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Phoneme Classification in Linear Feature Domains
Matthew Ager, Zoran Cvetković Senior Member, IEEE,and Peter Sollich

Abstract—Phoneme classification is investigated for linear feature
domains with the aim of improving robustness to additive noise. In
linear feature domains noise adaptation is exact, potentially leading to
more accurate classification than representations involving non-linear
processing and dimensionality reduction. A generative framework is
developed for isolated phoneme classification using linearfeatures. Initial
results are shown for representations consisting of concatenated frames
from the centre of the phoneme, each containingf frames. As phonemes
have variable duration, no singlef is optimal for all phonemes, therefore
an average is taken over models with a range of values off . Results
are further improved by including information from the enti re phoneme
and transitions. In the presence of additive noise, classification in this
framework performs better than an analogous PLP classifier,adapted
to noise using cepstral mean and variance normalisation, below 18dB
SNR. Finally we propose classification using a combination of acoustic
waveform and PLP log-likelihoods. The combined classifier performs
uniformly better than either of the individual classifiers across all noise
levels.

Index Terms—phoneme classification, speech recognition, robustness,
additive noise

I. I NTRODUCTION

STUDIES have shown that automatic speech recognition (ASR)
systems still lack performance when compared to human listeners

in adverse conditions that involve additive noise [1], [2], [3]. Such
systems can improve performance in those conditions by using
additional levels of language and context modelling. However, this
contextual information will be most effective when the underlying
phoneme sequence is sufficiently accurate. Hence, robust phoneme
recognition is a very important stage of ASR. Accordingly, the
front-end features must be selected carefully to ensure that the
best phoneme sequence is predicted. In this paper we investigate
the performance of front-end features, isolated from the effect of
higher level context. Phoneme classification is commonly used for
this purpose.

We are particularly interested in linear feature domains, i.e. features
that are a linear function of the original acoustic waveform signal.
In these domains, additive noise acts additively and consequently
the noise adaptation for statistical models of speech data can be
performed exactly by a convolution of the densities. This ease of noise
adaptation in linear feature domains contrasts with the situation for
commonly used speech representations. For instance, mel-frequency
cepstral coefficients (MFCC) and perceptual linear prediction coeffi-
cients (PLP) [4] both involve non-linear dimension reduction which
makes exact noise adaptation very difficult in practice. In order to use
acoustic waveforms and realise the potential benefits of exact noise
adaptation, a modelling and classification framework is required, and
exploring the details of such a framework is one of the objectives of
this paper.

Linear representations have been considered previously by other
authors, including Poritz [5] and Ephraim and Roberts [6].
Sheikhzadeh and Deng [7] apply hidden filter models directly on
acoustic waveforms, avoiding artificial frame boundaries and there-
fore allowing better modelling of short duration events. They consider

M. Ager and P. Sollich are with the Department of Mathematics and Z.
Cvetkovíc is with the Department of Electronic Engineering, King’s College
London, Strand, London WC2R 2LS, UK

This project is supported by EPSRC Grant EP/D053005/1

consonant-vowel classification and illustrate the importance of power
normalisation in the waveform domain, although a full implementa-
tion of the method and tests on benchmark tasks like TIMIT remain to
be explored. Mesot and Barber [8] later proposed the use of switching
linear dynamical systems (SLDS), again explicitly modelling speech
as a time series. The SLDS approach exhibited significantly bet-
ter performance at recognising spoken digits in additive Gaussian
noise when compared to standard hidden Markov models (HMMs);
however, it is computationally expensive even when approximate
inference techniques are used. Turner and Sahani proposed using
modulation cascade processes to model natural sounds simultaneously
on many time-scales [9], but the application of this approach to
ASR remains to be explored. In this paper we do not directly use
the time series interpretation and impose no temporal constraints on
the models. Instead, we investigate the effectiveness of the acoustic
waveform front-end for robust phoneme classification using Gaussian
mixture models (GMMs), as those models are commonly used in
conjunction with HMMs for practical applications.

In Section II we show results of exploratory data analysis which
first investigates non-linear structures in data sets formed by re-
alisations of individual phonemes across many different speakers.
Specifically we consider here phoneme segments of fixed duration.
The results suggest that the data may lie on non-linear manifolds
of lower dimension than the linear dimension of the phoneme
segments. However, given that available training data is limited and
the estimated values of the non-linear dimension are still relatively
large, it is not possible to accurately characterise the manifolds to the
point where they can be used to improve classification. In preliminary
experiments on a small subset of phonemes, we therefore employ
standard GMM classifiers using full covariance matrices followed
by lower-rank approximations derived from probabilistic principal
component analysis (PPCA) [10]. The latter can account for linear
manifold structures in the data. The results of these experiments
show that acoustic waveforms have the potential to provide robust
classification, but also that the high dimensional data is too sparse
even for mixtures of PPCA to be trained accurately.

Next, in Section III we develop these fixed duration segment
models using GMMs with diagonal covariance matrices. This reduces
the number of parameters required to specify the models further,
beyond what can be achieved with PPCA. To make diagonal covari-
ance matrices a good approximation requires a suitable orthogonal
transform of the acoustic waveforms. Among different transforms
of this type that achieve an approximate decorrelation of waveform
features we identify the discrete cosine transform (DCT) as the most
effective. The exact noise adaptation method used in the preliminary
experiments extends immediately to the resulting DCT features. As
there are no analogues of delta features for acoustic waveforms, we
instead consider longer duration segments so as to include the same
information used by the delta features. We find that the preliminary
conclusions about noise robustness of linear features remain valid
for more realistic situations, including the standard TIMIT test
benchmark with additive pink noise.

In Section IV we investigate the effect of the segment duration on
classification error. The findings show that no single segment duration
is optimal for all phoneme classes, but by taking an average over the
duration, the error rate can be significantly reduced. The related issue
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of variable phoneme length is addressed by incorporating information
from five sectors of the phoneme. When this frame averaging and
sector sum are both implemented using a PLP+∆+∆∆ front-end,
we obtain an error rate of 18.5% in quiet conditions, better than
any previously reported results using GMMs trained by maximum
likelihood. At all stages we consistently find that classification using
the PLP+∆+∆∆ representation is most accurate in quiet conditions,
with acoustic waveform being more robust to additive noise. Fi-
nally, we consider the combination of PLP+∆+∆∆ and acoustic
waveform classifiers to gain the benefit of both representations. The
resulting combined classifier achieves excellent performance, slightly
improving on the best PLP+∆+∆∆ classifier to give 18.4% in quiet
conditions and being significantly more robust to additive noise than
existing methods.

II. EXPLORATORY DATA ANALYSIS

Before constructing probabilistic models of high-dimensional lin-
ear feature speech representations, let us first investigate possible
lower dimensional structure in the phoneme classes. Supposing that
such structure exists and can be characterised then it could be used to
find better representations for speech, and to construct more accurate
probabilistic models. Many speech representations reduce the dimen-
sion of speech signals using non-linear processing, prominent exam-
ples being MFCC and PLP. Those methods do not directly incorporate
information about the structure of the phoneme class distributions
but instead model the properties of speech perception. Here we are
initially interested in data-driven methods of dimensionality reduction
as explored in [11], [12], including linear discriminant analysis [13]
(LDA), locally linear embedding [14] (LLE) and Isomap [15]. With
linear approaches like LDA, a projected feature space of reduced
dimension could be defined that would preserve the benefits of a
linear feature representation. However, LDA itself is not useful for
our case as the waveform distribution for each class has zero mean
(see comments after equation (2)) so that LDA cannot discriminate
between classes. Non-linear methods are more powerful, but if they
were used to reduce the dimension of the feature space then the non-
linear mapping to the new features would make exact noise adaptation
impossible (see Section II-B3). Instead one would aim to find non-
linear low dimensional structures in the phoneme distributions, and
exploit this information to build better models that remain defined
in the original high dimensional space. This could include Gaussian
process latent variable models [16] (GP-LVM), which require as input
an estimate of the dimension of the non-linear feature space. It will be
shown below that although intrinsic dimension estimates suggest that
low dimensional structures exist in the phoneme distributions, there
is insufficient data to adequately sample them in a manner which
would be practical for automatic speech recognition purposes.

A. Finding Non-linear Structures

Starting with the acoustic waveform representation, we want to
explore if the phoneme class distributions can be approximated by
low dimension manifolds. In particular, given a phoneme classk,
we form a set,Sk, of fixed length-segments extracted from the
centre of each realisation of the phoneme in a database and scaled
to fixed vector norm. We use1024-sample segments, corresponding
to 64ms at a16kHz sampling rate, from the TIMIT database.Sk

thus captures all the variability of the phoneme due to different
speakers, pronunciations, and instances. We want to determine ifSk

can be modelled by a low-dimensional submanifold ofIR1024, and if
such a submanifold could be characterised in a manner which would
facilitate accurate statistical modelling of the data. We first applied a
number of intrinsic dimension estimation techniques to the extracted

setsSk. Principal component analysis (PCA) was the first method
considered, which assumes the data is contained in a linear subspace.
The dimension of the subspace can be estimated by requiring that it
should contain most of the average phoneme energy and we set this
threshold at 90%. This PCA dimension estimate will be used as a
reference to compare with three methods for non-linear dimension
estimation. In particular we investigate estimators developed by Hein
et al. [17], Costa et al. [18] and Takens [19] and applied them to the
phomeme class data.

Figure 1 shows the result of dimension estimation for six phonemes
from different consonant groups. The findings here agree with the
intuition that vowel-like phonemes should have a lower dimension
than the fricatives. A typical dimension for a semivowel or a nasal
phoneme, given these estimates, would be around 10; the case of
/m/ is shown in Figure 1. For fricatives like /f/, the dimension
is much higher. Given that the non-linear dimension estimates are
mostly consistent and significantly lower than the PCA estimates we
conclude that the phoneme distributions can be modelled as lower-
dimensional non-linear manifolds.

A number of techniques have recently been developed to find
to find such non-linear manifold structures in dat [20]. After an
extensive study of the benefits and limitations of these methods,
Isomap [15] and LLE [14][21] were selected for application to
the phoneme dataset. They were considered especially suitable for
the task having successfully found low-dimensional structure in
images of human faces and handwritten digits in other studies. As
explained above, although the methods can find structure, there is no
straightforward way to apply noise adaptation if we were to use non-
linearly reduced feature sets. We would therefore seek to identify the
non-linear structures, and exploit them to constrain density models
on the original linear feature space. As we now show, however, the
dimensions of the non-linear structures in our case are still too high
for them to be learned accurately with the available quantity of data.

Isomap is a method for finding a lower dimensional approximation
of a dataset using geodesic distance estimates. Our initial comparison
with PCA output showed that for a given embedding dimension the
approximation provided by Isomap was better in terms of theL2

error [15] for our data. As in PCA we look for a step change in
the spectrum of an appropriate Gram matrix to find the dimension
estimate. However, this was not possible for the phoneme data as
the spectra of the Gram matrices were smooth for all phonemes. We
found similar results for LLE and suspected that in both cases the
cause was undersampling of the manifold.

These findings motivated the study of an artificial problem, to
estimate how much data might be required to sufficiently sample
the phoneme manifolds. The simple example of uniform probability
distributions over hyperspheres with a given dimension was con-
sidered. A smooth histogram of pairwise distances among sampled
points, in accordance with the theoretically expected form, then
indicates a sufficient sampling of the uniform target distribution,
whereas strong peaks – resulting from the fact that random vectors
in high dimensional spaces are typically orthogonal to each other
– suggest undersampling. Initially, when we set the dimension of
the hypersphere to be comparable to that of the phoneme dimension
estimates, and used a similar number of data points (∼ 1000), such
peaks in the distance histograms were indeed present. When the
dimension of the hypersphere was reduced to five, the peaks were
smoothed out, suggesting that this five-dimensional manifold was
sufficiently sampled with a number of data points similar to the
number of phoneme examples per class.

In summary, the findings of the experiments suggest that if speech
data manifolds exist in the acoustic waveform domain then they are
under-sampled because of their relatively high intrinsic dimension.
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Fig. 1. Intrinsic dimension estimates of example phoneme classes. The legend
indicates the method of estimation. PCA estimates are plotted using the right
hand scale

The number of required data points,n, could be expected to vary
exponentially with the intrinsic dimensions,d, i.e. n ∼ αd for some
constantα. In the hypersphere experimentsα was approximately four,
consequently the estimated quantity of data required to sufficiently
sample a phoneme manifold withd ∼ 10 . . . 60 would be unrealistic,
particularly at the upper end of this range. Given that the data-driven
dimensionality reduction methods we have explored are not practical
for the task considered, we now turn to more generic density models
for the problem of phoneme classification in the presence of additive
noise. In particular we will construct generative classifiers in the high-
dimensional space which do not attempt to exploit any submanifold
structure directly. We will see that approximations are required, again
due to the sparseness of the data, but also because of computational
constraints.

B. Generative Classification

Generative classifiers use probability density estimates,p(x),
learned for each class of the training data. The predicted class
of a test point,x, is determined as the classk with the greatest
likelihood evaluated atx. Typically the log-likelihood is used for the
calculation; we denote the log-likelihood ofx by L(x) = log(p(x)).
Classification is performed using the following function:

AL(x) = arg max
k=1,...,K

L(k)(x) + log(πk) (1)

where x can be predicted as belonging to one ofK classes. The
inclusion above ofπk, the prior probability of classk, means that
we are effectively maximising the log-posterior probability of class
k given x.

1) Gaussian Mixture Models:Without assuming any additional
prior knowledge about the phoneme distributions we use Gaussian
mixture models (GMMs) to model phoneme densities. The models
are trained using the expectation maximisation (EM) algorithm to
maximise the likelihood of the training data for the relevant phoneme
class. The training algorithm determines suitable parameters for the
probability density function,p : R

d → R, of a Gaussian mixture
model. For the case ofc mixture components this function has the
form:

p(x) =

c
X

i=1

wi

(2π)
d

2 |Σi|
1

2

exp
h

− 1

2
(x − µi)

T
Σ

−1
i (x − µi)

i

(2)

where wi, µi and Σi are the weight, mean vector and covariance
matrix of the ith mixture component respectively. In the case of
acoustic waveforms we additionally impose a zero mean constraint
for models as a waveformx will be perceived the same as−x. With
this constraint the corresponding models represent all information
about the phoneme distributions in the covariance matrices and
component weights.

2) Probabilistic Principal Component Analysis:In the preliminary
experiments, we initially modelled the phoneme class densities using
GMMs with full covariance matrices. However, it was not possible
to accurately fit models with more than two components in the high
dimensional space of acoustic waveforms, whered = 1024. Instead
we considered using density estimates derived from mixtures of prob-
abilistic principal component analysis (MPPCA) [10]. This method
has a dimensionality reduction interpretation and produces a Gaussian
mixture model where the covariance matrix of each component is
regularised by replacement with a rank-q approximation:

Σ = r2
I + WW

T (3)

Here theith column of thed × q matrix W is given as
√

λivi

corresponding to theith eigenvalue,λi, and eigenvector,vi, of
the empirical covariance matrix, with the eigenvalues arranged in
descending order. The regularisation parameterr2 is then taken as
the mean of the remainingd − q eigenvalues:

r2 =
1

d − q

d
X

i=q+1

λi (4)

3) Noise Adaptation:The primary concern of this paper is to
investigate the performance of the trained classifiers in the presence
of additive Gaussian noise. Generative classification is particularly
suited for robust classification as the estimated density models can
capture the distribution of the noise corrupted phonemes. As the noise
is additive in the acoustic waveform domain, signal and noise models
can be specified separately and then combined exactly by convolution.
In the experiments of this section, phoneme data is normalised at the
phoneme segment level with the SNR being specified relative to the
segment rather than the whole sentence. This is clearly unrealistic as
the mean energy of phonemes differs significantly between classes.
However, it does provide a situation where each phoneme class
is affected by the same local SNR. We can also think of this
geometrically: for each phoneme class, the class densityp(x) is
blurred in the same way by convolution with an isotropic Gaussian
of variance set by the SNR. The effect of the noise on classification
then indirectly provides information on how well separated different
phoneme classes are in the space of acoustic waveformsx. The white
Gaussian noise model results in a covariance matrix that is a multiple
of the identity matrix,σ2

I, whereσ2 is the noise variance. We assume
throughout that this is known, as it can be estimated reliably during
periods without speech activity or using other techniques [22]. Hence
the noise adaptation for the acoustic waveform representation is given
by replacing each covariance matrixΣ with Σ̃(σ2):

Σ̃(σ2) =
Σ + σ2

I

1 + σ2
(5)

Speech waveforms are normalised to unit energy per sample. Clearly
some normalisation of this type is needed to avoid adverse effects
of irrelevant differences in speaker volume on classification perfor-
mance, an issue that has been carefully studied in previous work [7].
The normalisation leads in the density models to covariance matrices
Σ with traced, the dimension of the data. Adding the noise as in the
numerator of the equation above would give an average energy per
sample of1+σ2. We also normalise noisy speech to unit energy per
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sample, and hence rescale the adapted covariance matrix by1 + σ2

as indicated above.
There is no exact method for combining models of the training data

with noise models in the case of MFCC and PLP features, as these
representations involve non-linear transforms of the waveform data.
Parallel model combination as proposed by Gales and Young [23] is
an approximate approach for MFCC. A commonly used alternative
method for adapting probabilistic models to additive noise is cepstral
mean and variance normalisation (CMVN) [24], and we will consider
this method in subsequent sections. At this exploratory stage, we
study instead the matched condition scenario, where training and
testing noise conditions are the same and a separate classifier is
trained for each noise condition. In practice it would be difficult
and computationally expensive to have a distinct classifier for every
noise condition, in particular if noise of varying spectral shape is
included in the test conditions. Matched conditions are nevertheless
useful in our exploratory classification experiments: because training
data comes directly from the desired noisy speech distribution,
then assuming enough data is available to estimate class densities
accurately this approach provides the optimal baseline for all noise
adaptation methods [23],[25].

C. Results of Exploratory Classification in PLP and Acoustic Wave-
form Domains

In the exploratory study we consider only realisations of six
phonemes (/b/, /f/, /m/, /r/, /t/, /z/) that were extracted from the TIMIT
database [26]. This set includes examples from fricatives, nasals,
semivowels and voiced and unvoiced stops. These classes provide
pairwise discrimination tasks of a varying level of difficulty. For
example /b/ vs. /t/ is a more challenging discrimination than /m/
vs. /z/. The phoneme examples are represented by the centre64ms
segment of the acoustic waveform corresponding to1024 samples
at 16kHz. Additionally the stops, /b/ and /t/ are aligned at the
release point as prescribed by the given TIMIT segmentation. The
data vectors are then normalised to have squared norm equal to the
dimension of the segment corresponding to unit energy per sample as
explained above. These initial experiments focus only on the centre
of the phonemes to investigate the effectiveness of noise adaptation.
As is well known, discrimination can be improved by considering
the information provided by the transitions from one phonemes to
the next. We will explore this in Section IV and see that it does
indeed significantly help classification.

Each phoneme class consists of approximately1000 representa-
tives, of which 80% were used for training and 20% for testing. The
classification error bars, where indicated, were derived by considering
five different such splits and give an indication of the significance of
any differences in the accuracy of classifiers. A range of SNRs was
chosen to explore classification errors all the way to chance level,
i.e. 83.3% in the case of six classes. In total this gave six testing and
training conditions;−18dB, −12dB, −6dB, 0dB, 6dB and quiet.
At this exploratory stage only white Gaussian noise is considered.
We use the same number of examples from each class, thus the prior
probabilitiesπk are all equal to1/6 and have no effect on predictions
according to (1).

For comparison the default 12th order PLP cepstra were computed
for the 64ms segments. A sliding 25ms Hamming window was used
with an overlap of 15ms leading to four frames of 13 coefficients [27].
These four frames were concatenated to give a PLP representation
in R

52. The data was then standardised prior to training so that each
of the 52 features had zero mean and unit variance across the entire
training set that was considered. We discuss variants of this feature
standardisation in Section III-A3.
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Fig. 2. Error of PLP classifiers as a function of test SNR. Each curve shows
the error of the classifier trained at the SNR indicated by thecurve marker. The
curves show the sensitivity of PLP classifiers when there is amismatch between
training and testing noise conditions. In particular the classifiers trained at 0dB
and 6dB performs much worse when the test noise level is lower than the
training level.

The PLP phoneme distributions were modelled using a single
component PPCA mixture with a principal dimension of 40, i.e.
c = 1 and q = 40; we experimented with other values but these
parameters gave the best results. Figure 2 shows the test results for
classifiers trained on data corrupted at the different noise levels. Each
of the curves thus represents a different training SNR. It is clear that
PLP classifiers are highly sensitive to mismatch between training and
testing noise conditions. For example, when conditions are matched
at 6dB SNR, the error is very low at 2.8%. However, if the same
classifier is tested in quiet conditions this value increases significantly,
to 53.7%. The analogous plot for waveform classifiers is shown in
Figure 3, where the phoneme classes were modelled withc = 4 and
q = 500.

Acoustic waveform classifiers are less sensitive to mismatch be-
tween the assumed noise level to which they were adapted using (5),
and the true testing conditions. Taking the classifier adapted to 6dB
SNR as an example, we see that if assumed and true testing conditions
are matched the error is 5.1% and when testing in quiet, it remains
as low as 8.4%. Although the error for matched conditions is higher
than that of PLP at this nosie level, the increase due to mismatch is
drastically reduced.

We next consider the scenario where the true testing conditions
are matched to those the models were trained in (PLP) or adapted
to (waveforms). This is equivalent to taking the lower envelopes of
Figures 2 and 3. In this case PLP gives a lower error rate than
waveforms above 0dB SNR, while the opposite is true below this
value. These results suggest that we should seek to combine the
classification strengths of each representation, specifically the high
accuracy of PLP classifiers at high SNRs and the robustness of
acoustic waveform classifiers at all noise levels. Ideally this will
result in a single combined classifier that only needs to be trained
in quiet conditions and can be easily adapted to a range of noise
conditions. To investigate this concept we consider the following
convex combination of the two log-likelihoods with each term being
normalised by the relevant representation dimension. LetLplp(x)
and Lwave(x) be the log-likelihoods of a phoneme class, then the
combined log-likelihoodLα(x) parameterised byα is given as:
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Fig. 3. Error of acoustic waveform classifiers as a function of test SNR. The
curve marker indicates the assumed SNR to which the classifier was adapted
using (5). The error rate is less sensitive to mismatch betweenthe assumed and
the true SNR when compared to the curves in Figure 2.

Lα(x) =
(1 − α)

dplp
Lplp(x) +

α

dwave
Lwave(x) (6)

where dplp = 52 and dwave = 1024 are the dimensions of the
PLP and acoustic waveform representations, respectively. We would
expectα to be almost zero for high SNRs and close to one for low
SNRs in order to give the desired improvement in accuracy, and use
this information to fit a combination function,α(σ2). A suitable range
of possible values ofα was identified at each noise level from the
condition that the error rate is no more than 2% above the error for
the bestα. This range is broad, so the particular form of the fitted
combination function is not critical [28]. We choose the following
sigmoid function with two parametersσ2

0 andβ:

α(σ2) =
1

1 + eβ(σ2

0
−σ2)

(7)

A fit through the numerically determined suitable ranges ofα then
givesσ2

0 = 11dB, β = 0.3. We also consider combinations involving
PLP classifiers trained in quiet conditions and adapted to noise using
CMVN, where a similar fit givesσ2

0 = 11dB, β = 0.7.
The above combination in (6) is equivalent to using multiple

streams of features, one consisting of the waveform and the other of
the PLP features derived from the same waveform segment. Data fu-
sion at the feature level that concatenates the vectors of features from
each source would be an alternative method of combining the two
representations. However, such a method would not be suitable for the
combination of PLP and acoustic waveforms, predominantly because
the contribution to the resulting likelihood from each representation
is approximately proportional to the feature space dimension. Hence
the likelihood contribution from the acoustic waveform portion of the
fused vector would dominate.

Figure 4 shows the result of the combination, when the acoustic
waveform classifiers are trained in quiet conditions and then adapted
to noise according to (5), while the PLP classifiers are trained under
matched conditions. We see in the main plot that the combined
classifier has uniformly lower error rate across the full range of
noise conditions. In particular, around−6dB SNR the combination
performs significantly better than either of the underlying classifiers.
This is interesting because it means that the combination achieves
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Fig. 4. Performance of the combined classifier when PLP models trained under
matched conditions are used. The combined classifier is uniformly at least as
accurate as those it is derived from and gives significant improvement around
−6dB SNR. Inset: Comparison with the combined classifier trainedonly in
quiet conditions.

more than a hard switch between PLP and waveform classifiers could.
The inset shows a comparison of combined classifiers involving PLP
trained in matched conditions and PLP trained in quiet and adapted
using CMVN respectively. These two approaches to PLP training
should represent the extremes of performance, with noise adaptation
techniques more advanced than CMVN expected to lie in between.
Encouragingly, the inset to Figure 4 shows that by an appropriate
combination with waveform classifiers the performance gap between
having only PLP models trained in quiet conditions and those trained
in matched conditions is dramatically reduced.

D. Conclusions of Exploratory Data Analysis

The exploratory data analysis shows that acoustic waveform classi-
fiers, which can be exactly adapted to noise when the noise conditions
are known, are also more robust to mismatch between assumed and
true testing conditions. The combined classifier retains the accuracy
of PLP in quiet conditions whilst simultaneously providing the
robustness of acoustic waveforms in the presence of noise. In order
to confirm these conclusions a more realistic test is required. As
described above, we also found that the best model fits were obtained
with only a small number of mixture components, whether using
full covariance matrices or more restricted density models in the
form of MPPCA. In both cases too many model parameters are
required to specify each mixture component, meaning that mixtures
with many components cannot be learned reliably from limited data.
In the next section, the issue of parameter count reduction will be
even more acute as many of the phoneme classes have even fewer
examples than those considered so far. The problem will be addressed
by using diagonal covariance matrices in the GMMs, with the data
appropriately rotated into a basis which approximately decorrelates
the data. Additionally the SNRs will be specified at sentence level
which can cause local SNR mismatch and will provide a more
challenging test of the robustness of the classifiers. We will also
investigate the length of the segments used to represent the phonemes.
This is particularly relevant when comparing the acoustic waveform
classifiers to those of PLP+∆+∆∆ as the deltas use information
from neighbouring frames. It will be shown that by optimising the
numbers of frames for each representation we get a similar benefit for
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phoneme classification as when using deltas. Finally we will show
the effect of including information from the whole phoneme rather
than just the frames from the centre.

III. F IXED DURATION REPRESENTATION WITHREFINED MODELS

In this section we consider how to enhance the generative models
so that they can deal with more realistic classification tasks. All
previous experiments are now repeated on the standard TIMIT
benchmark [29] with noise added so that the SNR is specified at
sentence level. This means that the local SNR of the phoneme
segments can differ significantly from the sentence level value. There
is a large variation in the size of the phoneme classes hence those
relative frequencies have a greater effect as the prior in (1). We
also consider model averaging, which removes the need to select
the number of components in mixture models.

A. Model Refinements

1) Diagonal Covariance Matrices:We observed in the preliminary
exploration that even PPCA requires an excessive number of param-
eters compared to the quantity of available data. Hence, GMMs with
diagonal covariance matrices are used for all following experiments.
This is a common modelling approximation when training data is
sparse. Diagonal covariances matrices will be a good approximation
provided the data is presented in a basis where correlations between
features are weak. For the acoustic waveform representation, this is
clearly not the case on account of the strong temporal correlations in
speech waveforms. We therefore systematically investigated candidate
low-correlation bases derived from PCA, wavelet transforms and
DCTs. Although the optimal basis for decorrelation on the training
set is indeed formed by the phoneme-specific principal components,
we found that the lowest test error is in fact achieved with a DCT
basis. The density model used for the phoneme classes in the acoustic
waveform domain now becomes:

p(x) =

c
X

i=1

wi

(2π)
d

2 |Di|
1

2

exp
h

− 1

2
(x − µi)

T
C

T
D

−1
i C(x − µi)

i

(8)
where wi, µi and Di are the weight, mean vector and diagonal
covariance matrix of theith mixture component respectively.C is
an orthogonal transformation selected to decorrelate the data at least
approximately. In the case of acoustic waveforms we chooseC to be
a DCT matrix, as explained above. Preliminary experiments showed
that, instead of performing a single DCT on an entire phoneme
segment, it is advantageous to separate DCTs in non-overlapping sub-
segments of length 10ms, mirroring (except for the lack of overlaps)
the frame decomposition of MFCC and PLP. For a sampling rate
of 16kHz as in our data, the transformation matrixC is then block
diagonal consisting of160 × 160 DCT blocks. For the MFCC and
PLP representations we chooseC to be the identity matrix as they
already involve some form of DCT and the features are approximately
decorrelated.

2) Model Average:In general, more variability of the training data
can be captured with an increased number of mixture components;
however, if too many components are used over-fitting will occur.
The best compromise is usually located by cross validation using
the classification error on a development set. The result is a single
value for the number of components required. We use an alternative
approach and take the model average over the number of components,
effectively a mixture of mixtures [30]. We start from a selection of
models parameterised by the number of components,c, which takes
values inC = {1, 2, 4, 8, 16, 32, 64, 128} or subsets of it. The entries
in this set are uniformly distributed on a log scale to give a good range

of model complexity without including too many of the complex
models. We compute the model average log-likelihoodM(x) as:

M(x) = log
`

X

c∈C

ucexp(Lc(x))
´

(9)

with the model weightsuc = 1
|C|

andLc(x) being the log-likelihood
of x given thec-component model.

Alternatively the mixture weights allocated to each model could
be determined from the posterior densities of the models on a
development set to give a class dependent weighting, i.e.

uc =

P

x∈D exp(Lc(x))
P

d∈C

P

x∈D exp(Ld(x))
(10)

whereD is a development set. Preliminary experiments suggested
that using those posterior weights only gives a slight improvement
over (9). We therefore adopt those uniform weights (uc = 1

|C|
) for

all results shown in this paper.
3) Noise adaptation for sentence-normalised data:Now we con-

sider the more realistic case where the SNR is only known at
sentence-level. All sentences will therefore be normalised to have unit
energy per sample in quiet and noisy conditions. Different phonemes
within these sentences can have higher or lower energies, as reflected
in the density models by covarianceD with trace above or belowd,
whered is the dimension of the feature vectors. The relative energy
of each phoneme class, which we had discarded in Section II-C, can
thus be used during classification. The adaptation to noise has the
same form as in (5):

D̃(σ2) =
D + σ2

N

1 + σ2
(11)

whereN is the covariance matrix of the noise transformed byC,
normalised to have traced. For white noise,N is the identity matrix,
otherwise it is estimated empirically from noise samples. In general a
full covariance matrix will be required to specify the noise structure.
However, with a suitable choice ofC the resultingN will be close
to diagonal, and indeed whenC is a segmented DCT we find this to
be true in our experiments with pink noise. To avoid the significant
computational overheads of introducing non-diagonal matrices, we
therefore retain only the diagonal elements ofN. The normalisation
by 1+σ2 arises as before: on average, a clean sentence to which noise
has been added has energy1 + σ2 per sample and the normalisation
to unit energy of both clean and noisy data requires dividing all
covariances by this factor. In contrast to our exploratory study in
Section II, and because of the varying local SNR, the traces ofD̃

andD are then no longer necessarily equal.
We now consider noise compensation techniques for MFCC and

PLP features. As mentioned above, cepstral mean and variance nor-
malisation (CMVN) [24] is an approach commonly used in practice to
compensate noise corrupted features. This method requires estimates
of the mean and variance of the features, usually calculated sentence-
wise on the test data or with a moving average over a similar time
window. We take this to be a realistic baseline. Alternatively the
required statistics can be estimated from a training set that has been
corrupted by the same type and level of noise as used in testing.
(For large data sets, these statistics should be essentially the same
as on the noisy test set, barring systematic effects from e.g. different
training and test speakers.) Clearly both approaches have merit. For
example, sentence level CMVN requires no direct knowledge of the
test conditions, and can remove speaker specific variation from the
data. The estimates will be less accurate and as a consequence it is
difficult to standardise all components in long feature vectors obtained
by concatenating frames; instead, we standardise frame by frame.
Using a noisy training set for CMVN requires that the test conditions
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Fig. 5. Comparison of sentence level cepstral mean and variance normalisation
(dashed) and training set (solid) standardisation for PLP and PLP+∆+∆∆.

are known so that either data can be collected or generated for training
under the same conditions. The feature means and variances can
be obtained accurately, and in particular we can standardise longer
feature vectors. However, as the same standardisation is used for all
sentences, any variation due to individual speakers will persist.

A comparison of the two standardisation techniques is shown in
Figure 5. Curves are displayed for both methods, using PLP features
with and without∆+∆∆. Standardisation on the noisy training set
gives lower error rates both in quiet conditions and in noise, hence
all results for CMVN given below use this method.

B. Experimental setup

Realisations of phonemes were extracted from the SI and SX
sentences of the TIMIT [26] database. The training set consists
of 3,696 sentences sampled at 16kHz. Noisy data is generated by
applying additive Gaussian noise at nine SNRs. Recall that the
SNRs were set at the sentence level, therefore the local SNR of
the individual phonemes may differ significantly from the set value,
causing mismatch in the classifiers. In total ten testing and training
conditions were run;−18dB to 30dB in 6dB increments and quiet
(Q). Following the extraction of the phonemes there are a total of
140,225 phoneme realisations. The glottal closures are removed and
the remaining classes are then combined into 48 groups in accordance
with [29], [31]. Even after this combination some of the resulting
groups have too few realisations. The smallest groups with fewer
than 1,500 realisations were increased in size by the addition of
temporally shifted versions of the data. i.e. ifx is an example in one
of the small training classes then the phoneme segments extracted
from positions shifted byk = −100, −75, −50, . . . , 75, 100
samples were also included for training. This increase in the size
of the smaller training classes ensures that the training procedure is
stable. For the purposes of calculating error rates, some very similar
phoneme groups are further regarded as identical, resulting in 39
groups of effectively distinguishable phonemes [29]. PLP features are
obtained in the standard manner from frames of width 25ms, with a
shift of 10ms between neighbouring frames and correspondingly an
overlap of 15ms. We also include now in our comparisons MFCC
features. Standard implementations [27] of MFCC and PLP with
default parameter values are used to produce a 13-dimensional feature
vector from each time frame. The inclusion of∆ + ∆∆ increases
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Fig. 6. Model averaging for acoustic waveforms, MFCC and PLP models,
all trained and tested in quiet conditions. Solid: GMMs withnumber of
components shown; dashed: average over models up to number of components
shown. The model average reduces the error rate in all cases.

the dimension to 39.
Our exploratory results in Section II gave successful classification

for acoustic waveforms using a 64ms window. For the MFCC and
PLP representations, we therefore consider the five frames closest
to the centre of each phoneme, covering 65ms, and concatenate
their feature vectors. Results are shown for the representations with
and those without∆ + ∆∆ , giving feature vector dimensions of
5× 39 = 195 and5× 13 = 65, respectively. The acoustic waveform
representation is obtained by dividing each sentence into a sequence
of 10ms non-overlapping frames, and then taking the seven frames
(70ms) closest to the centre of each phoneme, resulting in a 1120-
dimensional feature vector. Each frame is individually processed
using the 160-point DCT. We present results for white and pink noise
and will see that the approximation using diagonal covariancesD in
the DCT basis is sufficient to give good performance. The impact
of the number of frames included in the MFCC, PLP and acoustic
waveform representations is investigated in the next section.

C. Results

Gaussian mixture models were trained with up to 64 compo-
nents for all representations. We comment briefly on the results
for individual mixtures, i.e. with a fixed number of components.
Typically performance on quiet data improved with the number of
components, although this has significant cost for both training and
testing. The optimal number of components for MFCC and PLP
models in quiet conditions was 64, the maximum considered here.
However, in the presence of noise the lowest error rates were obtained
with few components; typically there was no improvement beyond
four components.

As explained in Section III-A2, rather than working with models
with fixed numbers of components, we average over models, i.e.
over the number of mixture components, in all the results reported
below. Figure 6 shows that the improvement obtained by this in quiet
conditions is approximately 2% for both acoustic waveforms and PLP
with a small improvement seen for MFCC also. The model average
similarly improved results in noise and this will be discussed further
in the next section.

One set of key results comparing the error rates in noise for
phoneme classification in the three domains is shown in Figure 7.
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The MFCC and PLP classifiers are adapted to noise using CMVN.
This method is comparable with the adapted waveform models as
it only relies on the models trained in quiet conditions. The curve
for acoustic waveforms is for models trained in quiet conditions and
then adapted to the appropriate noise level using (11). Comparing
waveforms first to MFCC and PLP without∆+∆∆, we see that in
quiet conditions the PLP representation gives the lowest error. The
error rates for MFCC and PLP are significantly worse in the presence
of noise, however, with acoustic waveforms giving an absolute
reduction in error at 0dB SNR of 40.6% and 41.9% compared to
MFCC and PLP respectively. These results strengthen the case that
the adaptability of acoustic waveform models gives them a definite
advantage in the presence of noise with the crossover point occurring
above 30dB SNR. Curves are also shown for MFCC+∆+∆∆ and
PLP+∆+∆∆. Again the same trend holds; performance is good
in quiet conditions but quickly deteriorates as the SNR decreases.
The crossover point is around 24dB for both representations. The
chance-level error rate of 93.5% can be seen below 0dB SNR for the
MFCC and PLP representations without deltas and below 6dB SNR
when deltas are included, whereas the acoustic waveform classifier
performs significantly better than chance with an error of 76.7%
even at−18dB SNR. The dashed curves in Figure 7 represent the
error rates obtained for classifiers trained in matched conditions with
and without∆+∆∆. The results show that the waveform classifier
compares favourably to MFCC and PLP below 24dB SNR when no
deltas are appended. Including∆+∆∆ does reduce the error rates
significantly and the crossover then occurs between 0dB and 6dB
SNR. It is these observations that mainly motivate our further models
development below: clearly we should aim to include information
similar to deltas in the waveform representation.

The same experiment was repeated using pink noise extracted from
the NOISEX-92 database [32]. The results for both noise types were
similar for the waveforms classifiers. For PLP+∆+∆∆, adapted to
noise using CMVN, there is a larger difference between the two noise
types, with pink noise leading to lower errors. Nevertheless, the better
performance is achieved by acoustic waveforms below 18dB SNR.
Results for GMM classification on the TIMIT benchmark in quiet
conditions have previously been reported in [31], [33] with errors of
25.9% and 26.3% respectively. To ensure that our baseline is valid we
compared our experiment in quiet conditions for PLP+∆+∆∆ and
obtained a comparable error rate of 26.3% as indicated in the bottom
right corner of Figure 7.

Following these encouraging results we seek to explore the effect
of optimising the number of frames and the inclusion of information
from the entire phoneme. The expectation is that including more
frames in the concatenation for acoustic waveforms will have a
similar effect to adding∆+∆∆ for MFCC and PLP. A direct
analogue of deltas is unlikely to be useful for waveforms: MFCC
and PLP are based on log magnitude spectra that change little
during stationary phonemes, so that local averaging or differencing
is meaningful. For waveforms, where we effectively retain not just
Fourier component amplitudes but also phases, these phases combine
essentially randomly during averaging or differencing, rendering the
resulting delta-like features useless.

IV. SEGMENT DURATION, VARIABLE DURATION PHONEME

MAPPING AND CLASSIFIER COMBINATION

A. Segment Duration

Ideally all relevant information should be retained by our phoneme
representation, but as it is difficult to determine exactly which infor-
mation is relevant we initially choose to takef consecutive frames
closest to the centre of each phoneme and concatenate them. Whilst
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Fig. 7. Comparison of adapted acoustic waveform classifiers with MFCC and
PLP classifiers trained in quiet conditions adapted by feature standardisation.
All classifiers use the model average of mixtures up to 64 components. Dotted
line indicates chance level at 93.5%. When the SNR is less that24dB, acoustic
waveforms are the significantly better representation, withan error rate below
chance even at -18dB SNR. Dashed curves show results of matched training for
corresponding MFCC and PLP representations.

the precise number of frames required for accurate classification
could in principle be inferred from the statistics of the phoneme
segment durations, we see in Table I that those durations not only
vary significantly between classes but also that the standard deviation
within each class is at least 24ms. Therefore no single length can be
suitable for all classes. The determination of an optimalf from the
data statistics would be even more more complicated when∆+∆∆
are included, because these incorporate additional information about
the dynamics of the signal outside thef frames.

Assuming that no single value off will be optimal for all phoneme
classes we instead consider the sum of the mixture log-likelihoods
Mf , as defined in (9) but now indexed by the number of frames
used. The sum is taken over the setF which contains the values
of f with the lowest corresponding error rate, for exampleF =
{7, 9, 11, 13, 15} for PLP:

R(x̄) =
X

f∈F

Mf (xf ) (12)

where x̄ = {xf |f ∈ F}, with xf being the vector withf frames.
Note that we are adding the log-likelihoods for differentf , which
amounts to assuming independence between the differentxf in x̄.
Clearly this an imperfect model, as e.g. all components ofx7 are
also contained inx11 and so are fully correlated, but our experiments
show that it is useful in practice. We also implemented the alternative
of concatenating thexf into one longer feature vector and then
training a joint model on this, but the potential benefits of accounting
for correlations are far outweighed by the disadvantages of having
to fit density models in∼ 4000 dimensions. Consistent with the
independence assumption in (12), in noise we adapt the modelsMf

separately and then combine them as above. The same applies to the
further combinations discussed next.

B. Sector sum

Although phonemes vary in duration, GMMs require data that
has a consistent dimension. We next establish a method to map the
variable length phoneme segments to a fixed length representation
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TABLE I
Duration statistics [ms] of the training data grouped by broad phonetic class.

Group Min Mean± std. Max

Vowels 2.2 86.0± 46.7 438.6

Nasals 7.6 54.5± 25.6 260.6

Strong Fricatives 14.9 99.5± 38.9 381.2

Weak Fricatives 4.5 68.2± 37.3 310.0

Stops 2.9 39.3± 24.0 193.8

Silence 2.0 94.9± 107.5 2396.6

All 2.0 79.4± 63.4 2396.6

for classification. In the previous subsection only frames from the
centre of the phoneme segments were used to represent a phoneme.
We extend that centre-only concatenation to use information from
the entire segment by takingf frames with centres closest to each
of the time instants A,B,C,D and E that are distributed along the
duration of the phoneme as shown in Figure 8. In this manner the
representation consists of five sequences off frames per phoneme.
Those sets of frames are then concatenated to give five vectorsxA,
xB , xC , xD and xE . We train five models on those sectors and
then combine the information they provide about each sector, again
assuming independence by taking the sum of the log-likelihoods of
the sectors:

S(x̂) =
X

s∈{A,B,C,D,E}

Ms(xs) (13)

where x̂ = {xA, xB , xC , xD, xE} and Ms denotes the model for
sectors, using some fixed number of framesf . Both improvements
can be combined by taking the sum of thef -averaged log-likelihoods,
Rs(x̄s), over the five sectorss:

T (ˆ̄x) =
X

s∈{A,B,C,D,E}

Rs(x̄s) (14)

where x̄s = {xf
s |f ∈ F} with xf

s being the vector withf frames
centred on sectors, and ˆ̄x gathers all̄xs. Given the functions derived
above, the class of a test point can be predicted using one of the
following:

AM
f (x) = arg max

k=1,...,K
M(k)

f (x) + log(πk) (15)

AR(x̄) = arg max
k=1,...,K

R(k)(x̄) + log(πk) (16)

AS
f (x̂) = arg max

k=1,...,K
S(k)

f (x̂) + log(πk) (17)

AT (ˆ̄x) = arg max
k=1,...,K

T (k)(ˆ̄x) + log(πk) (18)

whereπk is the prior probability of predicting classk as in (1).

C. Results

Figure 9 shows the impact of the number of frames concatenated
from each sector on the classification error, focusing on quiet condi-
tions. We see that the best results for acoustic waveform classifiers
are achieved around 9 frames, and around 11 frames for PLP without
deltas. The PLP+∆+∆∆ features are less sensitive to the number of
frames with little difference in error from 1 to 13 frames. We can
now also assess quantitatively the performance benefit of including
the deltas. If we consider the best results obtained for PLP without
deltas, 22.4% using 11 frames, with the best for PLP+∆+∆∆, 21.8%
with 7 frames, then the performance gap of 0.6% is much smaller
than if we were to compare error rates where both classifiers used
the same number of frames. Clearly it is not surprising that fewer
PLP+∆+∆∆ frames are required for the same level of performance
as the deltas are a direct function of the neighbouring PLP frames.
It is still worth noting that in terms of the ultimate performance on
this classification task the error rates with and without deltas are
similar. The results discussed above are directly comparable with the
GMM baseline results from other studies, shown in Table III. The
error rates obtained using thef -average over the five best values of
f are 32.1%, 21.4% and 18.5% for acoustic waveforms, PLP and
PLP+∆+∆∆ respectively.

Table II shows the absolute percentage error reduction for each
of the four classifiers (15)–(18) in quiet conditions, compared to
the GMM with the single best number of mixture components and
number of framesf . The relative benefits of thef -average and the
sector sum are clear. The sector sum gives the bigger improvements
on its own in all cases compared to only thef -average, but the
combination of the two methods is better still throughout. The same
qualitative trend holds true in noise.

Figure 10 compares the performance of the final classifiers, in-
cluding both thef -average and the sector sum, on data corrupted
by pink noise. The solid curves give the results for the acoustic
waveform classifier adapted to noise using (11), and for the PLP
classifier with and without∆+∆∆ trained in quiet conditions and
adapted to noise by CMVN. The errors are generally significantly
lower than in Figure 7, showing the benefits off -averaging and the
sector sum. PLP+∆+∆∆ remains the better representation for very
low noise, but waveforms give lower errors beyond a crossover point
between 12dB and 18dB SNR, depending on whether we compare
to PLP with or without∆+∆∆. As before, they also perform better
than chance down to−18dB SNR.

The dashed lines in Figure 10 show for comparison the perfor-
mance of PLP classifiers trained in matched conditions. As explained,
the CMVN and matched curves for PLP provide the extremes
between which we would expect a PLP classifier to perform if
model adaption analogous to that used with the acoustic waveforms
was possible, or some other method to improve robustness was
employed such as the ETSI advanced front-end (AFE) [34]. As
expected, the matched conditions PLP+∆+∆∆ classifier has the best
performance for all SNR. However, in noise the adapted acoustic
waveform classifier is significantly closer to matched PLP+∆+∆∆
than PLP+∆+∆∆ with CMVN.

D. Combination of PLP and Acoustic Waveform Classifiers

We see from the results shown so far that, as in the preliminary
experiments, PLP performs best in quiet conditions with acoustic
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Fig. 9. Error rates of the different representations in quiet conditions, as
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TABLE II
Absolute reduction in percentage error for each of the classifiers (15)–(18) in

quiet conditions.

Model Waveform PLP PLP+∆+∆∆

Model average (AM ) 1.6 2.8 4.4

f -average (AR) 5.6 6.0 6.3

Sector sum (AS ) 6.7 8.4 8.7

f -average + sector sum (AT ) 9.9 10.0 10.4

waveforms being more robust to additive noise. To gain the benefits
of both representations, we propose to merge them via a linear
combination of the corresponding log-likelihoods, parameterised by
a coefficientα:

Tα(x) = (1 − α)Tplp(x) + αTwave(x) (19)

where Tplp(x) and Twave(x) are the log-likelihoods of a pointx.
Tα(x) is then used in place ofT (x) in (18) to predict the class.
The combination differs from (6) as the effect of the prior class
probabilities is more relevant now and the absolute log-likelihoods
must be used rather than the scaled quantities. This is again equivalent
to a multistream model, where each sector and value off is an
independent stream. A noise-dependentα(σ2) is determined as
explained in Section II-C, giving parameter values (σ2 = 17dB,
β = 0.3) in (7).

The error of the combined classifier using models trained in
quiet conditions is shown as the dash-dotted curve in Figure 10.
In quiet conditions the combined classifier is slightly more accurate
(18.4%) than PLP+∆+∆∆ alone, corresponding to a small value
of α = 0.003. When noise is present the combined classifier is at
least as accurate as the acoustic waveform classifier, and significantly
better around 18dB SNR. The combined classifier does improve upon
PLP+∆+∆∆ classifiers trained in matched conditions at very low
SNR and narrows the performance gap to the order of no more than
9% throughout, rather than 22% when comparing to PLP+∆+∆∆
adapted by CMVN.

TABLE III
Existing error rates obtained in other studies for a range ofclassification

methods on the TIMIT core test set. Results in this paper are most comparable
to the GMM baselines.

Method Error [%]

HMM (Minimum Classification Error) [35] 31.4

GMM baseline [33] 26.3

GMM baseline [36] 24.1

GMM baseline [37] 23.4

GMM ( f -average + sector sum) PLP+∆+∆∆ 18.5

SVM, 5th order polynomial kernel [33] 22.4

Large Margin GMM (LMGMM) [31] 21.1

Regularized least squares [37] 20.9

Hidden conditional random fields [38] 20.8

Hierarchical LMGMM H(2,4) [36] 18.7

Optimum-transformed HMM with context (THMM) [35] 17.8

Committee hierarchical LMGMM H(2,4) [36] 16.7

V. CONCLUSION & D ISCUSSION

In this paper we have studied some of the potential benefits of
phoneme classification in linear feature domains directly related to
the acoustic waveform, with the aim of implementing exact noise
adaptation of the resulting density models. In Section II we outlined
the results of our exploratory data analysis, where we found intrinsic
nonlinear dimension estimates lower than linear dimension estimates
from PCA. That observation suggested that it should be possible
to construct low dimensional embeddings to be used later with
generative classifiers. However, existing techniques failed to find
enough structure in the phoneme dataset as it is too sparse to
accurately define the embeddings. Consequently we used GMMs
to model the phoneme distributions in acoustic waveform and PLP
domains. Additionally, a combined classifier was used to incorporate
the performance of PLP in quiet conditions with the noise robustness
of acoustic waveforms.

Given the encouraging results from these experiments on a small
set of phonemes we progressed to a more realistic task and extended
the classification problem to include all phonemes from the TIMIT
database. This gave results that could be directly compared to the
existing results in Table III, classifiers representing current progress
on the TIMIT benchmark. All of the entries show the error for isolated
phoneme classification except for the optimum-transformed HMM
(THMM) [35] that uses context information derived from continuous
speech. The inclusion of context for the HMM classifiers reduces the
error rate from 31.4% to 17.8%. This dramatic reduction suggests
that if the other classifiers were also developed to directly incorporate
contextual information, significant improvements could be expected.

We used the standard approximation of diagonal covariance ma-
trices to reduce the number of parameters required to specify the
GMMs. The issue of selecting the number of components in the
mixture models was approached by taking the model average with
respect to the number of components for a sufficiently large set
of values. The results supported our earlier conclusions, but also
illustrated that waveforms are potentially lacking the significant
benefits obtained by∆+∆∆ features. This motivated us to further
improve the classifiers by using multiple segment durations and
then taking the sum of the log-likelihoods. Information from the
whole phoneme was included by repeating the process centred at five
points in the phoneme. The best practical classifiers in this paper
were obtained using the combination of acoustic waveforms with
PLP+∆+∆∆.
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We expect that the results can be further improved by including
techniques considered by other authors, in particular, committee
classifiers and the use of a hierarchy to reduce broad phoneme class
confusions [36],[39]. The models could be developed to explicitly
model correlations between feature vectors obtained for different
number of framesf and also between feature vectors from different
sectors, provided sufficient data was available. Additionally, weight-
ing the sector sum and frame average or allowing the number of
frames to be different for each sector could be investigated.

Finally, given the qualitative similarity between features from
different sectors, and features as they would be emitted by different
states in HMMs, it would also be of interest to explore the linear
feature sets used here in the context of continuous speech recognition.
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