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Abstract—Phoneme classification is investigated for linear feature
domains with the aim of improving robustness to additive naoge. In
linear feature domains noise adaptation is exact, potentlly leading to
more accurate classification than representations involvig non-linear
processing and dimensionality reduction. A generative frenework is
developed for isolated phoneme classification using linedeatures. Initial
results are shown for representations consisting of concabhated frames
from the centre of the phoneme, each containing frames. As phonemes
have variable duration, no singlef is optimal for all phonemes, therefore
an average is taken over models with a range of values of. Results
are further improved by including information from the enti re phoneme
and transitions. In the presence of additive noise, classifation in this
framework performs better than an analogous PLP classifier,adapted
to noise using cepstral mean and variance normalisation, bew 18dB
SNR. Finally we propose classification using a combinationfoacoustic
waveform and PLP log-likelihoods. The combined classifier grforms
uniformly better than either of the individual classifiers across all noise
levels.

consonant-vowel classification and illustrate the importance of power
normalisation in the waveform domain, although a full implementa-
tion of the method and tests on benchmark tasks like TIMIT remain to
be explored. Mesot and Barber [8] later proposed the use of switching
linear dynamical systems (SLDS), again explicitly modelling speech
as a time series. The SLDS approach exhibited significantly bet-
ter performance at recognising spoken digits in additive Gaussian
noise when compared to standard hidden Markov models (HMMs);
however, it is computationally expensive even when approximate
inference techniques are used. Turner and Sahani proposed using
modulation cascade processes to model natural sounds simultaneously
on many time-scales [9], but the application of this approach to
ASR remains to be explored. In this paper we do not directly use
the time series interpretation and impose no temporal constraints on
the models. Instead, we investigate the effectiveness of the acoustic

Index Terms—phoneme classification, speech recognition, robustness, waveform front-end for robust phoneme classification using Gaussia
additive noise mixture models (GMMs), as those models are commonly used in
conjunction with HMMs for practical applications.

In Section Il we show results of exploratory data analysis which
first investigates non-linear structures in data sets formed by re-

TUDIES have shown that automatic speech recognition (ASRjisations of individual phonemes across many different speakers.

ystems still lack performance when compared to human listengjsecifically we consider here phoneme segments of fixed duration.
in adverse conditions that involve additive noise [1], [2], [3]. Suclhe results suggest that the data may lie on non-linear manifolds
systems can improve performance in those conditions by USiBf Jower dimension than the linear dimension of the phoneme
additional levels of language and context modelling. However, thiggments. However, given that available training data is limited and
contextual information will be most effective when the underlyinghe estimated values of the non-linear dimension are still relatively
phoneme sequence is sufficiently accurate. Hence, robust phongmge it is not possible to accurately characterise the manifolds to the
recognition is a very important stage of ASR. Accordingly, th@oint where they can be used to improve classification. In preliminary
front-end features must be selected carefully to ensure that @BQ)eriments on a small subset of phonemes, we therefore employ
best phoneme sequence is predicted. In this paper we investigatthdard GMM classifiers using full covariance matrices followed
the performance of front-end features, isolated from the effect gf |ower-rank approximations derived from probabilistic principal
higher level context. Phoneme classification is commonly used f@émponem analysis (PPCA) [10]. The latter can account for linear
this purpose. manifold structures in the data. The results of these experiments

We are particularly interested in linear feature domains, i.e. featurg§sow that acoustic waveforms have the potential to provide robust
that are a linear function of the original acoustic waveform signadjassification, but also that the high dimensional data is too sparse
In these domains, additive noise acts additively and consequerdlen for mixtures of PPCA to be trained accurately.
the noise adaptation for statistical models of speech data can b@jext, in Section Il we develop these fixed duration segment
performed exactly by a convolution of the densities. This ease of noiggdels using GMMs with diagonal covariance matrices. This reduces
adaptation in linear feature domains contrasts with the situation fple number of parameters required to specify the models further,
commonly used speech representations. For instance, mel-frgquengyond what can be achieved with PPCA. To make diagonal covari-
cepstral coefficients (MFCC) and perceptual linear prediction coeffince matrices a good approximation requires a suitable orthogonal
cients (PLP) [4] both involve non-linear dimension reduction whickransform of the acoustic waveforms. Among different transforms
makes exact noise adaptation very difficult in practice. In order to Uggthis type that achieve an approximate decorrelation of waveform
acoustic waveforms and realise the potential benefits of exact nofggtures we identify the discrete cosine transform (DCT) as the most
adaptation, a modelling and classification framework is required, agflective. The exact noise adaptation method used in the preliminary
exploring the details of such a framework is one of the objectives gkperiments extends immediately to the resulting DCT features. As
this paper. there are no analogues of delta features for acoustic waveforms, we

Linear representations have been considered previously by othiitead consider longer duration segments so as to include the same
authors, including Poritz [5] and Ephraim and Roberts [6]nformation used by the delta features. We find that the preliminary
Sheikhzadeh and Deng [7] apply hidden filter models directly agbnclusions about noise robustness of linear features remain valid
acoustic waveforms, avoiding artificial frame boundaries and thegr more realistic situations, including the standard TIMIT test
fore allowing better modelling of short duration events. They considgenchmark with additive pink noise.

In Section IV we investigate the effect of the segment duration on
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classification error. The findings show that no single segment duration
is optimal for all phoneme classes, but by taking an average over the
duration, the error rate can be significantly reduced. The related issue



of variable phoneme length is addressed by incorporating informatisets Si,. Principal component analysis (PCA) was the first method
from five sectors of the phoneme. When this frame averaging aocdnsidered, which assumes the data is contained in a linear subspace.
sector sum are both implemented using a PARAA front-end, The dimension of the subspace can be estimated by requiring that it
we obtain an error rate of 18.5% in quiet conditions, better thahould contain most of the average phoneme energy and we set this
any previously reported results using GMMs trained by maximuthreshold at 90%. This PCA dimension estimate will be used as a
likelihood. At all stages we consistently find that classification usingference to compare with three methods for non-linear dimension
the PLPA+AA representation is most accurate in quiet conditiongstimation. In particular we investigate estimators developed by Hein
with acoustic waveform being more robust to additive noise. Fét al. [17], Costa et al. [18] and Takens [19] and applied them to the
nally, we consider the combination of PLR+AA and acoustic phomeme class data.
waveform classifiers to gain the benefit of both representations. The~igure 1 shows the result of dimension estimation for six phonemes
resulting combined classifier achieves excellent performance, slighiilgm different consonant groups. The findings here agree with the
improving on the best PLRA+AA classifier to give 18.4% in quiet intuition that vowel-like phonemes should have a lower dimension
conditions and being significantly more robust to additive noise thdlman the fricatives. A typical dimension for a semivowel or a nasal
existing methods. phoneme, given these estimates, would be around 10; the case of
/m/ is shown in Figure 1. For fricatives like /f/, the dimension
Il. EXPLORATORY DATA ANALYSIS is much higher. Given that the non-linear dimension estimates are

Before constructing probabilistic models of high-dimensional jipmostly consistent and significantly lower than the PCA estimates we
clude that the phoneme distributions can be modelled as lower-

ear feature speech representations, let us first investigate possi . . .
lower dimensional structure in the phoneme classes. Supposing gﬂensmnal non-Ilnear. manifolds. '
such structure exists and can be characterised then it could be used number- of teghnlques have recently bgen developed to find
find better representations for speech, and to construct more aeculd |nd_ such non-linear mamf_old strugtu_res_ in dat [20]. After an
probabilistic models. Many speech representations reduce the dim@pensive study of the benefits and limitations of thesg “?eth"ds'
sion of speech signals using non-linear processing, prominent exa{ map [15] and LLE [14][21] were selected for application to
ples being MFCC and PLP. Those methods do not directly incorpor . . ! .
task having successfully found low-dimensional structure in

information about the structure of the phoneme class distributio . L -
Images of human faces and handwritten digits in other studies. As

but instead model the properties of speech perception. Here we ; . .
prop P P P W(plalned above, although the methods can find structure, there is no

initially interested in data-driven methods of dimensionality reductiot iahf d t | . datation if :
as explored in [11], [12], including linear discriminant analysis [13? raightforward way 1o apply noise adaptation It we were to use non-

(LDA), locally linear embedding [14] (LLE) and Isomap [15]. With inearly reduced feature sets. We would therefore seek to identify the

linear approaches like LDA, a projected feature space of reduc@(ar;:mea_r _strulchures, fantd exploit the:‘ to constrarlln de'r:sny modtils
dimension could be defined that would preserve the benefits o] th€ onginal linear teature Space. AS We now snow, however, the

linear feature representation. However, LDA itself is not useful foqimensions of the non-linear structures in our case are still too high

our case as the waveform distribution for each class has zero mé%rnthem “? be leamned acc_ura_tely with the.avalla_ble guantity .Of d‘f"‘a'
Isomap is a method for finding a lower dimensional approximation

(see comments after equation (2)) so that LDA cannot discriminat . o . . :
dataset using geodesic distance estimates. Our initial comparison

between classes. Non-linear methods are more powerful, but if the) PCA outbut sh d that f ) bedding di ion th
were used to reduce the dimension of the feature space then the ﬁ%Hq -~ output showed that for a given embecding dimension the
roximation provided by Isomap was better in terms of ffe

linear mapping to the new features would make exact noise adaptaf?c?r?

impossible (see Section II-B3). Instead one would aim to find noﬁiéor [151 for 0;" data. As |_ntPC(:3A we IO?K f(t)r ? Zt(?[g Cg?‘”ge n
linear low dimensional structures in the phoneme distributions, a Spectrum of an appropriate ram matrix o Tin e dimension

exploit this information to build better models that remain define stlmate.t HO\;vter:/er(,Bthls Waf_not possible fotrht?e plr:or;eme datavss
in the original high dimensional space. This could include Gaussi £ Spectra of the Lram matrices were smooth for ail phonemes. Ve

process latent variable models [16] (GP-LVM), which require as inp und similar Lesults foI.r LLEf ?‘nd sus_[f)elgted that in both cases the
an estimate of the dimension of the non-linear feature space. It will pause was undersampling o the manitold.

shown below that although intrinsic dimension estimates suggest tha?—hese findings motivated the study of an artificial problem, to

low dimensional structures exist in the phoneme distributions, the glimate how mugh data mlght be required to su_ff|C|entIy Sa”?'?'e
is insufficient data to adequately sample them in a manner whi e phoneme manifolds. The simple example of uniform probability

would be practical for automatic speech recognition purposes. d.|str|but|ons over hyperspheres Wlt.h a gen dimension was con-
sidered. A smooth histogram of pairwise distances among sampled

o ) points, in accordance with the theoretically expected form, then

A. Finding Non-linear Structures indicates a sufficient sampling of the uniform target distribution,

Starting with the acoustic waveform representation, we want whereas strong peaks — resulting from the fact that random vectors
explore if the phoneme class distributions can be approximated inyhigh dimensional spaces are typically orthogonal to each other
low dimension manifolds. In particular, given a phoneme class — suggest undersampling. Initially, when we set the dimension of
we form a set,Sy, of fixed length-segments extracted from thehe hypersphere to be comparable to that of the phoneme dimension
centre of each realisation of the phoneme in a database and scalgtimates, and used a similar number of data poirtd(00), such
to fixed vector norm. We us&024-sample segments, correspondingeaks in the distance histograms were indeed present. When the
to 64ms at al6kHz sampling rate, from the TIMIT databas§, dimension of the hypersphere was reduced to five, the peaks were
thus captures all the variability of the phoneme due to differestnoothed out, suggesting that this five-dimensional manifold was
speakers, pronunciations, and instances. We want to determffize ifsufficiently sampled with a number of data points similar to the
can be modelled by a low-dimensional submanifoldRf’?*, and if number of phoneme examples per class.
such a submanifold could be characterised in a manner which wouldn summary, the findings of the experiments suggest that if speech
facilitate accurate statistical modelling of the data. We first applieddata manifolds exist in the acoustic waveform domain then they are
number of intrinsic dimension estimation techniques to the extractedder-sampled because of their relatively high intrinsic dimension.

phoneme dataset. They were considered especially suitable for
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B e where w;, u; and X; are the weight, mean vector and covariance

B coroaton)] matrix of thei"" mixture component respectively. In the case of

I PCA (90%) acoustic waveforms we additionally impose a zero mean constraint
for models as a waveform will be perceived the same asc. With

this constraint the corresponding models represent all information

about the phoneme distributions in the covariance matrices and

component weights.

2) Probabilistic Principal Component Analysin the preliminary
experiments, we initially modelled the phoneme class densities using
GMMs with full covariance matrices. However, it was not possible
to accurately fit models with more than two components in the high
dimensional space of acoustic waveforms, whére 1024. Instead
we considered using density estimates derived from mixtures of prob-
abilistic principal component analysis (MPPCA) [10]. This method
has a dimensionality reduction interpretation and produces a Gaussian
mixture model where the covariance matrix of each component is
regularised by replacement with a raglapproximation:
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indicates the method of estimation. PCA estimates are ploged uhe right X =rI+WW 3)
hand scale th . . .

Here thei*™ column of thed x ¢ matrix W is given asv/\;v;

corresponding to the'™ eigenvalue,\;, and eigenvectorp;, of
The number of required data points, could be expected to vary the empirical covariance matrix, with the eigenvalues arranged in
exponentially with the intrinsic dimensiond, i.e.n ~ o for some descending order. The regularisation parametefs then taken as
constantx. In the hypersphere experimentsvas approximately four, the mean of the remaining — ¢ eigenvalues:

consequently the estimated quantity of data required to sufficiently 1 d
sample a phoneme manifold with~ 10 ... 60 would be unrealistic, = Z i (4)
particularly at the upper end of this range. Given that the data-driven d—q i=q+1

dimensionality reduction methods we have explored are not practicag) Noise Adaptation:The primary concern of this paper is to

for the task considered, we now turn to more generic density mm?r'ﬁestigate the performance of the trained classifiers in the presence

for the problem of phoneme classification in the presence of additiy additive Gaussian noise. Generative classification is particularly

noISe. I.n particular we W'" construct generative cla§3|f|ers in the h!gﬁ ited for robust classification as the estimated density models can
dimensional space which do not attempt to exploit any submanifo o . )
: . L . capture the distribution of the noise corrupted phonemes. As the noise
structure directly. We will see that approximations are required, again_ , ... . - T )
1S additive in the acoustic waveform domain, signal and noise models
due to the sparseness of the data, but also because of computationa o . .
. can be specified separately and then combined exactly by convolution.
constraints. . . . . )
In the experiments of this section, phoneme data is normalised at the
phoneme segment level with the SNR being specified relative to the
B. Generative Classification segment rather than the whole sentence. This is clearly unrealistic as

. o . . . the mean energy of phonemes differs significantly between classes.
Generative classifiers use probability density estimajes;), . . L

o . However, it does provide a situation where each phoneme class
learned for each class of the training data. The predicted class

of a test point,z, is determined as the clags with the greatest IS “affected by the same local SNR. We can also think of this

likelihood evaluated at. Typically the log-likelihood is used for the gﬁﬁgztzfﬂx sfgrrn:zi/sg pl: Or(;ﬁg:/eolstls;s'wti?he aﬂai:tr((j)e?fltgafssian
calculation; we denote the log-likelihood ofby £(z) = log(p(x)). y oy P

e . . L of variance set by the SNR. The effect of the noise on classification
Classification is performed using the following function: - : . : .
then indirectly provides information on how well separated different
AY(z) = arg max E(k)(m) + log(mx) (1) Phoneme classes are in the space of acoustic waveforifise white
k=1,..K Gaussian noise model results in a covariance matrix that is a multiple
where z can be predicted as belonging to one I&f classes. The Of the identity matrixg2I, wheres? is the noise variance. We assume
inclusion above ofr,, the prior probability of class, means that throughout that this is known, as it can be estimated reliably during
we are effectively maximising the log-posterior probability of clasBeriods without speech activity or using other techniques [22]. Hence
k given z. the noise adaptation for the acoustic waveform representation is given
1) Gaussian Mixture ModelsWithout assuming any additional by replacing each covariance matix with 3(o?):
prior knowledge about the phoneme distributions we use Gaussian Y 4 021
mixture models (GMMs) to model phoneme densities. The models 2(02) 1102

®)
are trained using the expectation maximisation (EM) algorithm to

maximise the likelihood of the training data for the relevant phonenP€ech waveforms are normalised to unit energy per sample. Clearly

class. The training algorithm determines suitable parameters for §fine normalisation of this type is needed to avoid adverse effects
probability density functionp : R? — R, of a Gaussian mixture Of irrelevant differences in speaker volume on classification perfor-
model. For the case af mixture components this function has theance, an issue that has been carefully studied in previous work [7].

form: The normalisation leads in the density models to covariance matrices
3 with traced, the dimension of the data. Adding the noise as in the

eXp[i l(x _ m)Tzﬂ(‘T _ m)] @) numerator of the equation above would give an average energy per
2 ! sample ofl + 2. We also normalise noisy speech to unit energy per



sample, and hence rescale the adapted covariance mattlixHoy” 90
as indicated above.
There is no exact method for combining models of the training dat

with noise models in the case of MFCC and PLP features, as the
representations involve non-linear transforms of the waveform dat
Parallel model combination as proposed by Gales and Young [23]  60f
an approximate approach for MFCC. A commonly used alternativ
method for adapting probabilistic models to additive noise is cepstri= S 50¢
mean and variance normalisation (CMVN) [24], and we will considel E
this method in subsequent sections. At this exploratory stage, v
study instead the matched condition scenario, where training ar  3q|.

801

testing noise conditions are the same and a separate classifier —©- Quiet

trained for each noise condition. In practice it would be difficult zo,i ggg 1
and computationally expensive to have a distinct classifier for evet ———6dB

noise condition, in particular if noise of varying spectral shape i¢ 10f|—&—-12dB )
included in the test conditions. Matched conditions are neverthele 0 ~v--18dB| ‘

useful in our exploratory classification experiments: because trainir -18 -12 -6 0 6 Quiet

data comes directly from the desired noisy speech distributior., Test SNR [dE]

then assuming enough data is available to estimate class dens 1e52 Error of PLP classifiers as a function of test SNR. Each cul
accurately this approach provides the optimal baseline for all nmgﬂ% error of the classifier trained at the SNR indicated bycthee marker. The
adaptation methods [23],[25]. curves show the sensitivity of PLP classifiers when therenigsmatch between
training and testing noise conditions. In particular thesslfiers trained at 0dB
and 6dB performs much worse when the test noise level is lovar the
C. Results of Exploratory Classification in PLP and Acoustic Waveéaining level.

form Domains

In the exploratory study we consider only realisations of six
phonemes (/b/, /f, Im/, I/, 1t/, Iz/) that were extracted from the TIMIT The PLP phoneme distributions were modelled using a single
database [26]. This set includes examples from fricatives, nas@8mponent PPCA mixture with a principal dimension of 40, i.e.
semivowels and voiced and unvoiced stops. These classes provide 1 andg = 40; we experimented with other values but these
pairwise discrimination tasks of a varying level of difficulty. FoParameters gave the best results. Figure 2 shows the test results for
example /b/ vs. /t/ is a more challenging discrimination than /nglassifiers trained on data corrupted at the different noise levels. Each
vs. /zI. The phoneme examples are represented by the dehtre of the curves thus represents a different training SNR. It is clear that
Segment of the acoustic waveform Corresponding0@4 Samp|es PLP classifiers are hlghly sensitive to mismatch between training and
at 16kHz. Additionally the stops, /b/ and /t/ are aligned at théesting noise conditions. For example, when conditions are matched
release point as prescribed by the given TIMIT segmentation. TRE 6dB SNR, the error is very low at 2.8%. However, if the same
data vectors are then normalised to have squared norm equal to(ﬂ@ésiﬁer is tested in quiet conditions this value increases significantly,
dimension of the segment corresponding to unit energy per sampld@$3.7%. The analogous plot for waveform classifiers is shown in
explained above. These initial experiments focus only on the cenfrigure 3, where the phoneme classes were modelled avithl and
of the phonemes to investigate the effectiveness of noise adaptatibr: 500
As is well known, discrimination can be improved by considering Acoustic waveform classifiers are less sensitive to mismatch be-
the information provided by the transitions from one phonemes toeen the assumed noise level to which they were adapted using (5),
the next. We will explore this in Section IV and see that it doeand the true testing conditions. Taking the classifier adapted to 6dB
indeed significantly help classification. SNR as an example, we see that if assumed and true testing conditions

Each phoneme class consists of approximatel§0 representa- are matched the error is 5.1% and when testing in quiet, it remains
tives, of which 80% were used for training and 20% for testing. Thes low as 8.4%. Although the error for matched conditions is higher
classification error bars, where indicated, were derived by comsglerthan that of PLP at this nosie level, the increase due to mismatch is
five different such splits and give an indication of the significance élrastically reduced.
any differences in the accuracy of classifiers. A range of SNRs wasWe next consider the scenario where the true testing conditions
chosen to explore classification errors all the way to chance levate matched to those the models were trained in (PLP) or adapted
i.e. 83.3% in the case of six classes. In total this gave six testing ad(waveforms). This is equivalent to taking the lower envelopes of
training conditions;—18dB, —12dB, —6dB, 0dB, 6dB and quiet. Figures 2 and 3. In this case PLP gives a lower error rate than
At this exploratory stage only white Gaussian noise is consideragiaveforms above 0dB SNR, while the opposite is true below this
We use the same number of examples from each class, thus the pridoe. These results suggest that we should seek to combine the
probabilitiesr;, are all equal td /6 and have no effect on predictionsclassification strengths of each representation, specifically the high
according to (1). accuracy of PLP classifiers at high SNRs and the robustness of

For comparison the default #2order PLP cepstra were computedacoustic waveform classifiers at all noise levels. Ideally this will
for the 64ms segments. A sliding 25ms Hamming window was useekult in a single combined classifier that only needs to be trained
with an overlap of 15ms leading to four frames of 13 coefficients [27]n quiet conditions and can be easily adapted to a range of noise
These four frames were concatenated to give a PLP representatonditions. To investigate this concept we consider the following
in R%2. The data was then standardised prior to training so that eammvex combination of the two log-likelihoods with each term being
of the 52 features had zero mean and unit variance across the entoemalised by the relevant representation dimension. 4,8} (x)
training set that was considered. We discuss variants of this featare L.av.(x) be the log-likelihoods of a phoneme class, then the
standardisation in Section IlI-A3. combined log-likelihoodC., () parameterised by is given as:
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Fig. 3. Error of acoustic waveform classifiers as a function of t#¢RSThe Fig. 4. Performance of the combined classifier when PLP models traineéetu

curve marker indicates the assumed SNR to which the classifieradtapted matched conditions are used. The combined classifier is amifcat least as

using (5). The error rate is less sensitive to mismatch bettteeassumed and accurate as those it is derived from and gives significantergment around

the true SNR when compared to the curves in Figure 2. —6dB SNR. Inset: Comparison with the combined classifier traioely in
quiet conditions.

(1-o) o, ) ©) more than a hard switch between PLP and waveform classifiers could.
dwave T 0VE The inset shows a comparison of combined classifiers involving PLP
trained in matched conditions and PLP trained in quiet and adapted
y jng CMVN respectively. These two approaches to PLP training
expecta to be almost zero for high SNRs and close to one for lo ould represent the extremes of performance, with noise adaptation

SNRs in order to give the desired improvement in accuracy, and Jé;ghmque_s nlworehad_vanced t'?_an C'\ZV'\A expe(;ltedbto lie in betwgen.
this information to fit a combination function,(c?). A suitable range ncouragingly, the inset to Figure 4 shows that by an appropriate

of possible values ofr was identified at each noise level from thecombination with waveform classifiers the performance gap between

condition that the error rate is no more than 2% above the error 1!25?“”9 only PLP _rr_10de|§ trained ?n quiet conditions and those trained
the besta. This range is broad, so the particular form of the fitted? matched conditions is dramatically reduced.
combination function is not critical [28]. We choose the following
sigmoid function with two parameters? and 3: D. Conclusions of Exploratory Data Analysis
The exploratory data analysis shows that acoustic waveform classi-
(7) fiers, which can be exactly adapted to noise when the noise conditions
are known, are also more robust to mismatch between assumed and
A fit through the numerically determined suitable rangesxahen true testing conditions. The combined classifier retains the accuracy
givesoj = 11dB, # = 0.3. We also consider combinations involvingof PLP in quiet conditions whilst simultaneously providing the
PLP classifiers trained in quiet conditions and adapted to noise usimdustness of acoustic waveforms in the presence of noise. In order
CMVN, where a similar fit givesrZ = 11dB, 3 = 0.7. to confirm these conclusions a more realistic test is required. As
The above combination in (6) is equivalent to using multiplelescribed above, we also found that the best model fits were obtained
streams of features, one consisting of the waveform and the othemdth only a small number of mixture components, whether using
the PLP features derived from the same waveform segment. Datafful covariance matrices or more restricted density models in the
sion at the feature level that concatenates the vectors of features fifonm of MPPCA. In both cases too many model parameters are
each source would be an alternative method of combining the twequired to specify each mixture component, meaning that mixtures
representations. However, such a method would not be suitable for tiith many components cannot be learned reliably from limited data.
combination of PLP and acoustic waveforms, predominantly becausethe next section, the issue of parameter count reduction will be
the contribution to the resulting likelihood from each representati@ven more acute as many of the phoneme classes have even fewer
is approximately proportional to the feature space dimension. Hermeamples than those considered so far. The problem will be addressed
the likelihood contribution from the acoustic waveform portion of théy using diagonal covariance matrices in the GMMs, with the data
fused vector would dominate. appropriately rotated into a basis which approximately decorrelates
Figure 4 shows the result of the combination, when the acoustiie data. Additionally the SNRs will be specified at sentence level
waveform classifiers are trained in quiet conditions and then adapteldich can cause local SNR mismatch and will provide a more
to noise according to (5), while the PLP classifiers are trained und#rallenging test of the robustness of the classifiers. We will also
matched conditions. We see in the main plot that the combinéwestigate the length of the segments used to represent the phonemes.
classifier has uniformly lower error rate across the full range @his is particularly relevant when comparing the acoustic waveform
noise conditions. In particular, around6dB SNR the combination classifiers to those of PLRPA+AA as the deltas use information
performs significantly better than either of the underlying classifiersom neighbouring frames. It will be shown that by optimising the
This is interesting because it means that the combination achiemesnbers of frames for each representation we get a similar benefit fo

Lo(z) = L‘plp(x) +

where dpi, = 52 and dwave = 1024 are the dimensions of the
PLP and acoustic waveform representations, respectively. We wo

5 1
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phoneme classification as when using deltas. Finally we will shasé model complexity without including too many of the complex
the effect of including information from the whole phoneme rathenodels. We compute the model average log-likelihdeldx) as:

than just the frames from the centre.
M(z) = log( Z ucexp(Le(x))) 9)

IIl. FIXED DURATION REPRESENTATION WITHREFINED MODELS cec

In this section we consider how to enhance the generative modéiéh the model weights:. = ﬁ andL.(x) being the log-likelihood
so that they can deal with more realistic classification tasks. A x given thec-component model.
previous experiments are now repeated on the standard TIMITAlternatively the mixture weights allocated to each model could
benchmark [29] with noise added so that the SNR is specified k@ determined from the posterior densities of the models on a
sentence level. This means that the local SNR of the phonemigvelopment set to give a class dependent weighting, i.e.
segments can differ significantly from the sentence level value. There
) B : > zep exp(Le(T))
is a large variation in the size of the phoneme classes hence those Ue =
relative frequencies have a greater effect as the prior in (1). We 2iaec 2ep XP(La(T))
also consider model averaging, which removes the need to selatiere D is a development set. Preliminary experiments suggested

(10)

the number of components in mixture models. that using those posterior weights only gives a slight improvement
over (9). We therefore adopt those uniform weighis & ﬁ) for
A. Model Refinements all results shown in this paper.

1) Diagonal Covariance MatricesiWe observed in the preliminary 3) Noise adaptation for sentence-normalised dalitéow we con-

exploration that even PPCA requires an excessive number of par ler the more realistic case_where the SNR is _only known at_
eters compared to the quantity of available data. Hence, GMMs Wﬁﬁntence-level. All sentences will therefore be normalised to have unit
diagonal covariance matrices are used for all following experimenfd!€r9Y Per sample in quiet and noisy conditions. Different phonemes

This is a common modelling approximation when training data }g/i'thin these sentences can have higher or lower energies, as reflected
sparse. Diagonal covariances matrices will be a good approximathnthe dgnsﬂy m.odels.by covariang® with trace above or b.elomi,
red is the dimension of the feature vectors. The relative energy

provided the data is presented in a basis where correlations betw . i X .

features are weak. For the acoustic waveform representation, thi€ i?aCh phoneme_class, Wh'_Ch yve had dlscardeq In Sec“‘?” II-C, can
clearly not the case on account of the strong temporal correlationsﬂﬁllIS be used ‘_’“””9 classification. The adaptation to noise has the
speech waveforms. We therefore systematically investigated candid¥tE"® form as in (5):

low-correlation bases derived from PCA, wavelet transforms and -, D+ 2N

DCTs. Although the optimal basis for decorrelation on the training D) = (11)

1+ 02
set is indeed formed by the phoneme-specific principal compone%ereN is the covariance matrix of the noise transformed @y

\Q’e .fou_Pﬁ tzat ﬂj[e lOW;SIt tes(tj ](‘arrc;:] 1S IP:] fact acrlueved W'I;E a DCH-ormaIised to have tracé For white noiseN is the identity matrix,
asis. The density model used for the phoneme classes in the acOUgie ice it is estimated empirically from noise samples. In general a

waveform domain now becomes: full covariance matrix will be required to specify the noise structure.
However, with a suitable choice & the resultingN will be close
1 T ATy -1 to diagonal, and indeed whet is a segmented DCT we find this to
Xp[_§(x_m) C'D; C(m_“i)] be true in our experi ith pi i [ ignifi
periments with pink noise. To avoid the significant
(8) computational overheads of introducing non-diagonal matrices, we
where w;, p; and D; are the weight, mean vector and diagonatherefore retain only the diagonal elementsMf The normalisation
covariance matrix of the'® mixture component respectivelf’ is by 1402 arises as before: on average, a clean sentence to which noise
an orthogonal transformation selected to decorrelate the data at ldeast been added has energy- o2 per sample and the normalisation
approximately. In the case of acoustic waveforms we ch@dse be to unit energy of both clean and noisy data requires dividing all
a DCT matrix, as explained above. Preliminary experiments showeavariances by this factor. In contrast to our exploratory study in
that, instead of performing a single DCT on an entire phonenS&ection II, and because of the varying local SNR, the traceB of
segment, it is advantageous to separate DCTs in non-overlapping sutd D are then no longer necessarily equal.
segments of length 10ms, mirroring (except for the lack of overlaps)We now consider noise compensation techniques for MFCC and
the frame decomposition of MFCC and PLP. For a sampling raRLP features. As mentioned above, cepstral mean and variance nor-
of 16kHz as in our data, the transformation mat@xis then block malisation (CMVN) [24] is an approach commonly used in practice to
diagonal consisting o160 x 160 DCT blocks. For the MFCC and compensate noise corrupted features. This method requires estimates
PLP representations we choo€kto be the identity matrix as they of the mean and variance of the features, usually calculated sentence-
already involve some form of DCT and the features are approximatelyse on the test data or with a moving average over a similar time
decorrelated. window. We take this to be a realistic baseline. Alternatively the
2) Model Averageiln general, more variability of the training datarequired statistics can be estimated from a training set that has been
can be captured with an increased number of mixture componerdsrrupted by the same type and level of noise as used in testing.
however, if too many components are used over-fitting will occuffFor large data sets, these statistics should be essentially the same
The best compromise is usually located by cross validation usiag on the noisy test set, barring systematic effects from e.g. different
the classification error on a development set. The result is a singfi@ining and test speakers.) Clearly both approaches have merit. For
value for the number of components required. We use an alternatas@ample, sentence level CMVN requires no direct knowledge of the
approach and take the model average over the number of componeett conditions, and can remove speaker specific variation from the
effectively a mixture of mixtures [30]. We start from a selection oflata. The estimates will be less accurate and as a consequence it is
models parameterised by the number of componentshich takes difficult to standardise all components in long feature vectors obtained
values inC = {1, 2,4, 8,16, 32,64, 128} or subsets of it. The entries by concatenating frames; instead, we standardise frame by frame.
in this set are uniformly distributed on a log scale to give a good rangksing a noisy training set for CMVN requires that the test conditions

c w;
xTr) = —€
@ =2, T
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Fig. 5. Comparison of sentence level cepstral mean and variance risatial  Fig. 6. Model averaging for acoustic waveforms, MFCC and PLP models,

(dashed) and training set (solid) standardisation for RIPRLP+AA. all trained and tested in quiet conditions. Solid: GMMs withmber of
components shown,; dashed: average over models up to numbenpboents
shown. The model average reduces the error rate in all cases.

are known so that either data can be collected or generated for training

under the same conditions. The feature means and variances can . .

: . - . dimension to 39.
be obtained accurately, and in particular we can standardise lon

. ur exploratory results in Section Il gave successful classification
feature vectors. However, as the same standardisation is used for. a P y . 92
o T ) . for acoustic waveforms using a 64ms window. For the MFCC and
sentences, any variation due to individual speakers will persist.

! o . : PLP representations, we therefore consider the five frames closest
A comparison of the two standardisation techniques is shown jn

Figure 5. Curves are displayed for both methods, using PLP featutosFhe centre of each phoneme, covering 65ms, and corjcaten{:\te
) . o . - eir feature vectors. Results are shown for the representations with
with and withoutA+AA. Standardisation on the noisy training se . - . :
and those withoutA + AA , giving feature vector dimensions of

gives lower error rate; both in quiet copdltlons and in noise, henge>< 39 — 195 and5 x 13 — 65, respectively. The acoustic waveform
all results for CMVN given below use this method. S ; N .
representation is obtained by dividing each sentence into a sequence
of 10ms non-overlapping frames, and then taking the seven frames
B. Experimental setup (70ms) closest to the centre of each phoneme, resulting in a 1120-

Realisations of phonemes were extracted from the S| and shimensional feature vector. Each frame is individually processed
sentences of the TIMIT [26] database. The training set consistsing the 160-point DCT. We present results for white and pink noise
of 3,696 sentences sampled at 16kHz. Noisy data is generatedaﬁﬁi' will see that the approximation using diagonal covariahzes
applying additive Gaussian noise at nine SNRs. Recall that tHt¢ DCT basis is sufficient to give good performance. The impact
SNRs were set at the sentence level, therefore the local SNRO%ithe number of frames included in the MFCC, PLP and acoustic
the individual phonemes may differ significantly from the set valudvaveform representations is investigated in the next section.
causing mismatch in the classifiers. In total ten testing and training
conditions were run—18dB to 30dB in 6dB increments and quiet C. Results
(Q). Following the extraction of the phonemes there are a total of Gaussian mixture models were trained with up to 64 compo-
140,225 phoneme realisations. The glottal closures are removed ardts for all representations. We comment briefly on the results
the remaining classes are then combined into 48 groups in accordafaceindividual mixtures, i.e. with a fixed number of components.
with [29], [31]. Even after this combination some of the resultingypically performance on quiet data improved with the number of
groups have too few realisations. The smallest groups with fewewmponents, although this has significant cost for both training and
than 1,500 realisations were increased in size by the addition tebting. The optimal number of components for MFCC and PLP
temporally shifted versions of the data. i.exiis an example in one models in quiet conditions was 64, the maximum considered here.
of the small training classes then the phoneme segments extradtesvever, in the presence of noise the lowest error rates were obtained
from positions shifted byt = —100, —75, —50, ..., 75, 100 with few components; typically there was no improvement beyond
samples were also included for training. This increase in the sifr components.
of the smaller training classes ensures that the training procedure ig\s explained in Section IlI-A2, rather than working with models
stable. For the purposes of calculating error rates, some very simildth fixed numbers of components, we average over models, i.e.
phoneme groups are further regarded as identical, resulting in @%r the number of mixture components, in all the results reported
groups of effectively distinguishable phonemes [29]. PLP featuees delow. Figure 6 shows that the improvement obtained by this in quiet
obtained in the standard manner from frames of width 25ms, withcanditions is approximately 2% for both acoustic waveforms and PLP
shift of 10ms between neighbouring frames and correspondingly aith a small improvement seen for MFCC also. The model average
overlap of 15ms. We also include now in our comparisons MFC&imilarly improved results in noise and this will be discussed further
features. Standard implementations [27] of MFCC and PLP with the next section.
default parameter values are used to produce a 13-dimensionakfeatuOne set of key results comparing the error rates in noise for
vector from each time frame. The inclusion &f + AA increases phoneme classification in the three domains is shown in Figure 7.



The MFCC and PLP classifiers are adapted to noise using CMVI 1001

This method is comparable with the adapted waveform models : @\

it only relies on the models trained in quiet conditions. The curve 991

for acoustic waveforms is for models trained in quiet conditions an

then adapted to the appropriate noise level using (11). Comparit 80r

waveforms first to MFCC and PLP witholt+AA, we see that in

quiet conditions the PLP representation gives the lowest error. Tt _ or

error rates for MFCC and PLP are significantly worse in the presenc §

of noise, however, with acoustic waveforms giving an absolut 6oy

reduction in error at 0dB SNR of 40.6% and 41.9% compared t " 5ol

MFCC and PLP respectively. These results strengthen the case tl

the adaptability of acoustic waveform models gives them a definit "5 \vaveform

advantage in the presence of noise with the crossover point occurri ——MFCC

above 30dB SNR. Curves are also shown for MFQG-AA and 30l EPLP -- |
PLP+A+AA. Again the same trend holds; performance is gooc —H=MFCC+A+AA

in quiet conditions but quickly deteriorates as the SNR decrease 5, TQ_PL‘PJ'AJ'A‘A ‘ ‘ ‘ ‘ ‘ Ly
The crossover point is around 24dB for both representations. Tt -8 -12 -6 0 TesGt SNRl[ZdB] 18 24 30 Q

chance-level error rate of 93.5% can be seen below 0dB SNR for thie
MFCC and PLP representations without deltas and below 6dB SN 7. comparison of adapted acoustic waveform classifiers with @IEGd
when deltas are included, whereas the acoustic waveform classifieP classifiers trained in quiet conditions adapted by feagtandardisation.
performs significantly better than chance with an error of 76.7%/! classifiers use the model average of mixtures up to 64 compsnBotted
even at—18dB SNR. The dashed curves in Figure 7 represent t}g€ indicates chance level at 93.5%. When the SNR is les2#u#}, acoustic
. e . . . aveforms are the significantly better representation, esitkerror rate below
error rates obtained for classifiers trained in matched conditions Wm?ance even at -18dB SNR. Dashed curves show results of miatafng for
and withoutA+AA. The results show that the waveform classifietorresponding MFCC and PLP representations.
compares favourably to MFCC and PLP below 24dB SNR when no
deltas are appended. Including+AA does reduce the error rates
significantly and the crossover then occurs between 0dB and 6t precise number of frames required for accurate classification
SNR. It is these observations that mainly motivate our further modedsuld in principle be inferred from the statistics of the phoneme
development below: clearly we should aim to include informatiosegment durations, we see in Table | that those durations not only
similar to deltas in the waveform representation. vary significantly between classes but also that the standard deviation
The same experiment was repeated using pink noise extracted fnoithin each class is at least 24ms. Therefore no single length can be
the NOISEX-92 database [32]. The results for both noise types wesgitable for all classes. The determination of an optighdtom the
similar for the waveforms classifiers. For PLR+AA, adapted to data statistics would be even more more complicated wheh A
noise using CMVN, there is a larger difference between the two noiaee included, because these incorporate additional information about
types, with pink noise leading to lower errors. Nevertheless, the bettee dynamics of the signal outside tlfeframes.
performance is achieved by acoustic waveforms below 18dB SNR.Assuming that no single value gfwill be optimal for all phoneme
Results for GMM classification on the TIMIT benchmark in quietlasses we instead consider the sum of the mixture log-likelihoods
conditions have previously been reported in [31], [33] with errors of1;, as defined in (9) but now indexed by the number of frames
25.9% and 26.3% respectively. To ensure that our baseline is valid used. The sum is taken over the sEtwhich contains the values
compared our experiment in quiet conditions for PPHAA and of f with the lowest corresponding error rate, for examgle=
obtained a comparable error rate of 26.3% as indicated in the bott¢m 9, 11,13, 15} for PLP:
right corner of Figure 7. ~ f
Following these encouraging results we seek to explore the effect R(z) = Z M;(z7)
of optimising the number of frames and the inclusion of information fer
from the entire phoneme. The expectation is that including moygherez = {«/|f € F}, with 2/ being the vector withf frames.
frames in the concatenation for acoustic waveforms will have Note that we are adding the log-likelihoods for differefit which
similar effect to addingA+AA for MFCC and PLP. A direct amounts to assuming independence between the differert z.
analogue of deltas is unlikely to be useful for waveforms: MFC@|ear|y this an imperfect model, as e.g. all Componentgﬁfare
and PLP are based on log magnitude spectra that change lifflgo contained im:'! and so are fully correlated, but our experiments
during stationary phonemes, so that local averaging or differenciggiow that it is useful in practice. We also implemented the alternative
is meaningful. For waveforms, where we effectively retain not jugf concatenating the:’ into one longer feature vector and then
Fourier component amplitudes but also phases, these phases com@ifiging a joint model on this, but the potential benefits of accounting
essentially randomly during averaging or differencing, rendering thgr correlations are far outweighed by the disadvantages of having

(12)

resulting delta-like features useless. to fit density models in~ 4000 dimensions. Consistent with the
independence assumption in (12), in noise we adapt the mddgls
IV. SEGMENT DURATION, VARIABLE DURATION PHONEME separately and then combine them as above. The same applies to the
MAPPING AND CLASSIFIER COMBINATION further combinations discussed next.

A. Segment Duration

Ideally all relevant information should be retained by our phonenf® SEctor sum
representation, but as it is difficult to determine exactly which infor- Although phonemes vary in duration, GMMs require data that
mation is relevant we initially choose to talfeconsecutive frames has a consistent dimension. We next establish a method to map the
closest to the centre of each phoneme and concatenate them. Whisiable length phoneme segments to a fixed length representation
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i15% 35% 35% 15% C. Results
A B c D E Figure 9 shows the impact of the number of frames concatenated
|<””;‘(¢>| |<”ri¢>| |<””;¢>| from each sector on the classification error, focusing on quiet condi-
, firames c | frames IEI tions. We see that the best results for acoustic waveform classifiers
Xg X5 are achieved around 9 frames, and around 11 frames for PLP withou

deltas. The PLPA+AA features are less sensitive to the number of
Fig. 8. Comparison of phoneme representations. Top: Division destri frames with little difference in error from 1 to 13 frames. We can
in [33] resulting in five sectors, three covering the dunatif the phoneme L ) . .
and two of 40ms duration around the transitions. Bottgnframes closest to now also assess quaptltatlvely the performancg benefit of Inclludlng
the five points A, B, C, D and E (which correspond to the cerafébe regions the deltas. If we consider the best results obtained for PLP without
above) are selected to map the phoneme segment to five featwoesveg, deltas, 22.4% using 11 frames, with the best for PARAA, 21.8%
xp, ¢, rp andrp. with 7 frames, then the performance gap of 0.6% is much smaller
than if we were to compare error rates where both classifiers used
the same number of frames. Clearly it is not surprising that fewer
PLP+A+AA frames are required for the same level of performance
Group Min | Mean =+ std. Max as the deltas are a direct function of the neighbouring PLP frames.
It is still worth noting that in terms of the ultimate performance on
this classification task the error rates with and without deltas are
similar. The results discussed above are directly comparable with the
GMM baseline results from other studies, shown in Table Ill. The
error rates obtained using thfeaverage over the five best values of

TABLE |
Duration statistics [ms] of the training data grouped by Hrphonetic class.

\Vowels 2.2 86.0 + 46.7 438.6
Nasals 7.6 | 545+ 256 260.6
Strong Fricatives| 14.9 | 99.5+ 38.9 381.2
Weak Fricatives 45 | 68.24+ 37.3 310.0

Stops 29| 39.3+24.0 | 1938 f are 32.1%, 21.4% and 18.5% for acoustic waveforms, PLP and
Silence 2.0 | 949+ 1075 | 2396.6 PLP+A+AA respectively.
Al ‘ 20 ‘ 79.4+ 63.4 ‘ 2396.6 Table Il shows the absolute percentage error reduction for each

of the four classifiers (15)—(18) in quiet conditions, compared to
the GMM with the single best number of mixture components and

for classification. In the previous subsection only frames from tHmber of frame?"- Theh relative benefits of tlaﬁ-z\_/erag(_e and the
centre of the phoneme segments were used to represent a phonéﬁ%pr sum are (|:| ear. The sector sdum glvels the bigger |mé)rov$]ments
We extend that centre-only concatenation to use information froff 1t own in all cases compared to only tifeaverage, but the

the entire segment by taking frames with centres closest to eaCrf:omblnatlon of the two methods is better still throughout. The same

of the time instants A,B,C,D and E that are distributed along tt?é‘a,“tat've trend holds true in noise. . - .
duration of the phoneme as shown in Figure 8. In this manner the':Igure 10 compares the performance of the final classifiers, in-

representation consists of five sequenceg dfames per phoneme. CIUd'Dg bOt_h thef—avera_ge and the_sector sum, on data corrupte_d
Those sets of frames are then concatenated to give five vegiors by pink noise. _T_he solid curves give thg results for the acoustic
zB, xc, rp and zg. We train five models on those sectors an avefqrm glassmer a_ldapted to noise using (1_1)' and_f_or the PLP
then combine the information they provide about each sector, ag§|ﬁss'f'er with and withouA+AA trained in quiet conditions and

assuming independence by taking the sum of the log-likelihoods %qapted to.noi.se by CMVN', The errors are general!y significantly
the sectors: lower than in Figure 7, showing the benefits f6averaging and the

sector sum. PLPA+AA remains the better representation for very
low noise, but waveforms give lower errors beyond a crossoviet po
between 12dB and 18dB SNR, depending on whether we compare
to PLP with or withoutA+AA. As before, they also perform better
wherez = {xa,zp,zc,zp,zr} and M, denotes the model for than chance down te-18dB SNR.

sectors, using some fixed number of framgs Both improvements ~ The dashed lines in Figure 10 show for comparison the perfor-
can be combined by taking the sum of th@veraged log-likelihoods, Mmance of PLP classifiers trained in matched conditions. As explained,

S@= Y = M) (13)
se€{A,B,C,D,E}

R.(Z.), over the five sectors: the CMVN and matched curves for PLP provide the extremes
between which we would expect a PLP classifier to perform if
T(2) = Z Rs(Zs) (14) model adaption analogous to that used with the acoustic waveforms
s€{A,B,C,D,E} was possible, or some other method to improve robustness was

employed such as the ETSI advanced front-end (AFE) [34]. As
expected, the matched conditions PIPHAA classifier has the best

erformance for all SNR. However, in noise the adapted acoustic
i Sveform classifier is significantly closer to matched PAR-AA
following: than PLP-A+AA with CMVN.

AY (z) = arg k:nllaxK./\/lgpk)(x) + log () (15)

wherez, = {z{|f € F} with =] being the vector withf frames
centred on sectot, andz gathers allz,. Given the functions derived
above, the class of a test point can be predicted using one of

D. Combination of PLP and Acoustic Waveform Classifiers

R _ )/~ We see from the results shown so far that, as in the preliminary
AT(z) = arg kzr{{??fKR (z) + log(m) (16)  experiments, PLP performs best in quiet conditions with acoustic
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60 ‘ ‘ ‘ TABLE Il
O  Waveform EXxisting error rates obtained in other studies for a rangdasisification
methods on the TIMIT core test set. Results in this paper ar¢ coagparable
55 o pp 1 to the GMM baselines.
o O PLP+A+AA .
S - - - - Model avg. 0
50r SO Sector sum |1 Method Error [%]
Q. HMM (Minimum Classification Error) [35] 31.4
450 3. AN Lo ] GMM baseline [33] 26.3
= O ~~ O~ __ S e -
=, B---1 O~ _ Ve T GMM baseline [36] 24.1
S 40y AN © i GMM baseline [37] 23.4
w \ o)
35 O o A o O | GMM ( f-average + sector sum) PLPA+AA 18.5
’ O 9; . \'\ SVM, 5th order polynomial kernel [33] 22.4
30t G_-_%\‘@“‘@---O\\\‘B___@‘"E ] Large Margin GMM (LMGMM) [31] 21.1
e O T Regularized least squares [37] 20.9
25¢ o 1 Hidden conditional random fields [38] 20.8
20 ‘ ‘ Q : Q ‘ ‘ ‘ ‘ Hierarchical LMGMM H(2,4) [36] 18.7
1 3 5 7 9 11 13 15 Optimum-transformed HMM with context (THMM) [35] 17.8
Number of frames Committee hierarchical LMGMM H(2,4) [36] 16.7

Fig. 9.  Error rates of the different representations in quiet cbow, as
a function of f, the number of frames considered. Dashed: prediction (15)
using only the central sector. Dotted: prediction (16) gsime sum over all V. CONCLUSION& DISCUSSION
five sectors, leading to a clear improvement in all cases.
In this paper we have studied some of the potential benefits of

phoneme classification in linear feature domains directly related to

Absolute reduction in percenta-l\c-]Aeil;rEor”for each of the iflass (15)-(18) in  the acoustic waveform, with the aim of implementing exact noise
quiet conditions. adaptation of the resulting density models. In Section Il we outlined
the results of our exploratory data analysis, where we found intrinsic
Model Waveform | PLP | PLP+A+AA nonlinear dimension estimates lower than linear dimension estimates
Model average A™) 16| 28 4.4 from PCA. That observation suggested that it should be possible
f-average A7) 56| 6.0 6.3 to construct low dimensional embeddings to be used later with
Sector sum 4%5) 671 84 8.7 generative classifigrs. However, existing techniqugs failed to find
F-average + sector SUrAR) 99 | 100 104 enough structure in the phoneme dataset as it is too sparse to

accurately define the embeddings. Consequently we used GMMs
to model the phoneme distributions in acoustic waveform and PLP
domains. Additionally, a combined classifier was used to incorporate
waveforms being more robust to additive noise. To gain the benefite performance of PLP in quiet conditions with the noise robustness
of both representations, we propose to merge them via a lin@dracoustic waveforms.
combination of the corresponding log-likelihoods, parameterised byGiven the encouraging results from these experiments on a small
a coefficienta: set of phonemes we progressed to a more realistic task and extended
the classification problem to include all phonemes from the TIMIT
Ta(@) = (1 — a)Toip(2) + Tovave () (19) da_tat_)ase. This gave results that_ f:ould be dire(_:tly compared to the
existing results in Table lll, classifiers representing current pregres
on the TIMIT benchmark. All of the entries show the error for isolated
where Ty (z) and Twave(z) are the log-likelihoods of a point.  phoneme classification except for the optimum-transformed HMM
7. (z) is then used in place of (z) in (18) to predict the class. (THMM) [35] that uses context information derived from continuous
The combination differs from (6) as the effect of the prior clasgpeech. The inclusion of context for the HMM classifiers reduces the
probabilities is more relevant now and the absolute log-likelihoodsror rate from 31.4% to 17.8%. This dramatic reduction suggests
must be used rather than the scaled quantities. This is again equivaggt if the other classifiers were also developed to directly incorporate
to a multistream model, where each sector and valugf @ an contextual information, significant improvements could be expected.
independent stream. A noise-depender(v”) is determined as e used the standard approximation of diagonal covariance ma-
explained in Section II-C, giving parameter values’ (= 17dB, frices to reduce the number of parameters required to specify the
B =0.3)in (7). GMMs. The issue of selecting the number of components in the
The error of the combined classifier using models trained mixture models was approached by taking the model average with
quiet conditions is shown as the dash-dotted curve in Figure IT@spect to the number of components for a sufficiently large set
In quiet conditions the combined classifier is slightly more accuraté values. The results supported our earlier conclusions, but also
(18.4%) than PLPA+AA alone, corresponding to a small valuellustrated that waveforms are potentially lacking the significant
of a = 0.003. When noise is present the combined classifier is &enefits obtained bA+AA features. This motivated us to further
least as accurate as the acoustic waveform classifier, and significamtiprove the classifiers by using multiple segment durations and
better around 18dB SNR. The combined classifier does improve ugben taking the sum of the log-likelihoods. Information from the
PLP+A+AA classifiers trained in matched conditions at very lowhole phoneme was included by repeating the process centred at five
SNR and narrows the performance gap to the order of no more thaoints in the phoneme. The best practical classifiers in this paper
9% throughout, rather than 22% when comparing to PAPAA  were obtained using the combination of acoustic waveforms with
adapted by CMVN. PLP+A+AA.
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We expect that the results can be further improved by including

techniques considered by other authors, in particular, commit
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