongly reminiscent of the ‘marginal dynamics’ seen in some
mean-field spin glass models [36].

Consider now the attempt frequency l'g. It is the only source of a char-
acteristic timescale in our model (chosen as the time unit above). We have
approximated it by a constant value, independently of the shear rate +; this
implies that [’y is not caused by the flow directly. One possibility, then, is
that 'y arises in fact from true thermal processes, i.e., rearrangements of
very ‘fragile’ elements with yield energies of order kg'l’. This mechanism can
give a plausible rheological time scale if one local rearrangement can trigger
a long sequence of others [29], as may be the case in foams [12, 28]. Other
possible explanations for the origin of 'y include internal noise sources, such
as coarsening in a foam, and uncontrolled external noise sources (traffic go-
ing past the laboratory where the rheological measurements are performed,
for example). The rheometer itself could also be a potential source of noise;
this would however suggest at least a weak dependence of 1’y on the shear
rate 4. We cannot at present say which of these possibilities is most likely,
nor rule out other candidates. The origin of 'y may not even be universal,
but could in fact be system specific.

6. CONCLUSION

These lectures were intended to summarise our current understanding of
linear and nonlinear viscoelasticity in foams. The study of the low frequency
linear elastic modulus G'(w — 0) is well-established, but, as described in
Section 3, there is a clear discrepancy between the predictions of simplis-
tic ordered models (in both two and three dimensions) and the observed
volume fraction dependence of this quantity. This is partially explained
by the anomalous spring constant between droplets at weak contact (the
Morse-Witten effect) but a full explanation also requires disorder. The lat-
ter idea was proposed several years ago by Dennis Weaire and others, but



has only recently been implemented in a three dimensional model [13]. The
low frequency loss modulus, G”(w) is much harder to understand; the data
shows a clear anomaly in that, at the lowest attainable frequencies, this
quantity appears to be constant or even rising as the frequency is low-
ered. Attempts to explain this in terms of foam-specific mechanisms were
summarised in Section 4. Although the qualitative analysis of surfactant
transport that this entails is certainly of some value, the basic conclusion is
that there is no obvious candidate among such mechanisms for explaining
the anomalous dissipation in foams. Again, one is drawn to disorder as a
general explanation.

Accordingly in Section 5, we have described a recent phenomenological
model for foam rheology. It captures in a simple yet generic way the effect of
mesoscopic structural disorder and metastability; these features are shared
by many other ‘soft glassy materials’. Thus the model can account for the
main qualitative features of the rheology, not only of foams, but of other
systems such as slurries and pastes which are commonly observed to show
weak power law behaviour and/or near constant loss modulus. The model
offers an intriguing link between the linear viscoelastic spectrum and the
nonlinear flow curves. However, the interpretation of its parameters, no-
tably the ‘effective noise temperature’ z, remains to be clarified. To do this
may require study of a more fundamental model involving strongly coupled
degrees of freedom (as undoubtedly are present in soft glassy materials),
rather than the mean-field description used so far.
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