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ABSTRACT

The robustness of classification of isolated phoneme seg-
ments using generative classifiers is investigated for the acous-
tic waveform and PLP speech representations. Probabilistic
PCA is used to fit a density to each phoneme class followed
by maximum likelihood classification. The results show that
although PLP performs best in quiet conditions, as the SNR
decreases below 0dB acoustic waveforms have a lower clas-
sification error. This is the case even though the waveform
classifier is trained explicitly only on quiet data and is then
modified by a simple transformation to account for the noise,
whereas for PLP separate classifiers are trained for each noise
condition. Even at —18dB SNR, multiclass performance of
classification from waveforms is still significantly better than
chance level. In addition the effect of time-alignment is tested
and initial solution shown.

Index Terms— Speech Recognition, Robustness, Gener-
ative Classification

1. INTRODUCTION

One of the key problems in automatic speech recognition is
robust phoneme classification. ASR systems can attribute
much of their performance to language and context modelling,
the principle being that classification errors made by the front-
end can be remedied at a higher level [1]. Clearly, though,
this approach can only decode messages sent via speech sig-
nals if the input sequence of elementary speech units is suf-
ficiantly accurate. In the extreme case where the input se-
quence is close to random guessing no useful information can
be extracted at the later stages of recognition. Indeed, it has
been observed that the majority of inherent robustness of hu-
man hearing occurs early in the process [2]. Even at —18dB
SNR humans can still recognise isolated speech units above
the level of chance. The ultimate aim for an automatic speech
classifier is to achieve performance close to that of the human
auditory system in such severe noise conditions. Developing
methods of phoneme recognition that are robust to additive
noise could be one step towards achieving that goal.

The current preferred speech representation is generally
some variant of PLP[3], RASTA[4] or MFCC[5]. These rep-
resentations are derived from the short term magnitude spec-
tra followed by non-linear transformations to model the pro-
cessing of the human auditory system. They have the ad-
vantage that they remove such variation from test signals as
is considered unnecessary for recognition and have a much
lower dimension than acoustic waveforms which can allow
for more accurate modelling when data is limited. It is not
known if this dimensional reduction loses some information
that gives speech additional robustness. An alternative ap-
proach is to use higher dimensional representations where the
distributions of the different phonemes may be better sepa-
rated. If this is the case classification from such represen-
tations should be more robust to additive noise. The aim of
this paper is to assess the separability of phonemes in the two
domains and how it changes as a function of SNR.

In the following study Probabilistic PCA was used to esti-
mate the class-conditional densities. This results in one fitted
Gaussian per class. This model was chosen for its simplicity
and clear interpretation. It is possible that more sophicated
mixture models could give better performance. However the
aim of our work was not to find the optimal classifier but to
illustrate that acoustic waveforms are a viable representation
for robust phoneme recognition. A representative subset of
the TIMIT database was used to evaluate both binary and mul-
ticlass error rates on the task of isolated phoneme recognition.

2. GENERATIVE CLASSIFICATION

Realisations of six phonemes (/b/, /f/, /m/, /t/, It/, /z/) were
extracted from the TIMIT database. Each class consists of
approximately 1000 representatives, of which 80% were used
for training and 20% for testing; error bars were derived by
considering five different such splits. A single 64ms rectan-
gular window was then applied to the data followed by nor-
malisation. This window is shorter than for typical human
tests, although our experiments show it is sufficient to capture
enough information for class separation. The natural space
in which to perform classification for the waveforms is the



hypersphere S'923 as each sample has 1024 entries and is
normalised to unit norm. As the mean value of each class
was zero within sampling error, the class-conditional densi-
ties were constrained to have zero mean. This is natural as an
inverted waveform is perceived as the same phoneme. For
comparison the default 12th order PLP cepstra of the data
were taken, leading to 4 frames of 13 coefficients [6]. The
4 frames were concatenated to give a PLP representation in
R52, PLP representations were not normalised, and we al-
lowed nonzero means for their class-conditional densities.

The tests were carried out in quiet conditions and also on
data with additive white Gaussian noise. The SNR was de-
creased until the error approached that of chance level, i.e.
83.3% in the case of six classes. In total this gave six testing
and training conditions; —18dB, —12dB, —6dB, 0dB, 6dB
and quiet (Q).

Each class-conditional density model was derived using
Probabilistic PCA [7] in the appropriate d-dimensional space
(d = 1024 for waveforms, d = 52 for PLP). The method
gives a maximum likelihood fitted Gaussian that is condi-
tional on the dimension g of the principal subspace. It has
the simple interpretation that the variance due to the smallest
d — g eigenvalues is redistributed isotropically. This method
gave better results than first projecting the data onto the prin-
cipal subspace, as no information from the data is discarded.
In the case of waveforms the best results were found when
the full empirical Gaussian model was taken, i.e. ¢ = 1024.
However for PLP the optimal ¢ was dependent on the noise
level and q was therefore optimised by cross-validation on the
training set.

PPCA uses the eigenpairs (v;, ;) of the empirical covari-
ance matrix, with the eigenvalues ordered in decreasing order.
Given the parameter ¢, the smoothed spectrum is defined as
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Classification is then performed in the standard way, by pre-
dicting the class with the maximum likelihood (which im-
plicitly assumes uniform prior probabilities over different cla-
sses). The classification function C(x) that maps a test point
x to a corresponding class label is defined as

C(x) = arg maxGE(c) (x)

c=1,...,

One of the key advantages of the waveform representa-
tions is that the fitted density models can easily be modi-
fied to allow for the presence of additive noise. Assuming
that the noise level (or more generally the noise power spec-
trum) is known or can be estimated reliably, we simply need
to perform a convolution with the appropriate Gaussian noise
model. When the SNR is [dB, the resulting density model for
white noise is given by
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where k(1) =

For the PLP representations, on the other hand, there is no
similarly obvious method for including noise in the density
models. We therefore assume here that noisy data matched
to the test conditions are available for training, and train one
separate set of PLP density models for each test noise condi-
tion. (Other methods have been proposed to reduce explicitly
the effect of noise on spectral representations [8] but are not
explored here, for fairness of comparison with the waveform
case.)

As PLP uses frames of magnitude spectra it is less sen-
sitive to time alignment. In the case of waveforms though it
would clearly be beneficial to align the data in a consistent
manner. This is especially true in the case of stops such as /b/
and /t/. Rather than attempting to explicitly align the data, a
sliding window with a 10 sample shift over a range of 100
samples was used. This gives 21 shifted instances =4 for each
representative x. The log likelihood of the test point x is then
taken as the log mean likelihood taken over the shifts:
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These modified log likelihoods are compared among the dif-
ferent classes to produce the classification. The shift range
was selected so that it would cover at least one fundamental
period of a periodic waveform at the lower end of the typi-
cal frequency range of speech. We experimented with sample
shifts of below 10 samples in the same shift range £100, giv-
ing a greater number of shifted waveforms. Since this gave
no noticeable improvement but increases computation time
and memory requirements, all tests were carried out using the
shifts in steps of 10 samples.

3. RESULTS

Figure 1 shows a direct comparison of the two representations
considered. It displays the multiclass classification error, i.e.
the probability of a test phoneme being classified incorrectly,
as a function of SNR. The key observation is that, while PLP
performes better up 0dB SNR, as the noise level increases be-
yond this point the waveforms representations lead to signifi-
cantly lower errors and perform better than chance even down
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Fig. 1. Mean Multiclass Classification Error Rate of the six
phonemes. The three curves are for waveform and PLP repre-
sentations and PLP with a smaller training set. Dashed-dotted
line: Error rate for random guessing.

to —18dB SNR. This is in spite of the fact that for waveforms
only a single classifier was trained in quiet conditions and
then modified as above to allow for the inclusion of additive
noise, while the PLP classifier for each test noise level was
trained explicitly on training data corrupted with a matching
level of noise.

Arguably, training the PLP density models should require
less data as the representation is of significantly lower dimen-
sion than for waveforms. Hence for a given amount of data
the model parameters can be better estimated. The dotted line
in Figure 1 therefore shows additonal results where the PLP
classifiers were trained on a smaller subset of the data. The
size of this reduced subset was taken in proportion to the di-
mension of the PLP representation, i.e. 52/1024 ~ 5% of
the original training set. In this case the PLP and waveform
representations perform comparably in quiet conditions with
waveforms outperforming PLP at all higher noise levels. We
would expect that this relation would persist when classifiers
for both representations are trained on larger corpora, with
the waveform classifiers improving on the results shown in
Figure 1.

We further explored how the classifiers perform in the
presence of a mismatch between training and test conditions.
The PLP representation turns out be very sensitive to such
mismatch. For example the classifier trained in quiet condi-
tions performs well when the testing conditions are also quiet
but is at chance level already by —6dB SNR. Figure 2 shows
classification errors for the scenario where the noise level for
testing is not known and models trained at fixed noise lev-
els are considered; a key feature is that such classifiers can
perform poorly even if the test noise level is lower than the
one used for training. The dotted line shows, for comparison,
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Fig. 2. Mean Multiclass Classification Error Rate for PLP
trained on data corrupted by fixed levels of noise as given in
the legend. Each curve shows one classifiers tested across all
levels of test noise. The dotted curve shows the result of using
the waveform classifier adjusted for data at —12dB SNR.

the results for the waveform classifier “trained” at —12dB
SNR (i.e. trained in quiet conditions and with noise of —12dB
SNR included as explained above). Comparison with the PLP
curves shows that the waveform model is considerably less
sensitive to variation in test noise conditions when the full
range is considered; in particular, performance does not dete-
riorate (and indeed improves) when test noise levels are lower
than in training.

We also performed binary classification tests on all 15
pairs taken from our 6 phonemes, and observed similar trends
as in the full multiclass classification. The mean error ranged
from 1.9% in quiet to 33.3% at —18dB SNR for waveforms
compared with 0.6% to 40.3% for PLP. The results for in-
dividual pairs had the same general pattern, with some ad-
ditional variation arising from the fact that not all pairs are
equally confusable.

Finally we show in Figure 3 the effect of including shifts
in the evaluation of the likelihoods as explained in Sec. 2. As
expected the inclusion of shifts gave no significant improve-
ment for PLP, and so we do not show the relevant data. For
waveforms, on the other hand, we see an improvement of at
least one standard deviation at all noise levels.

4. CONCLUSIONS

In this study we have compared phoneme classification us-
ing generative classifiers, comparing the PLP and waveform
representations. Our results show that the waveform repre-
sentation is more robust than PLP in the presence of additive
white noise. The point at which PLP started to perform worse
was at an SNR of 0dB or lower. Even at —18dB SNR the mul-
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Fig. 3. Mean multiclass classification error showing an im-
provement when shifts are included at the testing stage. The
inclusion of shifts in training also gave a small improvement.

ticlass classification error for the waveform representation is
still significantly below chance level. We emphasise that this
performance was achieved with a waveform classifier trained
exclusively on quiet data, with the noise being included via a
simple transformation of the fitted class-conditional densities.
For PLP, on the other hand, we allowed the classifier access
to training data corrupted with exactly the same level of noise
as in testing. Such an idealised scenario would clearly be dif-
ficult to achieve in practice, especially if one is dealing with
coloured rather than white noise and where in principle one
would then need to retrain separate PLP classifiers also for a
range of different noise power spectra.

The waveform representation does in principle suffer from
the difficulty of aligning waveforms appropriately, but we sh-
owed that this can be addressed in a simple manner by averag-
ing the likelihoods over shifted versions of the test waveform.

Classifiers based on the PLP representation performed best
for quiet conditions but where the SNR is below 0dB the
acoustic waveform representation is superior. Adjusting the
size of the respective training sets to be proportional to the
dimension of the representation in each case, we found that
difference in performance at high SNRs is reduced and wave-
forms perform comparably or better than PLP at all noise
levels. This suggests that somewhat larger training sets than
those considered here would be needed to accurately train the
waveform classifiers, but that they would then perform com-
petitively with PLP and rather better at low SNRs.

We also explored the effects of mismatch between training
and noise conditions. Consistent with our other results, the
waveform classifiers are rather less sensitive to such a mis-
match. In fact, PLP classifiers can perform poorly even if
test conditions are more benign than during training, whereas
the waveform classifiers always improve their performance in

such conditions.

Our proof-of-principle study has shown that phoneme clas-
sification robust to additive noise is possible in the acoustic
waveform domain. There are, of course, a number of di-
rections for further research to develop the methods demon-
strated here. To make the scenario more realistic, tests should
be performed on larger sets of phonemes; it would also be
interesting to compare explicitly with the phoneme sets used
in experiments on human speech recognition [9]. Evidently,
more powerful density models will need to be explored, for
example mixtures of Gaussians. It is worth emphasising that
also such mixture models would preserve the desirable prop-
erty of waveform representations that noise of known SNR
(or more generally power spectrum) is trivial to include; as
long as accurate estimates of the noise conditions are avail-
able, this could be done in real time. As an alternative, class-
conditional densities could be modelled by isolating the most
non-Gaussian components and representing their densities via
empirical distributions. Finally, for both PLP and waveform
classifiers, training under a combined range of noise condi-
tions would be explored [8] to reduce sensitivity to any mis-
match between training and test conditions.
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