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Statistical mechanics of ensemble learning
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Within the context of learning a rule from examples, we study the general characteristics of learning with
ensembles. The generalization performance achieved by a simple model ensemble of linear students is calcu-
lated exactly in the thermodynamic limit of a large number of input components and shows a surprisingly rich
behavior. Our main findings are the following. For learning in large ensembles, it is advantageous to use
underregularized students, which actually overfit the training data. Globally optimal generalization perfor-
mance can be obtained by choosing the training set sizes of the students optimally. For smaller ensembles,
optimization of the ensemble weights can yield significant improvements in ensemble generalization perfor-
mance, in particular if the individual students are subject to noise in the training process. Choosing students
with a wide range of regularization parameters makes this improvement robust against changes in the unknown
level of corruption of the training data.@S1063-651X~97!00701-0#
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I. INTRODUCTION

The methods of statistical mechanics have been app
successfully to the study of neural networks and other s
tems that can learn rules from examples~for reviews see,
e.g., Refs.@1,2#!. The main issue is normally the question
generalization: Given a set of training examples, i.e., pairs
inputs and corresponding outputs produced according
some underlying but unknown rule~the ‘‘teacher’’ or ‘‘tar-
get’’!, one wants to generate, by a suitable training al
rithm, a predictor ~the ‘‘student’’! that generalizes, i.e.
makes accurate predictions for the outputs correspondin
inputs not contained in the training set.

More recently, it has emerged that generalization per
mance can often be improved by training not just one p
dictor, but rather using an ensemble, i.e., a collection o
~finite! number of predictors, all trained for the same ta
This idea of improving generalization performance by co
bining the predictions of many different predictors has be
investigated extensively in statistics; see, e.g., Refs.@3–5#.
Within the context of neural network learning, ensemb
have also been studied by several groups; see, for insta
Refs. @6–9#. Usually the predictors in the ensemble a
trained independently and then their predictions are co
bined. This combination can be done by majority~in classi-
fication! or by simple averaging~in regression!, but one can
also use aweightedcombination of the predictor. We focu
on the latter method in the following. Other schemes
combining predictors exist, such as mixtures of experts@10#,
where the weighting of the ensemble members is highly n
linear, and boosting@11,12#, in which the training data are
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partitioned among the individual predictors in a way th
optimizes the ensemble performance.

Ten copies of the same weather forecast obviously c
tain exactly the same amount of information as just o
copy. By obtaining tendifferent forecasts, however, it may
actually be possible to predict tomorrow’s weather more
curately, even if the forecasts are all based on the same
ellite data. The same is true quite generally for ensem
learning; only if the predictors in an ensemble are differen
there something to be gained from using an ensemble. T
obvious insight was quantified in Ref.@9# by a relation stat-
ing that the generalization error of a weighted combinat
of predictors in an ensemble is equal to the average erro
the individual predictors minus the ‘‘disagreement’’ amo
them, which we refer to as the ambiguity. For completene
the derivation of this basic relation is reviewed in Sec. II.
Ref. @9#, a combination of the ensemble idea and the meth
of cross-validation was also suggested. It is implemented
training each student only on a subset of the available d
and ‘‘holding out’’ the remaining examples for testing i
performance. There are several reasons why this approa
useful. First, one can obtain anunbiasedestimate of the en-
semble generalization error, even though the ensemble
whole is trained on all available data. Second, by training
individual students on different subsets of the training da
they are made more ‘‘diverse,’’ and so it should be possi
to reduce the ensemble error by increasing the ambig
more than the errors of the individual students. Third,
ambiguity can be estimated from the distribution of inpu
~without the corresponding target outputs! alone, which can
easily be sampled in many practical applications. By estim
ing the ambiguity accurately, the optimal weight for ea
student in the ensemble can then be determined to a sim
degree of precision.

The method outlined above raises several interes
questions. First, it would be interesting to see under wh
circumstances one can actually improve the ensemble ge
alization performance by training each student only on a s

i-
811 © 1997 The American Physical Society



e
w
t
x
h
a
a
o
ta
th
th
en
a
th
ial
ha
fo

st
sl

in
o
e
in
ou
th
r-
fo
th
n
ha

sy
s

b
y

put
e
ctor

ors

ing
f

age
rs

d
r,
al
ree.

the
her
.

ed
in

er-
to-
f

in-
he

ays
l

812 55ANDERS KROGH AND PETER SOLLICH
set of the available data. A second question is how larg
fraction of the data set should be held out to obtain the lo
est ensemble generalization error. Finally, one would like
know whether it is useful to have students differ, for e
ample, in the amounts of regularization they use or whet
it is more advantageous to have an ensemble of identic
regularized students. In this paper we investigate these
other questions quantitatively. By turning to the simplest
all models for the students, the linear perceptron, we ob
analytical results for the generalization performance of
ensemble as a function of noise in the data, noise in
training process, the amount of regularization on the stud
and, finally, the size of the training sets of the individu
students and their overlaps. The behavior that we find for
simple system is surprisingly rich and sufficiently nontriv
to allow general conclusions to be drawn. We believe t
these conclusions will, at least to some extent, also hold
more complex, nonlinear learning systems.

For the case of an ensemble of unregularized linear
dents, two limiting cases of our analysis have previou
been studied in Ref.@13#: the limit in which all the students
are trained on the full data set and the one where all train
sets are mutually non-overlapping. The main contribution
the present paper is that we are able to treat the cas
intermediate training set sizes and overlaps exactly, yield
detailed insights into ensemble learning. Furthermore,
analysis also allows us to study the effect of noise in
training algorithm, the influence of having different regula
izations for the students in the ensemble, and the per
mance improvements that can be gained by optimizing
weights with which individual students contribute to the e
semble predictions. A short account of some of this work
appeared in Ref.@14#.

II. GENERAL FEATURES OF ENSEMBLE LEARNING

A. Ensemble generalization error and ambiguity

Let us consider the task of predicting a rule~teacher!
given by a target functionf 0 mapping inputsxPRN to out-
puts yPR. We assume that we can obtain only noi
samples of this mapping and denote the resulting stocha
target functiony(x). Assume now that an ensemble ofK
independent predictorsf k(x) of y(x) is available. Weighted
averages over this ensemble will be denoted by an over
The final output of the ensemble, for example, is given b

f̄ ~x!5(
k

vkf k~x!.

We can think of weightvk as our belief in predictork and
therefore constrain the weights to be positive and to sum
one.

We define theambiguityon inputx of a single member of
the ensemble asak(x)5@ f k(x)2 f̄ (x)#2. The ensemble am-
biguity on inputx,

ā~x!5(
k

vkak~x!5(
k

vk@ f k~x!2 f̄ ~x!#2, ~1!
a
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quantifies the disagreement among the predictors on in
x; it is simply the variance of their outputs around th
weighted ensemble mean. The quadratic errors of predi
k and of the ensemble are

ek~x!5@y~x!2 f k~x!#2,

e~x!5@y~x!2 f̄ ~x!#2,

respectively. Adding and subtractingy(x) in ~1! yields, after
a few manipulations,

e~x!5 ē~x!2ā~x!, ~2!

where it was used that the weightsvk sum to one and we
have defined the average error of the individual predict
ē(x)5(kvkek(x).
Let us now assume that the inputx is sampled randomly

from a probability distributionP(x). The above formulas can
be averaged over this distribution and the correspond
~stochastic! target outputsy(x). If we define the average o
e(x) to be theensemble generalization errore, then we ob-
tain, by averaging~2!,

e5 ē2ā. ~3!

The first term on the right-hand side is the weighted aver
of the generalization errors of the individual predicto
( ē5(kvkek), while the second is the~average! ensemble
ambiguity

ā5(
k

vkak5(
k

vk^@ f k~x!2 f̄ ~x!#2&x . ~4!

The general relation~3!, which has been previously derive
in Ref. @9#, shows clearly that the more the predictors diffe
the lower the ensemble error will be, provided the individu
errors remain constant. We want the predictors to disag
Another important feature of Eq.~3! is that it decomposes
the generalization error into a term that depends only on
generalization errors of the individual predictors and anot
term that containsall correlations between the predictors
Furthermore, as Eq.~4! shows, the correlation termā can be
estimated entirely fromunlabeled data, i.e., no knowledge is
required of the actual target function. The term ‘‘unlabel
example’’ is borrowed from classification problems, and
this context it means an inputx for which the value of the
target outputy(x) is unknown.

Parenthetically, we note that our definition of the gen
alization error includes a contribution arising from the s
chasticity of the target outputs alone@namely, the variance o
y(x), averaged overx#. Equation~3! also holds when this
irrelevant constant is dropped on both sides, and this is
deed what we shall do in our explicit calculations of t
generalization error below. We also observe from Eq.~3!
that the generalization error of the ensemble is alw
smaller than the~weighted! average error of the individua
predictors,e, ē. In particular, for uniform weights
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e<
1

K(
k

ek ,

which has been noted by several authors, see, e.g., Ref@7#.

B. Bias and variance

All our observations up to this point do not depend
how the predictorsf k are obtained. In the rest of this pape
we assume that thef k are generated on the basis of a traini
set consisting of p examples of the target function
(xm,ym), m51, . . . ,p, whereym5 f 0(x

m)1hm, with hm be-
ing zero mean additive noise. In this context, it is natura
refer to thef k as students and to focus on theaverageen-
semble generalization error as the main quantity of inter
The average is taken over all training sets, i.e., over all
of training inputsxm, randomly and independently sample
from P(x), and the corresponding noisy training outpu
ym. Decomposing the ensemble outputf̄ (x) into its average
over all training setŝ f̄ (x)&xm,ym and the deviationD f̄ (x)
from this average, one can write the average ensemble
eralization error as

^e&xm,ym5Š^@y~x!2 f̄ ~x!#2&x,y‹xm,ym

5Š@y~x!2^ f̄ ~x!&xm,ym#2‹x,y1Š^@D f̄ ~x!#2&xm,ym‹x

5^B2~x,y!&x,y1^V~x!&x . ~5!

The first and second terms on the right-hand side of~5! are
normally referred to as~squared! bias and variance of the
ensemble output~both averaged over the test inputx and test
outputy), respectively@15#. Since the bias of the ensembl

B~x,y!5y~x!2^ f̄ ~x!&xm,ym5(
k

vk@y~x!2^ f k~x!&xm,ym#

is simply the average of the biases of the individual stude
ensemble learning normally cannot be expected to yiel
significant reduction in bias compared to learning with
single student. The variance of the ensemble output, on
other hand, is given by

V~x!5K S (
k

vkD f k~x! D 2L
xm,ym

5(
k,l

vkv l^D f k~x!D f l~x!&xm,ym.

It is upper bounded by the average of the variances of
individual students:

V~x!<(
k

vk^@D f k~x!#2&xm,ym. ~6!

This bound is saturated when the fluctuations of the stud
outputs~as functions of hypothetical ‘‘fluctuations’’ in the
training set! are fully correlated and of equal variance, co
firming again the intuition that the benefit of ensemble lea
ing is small if all students are identical in the sense that t
o
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react very similarly to different training sets. In the oppos
case where the fluctuations of the students are comple
uncorrelated, one has

V~x!5(
k

vk
2^@D f k~x!#2&xm,ym , ~7!

which for approximately uniform ensemble weigh
(vk'1/K) is significantly lower@by a factor ofO(1/K)#
than the average~6! of the individual variances. We expec
therefore, that ensemble learning is most useful in circu
stances where the generalization errors of the individual
dents are dominated by variance rather than bias. This
pectation will be confirmed by our results for a simple mod
system, to be described in the following sections.

C. Training on subsets

As pointed out in the Introduction, the students in t
ensemble need not be trained on all available training d
In fact, since training on different examples will genera
increase the ambiguity, it is possible that training on subs
of the data willimprovegeneralization performance. An ad
ditional advantage is that, by holding out a different part
the total data set for the purpose of testing each student,
can use the whole data set for training the ensemble and
get an unbiased estimate of the ensemble generalization
ror. Denoting this estimate byê, one has simply

ê5e test2aC , ~8!

where e test5(kvkek
test is the average of the students’ te

errors andaC is an estimate of the ensemble ambiguity, o
tained from unlabeled examples as explained above@16#.

So far, we have not mentioned how to find the ensem
weightsvk . Often uniform weightsvk51/K are used, but it
is tempting to optimize the weights in some way. In Re
@7,8#, the training set was used to perform the optimizatio
i.e., the weights were chosen to minimize the ensemble tr
ing error. This can easily lead to substantial over-fitting,
we shall show below. It has therefore been suggested@9# to
minimize the estimated generalization error~8! instead. If
this is done, the estimate~8!, evaluated at the optimized
weights, is of course no longer unbiased; intuitively, ho
ever, we expect the resulting bias to be small for large
sembles. A quantitative analysis of this point is beyond
scope of our present analysis, since the fluctuations of
test errors around the corresponding generalization er
vanish in the thermodynamic limit considered below, maki
the estimate~8! not only unbiased, but in fact exact. No
that since both the ensemble training error and the ensem
generalization error involve only terms linear and quadra
in the ensemble output~and hence in the ensemble weigh
vk), finding the corresponding optimalvk is simply a qua-
dratic optimization problem, made nontrivial only by th
constraints that the weights should be positive and sum
one.
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814 55ANDERS KROGH AND PETER SOLLICH
III. ENSEMBLES OF LINEAR STUDENTS

A. Linear perceptron learning

In preparation for our analysis of learning with ensemb
of linear students we now briefly review the case of a sin
linear student, also referred to as a ‘‘linear perceptro
Such a student implements the input-output mapping

f ~x!5
1

AN
wTx

parametrized in terms of anN-dimensional parameter vecto
w with real components; the scaling factor 1/AN is intro-
duced for convenience and T denotes the transpose of a
tor. The student’s parameter vectorw should of course not be
confused with the ensemble weightsvk . The most common
method for training such a linear student~or parametric in-
ference models in general! is minimization of the sum-of-
squares training error

Et5(
m

@ym2 f ~xm!#2

wherem51, . . . ,p numbers the training examples. To pr
vent the student from fitting noise in the training data
weight decay term is often added, and one minimizes
energy function

E5Et1lw2 ~9!

instead. The size of the weight decay parameterl determines
how strongly large parameter vectors are penalized; largl
corresponds to a strongerregularization of the student.
Within a Bayesian framework,l can also be viewed a
implementing prior knowledge about the type of task to
learned~see, e.g., Refs.@17–19#!. Finally, l can loosely be
interpreted as a soft constraint on the complexity of the m
ping that the linear student can implement. In the contex
learning with multilayer feedforward networks, for examp
largel would thus correspond to a high cost for adding n
hidden units, so that simple networks with few hidden un
would be preferred.

In practice, the minimum of the energy functionE is often
located by gradient descent. For the linear studentE is a
quadratic function of the parameter vectorw, and therefore
this procedure will necessarily find the global minimum
E. However, for more realistic, nonlinearly parametrized s
dents, this will not necessarily be the case, and one m
often end up in a local minimum ofE. We crudely model the
corresponding randomness in the training process by con
ering white noise added to the gradient descent update
the parameter vectorw. In a continuous learning time ap
proximation,w then obeys a Langevin equation, which f
large learning times leads to a Gibbs distribution of para
eter vectors@20#. This distribution can be written asP(w)
}exp(2E/2T), where the ‘‘temperature’’T measures the
amount of noise in the learning process@21#. We focus our
analysis on the thermodynamic limitN→` at constant nor-
malized number of training examplesa5p/N. In this limit,
quantities such as the training or generalization error bec
self-averaging, i.e., their averages over all training sets
s
e
’’

ec-

e

e

p-
f
,

s

-
y

id-
of

-

e
e-

come identical to their typical values for a particular traini
set. For linear students, it was shown in Ref.@22# that, in
general, the exact average case results obtained in the
modynamic limit are good approximations even for syst
sizesN as small as a few tens or hundreds, and we expec
same to hold for our analysis of ensemble learning with l
ear students.

Let us assume that the training inputsxm are chosen ran-
domly and independently from a Gaussian distributi
P(x)}exp(2 1

2x
2) and that training outputs are generated

a linear target function corrupted by nois
ym5w0

Txm/AN1hm, wherehm is zero mean additive nois
with variances2. Fixing the length of the target paramet
vector tow0

25N for simplicity, the resulting generalization
error of a linear student with weight decayl and learning
noiseT can be written as@23#

e5~s21T!G1l~s22l!
]G

]l
. ~10!

On the right-hand side of this equation we have dropped
term arising from the noise on the target function alon
which is simply s2; this convention will be followed
throughout. The ‘‘response function’’G is defined as
G5(1/N)tr^g&, whereg21 is half the Hessian of the energ
functionE defined in~9! and^ & is an average over the train
ing inputsxm. Explicitly, g can be expressed as

g215l11A, ~11!

where1 is theN3N unit matrix and

A5
1

N(
m

xm~xm!T ~12!

is the correlation matrix of the training inputs. The respon
function can be calculated as the physically relevant solu
of the equation@22,24#

1/G5a/~11G!1l, ~13!

which leads to

G5G~a,l!5
1

2l
@12a2l1A~12a2l!214l#.

~14!

An equation exactly analogous to~10! also holds when the
training examples are generated by a noisy nonlinear per
tron target function. In this cases2 is replaced by an effec
tive noise level, which is the sum of the actual noise varian
and the error of the best linear fit to the transfer function
the nonlinear target perceptron@13,25,26#.

We conclude our review of learning with a single line
student by remarking that for any given number of traini
examplesa and zero learning noiseT50, the generalization
error ~10! is minimized when the weight decay is set to t
value l5s2 @23#. Assuming that the noise on the trainin
outputs and the prior probability of teacher parameter vec
w0 are Gaussian, this corresponds to optimal learning in
sense of Ref.@27# and also to the Bayes optimal estimat
~see, e.g., Refs.@28,29#!. The minimal value of the generali
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55 815STATISTICAL MECHANICS OF ENSEMBLE LEARNING
zation error thus obtained iss2G(a,s2). For l,s2, the
student isunderregularizedand will therefore tend tooverfit
noise in the training data; forl.s2, on the other hand
over-regularizationforces the student to fit the data le
closely and puts more emphasis on the preference for s
parameter vectorsw, as expressed in the weight decay te
of the energy function~9!. In terms of the bias-variance de
composition of the generalization error discussed in Sec
underregularization corresponds to small bias but large v
ance, since the student’s predictions depend strongly
noise in the training data. For overregularized students,
the other hand, the variance is small, but the suboptim
large value ofl leads to a large bias. This difference b
tween under- and overregularization will help us underst
the resulting ensemble performance, as discussed in m
detail in Sec. IV.

B. Ensemble generalization error

We now consider an ensemble ofK linear students with
weight decayslk and learning noisesTk (k51, . . . ,K).
Each student has an ensemble weightvk and is trained on
Nak training examples, with studentsk and l sharingNakl
training examples. As above, we consider noisy training d
generated by a linear teacher~or a nonlinear perceptron
teacher with effective noise variances2). Details of the cal-
culation of the resulting ensemble generalization error
relegated to Appendix A; in Appendix B, we show how th
relevant averages over training inputs can be calculated
ing either diagrammatic methods@24# or differential equa-
tions derived from matrix identities@22#. The resulting en-
semble generalization error is

e5(
k,l

vkv lekl , ~15!

where

ekl5
rkr l1s2~12rk!~12r l !akl /aka l

12~12rk!~12r l !akl /aka l
1dklTkGk .

~16!

HereGk is defined asGk5G(ak ,lk) and rk5lkGk . Re-
writing the definition of rk as rk5^(1/N)trlk(lk1
1Ak)

21&, whereAk is the correlation matrix of the training
inputs on which studentk is trained,rk can be interpreted a
the fraction of theN parameters of studentk that are not well
determined by its training data~but rather by the weigh
decay regularization! @30#. The Kroneckerd in the last term
of ~16! arises because the learning noises for different
dents are uncorrelated. The generalization error and amb
ity of the individual students are

ek5ekk , ak5ekk22(
l

v lekl1(
l ,m

v lvme lm .

From these expressions one can again verify the genera
lation ~3!. In Secs. IV and V, we shall explore the cons
quences of the general result~15! and~16! first for the limit
of a large ensembleK→` and then for more realistic en
semble sizes. We will concentrate on the case where
training set of each student is sampled randomly~without
ort

I,
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d
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ta
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-
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re-
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he

replacement! from the total available data set of sizeNa. For
the overlap of the training sets of studentsk andl (kÞ l ) one
then hasakl /a5(ak /a)(a l /a) up to fluctuations that van
ish in the thermodynamic limit; hence

akl5aka l /a. ~17!

For finite ensembles one can construct training sets for wh
akl,aka l /a. This results in a slightly smaller generaliza
tion error, but for simplicity we use~17!.

C. Ensemble training error

We now give the analog of the result~15! and~16! for the
error of the ensemble predictions on thetraining set. It has
been suggested@7,8# that the ensemble weightsvk should be
chosen such that this so-calledensemble training erroris
minimized, which motivates our interest in this quantit
Since the ensemble training error is not an unbiased estim
of the generalization error, choosing the ensemble weight
minimize it may well lead to overfitting. However, whe
some examples are held out for testing each student,
ensemble error on the training set contains contributi
from both training and test errors of the individual studen
~This shows that the term ‘‘ensemble training error’’ is a
tually a slight misnomer in this context.! The test errors es
timate the corresponding generalization errors without b
and one would therefore expect the degradation of gene
zation performance from minimizing the ensemble traini
error rather than the estimated generalization error~8! to be
relatively benign, as long as the test sets for the individ
students are not too small.

The calculation of the ensemble training error, which
detailed in Appendixes A and B, yields the result

e t5K 1p(m S ym2(
k

vk f̄ ~x
m! D 2L 5(

k,l
vkv lekl

t . ~18!

In the absence of learning noise~all Tk50), theekl
t are re-

lated to the corresponding coefficientsekl in the result for the
ensemble generalization error~16! by

ekl
t uTk505~ekluTk501s2!H 12

1

a F22rk2r l

2~12rk!~12r l !
akl

aka l
G J . ~19!

Since the students can fit noise in the training data, the
semble training error can of course be smaller thans2, and
therefore we have retained the contribution from noise on
training examples in~19!. This is why the ensemble trainin
error is related to the ensemble generalization errorincluding
noise on the test examples,e1s2. Equation~19! shows that,
as expected, the training error is always smaller than
~noisy! generalization error. The same is also true in t
presence of learning noise (Tk.0), where one has

ekl
t 5ekl

t uTk501dklTkFak

a

Gk

11Gk
1S 12

ak

a DGkG ~20!
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816 55ANDERS KROGH AND PETER SOLLICH
compared todklTkGk for the generalization error. For th
diagonal terms in~19! and~20! one can show the intuitively
reasonable result

ekk
t 5

ak

a
ek
t 1S 12

ak

a D ~ek1s2!,

whereek
t andek are the training and generalization errors

studentk. This shows explicitly that the ensemble trainin
error is a mixture of training and generalization errors.

IV. LARGE ENSEMBLE LIMIT

We now use our main result~15! to analyze the generali
zation performance of an ensemble with a large numberK of
students, in particular when the size of the training sets
the individual students are chosen optimally. If the ensem
weightsvk are approximately uniform (vk'1/K), the en-
semble generalization error is dominated by the off-diago
elements of the matrix (ekl) in the limit of a large ensemble
K→`. The diagonal elements can therefore be replaced w
the corresponding expressions for the off-diagonal eleme
yielding together with~17!

e'(
k,l

vkv l

rkr l1s2~12rk!~12r l !/a

12~12rk!~12r l !/a
. ~21!

For the special case where all students are identical and
trained on training sets of identical sizeak5(12c)a, we
show the resulting ensemble generalization error in Fig. 1~a!.
The minimum at a nonzero value ofc, which is the fraction
of the total data set held out for testing each student,
clearly be seen. This confirms our intuition that when t
students are trained on smaller, less overlapping train
sets, the increase of the errors of the individual students
be more than offset by the corresponding increase in am
guity.

The optimal training set sizesak can in fact be calculated
analytically. Setting the derivatives of the generalization
ror ~21! with respect toak to zero, one obtains the condition

FIG. 1. Generalization errors and ambiguity for an infinite e
semble of identical students. The solid line is the ensemble ge
alization errore, the dotted line shows the error of the individu
studentsē, and the ambiguityā is represented by the dashed lin
~a! shows the case of underregularized students (l50.05,
s250.2). Note that there is an optimalc for which the generaliza-
tion error of the ensemble has a minimum. This minimum ex
wheneverl,s2. When the students are overregularized as in p
~b! (l50.3 at the same noise levels250.2), the minimum disap-
pears. For both plotsa51.
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rk5lkGk5s2G~a,s2![r ~k51, . . . ,K !. ~22!

Using ~13!, the solution for the optimal training set size
(ck denotes the fraction of the total data set used for tes
studentk) is obtained as

ck[12
ak

a
5

12lk /s
2

11G~a,s2!
. ~23!

The corresponding generalization error is simp
e5r1O(1/K), which, as explained in Sec. III A, is th
minimal generalization error that can be obtained. We c
thus conclude thata large ensemble with optimally chose
training set sizes can achieve globally optimal generalizat
performance. However, we see from~23! that, sinceck>0
by definition, optimal generalization performance can on
be obtained by choosing optimal training set sizes if all
weight decayslk are smaller thans

2, i.e., if the ensemble is
underregularized. This is exemplified, again for an ensem
of identical students, in Fig. 1~b!, which shows that for an
overregularized ensemble, the generalization error is a mo
tonic function ofc and never reaches the minimum genera
zation error. These results confirm our expectation that
semble learning is most useful for reducing variance: T
generalization error of under-regularized students is do
nated by variance contributions, which, as shown in Sec
can be significantly reduced by decorrelating the student
puts. This is achieved by training the students on nonide
cal training sets with small overlap, and in this way optim
generalization performance can be achieved~for optimal
c). For overregularized students, on the other hand, the g
eralization error is dominated by bias. Only the remaini
small variance contribution can be reduced by using an
semble, making it impossible to reach optimal performan

The general conclusion that we draw from the above
sults is thatensemble learning is most useful if the individu
students are not already strongly regularized. This means
that for ensemble learning, overfitting can actually have
positive effect by allowing full exploitation of the ensem
ble’s potential for reducing variance. Using the correspo
dence between regularization and prior knowledge, we
also say that ensemble learning really comes into its o
when only little prior knowledge about the task to be learn
is available, which would normally lead to strong overfittin
when using a single student. Note that the large ensem
generalization error~21! has no contribution from the learn
ing noise of the individual students. This property of e
semble learning, namely, the suppression of inherent
domness in the training process, will be explored in mo
detail in Sec. V.

An interesting consequence of~23! is that in order to ob-
tain optimal generalization performance, more strongly re
larized students should be trained on a larger fraction of
total data set. Using~22!, this can also be interpreted in th
sense that all students should have the same number o
rameters that are well determined by their respective train
sets. This makes sense since one expects that in this cas
fluctuations of all students caused by the randomness of
training examples will be of the same order, thus maximiz
the overall ambiguity.

-
r-

s
t



-

e

e
b
i-

e
h
liz
s

iz
liz
ini
of
be

pt
ce
ze
te
n
w

ac

th
ou
th
ee
g
d
rr
a
n
e
n

i
by
in

oth-
by
ne
-
e is
u-
t is
zed
en-

or

-
plot
ent
he
ig-
e.

the
l for

be
test
rror

e

are

cal

to

the

55 817STATISTICAL MECHANICS OF ENSEMBLE LEARNING
We now discuss the finiteK corrections to the generali
zation error resulting from the~largeK-optimal! choice~23!
for the training set sizes, assuming that the ensembl
under-regularized, i.e.,lk<s2 for all k. For uniform weights
(vk51/K) one has(kvk

251/K, and in the general case w
therefore define an effective ensemble size
1/Keff5(kvk

2 . Using ~22! and ~13!, the ensemble general
zation error can then be written in the form

e5r1r(
k

vk
2F ~12r!

s22lk

r21lk
1
Tk
lk

G
and bounded by

e<rF11
1

Keff
S s21Tmax

lmin
21D G ,

wherelmin andTmax are the minimal weight decay and th
maximal learning noise in the ensemble, respectively. T
ensemble is thus large in the sense that optimal genera
tion performance can be achieved by tuning the training
sizes if

Keff@U s21Tmax
lmin

21U.
This means that, although it is useful not to overregular
the students in the ensemble, one should definitely uti
whatever prior knowledge is available to provide some m
mal regularization~corresponding to a nonzero value
lmin). Otherwise, prohibitively large ensemble sizes will
needed to achieve good generalization performance.

We conclude this section by discussing how the ada
tion of the training set sizes could be performed in practi
confining ourselves to an ensemble of identically regulari
students for simplicity, where only one parame
c5ck512ak /a has to be adapted. If the ensemble is u
derregularized one expects that the generalization error
have a minimum for some nonzeroc as in Fig. 1~a!. There-
fore, one could start by training all students on a large fr
tion of the total data set~corresponding toc'0) and then
gradually and randomly remove training examples from
students’ training sets. For each training set size, one c
estimate the generalization error by the performance of
students on the examples on which they have not b
trained according to Eq.~8! and one would stop removin
training examples when the generalization error stops
creasing. The resulting estimate of the generalization e
will be slightly biased; however, it would seem that for
large enough ensemble and due to the random selectio
training examples, the risk of obtaining a strongly bias
estimate by, for example, systematically testing all stude
on too ‘‘easy’’ training examples is rather small.

V. REALISTIC ENSEMBLE SIZES

We now discuss some effects occurring in ensembles w
‘‘realistic’’ numbers of students, which were not covered
the discussion of the large ensemble limit in the preced
section.
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A. Effect of learning noise

We have seen that in an overregularized ensemble, n
ing can be gained by making the students more ‘‘diverse’’
training them on smaller, less overlapping training sets. O
would also expect this kind of ‘‘diversification’’ to be unnec
essary or even counterproductive when the learning nois
high enough to provide sufficient inherent diversity of st
dents. In the large ensemble limit, we saw that this effec
suppressed, but it does indeed occur for realistically si
ensembles. In Fig. 2 we show the dependence of the
semble generalization errore on c512ak /a for an en-
semble ofK510 identical, underregularized students. F
small learning noiseT, the minimum ofe at nonzeroc per-
sists, whereas for largerT, e is monotonically increasing
with c, implying that further diversification of students be
yond that caused by the learning noise is wasteful. The
also shows the performance of the optimal single stud
~with l chosen to minimize the generalization error at t
givenT), demonstrating that the ensemble can perform s
nificantly better by effectively averaging out learning nois

B. Weight optimization

For realistic ensemble sizes, we have just seen that
presence of learning noise generally reduces the potentia
performance improvement by choosing optimaltraining set
sizes: The inherently noisy, diverse students should each
trained on a large part of the total data set, the size of the
set being just sufficient to estimate the generalization e
reliably. In such cases, however, one can still adapt theen-
semble weightsvk to optimize performance, again on th
basis of the estimate of the ensemble generalization error~8!.
Examples of the resulting decrease in generalization error
shown in Figs. 3~a! and 3~b! for an ensemble of size

FIG. 2. Generalization error of an ensemble with ten identi
students as a function of the test set fractionc, for various values of
the learning noiseT. From bottom to top the curves correspond
T50,0.1,0.2,. . . ,1.0. The stars show the errore0(T) of the optimal
~with respect to the choice of weight decay! single perceptron
trained on all the examples, which is independent ofc. They are
placed where the ensemble error is identical toe0(T). For T50,
e0(T) is always lower than the ensemble error, as shown by
lowest star. The parameters for this example area51, l50.05,
ands250.2.
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818 55ANDERS KROGH AND PETER SOLLICH
FIG. 3. Generalization errore of an ensemble
with ten students with different weight decay
shown as a function of the noises2. The weight
decays of the students are marked by stars on
~logarithmic! x axis. The dashed lines are for th
uniformly weighted ensemble (vk51/K) and the
solid line is for ensemble weights chosen to min
mize the ensemblegeneralizationerror. The dot-
dashed lines show the generalization error o
tained when the ensemble weights are fou
instead by minimizing the ensembletraining er-
ror. The dotted lines, finally, are for the optima
single student trained on all data. All the plots a
for a51; the values of the learning noiseT and
the test set fractionc are shown in the individual
plots. Note that in~c! (T50, c50), the error that
the optimally weighted ensemble achieves is
distinguishable from the error of the single opt
mal network.
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K510 with the weight decayslk equally spaced on a loga
rithmic axis between 1023 and 1.

For both of the temperaturesT shown, the ensemble with
uniform weights performs worse than the optimal single s
dent. With weight optimization, the generalization perfo
mance approaches that of the optimal single student
T50 and is actually better atT50.1 over the whole range o
noise levelss2 shown. Since even the best single stud
from the ensemble can never perform better than the opt
single student~which, in general, will not be contained in th
ensemble!, this implies that combining the student outputs
a weighted ensemble average is superior to simply choo
the best member of the ensemble by cross-validation, i.e
the basis of its estimated generalization error. The reason
this is that the ensemble average suppresses the lea
noise on the individual students.

In Fig. 3 we have also plotted the ensemble generaliza
error for the case when the ensemble weights are found
minimizing the ensemble training error~18!. For small noise
level s2 andc50.2 @Figs. 3~a! and 3~b!# the result is essen
tially as good as for the generalization error minimizatio
but for larger noise levels the system starts to overfit. Figu
3~c! and 3~d! show the casec50, where all the students ar
trained on the full data set. The absence of test error co
butions from the ensemble training error is seen to lead
substantial overfitting and therefore cannot, in general,
recommended as a robust method of choosing the ense
weights. Whenc is exactly zero, it is of course impossible
choose the ensemble weights by optimizing the estima
generalization error as there are no examples for testing.
corresponding lines in Figs. 3~c! and 3~d! should therefore be
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understood as showing the limiting behavior forc→0.
We have also studied the effect of weight optimization

ensembles of students whose weight decays cover on
fairly small range. As an example, Fig. 4 shows the behav
of an ensemble ofK510 students consisting of two group
of five identical students, each with the weight decays of
two groups being fairly similar. Contrasting this with th
case of an ensemble with a wide spread of different wei
decays@see Figs. 3~a! and 3~b!#, we see that the range o
noise levelss2 for which the generalization error of the en
semble with optimized weights is lower than that of the o
timal single student has become smaller. In general, we
expect it to be advantageous to have an ensemble of stud
with different degrees and/or kinds of regularization in ord
to make the performance improvement obtained from an
semble with optimized weights robust against changes of
~unknown! noise levels2.

In Fig. 4 we have also plotted the~total! weight that is
assigned to the group of five students with the smaller we
decay when the ensemble generalization error is optimiz
For low noise levelss2 and zero learning noise@T50, Fig.
4~a!#, this group of students carries all the weight, while t
students with the higher weight decay are effective
switched off. This means that it is actually better to redu
the effective ensemble size toK55 than to retain highly
overregularized students in the ensemble. For finite learn
noise@Fig. 4~b!#, on the other hand, the students with high
weight decay are never switched off completely; being a
to average out learning noise by using the whole ensemb
obviously better than removing overregularized stude
from the ensemble.
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55 819STATISTICAL MECHANICS OF ENSEMBLE LEARNING
FIG. 4. Generalization errore of an ensemble with ten students made up of two groups of five identical students~with weight decays
l15•••5l550.005,l65•••5l1050.05 as shown by stars on thex axis!, plotted vs the noise levels2. The solid lines show the error fo
ensemble weights chosen to minimize the ensemble generalization error. The dot-dashed line is the total weight 5v1 assigned to the group
of students with the smaller weight decay; as the noise level increases, the students with larger weight decay are favored. For co
the generalization error of the optimal single student trained on all data~dotted line! is also plotted. As in Figs. 3~a! and 3~b!, the plots are
for a51 andc50.2, with learning noiseT50 andT50.1. Note how the range of noise levelss2 for which the ensemble performs bette
than the optimal single student has now become smaller.
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VI. CONCLUSION

We have studied ensemble learning for the simple, a
lytically solvable scenario of an ensemble of linear stude
Our main findings, which correlate with experimental resu
presented in Ref.@9#, are the following. In large ensemble
one should use underregularized students in order to m
mize the benefits of the variance-reducing effects of
semble learning. In this way, the globally optimal genera
zation error achievable on the basis ofall the available data
can be reached when the training set sizes of the individ
students are chosen optimally and, at the same time, an
biased estimate of the generalization error can be obtai
The ensemble performance is optimized when the m
strongly regularized students are trained on a larger par
the available data, making the number of parameters tha
well determined by the training data equal for all studen
For ensembles of more realistic size, we found that for s
dents subject to a large amount of noise in the training p
cess it is unnecessary to further increase the diversity of
dents by training them on smaller, less overlapping train
sets. In this case, optimizing the ensemble weights is
method of choice for achieving low ensemble generalizat
error and can yield better generalization performance tha
optimally chosen single student subject to the same am
of learning noise and trained on all data. This improvem
is most insensitive to changes in the unknown noise le
s2 if the weight decays of the individual students cover
wide range. As mentioned in the Introduction, we exp
most of the above conclusions to carry over, at least qua
tively, to ensemble learning with more complex, nonline
models.

APPENDIX A: ENSEMBLE ERRORS

In this appendix we outline the calculation of the avera
ensemble generalization error~15! and ~16! and ensemble
training error ~18!–~20!. While most of the averages in
volved can be carried out directly, the calculation of avera
over training inputs is more complicated and is theref
described separately in Appendix B. We detail only the c
a-
s.
s

xi-
-
-

al
n-
d.
re
of
re
.
-
-
u-
g
e
n
an
nt
t
el

t
a-
r

e

s
e
l-

culation for the case of a linear teacher; the generalizatio
a general nonlinear perceptron teacher can be obta
straightforwardly using the methods described in Ref.@22#.

1. Ensemble generalization error

The ensemble generalization error can be measured
respect to the target output values either before or after n
is added. As mentioned in the text, we have chosen to use
noise free target values in our calculations; inclusion of
noise contribution would simply increase the value of t
generalization error bys2. By definition, the generalization
error of the ensemble with respect to the noise free ta
values is

e5K S 1

AN
xTw02(

k
vk

1

AN
xTwkD 2L

x

5
1

N K S (
k

vkx
TvkD 2L

x

,

where ^ &x is an average over the test inputx, wk is the
parameter vector of thekth student, and we have introduce

vk5w02wk . ~A1!

The average over the assumed Gaussian distributionP(x)
}exp(2 1

2x
2) of test inputs yieldŝx&x50 and^xxT&x51 and

hence

e5
1

N S (
k

vkvkD 2. ~A2!

This expression now needs to be averaged over the stu
parameter vectorswk ~i.e., over all realizations of the learn
ing noise! and then over all training sets.

As explained in Secs. III A and III B, thewk are, for a
given training set, distributed asP(wk)}exp(2Ek/2Tk), with
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Ek5 (
mPSk

S ym2
1

AN
wk
TxmD 21lkwk

2 ,

wheremPSk means that example (xm,ym) is contained in the
training set of studentk. The distributions of the differen
wk are ~for a fixed training set! independent of each othe
since each student is assumed to be subject to indepen
learning noise. Because the energy functionsEk are qua-
dratic inwk , the joint distribution of thewk is Gaussian with
means and covariances

^wk&5gk
1

AN (
mPSk

ymxm

^DwkDwl
T&5^wkwl

T&2^wk&^wl&
T5dklTkgk , ~A3!

where, by analogy with~11! and ~12!,

gk
215lk11Ak , Ak5

1

N (
mPSk

xm~xm!T. ~A4!

Since thevk differ from thewk only by a constant vector
their covariances are identical to those of thewk , while their
average values are

^vk&5w02^wk&5gkS lkw02
1

AN (
mPSk

hmxmD . ~A5!

Here we have used the decomposition of the training outp
into noise free target values and additive noise

ym5
1

AN
w0
Txm1hm. ~A6!

Inserting ~A3! and ~A5! into ~A2! and averaging over the
hm yields @ tr8•••5(1/N)tr•••#

e5(
k,l

vkv lFlkl l

1

N
w0
T^gkgl&w01s2tr8^gAklg&

1dklTktr8^gk&G , ~A7!

where

Akl5
1

N (
mPSkùSl

xm~xm!T

is the covariance matrix of the inputs of the examples
which both studentk and studentl are trained. Only average
over training inputs now remain. The last term in~A7! is, by
definition,

tr8^gk&5G~ak ,lk!5Gk .

The first term can be simplified using the isotropy of t
distribution of training inputs:

1

N
w0
T^gkgl&w05

1

N
w0
Tw0tr8^gkgl&5tr8^gkgl&
ent

ts

n

~remember that we assumedw0
25N). We are therefore left

with two training input averages, which are evaluated in A
pendix B:

tr8^gkgl&5
GkGl~11Gk!~11Gl !

~11Gk!~11Gl !2aklGkGl
, ~A8!

tr8^gkAklgl&5
aklGkGl

~11Gk!~11Gl !2aklGkGl
. ~A9!

Inserting these results into~A7! and making use of~13! to
simplify the expressions, one obtains the result~15! and~16!
given in the text.

2. Ensemble training error

The same techniques as above can be used to calculat
ensemble error on the training set, although the resul
expressions are slightly more cumbersome. The~normalized!
ensemble training error is defined as

e t5K 1p(m S ym2(
k

vkf k~x
m!D 2L

5K 1p(m S 1

AN(
k

vkvk
Txm1hmD 2L , ~A10!

where we have made use of~A1! and the decomposition
~A6!. The average over the distribution of thevk , i.e., over
the learning noise, can be carried out as in the preced
section and yields

e t5
1

p(
k,l

vkv l^v̄k
TAv̄ l&

1
2

pAN(
k

vk(
m

^hmv̄k
Txm&1

1

p(m ^~hm!2&

1dklTk
1

p
tr^gkA& , ~A11!

where we have denoted byv̄k the averages of thevk over the
learning noise. Inserting the explicit form~A5! of the v̄k and
averaging over thehm, the first term of~A11! becomes

1

N
^~ v̄k!

TAv̄ l&5lkl l tr8^gkAgl&1s2tr8^AgkAklgl&.

For the second term one finds

2

pANK (
m

hmv̄k
TxmL

5
2

pANK (
m

hmS lw02
1

AN (
nPSk

hnxnD TgkxmL
52

2s2

p
tr^gkAk&52

2s2

a
~12lkGk!,



55 821STATISTICAL MECHANICS OF ENSEMBLE LEARNING
FIG. 5. Correspondence between the diagrams and the mathematical expressions.
over
uts

-

where~A4! was used. Including the sum overk, this can be
written as (2s2/a) (klvkv l@(12lkGk)1(12l lGl)#. To-
gether with the trivial average^(hm)2& 5 s2 5
(klvkv ls

2, one thus has

et5(
k,l

vkv lekl
t ,

ekl
t 5s21

1

a
@lkl l tr8^gkAgl&1s2tr8^AgkAklgl&

2s2~22lkGk2l lGl !1dklTktr8^gkA&#. ~A12!
There are now three terms that need to be averaged
training inputs. In the last one, the average over the inp
that are not part of the training set of studentk can be done
directly, yielding

tr8^gkA&5~a2ak!tr8^gk&1tr8^gkAk&

5~a2ak!Gk112lkGk . ~A13!

Similarly, the first average in~A12! can be reduced by split
ting off the examples on which neither studentk nor student
l are trained:
s

ne by

st line the
FIG. 6. Diagrams for calculation of tr8^gkgl&. All the symbols are explained in Fig. 5.~a! gkgl is drawn as a product of expansion
gk 5 (lk11Ak)

21 5 2(2lk
2111lk

21Aklk
212lk

21Aklk
21

3Aklk
211•••) and similarly forgl . ~b! All the terms arising from the above product must be averaged. The averaging can be do

pairing the training inputs that occur in the products of the matricesAk andA l ~see Ref.@31#!, as indicated by dashed lines with a1. Only
diagrams where the dashed lines do not cross survive forN→`. ~c! When all the irreducible diagrams are collected as shown in~d!, the
expression becomes simple. The irreducible diagrams are those that cannot be cut in two without cutting a dashed line. In the la
subdiagrams corresponding to2Gk , 2Gl , and tr8^gkgl& have been identified~‘‘dressing’’!.
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FIG. 7. Diagrams for calculation of tr8^gkAklgl&. In the last line those of the irreducible diagrams containing tr8^gkAklgl& itself are singled
out.
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tr8^gkAgl&5~a1akl2ak2a l !tr8^gkgl&

1tr8^gk~Ak1A l2Akl!gl&

5~a1akl2ak2a l !tr8^gkgl&

1tr8^gk~12l lgl !1gl~12lkgk!2gkAklgl&

5~a1akl2ak2a l2lk2l l !tr8^gkgl&1Gk1Gl

2tr8^gkAklgl&. ~A14!

The two averages in expression~A14! also occur in the gen
eralization error; see~A8! and~A9!. The only remaining new
average in~A12! is shown in Appendix B to be

tr8^AgkAklgl&5S a2
akGk

11Gk
2

a lGl

11Gl
11D tr8^gkAklgl&.

~A15!

The final result~18!–~20! for the ensemble training error i
obtained by inserting~A13!–~A15! into ~A12! and simplify-
ing by making extensive use of~13!.
APPENDIX B: AVERAGES OVER TRAINING INPUTS

We now show how the averages over training inputs
pearing in the expressions for the ensemble generaliza
and training error can be calculated. Two methods are
scribed. The diagrammatic technique in Appendix B1 m
be easier to follow for readers familiar with field-theoret
methods, while the differential equation method explained
Appendix B2 is somewhat more basic, being based only
simple matrix identities.

1. Diagrammatic technique

The diagrammatic technique we use here was introdu
in Refs.@24,31#, to which we refer the reader for a detaile
exposition. The relevant notation is explained in Fig.
while Fig. 6 gives a summary of the method, using the
erage tr8^gkgl& as an example. From the diagrammatic e
pansion in Fig. 6~c! one sees that

tr8^gkgl&5GkZkl
1Gl , ~B1!

whereZkl
1 is the sum of the irreducible diagrams shown

Fig. 6~d!. This sum can be evaluated as
FIG. 8. Diagrams for calculation of tr8^AgkAklgl&. They are naturally separated into four series~from the top!: diagrams that contain
tr8^gkAklgl& as a factor, those in whichAkl cannot be incorporated in a tr8^gkAklgl& average, and those containing an average ofA and
tr8^gkAklgl& in an irreducible combination, grouped according to whether or notA appears next to tr8^gkAklgl&.
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Zkl
1 511akltr8^gkgl&Qkl , ~B2!

where

Qkl512~Gk1Gl !1~Gk
21GkGl1Gl

2!1•••

5~12Gk1Gk
22Gk

31••• !~12Gl1Gl
22Gl

31••• !

5
1

~11Gk!~11Gl !
,

a series that will occur several times below. Combining~B1!
and ~B2!, we deduce the result~A8! stated above.

For the second of the averages required, tr8^gkAklgl&, the
diagrammatic expansion is similar~Fig. 7!. The irreducible
diagrams sum to

Zkl
2 5aklQkl1akltr8^gkAklgl&Qkl ,

and using tr8^gkAklgl&5GkZkl
2Gl one derives the result~A9!.

Finally, the diagrammatic expansion of the avera
tr8^AgkAklgl& required for the calculation of the ensemb
training error is shown in Fig. 8. The four series into whi
the diagrams can be sorted sum to

tr8^AgkAklgl&5S a2
akGk

11Gk
D tr8^gkAklgl&1aklGkGlQkl

2
a lGl

11Gl
tr8^gkAklgl&

1aklGlGkQkltr8^gkAklgl&. ~B3!

From ~A9! one sees that

aklGkGlQkl~11tr8^gkAklgl&!5tr8^gkAklgl&,

and inserting this into~B3! yields the result~A15! stated in
Appendix A.

2. Differential equation method

An alternative method for calculating averages over tra
ing inputs, which we describe in the present section, w
introduced in Ref.@22#. It is based on considering the effe
of incremental changes in the size of the students’ train
sets, which in the thermodynamic limit result in partial d
ferential equations for the required averages. The b
building block is the matrix identity

SM1
1

N
xxTD 21

5M212
1

N

M21xxTM21

11
1

N
xTM21x

, ~B4!

which, as can easily be verified, holds for any vectorx and
any positive definite symmetric matrixM .

Consider now the averageGkl5tr8^gkgl&, which is a func-
tion of the size of the training sets of studentsk andl , ak and
a l , their overlapakl , and the weight decay parameterslk
and l l . Writing ak5akl1Dk anda l5akl1D l , we calcu-
late the variation ofGkl with akl for fixedDk andD l . Vary-
ing akl by 1/N means adding one new training examp
~whose input vector we simply write asx) to the training sets
e

-
s

g

ic

of studentsk and l . Denoting the resulting new ‘‘respons
matrices’’ bygk

1 andgl
1 we have, from~B4!,

1

N
trgk

1gl
15

1

N
trgkgl1

1

NF 2

1

N
xTgkglgkx

11
1

N
xTgkx

2

1

N
xTglgkglx

11
1

N
xTglx

1

S 1N xTgkglxD 2
S 11

1

N
xTgkxD S 11

1

N
xTglxD G . ~B5!

To get an equation forGkl , this has to be averaged over bo
the new and the existing training inputs. The average o
the new input can be done by noting that for the assum
Gaussian input distributionP(x)}exp(2x2/2) one has

1

N
xTMx5tr8M1O~N21/2!,

whereM can be any product of powers ofgk and gl @32#.
This yields

]Gkl

]akl
5 K ~]/]lk!tr8gkgl

11 tr8gk
1

~]/]l l !tr8gkgl
11 tr8gl

1
~ tr8gkgl !

2

~11 tr8gk!~11 tr8gl !
L

up to terms ofO(N21/2); the remaining average is over th
existing training inputs. Using the self-averaging property
the response functions (1/N)trgk/ l5Gk/ l1O(N21/2) and
(1/N)trgkgl5Gkl1O(N21/2) @which can be derived from the
recursion relation~B5!; compare the discussion in Ref.@22##,
this average becomes trivial in the thermodynamic limit a
one obtains the partial differential equation

]Gkl

]akl
2

1

11Gk

]Gkl

]lk
2

1

11Gl

]Gkl

]l l
5

Gkl
2

~11Gk!~11Gl !
.

~B6!

This can now be solved using the method of characteri
curves~see, e.g., Ref.@33#, or Ref. @22# for a brief review!.
The characteristic curves of~B6! are defined by

dakl

dt
51,

dlk

dt
52

1

11Gk
,

dl l

dt
52

1

11Gl
,

dGkl

dt
5

Gkl
2

~11Gk!~11Gl !
~B7!

(t being the curve parameter!, and the solution ‘‘surface’’
Gkl5Gkl(akl ,lk ,l l) is the union of those characterist
curves that satisfy the required initial conditio
Gkluakl505GkGl . Using ~14!, which is, in fact, the solution

of the differential equation]G/]a2(11G)21]G/]l50,
derived analogously to~B6! as described in Ref.@22#, one
verifies thatGk andGl are constant along the characteris
curves. This makes the integration of~B7! trivial: Selecting



f

que:

to

in

824 55ANDERS KROGH AND PETER SOLLICH
the arbitrary origin of thet scale such thatakl50 at t50,
the first and last equations of~B7! yield directly

2
1

Gkl
52

1

Gkluakl50
1

akl

~11Gk!~11Gl !

52
1

GkGl
1

akl

~11Gk!~11Gl !
,

which gives the desired result~A8!.
The remaining averages can be deduced fromGkl by ap-

plying the identity~B4!. Considering tr8^gkAklgl&, we first
write explicitly

tr8gkAklgl5
1

N2 (
mPSkùSl

~xm!Tgkglx
m.

Because bothgk and gl depend onxm, one cannot replace
(1/N)(xm)Tgkglx

m→(1/N)trgkgl1O(N21/2). Instead, one
needs to ‘‘pullxm out’’ of gk andgl by using ~B19! in re-
-verse: Writing (gk)

215(gk
m)211(1/N)xm(xm)T, one has

gkx
m5S gkm2

1

N

gk
mxm~xm!Tgk

m

11
1

N
~xm!Tgk

mxmD xm5
gk

mxm

11
1

N
xTgk

mx

,

and similarly forglx
m. Sincegk

m andgl
m are independent o

xm, one can now invoke self-averaging

~1/N!xTgk
mx5~1/N!trgk

m1O~N21/2!5tr8^gk
m&1O~N21/2!;

and since removing examplem corresponds to reducingak

by 1/N, tr8^gk
m&5Gk1O(N21). One can thus write
al

a

y,

m

s

1

N
~xm!Tgkglx

m5
Gkl

~11Gk!~11Gl !
1O~N21/2!;

summing this overm, one obtains tr8^gkAklgl&5aklGkl /
(11Gk)(11Gl) and hence~A9!.

The final average can be obtained by the same techni

tr8^AgkAklgl&5tr8^gkAklgl&F ~a2ak2a l1akl!1
ak2akl

11Gk

1
a l2akl

11Gl
G1tr8^AklgkAklgl&. ~B8!

The terms on the right-hand side correspond, from left
right, to training examples not contained in eitherSk or Sl ,
contained inSk but not inSl and vice versa, and contained
SkùSl . The last term can be written as

1

N (
mPSkùSl

F 1N ~xm!TgkSAkl2
1

N
xm~xm!TDglxm

1
1

N
~xm!Tgkx

m
1

N
~xm!Tglx

mG
5

akl

~11Gk!~11Gl !
tr8^gkAklgl&1akl

Gk

11Gk

Gl

11Gl

1O~N21/2!.

Inserting this into~B8!, one is led back to~B3!, from which
the result~A15! follows.
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