
Visual Reasoning with Graph-based Mechanisms:

the Good, the Better and the Best

Michel Chein, Marie-Laure Mugnier, Madalina Croitoru
LIRMM, 161 rue ADA, F34392 Montpellier Cedex 5, Montpellier, France
E-mail: {chein,mugnier,croitoru}@lirmm.fr

Abstract

This paper presents a graph-based knowledge representation and reasoning language. This
language benefits from an important syntactic operation, which is called a graph homomorphism.
This operation is sound and complete with respect to logical deduction. Hence, it is possible
to do logical reasoning without using the language of logic but only graphical, thus visual,
notions. This paper presents the main knowledge constructs of this language, elementary graph-
based reasoning mechanisms, as well as the graph homomorphism, which encompasses all these
elementary transformations in one global step. We put our work in context by presenting a
concrete semantic annotation application example.

1 Introduction

Knowledge Representation and Reasoning. Knowledge representation and reasoning
(KR) has long been recognized as a central issue in Artificial Intelligence (AI). Very generally
speaking, the problem is how to encode human knowledge and reasoning by symbols that can
be processed by a computer to obtain intelligent behavior. In general, Artificial Intelligence
is concerned with qualitative, rather than quantitative, problem solving. As a basic building
block of AI applications, a knowledge representation formalism should reflect this idea by
supporting reasoning instead of calculation. This is done by organizing the knowledge into an
easily processable form, classifying information by its properties, preprocessing the information,
etc. The subfield of AI precisely called KR especially studies computational models, languages
and systems able to represent knowledge in an explicit way and to do inferences, or reasoning,
on this knowledge.

Even if there have been heated debates about KR in the past, in particular with respect to
the role of logic in KR, there is nowadays an agreement on some important properties of a KR
language, namely: to be logically founded, to allow for a structured representation of knowledge,
to have good computational properties, and to allow users to have a maximal understanding and
control over each step of the knowledge base cycle.

The first point concerns the fact that the language is translatable into a logic: the expressions
should be translatable into sentences of a given logic, and inferences in that language should
correspond to deduction in this logic. In other words, the inference mechanisms should be logically
sound (i.e., every piece of knowledge inferred is deducible in the target logical fragment) and
complete (any piece of knowledge that cannot be inferred cannot be deduced either in the target
logical fragment). This allows to give a precise semantics to expressions and inferences, and to
compare different languages from an expressiveness viewpoint.

Knowledge structuring means that semantically related pieces of knowledge should be grouped
together, and that different kinds of knowledge (such as facts, rules, constraints, goals etc.) should



1

be represented by different knowledge constructs. This can be motivated by model adequacy
(i.e., its conformity to the modeling of the application domain) and by computational efficiency
concerns. A large part of KR research can be seen as the search of good tradeoffs between the
expressivity of a representation formalism and the computational complexity of the associated
reasoning.

Knowledge-based Systems. Knowledge-based systems (KBS) are systems, built upon mod-
els, able to represent knowledge in an explicit way and do reasoning with. These systems include
a knowledge base (KB), composed of different kinds of knowledge, and a reasoning engine. The
reasoning engine processes knowledge in the KB to answer a question or to reach a certain goal (for
instance to check the consistency of the KB or to build a sequence of actions in order to achieve a
goal). The cornerstone of the knowledge base is the ontology. From an epistemological viewpoint,
an ontology answers the question “what kinds of things exist in the application domain?” We
consider here computational ontologies, which provide a symbolic representation of classes of
objects, called concepts, as well as the possible relationships between objects, called relations or
roles. All other pieces of knowledge in the KB are expressed by structures built with the ontology
terms (concepts and relations).

Classically, in the building of a knowledge-based system, the first phase consists of knowledge
elicitation: obtaining a system specification expressed in a language understandable by human
beings, so that it can be checked by domain experts. This mediating representation does not need
to be precise, consistent, or complete. Its role is to allow the experts to freely explicit knowledge
and to communicate with others. The second phase consists of translating (the largest possible
part of) this informal representation into a formal representation, expressed in a formal language
provided with reasoning mechanisms, so that it can be checked whether this representation is
consistent and complete with respect to the task to be solved. A major difficulty of this way
of doing is ensuring the faithfulness of the formal representation with respect to the mediating
representation. Checking faithfulness needs a validation and a revision cycle which is usually
long: while the expert understands the mediating representation, this representation cannot be
checked, and he/she does not understand the formal representation provided with the reasoning
tools. One of the solutions proposed in (Shaw and Gaines (1995); Bos et al. (1997)) is to create
mediating representations that are formal: expressing the representation in a language which is
both understandable by human beings and formal and in this way ensuring expert simulation
at an early modeling stage. This is precisely the qualities claimed by our graph-based language
detailed in Section 2.

However, for a KBS to be really used in practice, an essential point is that the user understands
and controls the whole process whose main steps are not only building a knowledge base
and running the KBS (as previously discussed) but also obtaining results. By user, we either
mean an end-user, who may be a knowledge engineer, who builds the KB, or an expert of the
application domain, who uses the implemented representation to check its conformity with her
own representation of the domain, or a user for whom the system has been built and who wants to
solve real problems. It should be easy for this user not only to enter different pieces of knowledge
and to understand their meaning but also to understand the results of the system and how the
system computed these results. The last point, namely the ability of understanding why the
system gives a certain answer, is especially important since the user computing expertise may
vary. Furthermore, for any domain and level of expertise, explaining to the user each step that
makes up the logical inference, generally remains a difficult process.



2

A Graph-based Language. In this paper, by “graph” we understand the classical mathemat-
ical notion in graph theory, i.e., a structure that consists of a set of nodes (also called vertices)
and a set of edges that establish relationships (connections) between nodes. Please note that,
regrettably, “graph” in elementary mathematics also refers to a function graph, i.e., a plot.

In the proposed graph-based approach, where all pieces of knowledge are represented by labeled
graphs, the same language is used at all levels and for all KBS functionalities. The benefits of
using graphs for representing knowledge at all levels of the KBS stem from the following:

• Firstly, graphs are simple mathematical objects (they only use elementary naive set theory
notions such as elements, sets and relations) which have graphical representations (a set of
points and lines connecting some pairs of points) and thus can be visualized.

• Secondly, there is a rich collection of efficient algorithms for processing graphs, thus graphs
can be used as effective computational objects (they are widely used, for instance, in
Operational Research).

• Thirdly, graphs can be equipped with a logical semantics: the graph-based mechanisms they
are provided with are sound and complete with respect to deduction in the assigned logic.

Furthermore, graph-based mechanisms can be explained to the user because they can be easily
visualized on the graphs themselves, either as a sequence of very simple operations or as a “global”
operation. This point will be further detailed in Section 3.

Semantic Networks. In general, KR languages rely on a purely textual representation with
strict syntactic and semantic rules. Domain concepts, their properties, relations and restrictions,
are all represented by words and sentences of the representation language. Textual communication
is often supplemented with visual properties (such as character types, styles, structure, or layout),
but a knowledge representation language can be regarded as visual only if it is based on a
pictorial expression. The human short term memory is limited, but visual organizations enable
brain sensory information storage and ability to break down complex structures into more easily
manageable chunks. Due to their visual qualities, semantic networks, which were originally
developed as cognitive models, have been used for knowledge representation since the early days
of Artificial Intelligence, especially in natural language processing.

The term semantic network encompasses an entire family of graph-based visual representa-
tions. Since Nude (Richens (1956)) and the semantic network T (Masterman (1962)), which
concern natural language processing, many semantic networks systems have been introduced
(cf. Lehman (1992) for a collection of papers concerning various families of network-based
structures). They all share the basic idea of representing domain knowledge using a graph, but
there are differences concerning notation, as well as rules or inferences supported by the language.
In semantic networks, the diagrammatical reasoning is mainly based on path construction in the
network. We can distinguish two major families of languages born in the eighties. Let us start with
the KL-ONE family. In addition to the large number of systems implementing KL-ONE variants
(Woods and Schmolze (1992)), KL-ONE is considered as the ancestor of Description Logics
(DLs) (Baader et al. (2003)), which are nowadays the most prominent KR languages dedicated
to reasoning on ontologies. However, Description Logics have lost their graphical origins. Secondly,
Conceptual Graphs. They were introduced by Sowa (cf. Sowa (1976, 1984)) as a diagrammatic
system of logic with the purpose “to express meaning in a form that is logically precise, humanly
readable, and computationally tractable” (cf. Sowa (1984)). Throughout the remainder of this
paper we use the term “Conceptual Graphs” to denote the family of formalisms rooted in Sowa’s
work and then enriched and further developed with a graph-based approach (cf. Chein and
Mugnier (2009)).



3

Paper Organization. The sequel of this paper is structured as follows. Section 2 presents
the main syntactic constructs of the language. Section 3 presents the elementary graph-
based reasoning mechanisms and explains how labeled graph homomorphism encompasses all
elementary operations in one global operation. Please note that, in this paper, we do not enter
into precise definitions and notations but rather rely on visual intuition (see Chein and Mugnier
(2009) for more details and technical developments). An application scenario is presented in
Section 4. We conclude the paper with Section 5 that presents related work in the domain and
lays down future work directions. All figures depict graphs drawn using the conceptual graph
editor Cogui 1. Please note that Cogui is also fully integrated with the conceptual graph engine
Cogitant 2 to perform reasoning on the above mentioned graphs.

2 Using graphs for representation: the good

In our approach, all kinds of knowledge are encoded as graphs and thus can be visualized in a
natural way:

• The vocabulary, which can be seen as a basic ontology, is composed of hierarchies of concepts
and relations. These hierarchies can be visualized by their Hasse diagram, the usual way of
drawing a partial order (see Figures 1 and 2).

• All other kinds of knowledge are based on the representation of entities and their relationships.
This representation is encoded by a labeled graph, with two kinds of nodes, respectively
corresponding to entities and relations. Edges link entity nodes to relation nodes. These
nodes are labeled by elements in the vocabulary (see Figure 3).

These graphs have a semantics in first-order logic (FOL), i.e., a knowledge base can be
translated into a set of first-order logical formulas. Reasoning tasks operate directly on the
knowledge defined by the user and not on their translation into logical formulas. Stated in an other
way, the logical semantics is only used to formally ground the graph model, i.e., representation
and reasoning mechanisms. This makes it possible to explain reasoning to the end-user because
it can be visualized in a natural way on the pieces of knowledge he/she is familiar with. Would a
logical prover be used on the logical translation of these pieces of knowledge to compute reasoning,
reasoning would become a black box for the user and could not be explained.

2.1 Conceptual vocabulary

The vocabulary is composed of two partially ordered sets: a set of concepts and a set of relations
of any arity (the arity is the number of arguments of the relation). The partial order represents
a specialization relation: t′ ≤ t is read as “t′ is a specialization of t”. If t and t′ are concepts,
t′ ≤ t means that “every instance of the concept t′ is also an instance of the concept t”. If t and
t′ are relations, then these relations have the same arity, say k, and t′ ≤ t means that “if t′ holds
between k entities, then t also holds between these k entities”). Figures 1 and 2 shows parts of
these hierarchies visualized by their Hasse diagram (t′ ≤ t if there is a path from t′ up to t). For
instance, the concept TeddyBear is a specialization of the concept Object, because of the path
(TeddyBear, Toy, Object); the relation siblingOf is a specialization of the relation link2 (which
stands for any binary relation) because of the path (siblingOf, relativeOf, link2). Note that a
hierarchy is not necessarily a tree: for instance, there are two paths from Woman to Person,
namely (Woman, Female, Person) and (Woman, Adult, Person).

Names of specific individuals can also be included in the vocabulary. The vocabulary can be
further enriched by signatures for relations indicating the maximal concept that can be assigned
to each of the relation arguments (e.g. the first argument of the relation motherOf is of maximal
type Woman and its second argument is of maximal type Person). It can also contain statements
of disjointness between concepts (e.g. the two types Object and Person are disjoint).
1http://www.lirmm.fr/cogui/
2http://cogitant.sourceforge.net/



4

Figure 1 Basic Ontology

Concepts for the childhood domain

Figure 2 Basic Ontology

Relations for the childhood domain

2.2 Basic graphs

A basic conceptual graph (BG) is a bipartite graph: one class of nodes, called concept nodes,
represents entities and the other, called relation nodes, represents relationships between these
entities or properties of them. E.g., the BG in Figure 3 graphically represents the following
situation: “The boy John is a sibling of the girl Eva. John is giving a sweet to Eva, who is holding
a red teddy bear belonging to John.”

A concept node is labeled by a couple t : m where t is a concept (and more generally, a list
of concepts) called the type of the node, and m is called the marker of this node: this marker is
either the generic marker, denoted by ∗, if the node refers to an unspecified entity, otherwise this
marker is a specific individual name. E.g., in Figure 3 the node [Sweet:*] refers to “a” sweet,
while the node [Boy:John] refers to “the” boy John. A relation node is labeled by a relation
r called its type, and, if k is the arity of r, this node is incidental to k totally ordered edges.
E.g., in Figure 3 the relation node of ternary type give has three incidental edges and the order
on these edges allows to distinguish between the agent of the gift act [Boy:John], its recipient
[Girl:Eva] and its object [Sweet:*]. Classically, concept nodes are drawn as rectangles and
relation nodes as ovals and the order on edges incidental to a k-ary relation node are numbered
from 1 to k.

BGs are used to represent assertions called facts. They are also building blocks for more
complex kinds of knowledge, as outlined in the next section.



5

Figure 3 A situation described by a basic graph (H)

2.3 More complex graphs

In the following we present two examples of basic conceptual graph extensions: nested graphs,
which allow to structure facts by level of detail; and inference rules, which enrich the basic
ontology with general knowledge about a domain.

Nested graphs. In a nested graph, a concept node may itself contain a (nested) graph, whose
role is to further describe the entity represented by the node. This allows to distinguish between
internal and external information about an object, to represent zooming into an object or to
contextualize the description of an object. For instance, let us consider the nested graph in
Figure 4. At the outermost level, this graph says that “Eva is giving a picture that she did to
John” (note however that time is not represented here) and the graph nested in the node referring
to the picture further describes this picture: “this picture shows a boy holding a teddy bear”. The
dotted line is a coreference link : it links two nodes that refer to the same entity (in this example
the boy called John). The information that the picture has been done by Eva can be seen as an
external information about the picture, while the detail of what is in the picture can be seen as
an internal information, that can be obtained by zooming into the picture. It can also be said
that the piece of information nested in a node is relevant within the context represented by this
node (here, John is holding a teddy bear in the context of the picture, but it may not be true in
the outermost context).

Figure 4 A nested graph



6

Rules. A rule expresses implicit knowledge of the form “if hypothesis then conclusion”, where
hypothesis and conclusion are both basic graphs. This knowledge can be made explicit by applying
the rule to a specific fact: intuitively, when the hypothesis graph is found in a fact, then the
conclusion graph can be added to this fact (see Sect. 3.4 for more details). There is a one to
one correspondence between some concept nodes in the hypothesis with concept nodes in the
conclusion. Two nodes in correspondence refer to the same entity. These nodes are said to be
connection nodes. For instance, Figures 5 and 6 present two rules, with the hypothesis on the left
hand side and the conclusion on the right, separated by a vertical line. In Figure 5, rule R1 says
that “if a person is a sibling of a person, then the inverse relation holds between these persons”.
More formally: “for all persons x and y, if x is a sibling of y then y is a sibling of x”(all concept
nodes are connection nodes). In Figure 6, rule R2 says that “for all persons x and y, if x is a
sibling of y, then they have a common parent, i.e., there is a person who is a parent of x and of
y” (the node representing this person is not a connection node, since it is not in correspondence
with a node in the hypothesis). Let us add that rules can also be defined as pairs of nested graphs
instead of basic graphs.

Figure 5 A rule (R1)

Figure 6 Another rule (R2)

All these graphical objects, i.e., the vocabulary as well as basic graphs, nested graphs and
rules, are provided with a semantics in first-order logic. This semantics specifies the meaning of
knowledge constructs and allows to show the correctness of the associated graph mechanisms
with respect to logical deduction (see Sect. 3.3).



7

3 Using graphs for reasoning: the better

Different kinds of reasoning concerning BGs can be graphically defined, e.g., applying inference
rules or contextual reasoning. These reasonings are based on a subsumption relation between
conceptual graphs. This section is devoted to the presentation of this fundamental reasoning
notion in the simplest case, i.e., BGs.

Let G and H be two BGs over the same vocabulary. Intuitively, G subsumes H if the fact—or
the information—represented by H entails the fact represented by G, or in other words, if all
information contained in G is also contained in H.

A query-answering mechanism using BGs and subsumption can be defined as follows. Let us
consider a knowledge base B composed of a set of BGs, representing some assertions about a
modeled world, e.g., the fact in Figure 3. Elements in B answering a query Q are intuitively
defined as the elements that entail Q, or equivalently, elements that are specializations of Q,
or also, elements that are subsumed by Q. Let us consider for instance the query in Figure 7.
This query is easily visualized as a graph, but is more complex to express textually: it asks for a
situation where a boy and a girl, who is one of the boy’s relatives, are each in relation with a red
toy. We will see hereafter why and how the fact in Figure 3 answers this query.

Figure 7 A query described by a basic graph (G)

Relationships with logics is mentioned at the end of this section and we will see that the
subsumption relation exactly corresponds to deduction in a fragment of first-order logic. The
subsumption relation can be defined either by a sequence of elementary operations or by the
classical homomorphism notion applied to BGs. Both are very easily visualizable and they are
defined below by means of drawings.

3.1 Generalization and Specialization Operations

There are five elementary generalization operations and five inverse operations, called elementary
specialization operations. The terms generalization and specialization are used here with the
following intuitive meaning: let I be a piece of information; whenever a piece of information is
added to I the obtained information is a specialization of I (it contains more specific knowledge)
and, conversely, deleting a piece of information from I yields a final piece of information that is
more general than I (it contains less precise knowledge).

3.1.1 Elementary Generalization Operations for BGs
Any generalization operation is a “unary” operation, i.e., it transforms a BG into another BG. It
can be pictured by a drawing representing the transition from the input BG to the output BG.
Generalization has to be taken in a broad sense, i.e., the BG obtained may contain a strictly
more general information than the initial BG or the same information.



8

The elementary generalization operations can be graphically defined as follows.

• Substract (Figure 8). The Substract operation consists of deleting some connected compo-
nents of a BG. The BG obtained is clearly more general than (or equivalent to) the original
BG, since a piece of information is deleted.

• Detach (Figure 9). The Detach operation consists of splitting a concept node c into two
concept nodes c1 and c2, the edges incident to c being shared between c1 and c2. For instance,
let us consider the detachment of the generic concept node c in Figure 9. In the initial BG it
is said that “there is a boy who possesses something and is giving something to a person”,
and in the resulting BG it is said that “there is a boy who possesses something and there
is a boy giving something to a person”. In the resulting BG, the two boys may be different,
while in the initial BG it is necessarily the same boy. Therefore, the final situation is more
general than the initial situation.

• Increase (Figure 10). The Increase operation consists of increasing the label of a concept
or relation node. In the case of a concept node, it means that one can increase its type,
e.g., replacing “the girl Eva” by “the person Eva” and/or replace an individual marker
by the generic marker, e.g., transforming “the person Eva” into “a person”. Formally, the
generic marker is considered as greater than all individual markers, which are pairwise non
comparable. Thus, increasing a concept node label consists of increasing its type and/or its
marker. Clearly, “a person” is more general (in an intuitive sense) than “the girl Eva”. In
the same way, replacing a relation type by a greater type is also clearly a generalization
operation, e.g., “John is a relative of Eva” is more general than “John is a sibling of Eva.”
Let us remark that checking if a type t is greater than another type t′ is the most frequent
operation in hierarchies. It is a basic operation (t is greater than t′ if and only if there is a
path from t′ to t) for which efficient algorithms have been developed (cf. Chein and Mugnier
(2009)). In Figure 11, the bold paths contain all types greater than the type Boy.

• Relation duplicate (Figure 12). The Relation duplicate operation consists of duplicating
a relation node, i.e., adding a new relation node r′ having the same type and the same list
of arguments as a relation node r. r and r′ are said to be twin relation nodes.

• Copy (Figure 13). The Copy operation consists of duplicating a whole BG, i.e., adding to it
an isomorphic and disjoint copy of it.

Figure 8 Substract



9

Figure 9 Detach

Figure 10 Increase

Figure 11 Types greater than or equal to the type Boy

In the last two operations the structure of the obtained BG contains the structure of the
initial BG (one adds something), thus, at first glance, one can think that they are specialization
operations. Nevertheless, as these operations duplicate already existing information, the BG
obtained is semantically equivalent to the initial one, thus they are also generalization operations
(in a broad sense).

We can now precisely define what “G is a generalization of H” means: G is a generalization of
H if there is a sequence of elementary generalization operations leading from H to G, i.e., there
is a sequence of BGs H0 = (H), H1, ..., Hn = (G), such that for all i = 1, . . . , n, Hi is obtained
from Hi−1 by an elementary generalization operation.

Figures 14, 15, 16, 17, 18, present some of the graphs occurring in a generalization sequence
from H, the BG in Figure 3 to G, the BG in Figure 7. H1 is obtained from H by splitting
both nodes [Girl:Eva] and [Boy: John] (two Detach operations). H2 is obtained from H1 by
deleting the connected component containing the give relation node (Substract operation). H3

is obtained from H2 by duplicating the relation node color (Relation duplicate operation). H4 is
obtained from H3 by a Detach operation on the node [TeddyBear:*]. G is obtained from H4 by
a sequence of seven Increase operations: the relation siblingOf is replaced by relativeOf , the



10

Figure 12 Duplicate

Figure 13 Copy

relations possess and hold are replaced by link2; the individual concept nodes [Boy:John] and
[Girl:Eva] are made generic, and the teddy bears become toys.

Figure 14 Generalization from H to G - step I (H1)



11

Figure 15 Generalization from H to G - step II (H2)

Figure 16 Generalization from H to G - step III (H3)

Figure 17 Generalization from H to G - step IV (H4)



12

Figure 18 Generalization from H to G - step V (G)

3.1.2 Elementary Specialization Operations
We have seen in the previous section that the elementary generalization operations are indeed
generalization operations in an intuitive manner, they are easy to draw and to understand, and
they allow for a precise definition of the subsumption relation between BGs. Nevertheless, let us
consider again the query-answering problem previously stated using generalization. Let Q be a
BG query and B a set of BG facts. Answering Q consists of looking for subgraphs of BGs in
B that are subsumed by Q, i.e., such that Q generalizes them. It seems more intuitive and it
is more efficient to start from the query Q and to look for specializations of Q in B. This can
be done by defining elementary specialization operations which are the inverse of the elementary
generalization operations defined previously.

• Disjoint sum (Figure 19). Given two disjoint BGs, their Disjoint sum is the BG obtained by
juxtaposing two copies of these BGs. This operation is the inverse of the Substract operation.

• Join (Figure 20). Given a BG, joining two concept nodes with the same label in this BG
consists of merging them. This operation is the inverse of the Detach operation.

• Restrict (Figure 21). Restrict consists of decreasing the label of a concept or relation node.
This operation is the inverse of the Increase operation.

• Relation simplify(Figure 22). This operation consists of deleting a twin relation node. This
operation is the inverse of the Relation duplicate operation.

• Copy. This operation has already been defined as a generalization operation.

Figure 19 Disjoint sum



13

Figure 20 Join

Figure 21 Restrict

Figure 22 Simplify

H is a specialization of G if H can be obtained from G by a sequence of elementary
specialization operations. In reading Figures 14, 15, 16, 17, 18 backwards, one obtains a
specialization sequence from G to H. This sequence begins with a set of Restrict operations
(leading from G to H4). Then, H3 is obtained from H4 by a Join operation. H2 is obtained
from H3 by Relation Simplify. H1 is obtained from H2 by a Disjoint sum operation, and H is
obtained from H1 by two Join operations.

The following property is straightforward to check:

G is a generalization of H if and only if H is a specialization of G.



14

3.2 Homomorphism

We have seen specialization operations, which are more convenient than generalization operations
when considering the query-answering problem. Now, the problem is how to find a sequence of
specialization operations from a BG to another BG.

In this section, we introduce the homomorphism notion between BGs. A homomorphism from
G to H is a mapping from the node set of G to the node set of H, which preserves the adjacency
between nodes of G and can decrease the node labels. If there is a homomorphism (say π) from
G to H, we say that G maps to H (by π).

Let us consider again the query G in Figure 7 and the fact H in Figure 3. There is a
homomorphism from G to H which is pictured by the dashed lines in Figure 23. The concept
node a = [Boy:*] in G is mapped to [Boy : John] in H, the concept node b = [Girl:*] in
G is mapped to [Girl : Eva] in H, both concept nodes c = [Toy:*] and d = [Toy:*] in G

are mapped to the same node [TeddyBear:*] in H, the concept node e = [Color:Red] in G is
mapped to [Color:Red] in H, the relation node (relativeOf) is mapped to the relation node
(siblingOf), the relation node (link2) from a to c is mapped to the relation node (possess) and
the other relation node (link2) from b to d is mapped to the relation node (hold); finally, both
relation nodes (color) are mapped to the same node (color).

Figure 23 A homomorphism from G to H

A BG homomorphism can be more precisely defined as follows. A homomorphism π from G

to H is a mapping from the concept node set of G to the concept node set of H and from the
relation node set of G to the relation node set of H, which preserves edges and may decrease
concept and relation labels, that is:

• for any edge labeled i between nodes c and r in G, there is an edge labeled i between nodes
π(c) and π(r) in H; in other words, if a relation r has neighbors c1 . . . ck (in this order) then
its image π(r) has neighbors π(c1) . . . π(ck) (in this order).

• for any (concept or relation) node x in G, the label of its image π(x) in H is less than or
equal to the label of x.

Let us consider again the homomorphism in Figure 23. Figure 24 highlights the subgraph of H

induced by the nodes which are images of nodes in G. This subgraph is called the “image graph”
of G by this homomorphism.



15

Figure 24 Image of G by the homomorphism in Figure 23

The following theorem holds. Given two BGs G and H, the three following propositions are
equivalent:

1. G is a generalization of H

2. H is a specialization of G

3. There is a homomorphism from G to H

Even though it is easy to visualize a homomorphism and to check if a mapping between two
BGs is a homomorphism (cf. Figure 23), this global graph matching can be replaced, if needed,
for more detailed explanation purposes, by a sequence of elementary operations (cf. Figures 14 to
18). Assume for instance that the answer to the query G is visualized as in Figure 24 and the user
wants to understand why the image graph of G is indeed a specialization of G. The homomorphism
can be decomposed into a sequence of elementary specialization operations, starting from G, as
follows:

• Firstly, a sequence of Restrict showing how the label of each node of G is specialized (cf. the
transformation from G to H4);

• Secondly, a sequence of Join showing which concept nodes are merged into the same node
(these are the nodes in G with the same image by the homomorphism, cf. the transformation
from H4 to H3);

• Thirdly, a sequence of Relation simplify removing relation nodes that have become redundant
(cf. the transformation from H3 to H2).

After these three steps, the image graph of G is obtained, which is sufficient to show that the
fact contains a specialization of G. To build the fact graph itself from the image graph of G,
one would need a disjoint sum (cf. the transformation from H2 to H1) and some joins (cf. the
transformation from H1 to H).

3.3 Logical correctness

Until now, we have introduced the reasoning operations (generalization, specialization and
subsumption) using simple graphical operations. It remains to relate these notions to usual
reasoning notions, i.e., essentially, to relate BG subsumption to logical deduction. This can be
done using the logical semantics of the knowledge constructs. This semantics is defined by a
mapping from graphical objects to logical formulas. It is classically denoted by Φ in conceptual
graphs (Sowa (1984)). The fundamental theorem states that given two BGs G and H built on a
vocabulary V, there is a homomorphism from G to H if and only if Φ(G) is a semantic consequence
of Φ(H) and Φ(V) (this is a soundness and completeness theorem of BG homomorphism w.r.t.
FOL entailment, cf. Chein and Mugnier (1992)). Let us point out that BGs are in fact equivalent
to the positive, conjunctive and existential fragment of FOL.

Once again, logic is used to give a semantics to BGs, but not to reason with them. As detailed
before, one motivation for preferring graph-based reasoning is its visual aspects permitting to
understand (logically based) reasoning without doing logic. Another motivation is that BGs have



16

good computational properties. Efficient graph-based deduction algorithms have been built, which
are not the translations of logical procedures (see f.i. Chein and Mugnier (2009)).

3.4 Overview of reasoning on more complex pieces of knowledge

Previous generalization and specialization elementary operations, as well as the corresponding
homomorphism notion, can be extended to nested graphs, while preserving soundness and
completeness with respect to deduction in the associated fragment of FOL.

Let us now consider the graph rules presented in Section 2. A rule R can be applied to a
BG H if there is a homomorphism from its hypothesis to H. Applying R to H according to
such a homomorphism π consists of “attaching” to H the conclusion of R by merging each
connection node in the conclusion with the image by π of the corresponding connection node in
the hypothesis. See for instance the graph H in Figure 3 and the rules R1 and R2 in Figures 5
and 6. There is a homomorphism from the hypothesis of R1 to H, thus R1 can be applied to H,
which yields the graph K (Figure 25). Similarly, R2 can be applied to H, or to K. Let us apply
R2 to K: we obtain L (Figure 25). R2 can be applied another time with a new homomorphism
to L: however, this application would be redundant, since the part to be added is already present
in L.

Figure 25 Applying rules

When a knowledge base contains a set of facts and a set of rules, the query mechanism has
to take implicit knowledge coded in rules into account. The knowledge base answers a query
Q if a BG F ′ can be derived from the facts using the rules, such that Q maps to F ′. Let us
consider again the fact H in Figure 3 and the rules R1 and R2 in Figures 5, and 6 and let Q

be the query in Figure 26 asking if there is someone who is parent of a boy and a girl: there is
no homomorphism from Q to H; however, the knowledge base containing H and the rules R1

and R2 answers Q: indeed Q maps to L (Figure 25), which is derived from H by applying the
rules. This reasoning can be explained by visualizing a homomorphism from Q to L, as well as a
sequence of rule applications allowing to add the knowledge involved in this homomorphism (for
instance, the application of R1 is not needed in our example).

Finally, let us point out that this rule application mechanism is sound and complete, i.e., given
a KB K and a BG Q, Q maps to a graph derived from K if and only if Φ(K) |= Φ(Q), where Φ(K)
is the set of formulas assigned to the vocabulary, the set of facts and the set of rules composing
K.



17

Figure 26 Another query example

4 Using graphs for applications: the best

In this section we present a concrete Artificial Intelligence application using the above described
language for image annotation. The choice of the application is motivated twofold. Firstly, this
application clearly demonstrate the visual appeal of Conceptual Graphs from a representation
depiction faithfulness viewpoint. Secondly, the visual reasoning capabilities allow for all levels of
expertise when building, querying the knowledge base and understanding why certain results will
be returned.

Within the image annotation process we will distinguish between resources (in this case
electronic image files) and metadata. A metadata is a computational object always associated
with a resource. Each resource is identified by an identifier, which is used in the metadata base
for referencing the resource.

Metadata can be roughly categorized into two classes: objective metadata and subjective
metadata. Examples of objective metadata include: resource address, authors name and the
document size. Subjective metadata aims at representing information generally depending on
the author of the metadata. Examples of subjective metadata include: the representation of the
content of a resource (indexation of the resource), the representation of a comment, note, or
remark etc. In this case an annotation is simply a piece of knowledge associated with a resource.
In the following, we will present a Conceptual Graph approach for building and querying a
knowledge base aimed at annotating family photos. The knowledge base used to illustrate notions
throughout this section has been edited with the tool Cogui.

Such annotation is built from an ontology fundamentally composed of a hierarchy of concepts
(or terms) and a hierarchy of relations between concepts. The ontology can also contain
representations of other knowledge. Relation signatures indicate the types of relation arguments.
Rules represent knowledge of the form “if a piece of information is present (within an annotation)
then further information can be added (to this annotation)”. Thus, rules can be used to
automatically complete an annotation by implicit and general knowledge. Another kind of
knowledge with the same syntactic form as rules but a different semantics are constraints.
Constraints represent knowledge of the form “if a piece of information is present (within an
annotation) then other information cannot be present (in the annotation)”. Signatures and
constraints are used to avoid the construction of absurd annotations. All these kinds of knowledge
are represented by labeled graphs.

For clarity purposes the example given in this paper is very simple. This framework have
been successfully employed for annotation in the large scale context of the LOGOS Framework
6 European Project (cf. for instance, Lalande et al. (2009)). as well as in other French projects
(Moreau et al. (2007), Genest and Chein (2005)).

Let us consider the photograph in Figure 27. A semantic annotation of this image is depicted
in Figure 28 where a fact represents a girl, the relative of a child, playing with the same red train
that the child is playing with. As explained above, all of the concepts and the relations used in



18

the facts need to be described and organized in the vocabulary. Figure 29 shows the concept and
relation hierarchies purposely built for annotating family images.

Figure 27 Example of photo that needs to be semantically annotated

Figure 28 Example of a semantic annotation



19

Figure 29 Concept / Relation hierarchy for photo annotation

Please note that the constructs introduced before (such as rules and nested graphs) are also
used for annotation. Since certain chunks of knowledge appear often, other kinds of constructs
have been introduced specifically for speeding up the annotation process, such as prototype graphs.
For example, for a child we could always like to have annotated the fact that it is playing with a
certain object. Notice this is not a rule, e.g., it may apply in certain situation and not in others.
Figure 30 represents how to insert the prototypical graph for a given concept.

As shown before, the user can then look for certain photos that contain a child and its
relative, a girl, both acting with a toy. Such query is visually represented in Figure 31. Based on
homomorphism (as previously explained) the query can be “mapped” into the fact represented
in Figure 28 and this will return the photo attached to it.

Note that we have only presented here the kernel of an information retrieval system, in which
the search process is based on graph homomorphism. In order to take the intrinsic vagueness
of information retrieval into account, i.e., to search documents imprecisely and incompletely
represented in order to answer a vague query, the exact search realized by graph homomorphism
is not sufficient. Additional techniques based on graph transformations for doing approximate
search and for ranking the answers to a query have been developed (cf. for instance Genest and
Chein (2005)).



20

Figure 30 Prototypical graph insert for photo annotation

Figure 31 Query graph for photo annotation



21

5 Related work and conclusion

In this section, we place our language in the landscape of graphical knowledge representation
languages in order to enhance its original features. We will only detail each language in the
light of its respective distinction with Conceptual Graphs. This choice is motivated by our aim
of demonstrating the originality of our proposal in the context of graph-based languages for
both knowledge representation and reasoning as opposed of doing a general synthesis of existing
languages for KR.

An important criterium distinguishing Conceptual Graphs from other graph-based languages
for knowledge modeling is the reasoning aspect. Indeed, numerous graphical languages have been
proposed for data and knowledge modeling. Prominently amongst them, UML (Unified Modeling
Language) unifies several previous languages and allows to model a system or a program by
diagrams. However, this language does not have a denotational semantics and is not provided
with inference mechanisms.

Furthermore, let us focus solely on graphical languages fundamentally dedicated to represent-
ing knowledge in the form of relationships between concepts and/or concept instances. The name
“map” is often used to describe mediating, thus informal, representations. A concept map is a
diagram representing relationships between concepts, or more vaguely, ideas, images, words, etc.
the aim being to organize informal knowledge (Novak and Canas (2006)). A cognitive map is
a graphical representation of an influence network between notions. A topic map is a diagram
representing associations between topics, and is more specifically dedicated to the description of
resources for the Semantic Web. If all these languages provide graphical views of knowledge, none
of them possesses a formally based reasoning mechanism.

Closer to our proposal, let us cite RDF (Resource Description Framework) 3, which is the
basic Semantic Web language. RDF has a graph-based representation, it is provided with a
formal semantics and an associated entailment notion (Hayes (2004), Horst (2004)), but it does
not come with an effective reasoning mechanism, even less with a graph-based mechanism that
would operate on the graph representation.

Let us point out that for several of these languages, some form of formally founded visual
reasoning based on graph homomorphism has been proposed: Raimbault et al. (2005); Chauvin
et al. (2008); Aissaoui et al. (2003); Carloni et al. (2006); Baget (2005).

We have already mentioned in Section 1 the semantic network family, and its successors,
description logics, which are logically founded knowledge representation and reasoning languages,
which have lost their diagrammatical aspects. In contrast, the Semantic Network Processing
System (SNePS) (see Shapiro (1979, 2000)), specially dedicated to the implementation of cognitive
agents, remains graph-based. It is provided with three kinds of inference mechanisms: a sound
(but not complete) logic-based inference, as well as a path-based inference and a frame-based
inference. All three kinds of inferences can be integrated, but there is no formal semantics for
this combination.

Conceptual Graphs finally appears to be the only knowledge representation language both
logic-based and graph-based, with logically sound and complete graph inference mechanisms (at
least for the fragment developed here), thus allowing for visual reasoning. Another important
feature of conceptual graphs is that relations can be of any arity (i.e., they can have any number
of arguments), which allows for a more natural representation in many cases (for instance, when
relations are extracted from data tables, their arity is the number of columns in the table). This
latter feature is shared with topic maps, but none of the other languages mentioned above.

The sound and complete graph-based mechanisms for reasoning presented in this paper have
been fully implemented and are available as part of the Cogui Editor and the CG reasoning engine
Cogitant. While homomorphism proves to be an intuitive mechanism for query answering, more
advanced graph-based tools could be envisaged to make this notion even more intuitive (see for

3http://www.w3.org/TR/REC-rdf-syntax/



22

example the 3D manipulation of the images in Figure 23). This is not the only possible envisaged
manipulation: different layouts, smooth zooming capabilities or colors could also be employed to
increase the presentive qualities of our language.

References

G. Aissaoui, D. Genest, and S. Loiseau. Cognitive map of conceptual graphs: A graphical model
to help for decision. In A. de Moor, W. Lex, and B. Ganter, editors, ICCS, volume 2746 of
Lecture Notes in Computer Science, pages 337–350. Springer, 2003. ISBN 3-540-40576-3.

F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider, editors. The
Description Logic Handbook. Cambridge University Press, 2003.

J. F. Baget. RDF Entailment as a Graph Homomorphism. In Proc. of ISWC’05, 2005.

C. Bos, B. Botella, and P. Vanheeghe. Modeling and Simulating Human Behaviors with
Conceptual Graphs. In Proc. of ICCS’97, volume 1257 of LNAI, pages 275–289. Springer,
1997.

O. Carloni, M. Leclère, and M.-L. Mugnier. Introducing graph-based reasoning into a knowledge
management tool: An industrial case study. In IEA/AIE, pages 590–599, 2006.

L. Chauvin, D. Genest, and S. Loiseau. Contextual cognitive map. In P. W. Eklund and
O. Haemmerlé, editors, ICCS, volume 5113 of Lecture Notes in Computer Science, pages 231–
241. Springer, 2008. ISBN 978-3-540-70595-6.

M. Chein and M. Mugnier. Graph-based Knowledge Representation: Computational Foundations
of Conceptual Graphs. Springer, 2009.

M. Chein and M.-L. Mugnier. Conceptual Graphs: Fundamental Notions. Revue d’Intelligence
Artificielle, 6(4):365–406, 1992.

D. Genest and M. Chein. A content-search information retrieval process based on conceptual
graphs. Knowledge and Information Systems (KAIS), 8:292–309, 2005.

P. Hayes. RDF Semantics. W3C Recommendation. http://www.w3.org/TR/2004/REC-rdf-mt-
20040210/, 2004.

H. Horst. Extending the RDFS Entailment Lemma. In Proc. of the Third International Semantic
Web ConferenceISWC’04, volume 3298 of LNCS, page 7791. Springer, 2004.

S. Lalande, K. Staykova, M. Chein, A. Gutierrez, V. Saraydarova, and D. Dochev. Using
Domain Knowledge to Speed up the Annotation of Digital Content with Conceptual Graphs.
Cybernetics and Information Technology, 9(3):22–38, 2009.

F. Lehman. Semantics Networks in Artificial Intelligence. Pergamon Press, 1992.

M. Masterman. Semantic message detection for machine translation, using an interlingua. In
International Conference on Machine Translation of Languages and Applied Language Analysis,
1962.

N. Moreau, M. Leclère, M. Chein, and A. Gutierrez. Formal and Graphical Annotations for Digital
Objects. In Proc. of International Workshop on Semantically Aware Document Processing and
Indexing (SADPI’07), volume 259 of ACM Digital Library, ACM International Conference
Proceeding Series, pages 69–78. ACM, 2007.

J. Novak and A. Canas. The origins of the concept mapping tool and the continuing evolution
of the tool. Information Visualization Journal, 5:175–184, 2006.



23

T. Raimbault, D. Genest, and S. Loiseau. A new method to interrogate and check uml class
diagrams. In F. Dau, M.-L. Mugnier, and G. Stumme, editors, ICCS, volume 3596 of Lecture
Notes in Computer Science, pages 353–366. Springer, 2005. ISBN 3-540-27783-8.

R. Richens. Programming for mechanical translation. Mechanical Translation, 3:Discontinued
Journal, 1956.

S. Shapiro. Sneps: A logic for natural language understanding and commonsense reasoning.
In Natural Language Processing and Knowledge Representation: Language for Knowledge and
Knowledge for Language, 2000.

S. Shapiro. The sneps semantic network processing system. In The representation and use of
knowledge by computers, 1979.

M. Shaw and B. Gaines. Knowledge and requirements engineering. In Proceedings of the 9th
Banff Knowledge Accquisition For Knowledge-Based Systems Workshop, 1995.

J. F. Sowa. Conceptual Graphs. IBM Journal of Research and Development, 20(4):336–375,
1976.

J. F. Sowa. Conceptual Structures: Information Processing in Mind and Machine. Addison-
Wesley, 1984.

W. Woods and J. Schmolze. The kl-one family. Computers Math. Applic., 23:133–177, 1992.


