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Elastic models of the glass transition relate the relaxation dynamics and the elastic properties of structural
glasses. They are based on the assumption that the relaxation dynamics occurs through activated events in the
energy landscape whose energy scale is set by the elasticity of the material. Here we investigate whether such
elasticmodels describe the relaxation dynamics of systems of particles interacting via a purely repulsive harmon-
ic potential, focusing on a volume fraction and temperature range that is characterized by entropy-drivenwater-
like density anomalies. We do find clear correlations between relaxation time and diffusivity on the one hand,
and plateau shear modulus and Debye–Waller factor on the other, thus supporting the validity of elastic models
of the glass transition. However, we also show that the plateau shear modulus is not related to the features of the
underlying energy landscape of the system, at variance with recent results for power-law potentials. This sug-
gests that elastic models work even if the slow dynamics is not dominated by the potential energy landscape.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

The relaxation dynamics of supercooled liquids occurs through local
particle rearrangementswhose energy cost is related to the elastic prop-
erties of the material. This suggests the existence of correlations be-
tween the elasticity and the dynamics of supercooled liquids. Indeed,
at the local scale particle mobilities have been found to be related to
local elastic constants [1]. At the macroscopic level these correlations
have stimulated the formulation of elasticmodels of the glass transition,
which relate the relaxation dynamics and the elasticity of glass formers.
For instance, according to Dyre's shoving model [2], the relaxation oc-
curs through local volume-preserving events that allow the system to
transit from one potential energyminimum to a different one. If one es-
timates the energy barrier separating two energy minima within a par-
abolic approximation, this approach leads to the relation

τ∝ exp GpVat=kBT
� �

between the relaxation time and the plateau shear modulus, Gp, where
Vat is an atomic volume element that is assumed to be temperature
independent, T is temperature and kB is Boltzmann's constant. See
Refs. [3–5] for a discussion regarding the interpretation of Gp. Recent
numerical results on polymer melts [3] and on systems of particles
interacting via inverse power law potentials [6], showed the possibility
.

of connecting the plateau shear modulus to features of the energy land-
scape of the system [8,9]. Indeed, these studies found Gp to be related to

the fluctuations of the inherent shear stress, Gp ¼ GIS ¼ V
kBT

bðσ IS
xyÞ2N .

Here σxy
IS is the shear stressmeasured after quenching a system to its in-

herent structure, i.e. the nearest potential energy minimum. Together,
Dyre's shoving model and the results of Refs. [3,6] lead to a relation be-
tween the relaxation time on the one hand, and features of the inherent
energy landscape on the other.

A related approach to connecting the dynamics to elastic properties
via features of the energy landscape can be motivated by an analogy
with the Lindemann melting criterion for periodic crystal structures.
Here a relaxation event is considered to occur through local rearrange-
ments that take place when the mean squared vibrational amplitude of
a particle b u2 N, which is its Debye–Waller (DW) factor, crosses some
threshold a2, where a is of the order of the particle size. If this process
requires an energy barrier ΔE ∝ kBTa

2/b u2 N to be overcome, one re-
covers the Hall–Wolynes equation [7]

τ∝ exp a2=2bu2
N

� �
;

this connects the structural relaxation time to a short-time elastic prop-
erty, the DW factor. This approach has recently been [10] generalized by
introducing a probability distribution for a2, and successfully tested
against experimental and numerical data, including both strong and
fragile glass-formers. The main message from this work is that there is
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Fig. 1. (Color online) Mean square displacement for a system of N = 1000 particles at
T = 0.18 and ϕ = 1, 1.15 and 1.3.
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Fig. 2. (Color online) Volume fraction dependence of the isothermal diffusivity, for differ-
ent values of the temperature as indicated.
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a one-to-one correspondence between the relaxation dynamics and the
DW factor.

These two approaches for understanding glassy relaxation times
that we have described above are closely related to each other because
the DW factor is fixedmainly by the shearmodulus of thematerial [11].
We will therefore refer to them collectively as “elastic models”.

In this paper we consider the applicability of elastic models to sus-
pensions of particles interacting via a harmonic potential. Similar finite
range purely repulsive potentials are of interest as model for the inter-
action of macroscopic particles such as bubbles, foams and microgels,
whose dynamics exhibit glassy features at high concentration and/or
low temperature. In addition, these potentials are also of interest for
being able to give rise to water-like density anomalies at high densities
[12–16], in spite of their manifest simplicity. The possible applicability
of elasticmodels to these systems is of particular interest because elastic
models are based on an energy landscape interpretation of the dynam-
ics, while density anomalies have been rationalized by entropic argu-
ments [13].

We will show that in finite range repulsive systems the shear mod-
ulus estimated from the properties of the underlying energy landscape
overestimates theplateau shearmodulus, which implies that the energy
landscape properties are poorly correlatedwith the elasticity. Neverthe-
less, we do find correlations between relaxation time, diffusivity, pla-
teau shear modulus and DW factor that are consistent with those
predicted by the elastic model of the glass transition. Our results indi-
cate that elasticmodels, despite being formulated under the assumption
that the dynamics is correlated with the features of the energy land-
scape, correctly describe the relaxation dynamics of systems whose dy-
namics is strongly affected by entropy.

2. Model

We consider a polydisperse mixture of N = 103 harmonic disks of
massm, in two dimensions. Diameters are uniformly distributed in the
range [Dmin : Dmax], with the difference Dmax−Dmin between the largest
and smallest diameter being 82% of the mean diameter (Dmax + Dmin)/2
so that the distribution is fairly broad; this is necessary to prevent crys-
tallization that might occur either on increasing the density at con-
stant temperature, or when minimizing the energy to explore the
underlying energy landscape. Two particles i and j with average di-
ameter D = (Di + Dj)/2 and at a distance r interact via a potential

v rð Þ ¼
1
2
ϵ

D−r
Dmax

� �2
if r≤D

0 if rND

8<
: ð1Þ

In the following, lengths, masses and energies are expressed in units
ofDmax,m and of ϵ, respectively, and the density is expressed via the vol-
ume (or rather, area) fraction ϕ=N b A N/L2. Here L is the system size, b
A N the average particle area, and N the number of particles. We have
performed molecular dynamics simulations [17] at fixed volume, tem-
perature and particle number, integrating the equations of motion
using the Verlet algorithm, with a timestep of δt = 10−4. We
constrained the temperature via a Nose–Hoover thermostat, but found
the same results in the NVE ensemble, as we focus on the low tempera-
ture regime. The thermal equilibration of the system is ascertained by
checking for the absence of aging in the shear stress correlation func-
tion. This is defined as the off-diagonal term of the stress tensor,

σ xy ¼
1
V

XN
i¼1

mvxivyi þ
1
2

X
i≠ j

rxij Fyij

0
@

1
A; ð2Þ

where vαi, Fαij and rαij are the α-components of the velocity of the i-th
particle, of the force between particles i and j and of the separation be-
tween them. The transient shear modulus is related to the decay of the
shear stress fluctuations, G tð Þ ¼ V
kBT

bσ xy 0ð Þσ xy tð ÞN. We explore the fea-
tures of the underlying energy landscape by repeatedly minimizing
the energy of the system via the conjugate-gradient protocol to find
the instantaneous inherent structure, and measuring the inherent
shear stress σxy

IS . The latter is computed via Eq. (2), where all velocities
are set to zero. The transient inherent structure shear modulus is de-

fined as GIS tð Þ ¼ V
kBT
bσ IS

xy 0ð Þσ IS
xy tð ÞN, where T is the temperature of the

parent liquid; GIS(0) is then the same as GIS defined above.
3. Density anomalies

Systems of harmonic and Hertzian particles are characterized by
water-like density anomalies [12–16], including a non-monotonic
variation of the diffusivity upon isothermal compression, as well as a
negative thermal expansion coefficient. These anomalies occur as a con-
sequence of the gradulal restructuring of the system that occurs on
compression as particles are forced to make contacts with those of sub-
sequent coordination shells [15,16]. As an example, we show in Fig. 1
the mean square displacement for three different values of the volume
fraction, ϕ = 1, ϕ = 1.15 and ϕ = 1.3, at T = 0.18. Fig. 2 shows how
the corresponding diffusivities D depend on volume fraction and tem-
perature. One sees that for T= 0.18, ϕ=1.15 gives essentially the low-
est diffusivity; for ϕ = 1 one has standard behavior, with D decreasing
as density increases, while for ϕ = 1.3 the trend is reversed and one
has anomalous behavior. Fig. 1 suggests that the dynamics at ϕ = 1
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Fig. 3. (Color online) Probability distribution of the shear stress and of the inherent shear stress, at ϕ = 1.15, for different temperatures as indicated.
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and atϕ=1.3 are very similar, with the twomean square displacement
curves visually indistinguishable; we return to this point later on.

It is of particular interest to investigatewhether elasticmodels of the
glass transition capture the observed density anomalies. Indeed, density
anomalies are mainly driven by the density dependence of the entropy
of the system, while elastic models are based on a purely energetic in-
terpretation of the dynamics.

4. Inherent and liquid shear elasticity

Elastic models [2,11] of the glass transition are predicated on the as-
sumption that the dynamics of supercooled liquids consists of a series of
jumps between local potential energy minima, i.e. inherent structures.
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Fig. 4. (Color online) Temperature dependence of the variance of the shear stress for the pa
and ϕ = 1.3 (right panel). If not shown errors are smaller than symbol size.
The local curvature of these minima, which is related to the shear mod-
ulus of the system, sets the energy scale of these events and thus con-
trols the relaxation dynamics. This energy-landscape interpretation
makes it of interest to investigate the relation between the elastic prop-
ertiesmeasured in the liquid phase, and those observed after quenching
the system to its inherent structure. We have therefore measured the
probability distribution function of the shear stressσxy and of the inher-
ent shear stress, σxy

IS , whose variances are proportional to the instanta-
neous shear moduli. Fig. 3 shows that these distributions have a
Gaussian-like shape at all temperatures. In systems interacting via in-
verse power-law potentials [6] b σxy

2 N decreases on cooling, and ap-
proaches the value of b (σxy

IS )2 N which is temperature independent.
We find that also in our system, b σxy

2 N decreases on cooling. However,
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as is clear from Fig. 4, significant differences appear in the behavior of
the inherent structure stresses, and the relative size of the instanta-
neous and inherent structure stresses.

We note first that b (σxy
IS )2 N depends on the temperature of the par-

ent liquid. This behavior signals the fact that the system explores differ-
ent regions of the energy landscape at different temperatures. In similar
systems, this feature has recently been exploited to prove that the vol-
ume fraction at which the inherent structure shear stress vanishes, the
jamming volume fraction, depends on the temperature of the parent
liquid [18]. This proves that the jamming volume fraction is protocol de-
pendent [18,19]. At high temperatures the dynamics of the system is no
longer affected by the energy landscape, and b (σxy

IS)2 N should be tem-
perature independent. Fig. 4 suggests that we have reached this high
temperature regime for ϕ = 1.

Looking next at the relation between instantaneous and
inherent structure stresses, we find consistently (see Fig. 4) that
b (σxy

IS )2 N N b σxy
2 N, while the opposite relation is found in inverse-

power law liquids. We can make sense of this result by considering
that the fluctuations of the shear stress are related to the instantaneous
shear modulus. For harmonic potentials, whose second (radial) deriva-
tive of the potential is constant, the instantaneous shear modulus is
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Fig. 6. (Color online) Transient shear modulus and transient inherent structure sh
expected to scale with the density of contacts, G∝ zϕwhere z is the av-
erage contact number per particle. Fig. 5 shows the temperature depen-
dence of z for the parent liquid, where z increases on cooling, and for the
inherent structures, where z ≈ 5.5 is constant. At all temperatures, the
average contact number of the inherent structures is larger than the av-
erage contact number of the parent liquid. This implies that the inherent
shear modulusGIS ¼ V

kBT
b σ IS
� �2

N, is larger than the shear shear modulus
of the parent liquid, G 0ð Þ ¼ V

kBT
bσ2

xyN. Accordingly, b (σIS)2 N N b σxy
2 N,

which is the relation we saw in Fig. 4. In power law potential systems
the situation is different: the single particle bulk modulus, which is di-
rectly related to the second derivative of the potential, is not constant
but increases without bound as the interparticle distance becomes
smaller. Thus, if the average interparticle distance increases due to
more efficient packing when the system is quenched to its inherent
structure, then the shearmodulus of the inherent structures is expected
to be smaller than that of the parent liquid.

5. Elastic models

Wenow considerwhether the slowdown of the dynamics iswell de-
scribed by elastic models of the glass transition. First we consider Dyre's
shovingmodel, according to which logτ∝ GpVat/kBT, whereas before Gp

is the plateau shearmodulus, and Vat a local activation volume. As usual
we assume that the latter does not change with temperature, but now
add the assumption that it is also independent of volume fraction.
Fig. 6 shows the relaxation dynamics of the instantaneous shear stress:
the transient shear modulus G(t) exhibits the two-step decay typical of
glasses. From G(t), we can estimate a plateau modulus Gp in the deeply
supercooled regime as the value of G(t) at the (intermediate) time at
which the derivative of G(t) with respect to log(t) is minimal. The stress
relaxation time τ can then be extracted via a stretched exponential fit of
the final decay of G(t).

Having obtained data for Gp and τ, we can then assess the applicabil-
ity of Dyre's shoving model to our system: see Fig. 7. Here we show
(black circles) that the relaxation time is correlated fairly tightly with
the plateau shearmodulusGp In particular, the expected exponential re-
lation between relaxation time and plateau modulus divided by kBT is
observed in the deeply supercooled regime. It is important to note
here that the figure combines points taken at different temperatures
and volume fractions. In particular, the filled black circles refer to T =
0.14 and volume fractions around theone giving theminimal diffusivity.
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This proves that elasticity as measured by the plateau shear modulus is
well correlated with the dynamics in the anomalous region.

While the prediction of the shoving model appears to be reasonably
well verified, its interpretation in terms of the features of the energy
landscape of the system is not. Indeed, in this interpretation the plateau
shear modulus should be related to the inherent structure shear modu-
lus, as recently found in power-law liquids [3,6]. In these systems
GIS(0)≈ Gp and at all times GIS(t) ≤ G(t). Intuitively, the instantaneous
stress has larger fluctuations over short time scales than the inherent
structure stress, but around the timescale of the plateau the fast fluctu-
ations have averaged out and the relaxations of instantaneous and in-
herent structure stress track each other.

In our short range harmonic repulsive systems, on the other hand,we
findGIS(0) N G(0) as shown in Fig. 6 and as explained in the previous sec-
tion. Since G(0) N Gp, this implies also GIS(0) N Gp: the approximate
equality between these quantities no longer holds. In fact we find that
GIS(0) is not even proportional to Gp. This is clear indirectly from Fig. 7,
as no data collapse is found when τ is plotted versus GIS(0)/kBT instead
ofGp/kBT; the sameholds if we useG(0) instead ofGIS(0). This result clar-
ifies that, while the dynamics of harmonic systems are determined by
their elastic properties, these properties are not related in a simple way
to those of the energy landscape. This is consistentwith a previous entro-
pic interpretation of the observed density anomalies [13].
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We next consider, as a test of the second elastic model mentioned in
the introduction, whereas the relaxation dynamics is also closely corre-
lated with the DW factor. Fig. 1 suggests that this may well be the case,
as for T=0.18we saw that themean square displacements atϕ=1and
at ϕ= 1.3 coincide to good accuracy at all times, consistent the macro-
scopic diffusivities also being equal between these two volume frac-
tions. We have therefore investigated the existence of correlations
between the diffusion coefficientD and theDWfactor, b u2 N. Operative-
ly [10], we define b u2 N= b r2(tDW) N, where tDW is the time of minimal
diffusivity.We determine this time by considering the time dependence
of the diffusivity exponent b(t)= ∂log(b r2(t) N)/∂log(t), which varies in
time from the value b= 2, characteristic of the short time ballistic mo-
tion, to the value b = 1 for the long time diffusive motion. In the
supercooled regime, the mean square displacement at intermediate
times is sub-diffusive, and b(t) b 1 has a minimum at some time tDW
(Fig. 8).

Fig. 9 displays the resulting dependence of the diffusion coefficientD
on b u2 N. In the deeply supercooled regime of lowD, the figure suggests
that D is uniquely determined by b u2 N. At higher temperatures this is
no longer the case. We note, however, that at higher temperatures the
identification of b u2 N is subject to large errors as the subdiffusive re-
gime disappears. In addition, in the anomalous volume fraction range
we observe the presence of a long subdiffusive regime with a nearly
constant subdiffusive exponent, as illustrated in the inset of Fig. 9.

We conclude this section by returning to the point that the two elastic
models we have considered are not independent because b u2 N is
(mainly) determined by the shear elasticity [11]. Indeed, we do also
find a clear correlation between the relaxation time and the DW fac-
tor, which is consistent with the Hall–Wolynes equation,
τ ∝ exp(a2/2 b u2 N) as shown in Fig. 10a. The combined validity of
this relation and of Dyre's model implies the relation T/Gp ∝ b u2 N,
which is also compatible with our numerical data as Fig. 10b shows. Fi-
nally, we note (Fig. 10) that we also find a relation between diffusivity
and relaxation time, with D ∝ τ−q and q ≈ 0.72.
6. Conclusions

We have demonstrated that elastic models of the glass transition
correctly capture the slow dynamics of harmonic particle systems, in
the temperature and volume fraction region where density anomalies
are observed. However, we have found the relevant elastic constants
not to be related to the features of the energy landscape of the system.
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This result suggests that elastic models, whose construction has been
motivated by systems whose dynamics is dominated by the energy
landscape, could be generalized by referring instead to the full free en-
ergy landscape. Future directions include an investigation of the validity
of elastic models in other liquids with density driven anomalies, such as
the Gaussian potential, the Jagla potential, or water-like model, as well
as in liquids with temperature driven anomalies such as the sticky
hard-sphere model.
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