
Polydispersity effects on colloidal phase behaviour

The aim of this project was to improve our theoretical understanding of the fundamental effects of polydis-
persity on the phase behaviour of colloidal systems. We have developed methods for predicting, visualizing
and simulating polydisperse phase behaviour (objective 4 and 5 below) and successfully applied these to
fundamental statistical mechanics models for colloidal liquid crystals (objectives 1 and 2) and suspensions
of spherical colloids (objective 3).

Background

Statistical mechanics was originally developed for the study of large systems of identical particles. How-
ever, many materials of industrial and commercial importance which contain colloidal particles or polymers
do not fit this description. The particles in a colloidal suspension, for example, are never precisely identical
to each other but have a range of radii (and possibly surface charges, shapes etc). Industrially produced
polymers always contain macromolecules with a range of chain lengths; and hydrocarbon mixtures oc-
curring in the petrochemical industry often consist of a large number of different molecular species with
effectively continuously varying properties across each family of molecules. All these materials are there-
fore polydisperse in that they contain particles with properties depending continuously on one or several
parameters. A key issue is what effects polydispersity has on phase behaviour: to process a colloidal or
polymeric material, one needs to know under which conditions of pressure and temperature it will be
stable against demixing, how many phases will result if it does demix, and what their properties are.

The main challenge in studying polydisperse phase equilibria theoretically arises from the effectively
infinite number of particle species present; labelling these by the polydisperse attribute σ, the state of
a polydisperse system must be described by a density distribution ρ(σ), rather than a finite number of
density variables. The free energy f [ρ(σ)] of a polydisperse system ‘lives’ in an infinite-dimensional space,
and the conventional procedure of deriving phase equilibria from tangent (hyper-)planes to a free energy
(hyper-)surface becomes useless, both computationally and conceptually.

Polydispersity has routinely been ignored in the past, in the hope that for a narrow density distribution
ρ(σ) one can treat the system as monodisperse, i.e. containing a single particle species only. However, it
has become increasingly clear that there are many aspects of polydisperse phase behaviour which can only

be understood once polydispersity is taken into account explicitly. These include, for example, nematic-
nematic demixing in liquid crystals, solid-solid coexistence in hard sphere colloids (see below), and multiple
demixing in random copolymers1. This rich behaviour is suggested already by Gibbs’ phase rule, where
with an infinite number of particle species present there is no a priori limit on the number of phases.

An important feature of polydisperse phase behaviour is fractionation: particles may partition them-
selves unevenly between several coexisting phases as long as—due to particle conservation—the overall
composition ρ(0)(σ) of the ‘parent’ phase is maintained. This leads to complex phase diagrams; the con-
ventional gas-liquid binodal of a monodisperse system, for example, connecting the ends of tielines in a
density-temperature diagram, splits into a ‘cloud’ and a ‘shadow’ curve. These give, respectively, the
density at which phase coexistence first occurs and the density of the incipient phase. Because the shadow
phase in general differs in composition from the parent, the curves do not coincide, and the critical point
is located at their intersection rather than their maximum. In this conventional representation, all infor-
mation on the composition of the phases—and therefore on fractionation—is projected out; one of the
project aims was to investigate how such information can best be retained in more complete visualizations.

The studies of polydisperse phase behaviour in this project made use of the moment free energy (MFE)
method developed by the PI and collaborators1,2. As reviewed in3,4, this is substantially more powerful
computationally and provides greater physical insight than previous methods. The latter often introduce
uncontrolled errors, by ‘binning’ the density distribution ρ(σ) into discrete pseudo-components or imposing
the shape of the density distributions in coexisting phases ad hoc. The MFE method is also not restricted
to nearly monodisperse systems, where controlled perturbation expansions around the monodisperse limit
are possible but cannot detect qualitative polydispersity-induced changes in phase behaviour.

The MFE method exploits systematically the fact that many polydisperse systems are described by free
energies whose non-ideal (excess) part only depends on certain generalized moments ρi =

∫
dσ wi(σ)ρ(σ)

of the density distribution ρ(σ). In the simplest case, wi(σ) = σi, the ρi reduce to conventional moments.
The phase equilibrium conditions in such ‘truncatable’ systems reduce from integral equations for the
density distributions to nonlinear equations for a finite number of parameters. The MFE method takes
this insight further, to the level of the free energy itself: for any given parent distribution one can construct
a moment free energy depending only on the moments ρi. This is done by eliminating the dependence
of the true free energy on the full ρ(σ)—arising from the ideal free energy term T

∫
dσ ρ(σ) ln ρ(σ) that

is present even for truncatable systems—by minimizing over ρ(σ) for given values of the ρi. The key
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result is that, if the ρi are viewed as densities of a finite number of quasi-species of particles and the
conventional tangent plane construction is applied to the MFE, the onset of phase coexistence, i.e. cloud
and shadow curves, are found exactly. The same holds for spinodals and (multi-)critical points. Beyond
the onset of phase separation the results are not exact, but can be refined by including extra moments
in the description. By tuning the weight functions defining these extra moments, the properties of the
coexisting phases can then be calculated with in principle arbitrary accuracy 5.

The importance of polydispersity effects on phase behaviour was recognized already within the EPSRC
Physics Network in Soft Condensed Matter (1998–2001), where it was the topic of one of the most active
working groups. Since then the area has received growing attention both nationally and internationally,
as regards both the bulk phase behaviour that this project was concerned with 6–10 and e.g. interfacial11,12

and dynamical13 effects.

Key advances and supporting methodology

Objective 1 — Lyotropic liquid crystals

The paradigmatic model of colloidal liquid crystals is that of Onsager which treats particles as hard, i.e.,
interacting only via an infinite repulsion on overlap; in the limit of long thin rods, an exact expression
for the free energy can be found. This has been widely used to model lyotropic liquid crystals, where
transitions from isotropic (I) to orientationally ordered nematic (N) phases are primarily controlled by
changes in density; see references in14–16. We focussed on the effects of polydispersity in particle lengths.
Previous work in this area had been concerned with bi- and tridisperse mixtures (rods with two or three
different lengths), and with perturbative effects for near-monodisperse systems. From these the behaviour
of fully polydisperse systems as regards e.g. the possibility of N–N and I–N–N demixing cannot be naively
inferred: in the bidisperse case it is known that sufficiently disparate lengths do produce phase coexistence
involving two nematic phases, but the same is not guaranteed in polydisperse systems just because they
always contain some rods of very different lengths.

To make progress we first extended the MFE formalism to include continuously varying non-conserved
degrees of freedom (the rod angles with the nematic axis). We were able to show that this extended
MFE approach continues to locate the onset of phase coexistence and of spinodal instabilities exactly, as
long as these are approached starting from an isotropic phase 14. Within this framework we then studied
a simplified P2 Onsager model involving one conserved and one non-conserved moment. This model is
obtained by truncating the expansion of the excluded volume interaction in the excess free energy, which
in principle involves an infinite number of different moments, after the first nontrivial term; from work on
the monodisperse case it was expected to give reliable results.

We found that the P2 Onsager model was indeed able to predict N–N and I–N–N coexistence, thus
improving on a simpler model with rods oriented along one of three perpendicular axes 5 which failed
in this respect. These features did not occur in unimodal (single-peaked) Schulz distributions, however,
requiring instead bimodal parent length distributions containing a small number of rods with lengths
substantially above the average. This suggested that length distributions which were unimodal but had
fat tails towards large lengths should also show phase coexistence involving two nematic phases. We
studied in detail the case of log-normal parent length distributions4,15, and did indeed find an I–N–N
coexistence region. Unusually tough, this is very narrow and not connected to an N–N region, separating
instead two different regions of I–N coexistence. This novel effect arises because the orientational ordering
in the nematic phase is most favourable, i.e. reduces excluded volume most strongly, for long rods. The
resulting fractionation is so strong that at the onset of phase separation the nematic phase develops
a second peak in its length distribution at the maximal rod length present in the system; the I–N–N
coexistence arises essentially from the transition of this unusual nematic to a more conventional one.

Our studies also showed that the P2 Onsager model, while sufficiently close to the full Onsager model
for many purposes, cannot predict the N–N demixing known to take place at larger densities in e.g.
bidisperse systems. We showed that the same applies to any finite truncation of the Onsager excluded
volume interaction14. To assess the reliability of our novel predictions for fat-tailed length distributions
we therefore carried out an exact numerical study of the onset of phase coexistence in the full polydisperse
Onsager model16. We found (as confirmed by later approximate results6) that the effects were in fact
more pronounced: there is again an I–N–N coexistence region, but the incipient nematic phase can now
be entirely dominated by the longest rods in the system, and the density at which phase separation
begins decreases to zero as the maximal rod length increases. This conclusion holds generally for length
distributions with fatter than exponential tails. In the limiting case of a Schulz distribution, behaviour
dominated by the longest rods can still occur but only if the width of the distribution is above some
non-trivial threshold. We thus have a complete characterization of length polydispersity effects on the
onset of nematic order in lyotropic liquid crystals. Similar effects on N–N demixing at higher densities
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and their dependence on the length distribution remain to be clarified; as explained, truncated Onsager
models do not capture the full physics here, while a direct attack on the full Onsager model would be a
formidable numerical undertaking. Progress using improved truncatable approximations to the Onsager
model may be possible, however; see below.

Objective 2 — Thermotropic liquid crystals

In contrast to lyotropics, in thermotropic liquid crystal the important control parameter is temperature.
Here anisotropy of long-range attractions between particles is considered the key driving force behind ori-
entational ordering, as described in the simplest form within the Maier-Saupe model. Our objective was
to establish whether N–N and I–N–N demixing could occur also here once polydispersity was taken into
account; again only limited results for binary mixtures and perturbative calculations for nearly monodis-
perse systems existed. We used an appropriate generalization of the Maier-Saupe theory, with the common
assumption that interaction strengths between different particle species factorize. All polydispersity ef-
fects are then controlled by the distribution of interaction strengths, and the results apply independently
of whether the latter arises through polydispersity in, say, particle lengths or polarizabilities. We found 17

that for a sufficiently broad distribution of interaction strengths coexistence of two or more nematic phases
does in fact occur, also in combination with an additional isotropic phase. This is accompanied by a strong
broadening of the temperature range where I–N coexistence is observed, to the extent that re-entrant I–N
separation can occur as temperature is lowered. The Maier-Saupe model is by its nature too simple to
include smectic or crystalline phases, and transitions to these might mask some of the predicted phase
behaviour. Nevertheless, our results make clear that polydispersity can have very significant effects also
in lyotropic liquid crystals.

Objective 3 — Spherical colloids

Part I: Hard spheres. The simplest model for suspensions of spherical colloid particles is that of hard
spheres, experimentally realized e.g. as latex particles sterically stabilized by a polymer coating. Monodis-
perse hard spheres exhibit a freezing transition as density is increased, but it was realized early on that
polydispersity in the sphere diameters should destabilize the colloidal crystal phase, inhibiting freezing
above a certain ‘terminal’ polydispersity (measured as the width of the size distribution normalized by its
mean) of between 5% and 10%. Theoretical studies prior to our work (see references in 18,19) had suggested
that for slightly less polydisperse systems, a transition to a re-entrant fluid should be observed; coexis-
tence of several solid phases, with strong size fractionation between them, had also been found. These
predictions involved drastic—and differing—approximations, however, leaving the relative importance of
these two phenomena unclear. Simulation work had showed the importance of fractionation but had been
carried out at imposed distribution of chemical potentials, leading to strong variations of the particle
size distribution across the phase diagram at variance with the experimental situation. A clearer picture
of the equilibrium phase behaviour was particularly desirable as a baseline against which to assess the
influence of non-equilibrium effects (growth kinetics, glass transitions and possibly gravitational settling)
on experimental observations.

We therefore carried out a comprehensive investigation of the phase behaviour of polydisperse hard
spheres, based on accurate free energy expressions with truncatable structure 18,19. This showed that, at
equilibrium, re-entrant melting is prevented by size fractionation: even a fluid with polydispersity above
10% can freeze by separating off a solid with a much narrower size distribution. A terminal polydispersity
remains well-defined for solids, however, which are unstable to phase separation above polydispersities
of 6–7%. At high densities this separation is into multiple solids as predicted earlier, though with more
complicated fractionation phenomena whereby denser solids have narrower size distributions. Our study
also made the novel prediction that coexistence between a fluid and multiple solids should occur in some
regions of the phase diagram. Surprisingly, the fluid then has a wider size distribution than the parent,
because it contains left-over particle sizes that do not fit comfortably into the solid phases. Overall,
these results give the first comprehensive account of the equilibrium phase behaviour of polydisperse hard
spheres and constitute a significant step forward. They will of course need to be confronted with direct
simulations, where non-equilibrium effects can be excluded to a large extent (see below); for the simpler
situation of imposed chemical potentials we already find very good agreement.

Part II: Colloid-polymer mixtures. We extended this work on hard sphere colloids to mixtures of colloids
and polymers. These are of fundamental interest because the polymers induce a depletion interaction
between the colloids, causing the appearance of a (colloidal) gas-liquid coexistence region in the phase
diagram. For the simplest case of colloids with hard interactions and polymers at their θ-point, the
Asakura-Oosawa model (see references in20,21) has been widely used; it treats the polymer coils as spherical
particles that can interpenetrate freely with each other, but not with the colloids. For monodisperse colloid
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particles, the resulting behaviour is well understood, with gas-liquid separation seen above a threshold
value ξc of the polymer-colloid size ratio; otherwise only limited perturbative results for narrow colloid
size distributions existed.

We therefore undertook the first study of the AO model with polydisperse colloids 20. By applying a
free-volume approximation we were able to derive a truncatable free energy, involving four moments of the
colloid density distribution and in addition the polymer density. The presence of colloid polydispersity,
which can cause coexistence of several solids and a fluid, combines with possible gas-liquid phase sepa-
ration to give a rich variety of possible phase diagrams, which we were able to calculate and rationalize.
Quantitatively, colloid polydispersity disfavours fluid-solid against gas-liquid coexistence. Even a polydis-
persity of only 10% can significantly lower the threshold value ξc; this resolves the long-standing puzzle
of why theoretical predictions for ξc have in the past been persistently above the experimental value of
ξc ≈ 0.25. In the presence of polymer, solid-solid coexistence is predicted even at moderate colloid densi-
ties, opening up the exciting possibility that such behaviour, previously unobserved in experiment, may
become kinetically accessible in colloid-polymer mixtures.

We also studied polydispersity in the polymer chain lengths 21. An important question here is how to
characterize the typical polymer size appropriately. We investigated a number of common choices and
found that, if the weight-average chain length is used, phase behaviour is nearly independent of polymer
polydispersity; this should provide useful guidance for the interpretation of experimental data. We were
also able to clarify some counter-intuitive results obtained earlier for imposed polymer chemical potentials,
which arose from the variation of the actual polymer length distribution across the phase diagram.

Part III: Lennard-Jones mixtures. The results for colloid-polymer mixtures and our simultaneous
progress in simulation techniques (see below) stimulated us to investigate polydispersity effects also for
colloidal suspensions with direct—rather than polymer-mediated—attractive interactions. We modelled
these theoretically by augmenting our free energies for polydisperse hard spheres with an attractive van
der Waals term. For the case where particle size affects only the range of the attraction, the MFE
results give good qualitative agreement with simulations of Lennard-Jones mixtures 22,23. This includes in
particular the shift with increasing polydispersity of the critical temperature for the gas-liquid transition,
for which an earlier study had predicted an incorrect sign. Intriguingly, the critical point is very near the
maximum of cloud and shadow curves, and the latter almost coincide when plotted in terms of colloid
volume fraction. We were able to establish theoretically 10 that these ‘pseudo-monodisperse’ features of
the phase behaviour are in fact generic for systems where polydispersity affects only the range of the
interaction between colloids. For the case where also the attraction strength is affected, both theory and
simulation find that the onset of gas-liquid separation is dominated by the largest particles in the system.
This demonstrates for the first time that extreme fractionation effects similar to those we found for liquid
crystals can appear also in spherical colloids24.

Objective 4 — Prediction and simulation tools

In parallel with the above investigations of specific physical systems we developed the numerical imple-
mentation of the MFE method for phase equilibrium prediction further. In particular, we automated
the adaptation of weight functions which is necessary to obtain accurate results in coexistence regions 15.
Using these results as starting points, we found that even the exact (for a truncatable system) phase
equilibrium equations can often be solved. Our algorithm switches automatically when this is possible,
reverting to the MFE method when a solution to the exact equations cannot be converged. With this, we
can now routinely detect up to five phases even for complicated free energies involving five moments 17–20,
while competing direct solution approaches remain restricted to two-phase coexistence 7,8 or very simple
free energies1. As planned, we further generalized our implementation so that phase splits can be tracked
along arbitrary paths through any phase diagram. This is useful because it allows us find phase boundaries
‘in reverse gear’, by locating the point where a phase first disappears rather than where it first appears;
the latter is harder to do precisely.

We also made significant progress in the direct simulation of polydisperse phase equilibria, in col-
laboration with Dr Nigel Wilding at Bath. We developed an approach which combines the advantages
of grand-canonical Monte Carlo simulations with the experimentally relevant constraint of a fixed par-
ent distribution, exploiting histogram reweighting techniques to adapt the chemical potential distribution
appropriately25. We have since extended this to allow the first simulations of phase coexistence under
imposed parent distribution22,23, studying in particular polydisperse Lennard-Jones mixtures (s.a.).

Objective 5 — Visualization tools

As planned, we also developed tools for the visualization of complex polydisperse phase behaviour. The
issue here is to present predictions to user communities in an intelligible form which nonetheless accurately
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conveys the complexities of multi-phase coexistence and fractionation. For polydisperse hard spheres we
developed three-dimensional representations showing a chosen property (e.g. density, volume fraction,
polydispersity) versus volume fraction and polydispersity of the parent; each phase is then represented
transparently as a separate surface19. We also showed that the differences in coexisting phases can be
highlighted by characterizing them in terms of an optimally chosen moment. This is done by regarding
the density distributions predicted across a region of interest in the phase diagram as points in an infi-
nite dimensional space, and applying Principal Component Analysis methods that are designed to select
directions of large variance. In the hard sphere case, the optimal moment is essentially the difference in
densities of particles with sizes above and below the average, a physically very plausible outcome. We
believe this method holds promise particularly for systems with several polydisperse attributes (particle
length and diameter, say), where characterizing fractionation ‘by hand’ becomes more difficult.

Project plan review

The project objectives were essentially all met, and in fact exceeded in several areas. The exception is in
the area of thermotropic liquid crystals, where we did not investigate the effect of particle diameter (or joint
length and diameter) polydispersity. This decision was taken on the basis of our studies of polydispersity
in particle lengths alone, which suggested that it would be prudent to delay further investigations until
improved truncatable approximations to the Onsager model have been found. Instead we were able to
tackle the effects of polydispersity in spherical colloids with attractive interactions, and develop the first
simulation techniques for phase equilibria in systems with fixed polydispersity. We also made significant
progress on colloid-polymer mixtures, one of the possible extensions highlighted in the original proposal.
For the other optional extension to mixtures of colloidal rods and plates we expect to seek separate funding
shortly. With 11 refereed journal publications, plus 1 further submitted and 2 currently in preparation,
we regard the science output from this project as highly cost-effective.

The project also provided excellent training for the project student. His Ph.D. was completed essen-
tially on time, with the thesis submitted one month after the end of the project and accepted by the
examiners without any changes in Jan 2005. Work directly from the thesis was published in six peer-
reviewed journal papers. The student also had the opportunity to present his work at three national and
three international conferences. He was able to gain transferable skills by presenting his work at weekly
research group seminars and at research days at King’s College London, where he won a ‘best poster’
prize in Oct 2003. Further training was provided through an EPSRC-sponsored GRAD School as well as
the Ph.D. training programme for transferable skills at King’s College. The student had several job offers
before the end of his Ph.D., and has now taken up a position with Pricewaterhouse Coopers in the area of
auditing and operational consultancy, where he is able to use the quantitative, analytical and transferable
skills acquired during his Ph.D. to full advantage.

Research impact

The results from this project will be of benefit to the worldwide community of scientists in academia and
industry—in fields ranging from physics and chemical engineering to chemistry and applied mathematics—
who require a basic science platform for understanding and predicting the phase behaviour of polydisperse
systems. Our work has raised awareness of the importance of polydispersity for colloidal phase behaviour,
with our review3 of the area now becoming a fairly standard reference. More specifically, our results on
polydisperse hard spheres constitute a solid theoretical basis from which work on non-equilibrium and
interfacial effects11 can now proceed; they will also stimulate systematic simulation studies 7. Our results
for colloid-polymer mixtures have practical implications for how polydisperse polymers are best charac-
terized, and should provide an impetus for exploration of solid-solid coexistence in new experiments and
simulations. The same is true for the novel extreme fractionation phenomena that we found in polydis-
perse lyotropic liquid crystals and, more surprisingly, even spherical colloids with attractive interactions.
The generic tools for the prediction and visualization of polydisperse phase behaviour that we have devel-
oped should be helpful to an even wider user community, and we hope to make our software available to
assist with this. Finally, polydispersity in industrially produced colloidal and polymeric materials is the
exception rather than the rule, and the fundamental lessons learned from the model systems studied here
should in the longer term also feed into applications; see below.

Explanation of expenditure

Staff costs where spent as budgeted on the project studentship. There was some overspend on exceptional
costs (Ph.D. course fees) because of fee increases above the EPSRC allowance for inflation. This was
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compensated by savings on equipment, where a computer of slightly higher specification (Dell Precision
Workstation 530) could be purchased at somewhat lower cost by the time the grant had started, and on
consumables, where no separate computer maintenance contract was necessary. Travel and subsistence
expenditure was essentially as budgeted and was used for attendance at the planned number (three) of
overseas conferences (APS March Meeting 2004, Montreal; Statphys 2004, Bangalore; Gordon conference
on Complex Fluids 2004, New Hampshire) as well as the most relevant meetings in the UK (Condensed
Matter and Materials Physics 2002/03/04, Brighton/Belfast/Warwick; Gordon conference on Complex
Fluids 2002, Oxford).

Further research and dissemination activities

Transfer of knowledge to beneficiaries from this project was primarily via publication in the open scientific
literature and presentation at international conferences and workshops (as listed above, with in addition
an invited talk at the 8th UK Frontiers of Polymer Colloids meeting 2002). Preprints were made available
on the internet via the PI’s home page, and also lodged with the widely used cond-mat preprint archive.

We discussed with MSI in Cambridge the possibility of producing marketable software for the calcula-
tion and visualization of polydisperse phase equilibria from the codes developed for this project. Because
of a change of priorities at the company, which has since become part of Accelrys, these efforts did not
come to fruition. We will nevertheless continue to explore this possibility, while aiming to keep our codes
freely available to the academic community. We are also currently in discussion with Prof. George Jack-
son at Imperial College regarding applications of our work on polydisperse Lennard-Jones systems to the
study of complex mixtures in the chemical industry. If this is successful, consultancy for an appropriate
industrial partner could be considered.

There are many possible routes for further research. These include the development of better trun-
catable approximations to the Onsager model for lyotropics; an accurate treatment of the Flory lattice
model26 looks promising here. On this basis, a full study of diameter and joint diameter-length polydis-
persity effects should then be possible. We also envisage extending this approach to plate-like colloids and
rod-plate mixtures, where experiments27 suggest very strong polydispersity effects. As regards simulation
work, we are aiming for further significant progress by developing algorithms for fluid-solid and, eventually,
solid-solid coexistence in the experimentally relevant scenario of fixed parent distribution.
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