London School of Geometry and Number Theory (LSGNT) 

Topics in Number Theory 2023/24

Topics in Number Theory is a year-long course taught every year to the first-year LSGNT students. This version of the course is designed by Fred Diamond and Payman Kassaei (and organized by PK).  It is taught collaboratively by academics in London. Each lecture is followed by a wrap-up session in which students (the owners) are in charge of organizing presentations where solutions to problem sets or other aspects of the topic are discussed. A senior student (the supervisor) will be present at each wrap-up session.

Schedule of lectures 






Oct 18

Caleb Springer

Counting points on varieties in characteristic p  

E. Aylward  

 M. Masters 

Oct 25

Alex Best

The Weil conjectures  

C. Crossley

S. Vassiliadis

Nov 8

Alex Walker

L functions 

A. Lopez

H. Singh

Nov 15

Peter Jossen

Elliptic curves and abelian varieties 

J. Schrettner

C. Rudrum

Nov 22

Fred Diamond

Galois representations  

D. Simms + C. Sonne

H. Spencer

Nov 29



From the Class number formula to the Birch-Swinnerton-Dyer Conjecture  

S. Ciprietti + B. Wilson

J. Tilley

Dec 6

 Robert Rockwood

An introduction to Iwasawa theory/special values conjectures 

Y. Fam + B. Simeonov

A. Varshney  

Dec 13

Alexei Skorobogatov

Diophantine Equations 

S. Varljen +  R. Mascharak

A. Bozovich

Jan 24

Lassina Dembele

Modular forms 

A. Khannur

G. Navone

Jan 31

 Stephen Lester

Introduction to the theory of the Riemann zeta function 

A. Acosta

M. Haghshenas

Feb 7



I. Chung-Halpern + I. Fairclough

Y. Yang

Feb 14 

 Ian Petrow

The fourth moment of the Riemann zeta function 

P. Mashayekhi

A. Wolf

Feb 21 

George Boxer

An introduction to the geometry of Shimura varieties in characteristic p 

P. Lezeau + M. Wisse

Y. Zhao

Feb 28

 Aled Walker

Pair correlation of zeros of the Riemann zeta function 

C. Mujdei

Z. Tan

Times and locations 

In the first semester the lectures take place 10-12 am at the CDT space at Imperial College.