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ABSTRACT
We consider the issue of representing coalitional games in multi-
agent systems with externalities (i.e., in systems where the perfor-
mance of one coalition may be affected by other co-existing coali-
tions). In addition to the conventional partition function game rep-
resentation (PFG), we propose a number of new representations
based on a new notion of externalities. In contrast to conventional
game theory, our new concept is not related to the process by which
the coalitions are formed, but rather to the effect that each coali-
tion may have on the entire system and vice versa. We show that
the new representations are fully expressive and, for many classes of
games, more concise than the conventional PFG. Building upon
these new representations, we propose a number of approaches to
solve the coalition structure generation problem in systems with
externalities. We show that, if externalities are characterised by
various degrees of regularity, the new representations allow us to
adapt coalition structure generation algorithms that were originally
designed for domains with no externalities, so that they can be used
when externalities are present. Finally, building upon [16] and [9],
we present a unified method to solve the coalition structure genera-
tion problem in any system, with or without externalities, provided
sufficient information is available.

Categories and Subject Descriptors
F.2.0 [Analysis of Algorithms and Problem Complexity]: Gen-
eral

General Terms
Theory, Algorithms, Economics

1. INTRODUCTION
Coalition formation is a fundamental issue in multi-agent system
research because cooperating agents are often more efficient than
individuals. Coalition games are models that capture opportunities
for cooperation by explicitly modeling the ability of the agents to
take joint actions as primitives [7]. To date, however, most work
in this area has focused on situations (or games) with no external-
ities, where the performance of one coalition is independent of the
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performance of other coalitions that may be present in the system.
Now, while such an assumption is valid for many research problems,
for many others it is not. Consequently, in this paper we focus on
coalitional games with externalities.

Games with externalities have been widely studied in economics
and social sciences, where interdependencies between coalitions play
an important role. Examples include collusion in oligopolies, where
cooperating companies seek to undermine the competitive position
of other firms in the market, as well as various forms of international
(macroeconomic/environmental) policy coordination between coun-
tries [1][12]. For instance, when two pharmaceutical companies
decide to cooperate in order to develop a new drug, all the other
companies lose some of their competitive position, (i.e., are subject
to negative externalities). Conversly, the decision by one group of
countries to reduce gas emissions may have a positive impact on
other countries or regions (i.e., they are subject to positive external-
ities).

This issue of externalities is also becoming increasingly impor-
tant in domains in which multi-agent system techniques are applied.
For example, the British company, Aerogistics1, enables small- and
medium-size aircraft component manufacturers and service providers
to form online, ad hoc supply-chain coalitions to bid for manufactur-
ing projects too large for any individual participant. Since all com-
ponents must ultimately conform to the same standards, the cost of
standarization procedures incurred by any coalition depends on the
number and structure of other winning coalitions. As an another
examples, coalitions of regional satellite mobile network operators
may enable economies of scale and scope for between-region com-
munications, and thereby “take” market share (traffic or customers)
from operators outside the coalition. In response, operators outside
the coalition may be able to prevent or mitigate this effect by form-
ing appropriate coalitions. Increasingly, such wholesale telecommu-
nications services, and the underlying coalitions supporting them,
are created or provided online, and in near real-time. Non-trivial ex-
ternalities may arise when coalitions are created exogenously rather
than endogenously, i.e., when some central authority divides agents
into coalitions. In this context, a detailed analysis of an on-line re-
tailer who groups customers in order to obtain shipment discounts
is provided in Michalak et al [10]. Here, externalities emerge due
to imperfect warehouse management, i.e., if there are not enough
goods to suit all coalitions, satisfying some of them makes other
dissatisfied.

As demonstrated by Deng and Papadimitru [6], Sandholm and
Conitzer [2, 3], Ieong and Shoham [7] and Ohta et al [11], the repre-
sentation of a system is one of the key issues in developing efficient
solutions to coalitional games. In this context, most research has
focused on games with no externalities that can be modeled using a
characteristic function game representation (e.g., [14, 16, 17, 18]).

1See www.aerogistics.com for more details.



The main feature of these systems is that the performance of any
coalition is not affected by the way non-members are partitioned.
Although characteristic function games are popular in the literature,
many realistic systems cannot be modeled using this representation
due to non-negligible interdependencies among the coalitions. For
such systems, the partition function game representation, which as-
signs a value to every coalition in every coalition structure, has been
the only available representation in the literature. In this context, the
notion of externalities focuses on the way the coalitions are formed
(see Section 3 for more details). While such a perspective is in-
teresting and fruitful in many game-theoretic applications, it may
become an obstacle in a multi-agent context where only the coali-
tions themselves matter, regardless of the process that could lead to
the formation of these coalitions. Consider, for instance, the coali-
tion structure generation (CSG) problem, which involves finding a
coalition structure (i.e., a division of all the agents into exhaustive
and disjoint coalitions) such that the overall efficiency of the sys-
tem is maximised. In this context, given a cooperative multi-agent
system, the evaluation of every potential coalition structure does not
need to take into consideration the process that leads to its forma-
tion. The goal of this paper is, therefore, to develop novel repre-
sentations for these games. Following Ieong and Shoham [7], the
representations that we present in this paper will be evaluated with
respect to:

• Expressivity: the breadth of the class of games covered by
the representation;

• Conciseness: the memory requirements for the representa-
tion;

• Efficiency: the complexity of algorithms for computing solu-
tions using this representation;

• Simplicity: the ease of use of the representation.

In this context, an ideal representation should be fully expressive
(i.e., should cover every possible class of games), simple, as con-
cise as possible, and allow the development of efficient algorithms.
Furthermore, we will analyse informational requirements of ev-
ery representation, i.e., the extent to which information about the
system is required in order to make use of a given representation.

In more detail, this work advances the state of the art by:

• Developing a new notion of externalities that is not related
to the way the coalitions are formed, but rather to the direct
influence of a coalition on the system and vice versa.

• Developing new representations (for games with externali-
ties) that are fully expressive and have reasonable memory re-
quirements. Furthermore, we show that, for particular classes
of games with externalities, they can be reduced to signif-
icantly more compact representations compared to the con-
ventional approach.

• Evaluating the efficiency of the new representations by con-
sidering the CSG problem in games with externalities. Specif-
ically, we show that these representations allow for the devel-
opment of efficient algorithms for solving this problem.

The remainder of the paper is organized as follows. Section 2
introduces our basic notation. Section 3 discusses the issue of ex-
ternalities from a game-theoretic perspective. Section 4 introduces
a novel notion of externalities, and proposes representations based
on this new notion. Section 5 defines classes of games with exter-
nalities that meet particular patterns. Using those patterns, Section
6 compares the classical and our new notion of externalities and the
representations stemming from them. Finally, Section 7 discusses
sample applications of the new representations, before concluding
in Section 8.

2. BASIC NOTATION
We will denote by A = {a1, . . . , an} the set of all the agents in
the system. A coalition structure Π = {C1C2 . . . Cm} is a parti-
tion of A into coalitions. We refer to a coalition C in Π as being
embedded in Π and denote it by (C, Π). The set of all embedded
coalitions (in all feasible coalition structures) is denoted by C. We
denote the cardinality of any coalition C by |C|, and the cardinal-
ity of any coalition structure Π, i.e., the number of coalitions in
Π, by |Π|. For any vector x = [x1, . . . , xn] of size n, we de-
note by ‖x‖ the sum of the elements in x, i.e., ‖x‖ =

Pn
i=1 xi.

Finally, we denote by S the space of all coalition structures, and
by Si1,i2,...,ik the subspace of S containing all coalition structures
with coalitions of sizes i1, i2, . . . , ik, (cf. [16]). For instance, in a 4-
agent system, S3,1 is the subspace containing all the coalition struc-
tures that are made of two coalitions: one of size 3 and one of size
1. That is, {{a1a2a3}{a4}}, {{a1a2a4}{a3}}, {{a1a3a4}{a2}},
and {{a2a3a4}{a1}}.

3. CHARACTERISTIC VS. PARTITION FUN-
CTION GAMES

In this section, we briefly describe the game-theoretic approach to
coalitional games without and with externalities, as well as conven-
tional notions of externalities.

Characterist Function Game: The characteristic function game
(CFG) representation consists of a set of agents A and a charac-
teristic function v, which takes, as an input, a coalition C ⊆ A
and outputs its value v(C) ∈ R, which reflects the performance of
this coalition. In these representations, the value of any coalition is
independent of any other coalition in the system.

Partition Function Game: The partition function game (PFG)
representation, proposed in [8], consists of a set of agents A and
a partition function P . Specifically, for any coalition structure Π,
and any coalition C ∈ Π, the partition function P outputs a value
P(C; Π) ∈ R that reflects the performance of C in Π. In con-
trast to CFGs, the value of a coalition C ∈ Π, as computed from a
partition function, may depend upon how the other agents in the sys-
tem are partitioned. In other words, this representation accounts for
externalities in coalition formation where the performance of one
coalition may be affected by the creation of other coalitions in the
system. Obviously, characteristic function games are a special case
of PFGs where the externalities are exactly zero. This means that,
in general, algorithms designed for games with no externalities can-
not be directly applied to those with externalities. For instance, as
mentioned in the introduction, no available CSG algorithm for char-
acteristic function games is directly applicable to partition function
games. In fact, the only CSG algorithm that accounts for non-zero
externalities from coalition formation is that of [9].

For PFGs, as far as notation is concerned, a shorthand vector
notation will often be used to denote all the values of embedded
coalitions in a particular coalition structure. For example, the values
of coalitions C1, C2 and C3 in Π = {C1C2C3} will be denoted by
a transposed vector P(Π) = [P(C1; Π), P(C2; Π), P(C3; Π)].
An example is shown in Figure 1, where Π1 = {{a1a2a3}}, Π2 =
{{a1a2}{a3}}, Π3 = {{a1a3}{a2}}, Π4 = {{a2a3}{a1}} and
Π5 = {{a1}{a2}{a3}}.

Externalities from Coalition Formation: Traditionally, in game
theory, externalities are related to the merger of two coalitions in a
system. In more detail, it is a change in value of a given coalition
caused by a merge of another two distinct coalitions in the system.
More formally, a conventional definition of an externality is as fol-
lows:

DEFINITION 1. Let Π′ and Π be any two coalition structures
such that Π′ contains the disjoint coalitions C1, C2 and C3, and Π



P(Π1) = [12]; P(Π2) = [18, 10];

P(Π3) = [12, 8]; P(Π4) = [13, 9];

P(Π5) = [11.1, 9.9, 15]

Figure 1: Example of PFG for A = {a1, a2, a3}

P(Π) = [9, 11]; P(Π′) = [7, 4, 6]; P(Π′′) = [10, 3, 10];

Figure 2: Example of two different externalities from formation
of coalition {a3a4a5} on coalition {a1a2}

is formed from Π′ by merging C2 and C3. The externality from the
formation of the new coalition C4 = C2 ∪ C3 on coalition C1 is
measured as the value of C1 in Π minus its value in Π′. That is,
P(C1, Π)− P(C1, Π

′).

Now, one characteristic of this conventional definition is that, in
general, the value of the externality is dependent upon which two
coalitions took part in a merge. This is illustrated in Figure 2,
where the merging of {a3} with {a4a5} induces a different exter-
nality on {a1a2} than the merging of {a4} with {a3a5}. In par-
ticular, P({a1a2}, Π) − P({a1a2}, Π′) = 9 − 7 = 2, whereas
P({a1a2}, Π)−P ′({a1a2}, Π′′) = 9−10 = −1. In other words,
the externality is a function of both the embedded coalition (C, Π)
and the coalition structure from which Π has been created.

4. NEW REPRESENTATIONS
In this section we present a number of novel representations of games
with externalities. These are based on alternative notions of exter-
nalities, which are not related to mergers of coalitions. The com-
mon element of new representations is that externalities are sepa-
rated from the elemental values of coalitions.

Total Externalities from Coalition Formation: While the conven-
tional, game-theoretic approach to externalities is pivotal in the anal-
ysis of coalition formation processes when viewed as the creation
of coalition structures via mergers of coalitions, the designer of a
multi-agent system is often not concerned with such coalition for-
mation processes per se. In other words, the analysis of any given
coalition structure does not always need to take into consideration
the possible mergers that result in the formation of this structure.
For instance, in their seminal paper, Sandholm et al [17] argue that
there is a much wider scope of activities related to coalition for-
mation than only how coalition structures are created. Specifically,
they distinguish between: (i) calculating values of every possible
coalition; (ii) finding a division of all the agents into exhaustive and
disjoint coalitions such that the effectiveness of the system is max-
imised; and (iii) distributing the payoff among the agents so that the
chosen coalition structure is stable. The first issue, considered, for
example, in [13], is often completely independent of the coalition

formation processes (understood from the game-theoretic perspec-
tive of mergers). The other two issues also do not have to be depen-
dent on such processes. In fact, as far as the multi-agent systems
literature is concerned, it is often assumed that agents are coopera-
tive [17] [16] [9]. For instance, while solving the coalition structure
generation problem, this means that there is no need to consider
whether a chosen coalition structure is stable, or how it might be
reached, and that is because the participant agents are assumed to
accept any outcome.

As a result, in both multi-agent systems and conventional game
theory, there has been a need to redefine the concept of externalities
in such a way that it does not include all the details of the coalition
formation processes when they are irrelevant to an analysis. Conse-
quently, in their derivation of Shapley value for PFGs, DeClippel
and Serrano [5] propose a concept of an externality-free value of C
which reflects the performance of this coalition in the absence of
externalities from coalition formation.2

Intuitively, the externality-free value of coalition C must be cal-
culated in a coalition structure in which C is not subject to any ex-
ternalities. It is clear that the sole coalition structure which meets
this condition is the one containing, apart from C, only singletons.

DEFINITION 2. The externality-free value of a coalition C, de-
noted as vef : 2A → R, is the value of the embedded coalition
(C, Π) where Π\{C} is composed only of singletons.3 More for-
mally, vef (C) = P(C, {C, {aj}aj∈A\C}). We will call vef (C) an
externality-free characteristic function.

Following [5], every partition function P(C; Π) can be decom-
posed as follows:4

P(C, Π) = vef (C) + T (C, Π); (1)

where T : C → R will be called the function of total externalities
from coalition formation. This function takes, as input, (C, Π) ∈ C
and outputs a value representing what we call the total externalities
from coalition formation, which is basically the sum of all the ex-
ternalities that are induced upon C due to the formation of the other
coalitions in Π. We will formally denote this representation as a
tuple PFGT = 〈A, vef , T 〉 .

EXAMPLE 1. Given the system introduced in Figure 1, assume
that the externality-free characteristic function, as well as the func-
tion of total externalities from coalition formation are known. Let
vef (C) be as follows: vef ({a1}) = 11.1, vef ({a2}) = 9.9, vef ({a3})
= 15, vef ({a1a2}) = 18, vef ({a1a3}) = 12, vef ({a2a3}) = 13 and
vef ({a1a2a3}) = 12. Furthermore, let the total externalities from
coalition formation be equal to zero except: T ({a3}, Π2) = −5;
T ({a2.1}, Π3) = −1.9; and T ({a1}, Π4) = −2.1, where Π1, . . . , Π5

are as defined in Figure 1. It is easy to check that the above func-
tions, i.e., vef (C) and T (C, Π), together constitute a PFGT rep-
resentation of the system in Figure 1.

Note that the function T (C, Π), in formula (1), has an interest-
ing interpretation. It represents the combined externalities on the
value of (C, Π) from any possible coalition formation process that
starts with structure {C, {aj}aj∈A\C}. This is illustrated in Fig-
ure 3. Specifically, starting from Π′′′′, whichever path we under-
take to reach Π the sum of all externalities from coalition formation
on {a1a2} (denoted at the edges on Figure 3) is always equal to
T ({a1a2}, Π) = 5. We formulate the above as:
2In the multi-agent system literature, the same concept was inde-
pendently developed in [9].
3Note that 2Adenotes the set of all the possible coalitions that can
be formed by agents in set A.
4As a notational convenience, we drop the parenthesis when refer-
ring to an embedded coalition that is an argument of a function. In
other words, we write f(C, Π) instead of f((C, Π)).



Figure 3: The possible paths leading from coalition structure
Π′′′′ := {{a1a2} {a3}{a4}{a5}} to Π := {{a1a2}{a3a4a5}}

OBSERVATION 1. T (C, Π) equals the combined externalities
from any possible coalition formation process on C (when such a
process is viewed as a number of sequential mergers of two coali-
tions) starting at structure {C, {aj}aj∈A\C} and finishing at Π.

In Figure 3 for example, when {a4, a5} is formed, coalition {a1a2}
is subject to the externality: P({a1a2}, Π′) − P({a1a2}, Π′′′′) =
3. Moreover, when {a3, a4, a5} is formed, {a1a2} is subject to the
following externality: P({a1a2}, Π)− P({a1a2}, Π′) = 2. In to-
tal, on this particular path leading from Π′′′′ to Π, coalition {a1a2}
is subject to the following externalities:

P({a1a2}, Π′)− P({a1a2}, Π′′′′) + P({a1a2}, Π)− P({a1a2}, Π′) =
P({a1a2}, Π)− P({a1a2}, Π′′′′) = T ({a1a2}, Π),

Theoretically, it is possible to analyse issues related to external-
ities from coalition formation using the conventional formulation
in Definition 1. However, this requires considering an exponential
number of potential mergers.5 The advantage of the PFGT repre-
sentation is that it allows us to observe and analyse issues related to
(total) externalities with much lower complexity.

It should be observed that the notion of total externalities is still
based on how the merging of coalitions affects other coalitions in
the system. In the next section we will show that one can look at
externalities from a different perspective which is independent of
these processes.

Contribution vs. Value: Conventional PFG research, as well as
the above notion of total externalities from coalition formation, fo-
cuses on the value of P(C, Π) (i.e., the value of C in Π.). Our
second approach takes a different perspective and looks at the con-
tribution of C to Π rather than the value of C in Π. Specifically,
let us divide this contribution into two parts. The first represents
the contribution of C to Π in the absence of any influence on, or
from, the other coalitions in Π. This part is, by definition, indepen-
dent from Π. The second part represents how the functioning of C
affects the other coalitions in Π. Consider the following example:

EXAMPLE 2. Consider the following coalition structure Π′ =
{{a1a2}{a3}{a4a5}} which is taken from Figure 2, and assume
that the coalitions in Π′ achieve, in the absence of any influence
on each other, the following contributions respectively: 5, 9 and 2.
Now, allow for such an influence and assume that {a1a2} increases
the effectiveness of {a4a5} by 3 and decreases the effectiveness of
{a3} by 4. Moreover, suppose that {a3} influences {a4a5} by −1,
and has no influence on {a1a2}. Finally, suppose that {a4a5} influ-
ences {a1a2} by 2 and {a3} by 1. All these influences are depicted
5Note that the number of possible mergers of two coalitions is
greater than the number of possible coalition structures (see [17]
for more details).

Figure 4: Coalitions affecting each other in coalition structure
Π′ as defined in Figure 2

vr({a1}) = 10;
−→
E ({a3}, Π2) = [2];

vr({a2}) = 9;
−→
E ({a1a2}, Π2) = [−1]

vr({a3}) = 11;
−→
E ({a2}, Π3) = [2];

vr({a1a2}) = 16;
−→
E ({a1a3}, Π3) = [−1];

vr({a1a3}) = 10;
−→
E ({a1}, Π4) = [2];

vr({a2a3}) = 11;
−→
E ({a2a3}, Π4) = [−1];

vr({a1a2a3}) = 12;
−→
E ({a1}, Π5) = [−1, 3];
−→
E ({a2}, Π5) = [1, 1];
−→
E ({a3}, Π5) = [0.1, 1.9];

Figure 5: Example of PFG−→
E

for A = {a1, a2, a3}

in Figure 4, panel (a). It is straightforward to calculate that the total
values of coalitions in Π′ are 7, 6 and 4, but their total contribution
to Π′ are 4, 8 and 5, respectively. Of course, in both cases, the value
of the entire structure is the same and is equal to 17.

Next, instead of looking at how a given coalition C ∈ Π affects
the other coalitions in Π, we will look at how C is affected by the
other coalitions in Π. Let us consider the following example.

EXAMPLE 3. Consider Π′ = {{a1a2}{a3}{a4a5}} from Fig-
ure 2, and assume that the coalitions in Π′ achieve, in the absence
of any influence on one another, the contributions 5, 9 and 2 respec-
tively. Moreover, assume that, in total, coalition {a1a2} is affected
by 2, while {a3} is affected by −3 and {a4a5} by 2. These influ-
ences are depicted in Figure 4, panel (b).

As opposed to Example 2, which considers the influence of a
given coalition on each of the other coalitions, Example 3 considers
the total influence induced upon a given coalition by all the other
coalitions in the coalition structure. We will call the first type of in-
fluence outward operational externalities, and denote them by

−→
E .

The second type of the influence will be called inward operational
externalities and be denoted by

←−
E . Finally, the values of coalitions

in the absence of any such operational externalities will be called
residual values. More formally:

DEFINITION 3. An outward operational externality
−→
E that coali-

tion (C, Π) induces on coalition (C′, Π) is an influence of C on C′

in Π measured by a change of value of C′ caused by the functioning
of C. An inward operational externality

←−
E that coalition (C, Π) is

subject to is the total influence of all the coalitions in Π\{C} on C
measured by a change of value of C caused by the functioning of all
coalitions in Π\{C}.



DEFINITION 4. A residual value, denoted vr(C), reflects the
performance of coalition C in the absence of any operational ex-
ternalities. We call vr : 2A → R a residual characteristic function.

Representation Based on Contribution: Against this background,
the performance of C in Π can be represented by a function V−→

E
:

C → R which outputs the coalition C’s contribution to coalition
structure Π. Using both the concept of outward operational exter-
nalities and the concept of residual values, this function can be de-
composed as follows:

V−→
E

(C, Π) = vr(C) +
‚‚‚−→E (C, Π)

‚‚‚ , (2)

where
−→
E : C → R|Π|−1 is the function of

−→
E which takes, as input,

(C, Π) and outputs a (|Π| − 1)-dimensional vector representing all
−→
E induced by C on all the other coalitions in Π. We will denote
this (transposed) vector as:

−→
E (C, Π) = [εC1(C, Π), . . . , εCm(C, Π)] (3)

where Π\{C} = {C1, · · · , Cm}, and εCi∈Π\{C}(C, Π) is the op-
erational externality induced upon Ci by C.

We will call V−→
E

the partition function with outward operational

externalities. More formally, PFG−→
E

:=
D
A, vr,

−→
E
E

. Figure 5
gives an example of this representation for the system from Figure
1.

The concept of a representation based on the contribution and not
on the value can also be extended to characteristic function games.
Specifically, we define the contribution characteristic function vc :
2A → R that returns, for every coalition C, its contribution to the
system. We call the resulting representation 〈A, vc〉 the contribution
characteristic function game representation. The usefulness of this
representation will be apparent in Section 5.

Representation Based on Value: Now consider inward operational
externalities and the standard PFG representation. As discussed
previously, the partition function P : C → R outputs the value
of coalition C in coalition structure Π. Using both the concept of
inward operational externalities and the concept of residual values,
P can be decomposed as follows:

P(C, Π) = vr(C) +
←−
E (C, Π), (4)

where
←−
E : C → R is the function of

←−
E which takes, as input,

(C, Π) and outputs a value of
←−
E induced upon C by all the other

coalitions in Π. Formally, PFG←−
E

:=
D
A, vr,

←−
E
E

. Figure 6 gives
an example of this representation for the system from Figure 1.

Representation with Minimal Information: Here, we formalise
yet another representation that becomes useful when there is much
less information available about the system. Specifically, in this
coalition structure function game (CSFG) representation, the coali-
tion structure function F : CS → R takes, as input, a coalition
structure Π ∈ CS and outputs its value. Formally, CSFG :=
〈A,F〉 .

In contrast to all the previous representations (i.e., PFG, PFGT ,
PFG−→

E
or PFG←−

E
) CSFG can be used to represent systems in

which it is not possible to measure the values of embedded coali-
tions but only the total value of a given coalition structure. Such
an assumption about the information structure of the system was
made by Sandholm et al [17] while considering the coalition struc-
ture generation problem.

EXAMPLE 4. For the 3-agent system from Figure 1 the values
of coalition structure function are: F(Π1) = 12; F(Π2) = 28;
F(Π3) = 20; F(Π4) = 22; and F(Π5) = 36.

vr({a1}) = 10;
←−
E ({a3}, Π2) = −1;

vr({a2}) = 9;
←−
E ({a1a2}, Π2) = 2;

vr({a3}) = 11;
←−
E ({a2}, Π3) = −1;

vr({a1a2}) = 16;
←−
E ({a1a3}, Π3) = 2;

vr({a1a3}) = 10;
←−
E ({a1}, Π4) = −1;

vr({a2a3}) = 11;
←−
E ({a2a3}, Π4) = 2;

vr({a1a2a3}) = 12;
←−
E ({a1}, Π5) = 1.1;
←−
E ({a2}, Π5) = 0.9;
←−
E ({a3}, Π5) = 4;

Figure 6: Example of PFG←−
E

for A = {a1, a2, a3}

5. CLASSES OF GAMES
As mentioned before, a common characteristic of the representa-
tions introduced in the previous section is that externalities are sepa-
rated from elemental (externality-free/residual) values of coalitions.
In this section, we focus on the externality part of this decomposi-
tion and define classes of games in which externalities meet partic-
ular patterns.
Classes: We focus on games with regularities in externalities:

S
T/
−→
E /
←−
E

1 In every coalition structure to which they belong, coali-
tions of the same size are subject to the same total external-
ities (T ) / induce the same sum of outward operational ex-
ternalities (

−→
E ) / are subject to the same inward operational

externalities (
←−
E ).

S
T/
−→
E /
←−
E

2 In every coalition structure to which they belong, a given
coalition C is subject to the same total externalities (T ) / in-
duces the same sum of outward operational externalities (

−→
E )

/ is subject to the same inward operational externalities (
←−
E ).

S
T/
−→
E /
←−
E

3 In every coalition structure in a given subspace Si1,i2,...,ik ,
coalitions of the same size are subject to the same total ex-
ternalities (T ) / induce the same sum of outward operational
externalities (

−→
E ) / are subject to the same inward operational

externalities (
←−
E ).

As an illustrative example, let us consider a cooperative environ-
ment in which every coalition of agents creates (or saves) some ad-
ditional resource. For instance, cooperating agents consume less re-
source than when acting in smaller groups. Furthermore, this saved
amount of the resource is distributed among other coalitions in the
system. Although this distribution might depend on the coalitional
arrangements of other agents, the amount to distribute is always the
same. Every such system belongs to class S

−→
E
2 . Analogous examples

can be constructed for other classes.
It can be observed that Si

1 ⊂ Si
2 and Si

1 ⊂ Si
3 but not necessarily

Si
2 ⊂ Si

3 where i = T,
−→
E/
←−
E . For example, the outward opera-

tional externalities in Figure 5 meet the characteristics of class S
−→
E
1 .

In particular, all coalitions of size 1 induce outward operational ex-
ternalities which always sum to 2 and coalitions of size 2 induce
externalities that always sum to −1. Since the three-agent system
considered in this paper belongs to class S

−→
E
1 , then it also belongs

to classes S
−→
E
3 . It is easy to check that this particular system also

belongs to S
−→
E
2 .



Reduction of Classes S
−→
E /
←−
E /T

1/2 to Contribution Characteristic
Function: Let us consider a certain embedded coalition (C, Π) in a
system belonging to class S

−→
E
2 and modeled using the PFG−→

E
rep-

resentation. As stated in the definition of this class, the sums of out-
ward operational externalities

‚‚‚−→E (C, Π)
‚‚‚ are not functions of an

embedded coalition (C, Π) but only of coalition C. Consequently,
formula (2) can be reduced as follows:

V−→
E

(C, Π) = vr(C) +
‚‚‚−→E (C)

‚‚‚ =: v−→E (C), (5)

where v−→E (C) encompasses both the value of the residual charac-
teristic function and the value of outward operational externalities
for coalition C. In other words, v−→E is the contribution characteristic
function (see Section 4).

EXAMPLE 5. As observed, the system in Figure 5 belongs to
class S

−→
E
2 . The PFG−→

E
representation of this game can be reduced

to the corresponding contribution characteristic function game rep-
resentation. Specifically, using formula (5) we obtain the following
values: v−→

E
({a1a2a3}) = 12; v−→

E
({a1a2}) = 15; v−→

E
({a1a3}) =

9; v−→
E

({a2a3}) = 10; v−→
E

({a1}) = 12; v−→
E

({a2}) = 11; and
v−→

E
({a3}) = 13.

It should be stressed that this reduction can be used if we are in-
terested in contributions of various coalitions and not in the strategic
choices of agents as v−→

E
does not contain information about actual

payoffs of coalitions. Similar reasoning holds for any system be-
longing to either class ST

1/2 or S
←−
E
1/2. However, the difference here

is that the reduction of both PFGT and PFG←−
E

simply results in
the conventional characteristic function game.6

Reduction for Classes S
−→
E /
←−
E /T

3 : Let us consider a system of class
S
−→
E
3 represented with PFG−→

E
. In this class, the sum of outward op-

erational externalities induced by an embedded coalition (C, Π) are
a function of both |C| and Si1,...,ik 3 Π. Therefore, without loss
of generality,

−→
E can be redefined as a function of both |C| and

Si1,...,ik . Consequently, formula (2) yields:

V→E (C, Π) = vr(C) +
‚‚‚−→E (|C|,Si1,...,ik )

‚‚‚ . (6)

Now, let
−→
ξ (Π) = [

‚‚‚−→E (i1,Si1,...,ik )
‚‚‚ , . . . ,

‚‚‚−→E (ik,Si1,...,ik )
‚‚‚]

denote a function that assigns to every coalition structure Π ∈ Si1,...,ik

a transposed vector of sums of outward operational externalities.
Since the sum of the outward operational externalities in Π is the
same for every Π ∈ Si1,...,ik , then

−→
ξ can be redefined as a func-

tion of Si1,...,ik , which we denote
−→
ξ ∗(Si1,...,ik ). In this way, the

PFG−→
E

representation of a system from class S
−→
E
3 can be reduced

to a tuple
D
A, vr,

−→
ξ ∗
E

.

Our approach here is conceptually similar to that of Ieong and
Shoham [7]. Their representation is based on patterns with assigned
values, or pattern→value, where pattern is a logical expression with
agents as atoms. If agents in a coalition satisfy a pattern the value
of a coalition is increased accordingly (by value). In our aproach a
pattern is a subspace Si1,...,ik and a value is a vector of sums of out-
ward operational externalities. The advantage of redefining

−→
ξ (Π)

as
−→
ξ ∗(Si1,...,ik ) is that the latter function requires substantially less

memory (a number of all integer partitions of n and not a number of
all coalition structures).
6This is because these representations are based on the values of the
coalitions and not their contributions to the system.

EXAMPLE 6. Again consider the system from Figure 5. There
are altogether 3 coalition structures in subspace S2,1, namely Π2,

Π3 and Π4. From Figure 5 we find that
−→
ξ (Π2) = [−1, 2];

−→
ξ (Π3) =

[−1, 2]; and
−→
ξ (Π3) = [−1, 2]. Therefore,

−→
ξ (S2,1) = [−1, 2].

Again, it should be stressed that that this reduction can be used
if we are interested in contributions of various coalitions and not in
the strategic choices of agents. This is because the reduced repre-
sentation

D
A, vr,

−→
ξ ∗
E

does not contain information about actual
payoffs of embedded coalitions.

Similar reasoning holds for classes S
←−
E
3 and ST

3 , i.e., PFGT

and PFG−→
E

can be reduced to
D
A, vr,

←−
ξ ∗
E

and
˙
A, vef , ξT∗¸

respectively, where function
←−
ξ ∗ and ξT∗ are defined similarly to

−→
ξ ∗. However, in contrast to

D
A, vr,

−→
ξ ∗
E

, reduced representationsD
A, vr,

←−
ξ ∗
E

and
˙
A, vef , ξT∗¸ contain information from which

payoffs of embedded coalitions can be computed.

6. INFORMATION, EXPRESSIVENESS AND
CONCISENESS

In this section, we assess the extent of information needed in order
to model a particular system with each of the representations. Fur-
thermore, referring to the criteria outlined in the introduction, we
will discuss the expressivity and conciseness of all the representa-
tions.

6.1 Information Requirements
In terms of information about the system, PFGT requires exactly
the same information as PFG. In other words, for every system
represented with PFGT , it is possible to derive the corresponding
PFG representation and vice versa, i.e.:

PFGT ⇐⇒ PFG. (7)

In order to derive PFG from PFGT , formula (1) should be ap-
plied. The derivation of PFGT from PFG is a little more compli-
cated. First, following Definition 2, the externality-free characteris-
tic function should be obtained from particular coalition structures.
Second, the total externalities from coalition formation should be
computed by applying formula (1) to all embedded coalitions in ev-
ery coalition structure.

Let us now consider the representations that are based on op-
erational externalities. Following Definition 3, inward operational
externalities induced upon (C, Π) are a measure of the combined
influence of all the other coalitions in Π upon C. This influence
can be extracted from the transposed vectors of outward operational
externalities from formula (3). In particular, for every embedded
coalition:

←−
E (C, Π) =

X
∀C′∈Π\{C}

εC(C′, Π). (8)

For instance, this identity can be used to derive inward opera-
tional externalities in panel (b) of Figure 4 from outward operational
externalities in panel (a) of the figure. Now, by adding vr(C) to both
sides of (8), we obtain a formula that links PFG←−

E
to PFG−→

E
. In

particular, for every embedded coalition:

vr(C) +
←−
E (C, Π) = vr(C) +

X
∀C′∈Π\{C}

εC(C′, Π). (9)

Note that formula (9) allows us to derive PFG←−
E

from PFG−→
E

but not vice versa, i.e.:



PFG−→
E
⇒ PFG←−

E
but PFG−→

E
: PFG←−

E
(10)

Furthermore, let us consider both PFG and PFG←−
E

. Formula
(4) directly links the two representations. Specifically, it shows that
it is possible to derive PFG from PFG←−

E
. Obviously, the opposite

is not possible, i.e.:

PFG←−
E
⇒ PFG but PFG←−

E
: PFG (11)

In this context, it should be stressed that an externality-free char-
acteristic function is not, in general, identical to a residual charac-
teristic function. In more detail, although both Definitions 4 and 2
characterize the value of C in the absence of externalities, the mean-
ings of vr(C) and vef (C) are different. This is because the defini-
tions of externalities under both representations are distinct. Specifi-
cally, while inward operational externalities represent the combined
value of the system’s influence on a given coalition, externalities
from coalition formation represent changes in this coalition’s value
caused by coalition formation processes (i.e., merging of coalitions).
For instance, Example 1 and Figure 5 contain representations of ex-
actly the same system but, evidently, vef (C) 6= vr(C) (e.g., 11.1
= vef ({a1}) 6= vr({a1}) = 10). What causes this difference?
From Definition 2, vef ({a1}) is calculated as the value of {a1} em-
bedded in Π5 = {{a1}{a2}{a3}} (since there are no externalities
in this coalition structure). This does not mean that agents do not
influence each other in Π5 but that there are no externalities stem-
ming from processes of coalition formation. The fact that agents
affect each others’ performance is visible from outward operational
externalities under PFG−→

E
. In particular, the performance of {a1}

is influenced by {a2} with 1 and by {a3} with 0.1. Thus, the func-
tioning of {a2} and {a3} enhance the performance of {a1} in Π5

from its residual value of 10 to its externality-free value of 11.1.
For CSFG, the following holds:

F(Π) =
X
∀(C,Π)

P(C, Π) =
X
∀(C,Π)

V−→
E

(C, Π) (12)

Whereas the first part of this identity directly stems from the def-
inition of CSFG, the intuition behind the second part is more in-
volved. Under a PFG representation, the partition functionP(C, Π)
denotes the value of C in Π, whereas the function V−→

E
(C, Π) de-

notes the value that C contributes to Π. Although, in general,P(C, Π)
does not have to be equal to V−→

E
(C, Π), the second part of identity

(12) must hold as both representations encompass all the elements
that constitute the value of Π. For example, see how, in Figure
1, we have: P({a1}, Π4) + P({a2, a3}, Π4) = 9 + 13 = 22,
and in Figure 5 we have: V−→

E
({a1}, Π4) + V−→

E
({a2, a3}, Π4) =

(10− 1) + (11 + 2) = 22.
The set of relationships in Figure 7 summarizes the above dis-

cussion. Intuitively, the PFG−→
E

representation requires the most
information about the system, whereas CSFG requires the least.
In more detail, if the residual characteristic function and the values
of outward operational externalities are known, the system can be
modeled using PFG−→

E
. However, if inward instead of outward op-

erational externalities are available, the system can be modeled us-
ing PFG←−

E
but not PFG−→

E
. Moreover, if the externality-free char-

acteristic function as well as the total externalities from coalition
formation (T (C, Π)) are known one can use PFGT . On the other
hand, if the partition function is known one can use PFG. Nat-
urally, as mentioned before, both PFGT and PFG can be used
interchangeably. Finally, if only the values of coalition structures
are known then CSFG should be used.

6.2 Expressiveness and Conciseness
First, let us focus on the criterion of expressivness. We consider a
representation to be fully expressive if it can represent any game.

PFG−→
E

〈A,vr,
−→
E 〉

=⇒ PFG←−
E

〈A,vr,
←−
E 〉

more information←−−−−−−−−−−−−

=⇒ ( PFGT

〈A,vef ,I〉
⇐⇒ PFG

〈A,P〉
) =⇒ CSFG

〈A,F〉
less information−−−−−−−−−−−→

Figure 5: Relationship between different representations

PROPOSITION 1. The PFGT , PFG−→
E

, and PFG←−
E

represen-
tations are fully expressive.

PROOF. In the spirit of [7], we prove expressivity by showing
that any partition function game can be expressed as either PFGT ,
PFG−→

E
or PFG←−

E
. Let functions P(C, Π), vef (C), T (C, Π),

vr(C),
−→
E (C, Π) and

←−
E (C, Π) be defined for an arbitrary system.

Relationship (7) shows that, for every PFG representation, there
exists a unique corresponding PFGT representation. Furthermore,
one can always deriveP(C, Π) from vr(C),

−→
E (C, Π) and

←−
E (C, Π)

as established by relationships (11) and (10). Since the system is ar-
bitrary, the proposition holds.

Now, we will analyse and compare the conciseness of all repre-
sentations. Let us consider an arbitrary game with externalities.

• CSFG: The coalition structure function (F ) returns a value
for every coalition structure. This makes the total number of
values equal to:

nX
s=1

S(n, s) (13)

where S(n, s), the number of coalition structures containing
s coalitions, is calculated as follows [4]:

S(n, s) =
1

s!

s−1X
i=0

(−1)i

 
s

i

!
(s− i)n (14)

• PFG: For every possible embedded coalition, the value of
the partition function (P) needs to be defined. This implies
that, for every coalition structure CS, we need to define |CS|
values. Therefore, the total number of values is:

nX
s=1

S(n, s)× s (15)

• PFGT : For every possible coalition, this representation re-
quires storing an externality-free value (vef ). Moreover, for
every embedded coalition (C, CS) : C ∈ CS, |CS| < n, it
requires storing the function of total externalities from coali-
tion formation (T ) . As a result, PFGT requires storing the
following number of values:

(2n − 1) +

n−1X
s=1

S(n, s)× s (16)

• PFG←−
E

: This representation requires storing a residual value
(vr) for all the possible coalitions. It also requires storing



Figure 8: A comparison of the memory requirements of differ-
ent representations given different numbers of agents.

the inward operational externality (
←−
E ) for every possible em-

bedded coalition (C, CS) : C ∈ CS. This makes the total
number of values to be stored:

(2n − 1) +

nX
s=1

S(n, s)× s (17)

• PFG−→
E

: For every possible coalition, PFG−→
E

needs to store
a residual value vr . Moreover, for every possible embedded
coalition (C, CS) : C ∈ CS, it needs to store a vector of
(|CS| − 1) values representing the outward operational ex-
ternalities (

−→
E ). The total number of values is, then:

(2n − 1) +

nX
s=1

S(n, s)× s× (s− 1) (18)

Figure 8 compares the memory requirements of different represen-
tations, with conventional PFG being the benchmark. As can be
seen from the figure, PFGT and PFG←−

E
require almost the same

memory as PFG. Moreover, the figure clearly shows that, although
PFG−→

E
requires more memory, the increase is linear in the num-

ber of agents (e.g., given 25 agents, the memory requirements of
PFG−→

E
are 9 times as much as those of PFG). Formally, the fol-

lowing proposition holds:

PROPOSITION 2. The PFGT and PFG←−
E

representations of
any game with externalities take only marginally more space than
the PFG representation of the same game. PFG−→

E
, on the other

hand, takes a linear factor (in the number of agents) more space
than PFG representation.

Conversely, for certain games our new representations require ex-
ponentially less space than the conventional PFG representation.

PROPOSITION 3. For certain games PFGT , PFG−→
E

and PFG←−
E

can be reduced to representations that are exponentially more con-
cise than PFG.

We will demonstrate this for the classes from Section 5. As for
PFG−→

E
, games belonging to class S

−→
E
1 (or S

−→
E
2 ) can be reduced to

the contribution characteristic function. Such a reduction would not
be possible if the same system was represented with PFG. This can
be seen by comparing Figures 1 and 5. Specifically, while no pattern
of externalities is visible under the PFG representation in Figure
1 (as externalities are included in coalition values), this pattern be-
comes visible under the PFG←−

E
representation in Figure 5 (see how

the sum of externalities induced by coalitions of the same size is al-
ways the same). As for PFGT and PFG←−

E
, examples of more con-

cise reduced representations (i.e.,
D
A, vr,

←−
ξ ∗
E

and
˙
A, vef , ξT∗¸)

are provided in Section 5 for games belonging to classes S
T/
−→
E /
←−
E

3 .

7. COALITION STRUCTURE GENERATION
In this section we evaluate the efficiency of the new representations
by proposing a number of approaches to the coalition structure gen-
eration problem for games with externalities. This section is or-
ganized as follows. First, we analyse the existing CSG algorithms
from the point of view of available information about the system
(Subsection 7.1). Second, we consider algorithms for classes of
games with externalities introduced in Section 5. In particular, we
present an extension of Rahwan et al’s anytime algorithm [16] (Sub-
section 7.2). Finally, we demonstrate that the approach proposed in
Michalak et al [9] to solve the coalition structure generation prob-
lem in four particular systems with externalities, can, in fact, be used
to solve any multi-agent system with externalities for which suffi-
cient information is available. PFGT , PFG−→

E
or PFG←−

E
con-

stitute a natural and convenient representations for this approach
(Subsection 7.3).

7.1 Approaches to the CSG Problem
The literature on coalition structure generation has mainly focused
on systems that can be represented using CFGs. A short but infor-
mative review of the main approaches can be found in [14]. Basi-
cally, CSG algorithms for characteristic function games can be di-
vided into three general categories: (a) dynamic programming algo-
rithms that generate optimal solution(s) (e.g., [15, 19]); (b) heuris-
tics which provide no guarantee on solution quality (e.g., [18]); and
(c) anytime optimal algorithms (e.g., [16]). The current state-of-
the-art algorithm of Rahwan and Jennings [14] combines dynamic
programming techniques from [15] with the anytime approach in
[16].

All the above approaches are, in general, inappropriate if the sys-
tem is characterised by non-negligible externalities. It is easy to
show that, in the general case, finding an optimal coalition structure
requires searching the whole space of possible solutions. This is
because, even if all the coalition structures but one have been eval-
uated, this one remaining coalition structure may deliver a signifi-
cantly better performance. The situation changes if some additional
information is known about the system. For example, Michalak et al
showed that, if the externalities are known to be either only positive
or only negative, then it is possible to bound the coalition values and
to represent the system in the form of an approximated characteris-
tic function [9]. Building upon this observation, they showed that
the anytime algorithm of Rahwan et al [16] can be refined and ap-
plied to solve the coalition structure generation problem in systems
with these types of externalities.

In Section 6 we argued that the available information is one of
the key factors that can influence a system designer’s choice of rep-
resentation. In this context, let us divide the information about the
system into three categories: (A) information that is known ex ante
and can be used as an input to the algorithm; (B) information that
can be obtained after the algorithm has commenced (ex post); and
(C) unobtainable information. In the CFG literature it is usually
assumed that the non-existence of externalities, as well as the char-
acteristic function, both belong to category A, i.e., they constitute
the algorithm’s input (e.g., [16]). In contrast, Sandholm et al [17]
considered, among other cases, the case where the knowledge about
the non-existence of externalities was available ex ante, but the char-
acteristic function itself was not; it belonged to category C. To be
more precise, only the values of coalition structures were available
ex post. In other words, the coalition structure generation problem
in [17] is an optimization problem under the CSFG representation
with the additional knowledge that there are no externalities in the
system. Michalak et al, on the other hand, considered cases where
the nature of the domain was known ex-ante, including whether ex-
ternalities are positive or negative and whether coalition values meet
the condition of super- or sub-additivity [9]. However, it was as-
sumed that the value of the partition function itself was information
of category B, i.e., it could be derived from the system if needed.



Figure 9: Pruning in Rahwan et al’s CSG algorithm. Subspaces
are indexed from the most to the least promising

In the next subsections we will propose a number of solutions to
the coalition structure generation problem under the new represen-
tations. For clarity of the exposition, we assume that the informa-
tion needed to represent the system using different representations
is known ex ante. However, the proposed solutions hold also when
only the class of the system is known ex ante, whereas the values of
relevant function have to be obtained ex post.

7.2 Games with Patterns
In this subsection, we consider how to solve the coalition structure
generation problem for games with externalities that belong to the
classes defined in Section 5.

Classes S
T/
−→
E /
←−
E

1 and S
T/
−→
E /
←−
E

2 : As argued in Section 5, it is pos-
sible to reduce the PFG

T/
←−
E

representations for systems belonging

to classes S
T/
←−
E

1/2 to the CFG representations. This means that, with
the characteristic function as an input, the coalition structure genera-
tion problem for this system can be solved using any of the available
algorithms in the CFG literature.

Importantly, the same reasoning holds for PFG−→
E

. As shown
in Section 5, this representation can be reduced to the correspond-
ing contribution characteristic function game representation. Since
there is no difference between the combined contribution of all the
embedded coalitions to the coalition structure and the combined
value of these coalitions (see equation (12)), then both representa-
tions deliver exactly the same optimal solution. Thus, the contribu-
tion characteristic function v−→

E
can be used as an input to any of the

available algorithms in the CFG literature and deliver the correct
outcome for the game with externalities belonging to class S

−→
E
1/2.

Class S
T/
−→
E /
←−
E

3 : Rahwan et al’s anytime coalition structure gener-
ation algorithm takes advantage of the fact that there are no exter-
nalities in the system. This means that the value of any coalition
always remains unchanged and so it is possible to evaluate prop-
erties of coalitions from the characteristic function and determine
which subspaces are promising and should be searched. During the
search, a progressively better bound from the optimal is established
until an optimal solution is found.

The most important elements of Rahwan et al’s approach, rele-
vant to our refinement, are as follows. Firstly, the space of all coali-
tions is divided into ordered lists of the same size j (denoted Lj).
The algorithm calculates the maximal and average values for every
such list (denoted maxj and avgj , respectively). Using this infor-
mation, it is possible to generate, for every subspace Si1,i2,...,ik , the
upper bound UB(Si1,i2,...,ik ) :=

P
j=i1,...,ik

maxj as well as the
average value AV G(Si1,i2,...,ik ) :=

P
j=i1,...,ik

avgj . The sub-
space with the highest upper bound determines the upper bound of
the entire system, while the system’s lower bound is shown to be the
highest average from all AV G(Si1,i2,...,ik ). Any subspace with an
upper bound lower than the system’s lower bound is pruned from

Figure 10: Pruning in games with externalities. Subspace and
system bounds are now less tight compared to Figure 9

the search space (this is illustrated in Figure 9). After that, the most
promising subspace is searched, and then the second most promis-
ing, and so on, until a structure is found that has a value greater than
the upper bound of all remaining subspaces. The above approach
was shown to run efficiently for the most popular value distribu-
tions.

In the above context, let us consider a system of class S
−→
E
3 rep-

resented with PFG−→
E

. In this class, sums of outward operational
externalities induced by all coalitions (C, Π) of the same size are a
function of a subspace Si1,...,ik 3 Π. This is formally written as
−→
E sum(|C|,Si1,...,ik ). Consequently, formula (2) yields:

V→E (C, Π) = vr(C)+
‚‚‚−→E (C, Π)

‚‚‚ = vr(C)+
−→
E sum(|C|,Si1,...,ik ).

(19)
Now, let

−→
ξ (Π) = [

−→
E sum(i1,Si1,...,ik ), . . . ,

−→
E sum(ik,Si1,...,ik )]

denote a transposed vector of sums of outward operational external-
ities induced by all coalitions in Π ∈ Si1,...,ik . Since the sum of
the outward operational externalities in Π are the same for every
Π ∈ Si1,...,ik , then

−→
ξ (Π) can be written as a function of Si1,...,ik ,

i.e.,
−→
ξ (Si1,...,ik ).

EXAMPLE 7. Again consider the system of class S
−→
E
1 ⊂ S

−→
E
2 ⊂

S
−→
E
3 from Figure 5. There are altogether 3 coalition structures in

subspace S2,1, namely Π2, Π3 and Π4. From Figure 5 we find that
−→
ξ (Π2) = [−1, 2];

−→
ξ (Π3) = [−1, 2]; and

−→
ξ (Π3) = [−1, 2].

Therefore,
−→
ξ (S2,1) = [−1, 2].

The above analysis leads to the following refinements of Rahwan
et al.’s algorithm. Firstly, instead of a characteristic function, both
the residual characteristic function (vr(C)) and

−→
ξ (Si1,...,ik ) con-

stitute the input. Consequently, the lists Lj (j = 1, . . . , |A|) are
constructed from vr(C). Secondly, we have:

UB(Si1,...,ik ) =
‚‚‚−→ξ (Si1,...,ik )

‚‚‚+
X

j=i1,...,ik

maxj and

AV G(Si1,...,ik ) =
‚‚‚−→ξ (Si1,...,ik )

‚‚‚+
X

j=i1,...,ik

avgj .

Thirdly, ‖ξ→(Si1,...,ik )‖ should be incorporated in the branch-
and-bound technique applied while searching any subspace Si1,...,ik .

In short, all the changes concern solely the way the coalition val-
ues are incorporated in the algorithm. Operations on every subspace
Si1,...,ik are based on vr(C) added to ‖ξ→(Si1,...,ik )‖ and they do
not affect any of the anytime properties of the algorithm. Very sim-
ilar refinements can be made for any system of class S

−→
E
3 or ST

3 .



7.3 General Algorithm
Michalak et al showed that, for some particular settings with ex-
ternalities, it is possible to bound the values of every coalition in
all coalition structures in which this coalition is embedded. Con-
sequently, they used a refined version of Rahwan et al’s algorithm.
In many cases, this approach generated an optimal solution with-
out having to search the entire space of coalition structures. We
will now demonstrate how the algorithm of Michalak et al can be
used to solve any multi-agent system in which bounds on external-
ities belong to category A or B (see Subsection 7.1). Let us as-
sume that, in a given system represented by PFG−→

E
, a coalition

C induces, in every coalition structure, a sum of outward opera-
tional externalities within the bounds

−→
E LB(C) and

−→
E UB(C) i.e.,

−→
E LB(C) ≤

‚‚‚−→E (C, Π)
‚‚‚ ≤ −→E UB(C). Adding vr(C) to every el-

ement yields:

vr(C) +
−→
E LB(C) ≤ vr(C) +

‚‚‚−→E (C, Π)
‚‚‚ ≤ vr(C) +

−→
E UB(C)

By setting LB(C) = vr(C)+
−→
E LB(C) and UB(C) = vr(C)+

−→
E UB(C) and using formula (2) we get:

LB(C) ≤ V−→
E

(C, Π) ≤ UB(C) (20)

That is, the value of every embedded coalition has upper and lower
bounds. Furthermore, these bounds are independent from Π, mean-
ing that condition (20) can be interpreted as a partition function
bounded by two (forms of) characteristic functions. Exactly two
such functions are the input to Step 2 of Michalak et al’s algorithm
where the pruning of the search space takes place. Of course, as
demonstrated in Figure 10, bounds computed in the above way are
not going to be, in general, as tight as those computed when there are
no externalities. However, it is still possible, using these bounds, to
prune several subspaces and save on computation time. Following
similar reasoning, also P(C, Π) under PFG←−

E
or PFGT can be

bounded provided sufficient information about externalities is avail-
able.

Finally, it should be stressed that the above algorithm is able to
solve the coalition structure generation problem in both games with
and without externalities. In the latter case, for a given characteristic
function v, upper and lower bounds for any coalition C should be
defined as UB(C) = LB(C) = v(C).

8. CONCLUSIONS
This paper considered the issue of representing coalitional games
with externalities. The conventional game-theoretic approach de-
fines externalities as a result of mergers of two coalitions in the
system. However, while such a definition is convenient in some
applications, in others it is not. In particular, to solve the coali-
tion structure generation problem in a cooperative environment, one
does not have to consider mergers of coalitions that create coalition
structures. To this end we referred to a notion of total externalities
from coalition formation and, subsequently, proposed a related rep-
resentation. In this representation, the total value of an externality
that affects a coalition is independent of the way this coalition was
formed. Furthermore, we propose a new notion of externalities that
describes the effect that each coalition has on the entire system and
vice versa. Building on this new notion, we propose another two
representations and compare them to the game-theoretic approach.
In particular, we show that the new representations are fully expres-
sive and, for many classes of games, more concise than the con-
ventional PFG. Building upon this insight, we propose a number
of approaches to solve the coalition structure generation problem in
systems with externalities. We show that, if externalities are char-
acterised by various degrees of regularity, the new representations

allow us to adapt some of the algorithms that were originally de-
signed for domains with no externalities so that they can be used
when externalities are present. Finally, building upon [16] and [9],
we present a unified method to solve the coalition structure genera-
tion problem in any system, with or without externalities.

There are a number of directions for future research. An inter-
esting one is to evaluate the performance of Michalak et al.’s al-
gorithm for systems characterised by bounds of varying tightness.
Furthermore, there are various computational issues related to other
important game theoretical concepts. In particular, it would be very
interesting to study how the new representations can be used to fa-
cilitate efficient calculation of the Shapley value and the core related
questions in games with externalities.
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