
King’s College London
University Of London

This paper is part of an examination of the College counting towards the award of a degree.

Examinations are governed by the College Regulations under the authority of the Academic

Board.

ATTACH this paper to your script USING THE STRING PROVIDED

Candidate No: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Desk No: . . . . . . . . . . . . . . . . . . . . . . .

MSc Examination

7CCMMS30 (CMMS30) Relativity, Mechanics and

Quantum Theory

January 2010

Time Allowed: Two Hours

Full marks will be awarded for complete answers to TWO questions from Part

A and TWO questions from Part B -FOUR questions in total.

If more than four questions are answered, only the best TWO questions from

Part A and the best TWO questions from Part B will count towards grades A

and B, but credit will be given for all work done for lower grades.

You are permitted to use a Calculator.

ONLY CALCULATORS APPROVED BY THE COLLEGE MAY BE USED.

TURN OVER WHEN INSTRUCTED

2011 c©King’s College London



- 2 - 7CCMMS30 (CMMS30)

PART A

1. Consider a system with Hamiltonian

H =
1

2

n∑
i=1

(pi)
2 + V (qi) ,

where V is a scalar potential, and pi and qi are the momenta and positions of the

system.

(i) Define the Poisson bracket {F,G} of two functions F (q, p) and G(q, p) on

phase space. What is the Poisson bracket {qi, pj}?

(ii) Quantize the system described by the Hamiltonian H above. Write the

momentum and Hamiltonian operators in the position representation.

(iii) Give the definition of a Hilbert space, H including that of the inner product

on H. State the definition of the adjoint A† of an operator A. Give also the

definition of a self-adjoint operator.

(iv) Show that the eigenvalues of a self-adjoint operator are real. Show that

the eigenstates of a self-adjoint operator for two different eigenvalues are

orthogonal.

(v) Assume that the Hamiltonian operator, Ĥ, is self-adjoint to show that the

inner product 〈ψ1, ψ2〉 of two solutions of the Schrödinger equation, i∂tψ1 =

Ĥψ1 and i∂tψ2 = Ĥψ2, is time independent.

See Next Page
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2. The Hamiltonian operator of a Harmonic oscillator with frequency ω is

H =
1

2
p̂2 +

ω2

2
x̂2 ,

where p̂ is the momentum and x̂ is the position operators, and [x̂, p̂] = i. Consider

the dilatation type of operators

D =
ω

2
(x̂p̂+ p̂x̂) , S =

1

2
p̂2 − ω2

2
x̂2 .

(i) Compute the commutators

[x̂, H] , [x̂, D] , [x̂, S] , [p̂, H] , [p̂, D] , [p̂, S] .

You may use without proof the operator identity

[A,BC] = [A,B]C +B[A,C] .

(ii) Compute the commutators

[H,D] , [H,S] , [D,S] .

(iii) Express H,D and S in terms of the creation, α†, and annihilation, α, oper-

ators

α† =
ωx̂− ip̂√

2ω
, α =

ωx̂+ ip̂√
2ω

.

(iv) Express the states H|0〉, D|0〉, S|0〉, Hα†|0〉, Dα†|0〉 and Sα†|0〉 in terms of

the basis |n〉 = α†n|0〉, where |0〉 is the vacuum state, ie α|0〉 = 0. You may

use without proof that [α, α†] = 1.

See Next Page



- 4 - 7CCMMS30 (CMMS30)

3. The Lagrangian of a non-relativistic particle with mass m (propagating in the

5-brane geometry) is

L =
m

2

(
1 +

1

x2

) 4∑
i,j=1

δijẋ
iẋj ,

where xi are the real coordinates, x2 =
∑4

i=1(x
i)2, and ẋi is the time derivative of

xi.

(i) Give the Lagrangian equations of motion of the system.

(ii) Find the Hamiltonian of the system and give the Hamiltonian equations of

motion.

(iii) Show that the Lagrangian is invariant under orthogonal O(4) transformations,

ie transformations

xi → x′i =
4∑

j=1

Ai
jx

j

such that

δijA
i
kA

j
l = δkl ,

or equivalently in matrix notation AtA = 14×4, where At is the transposed of A.

(iv) Find the infinitesimal transformation generated by the orthogonal transforma-

tions in (iii) and use without proof Noether’s theorem to calculate the conserved

charge associated with the symmetry.

(iv) Verify that the above Noether charge is conserved subject to the equations of

motion.

See Next Page
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PART B

4. Cosets:

(i) Let G be a group and H a subgroup of G. Give the definitions of the left-

cosets g H and of the right-cosets H g of H.

(ii) Let g1, g2 ∈ G. Show that g2 ∈ g1H implies g1 ∈ g2H.

(iii) When is H called a normal subgroup? Show that all subgroups of an abelian

group are normal. Give an example for a finite group G and a normal sub-

group H such that all cosets of H have half as many elements as G.

(iv) Now let G1 and G2 be two non-trivial groups (meaning that they have other

elements besides their identity elements). The cross product G1 ×G2 is the

set of all pairs G1 × G2 := { (g1, g2) | g1 ∈ G1, g2 ∈ G2 }, and it is itself a

group using the natural composition (g1, g2) ◦ (h1, h2) := (g1h1, g2h2).

Find two proper normal subgroups in G (“proper” meaning: other than G1×
G2 or the subgroup consisting of the identity element only). You should show

that they are normal subgroups.

(v) In the special case G1 = G2, there is another subgroup, the so-called diagonal

subgroup ∆(G1) := { (g, g) | g ∈ G1 }. Show that this subgroup is not normal

if G1 is not abelian.

See Next Page
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5. Group representations:

(i) Give the definition of a representation π of a group G on a vector space V .

(ii) The group SU(2) of unitary complex 2× 2 matrices with determinant 1 acts

on C2 in the fundamental representation πf(g) = g for all g ∈ SU(2). One

can show that πf is equivalent to its complex conjugate representation πf .

Use this to show that πf is also equivalent to its contragredient (or dual)

representation πc
f .

(iii) Let πi be representations of a group G on vector spaces Vi for i = 1, 2. Give

the definition of the tensor product representation π⊗ on V1 ⊗ V2, and show

that π⊗ is indeed a representation of G.

(iv) Consider the special case G = SU(2) and π1 = π2 = πfund. Show that the

tensor product representation on C2 ⊗ C2 is not irreducible.

Hint: Study how the tensor product representation acts on the “Bell” vec-

tor e1 ⊗ e2 − e2 ⊗ e1, where the ek are the standard basis vectors of C2.

Also, it will be advantageous to derive a concrete form of the matrices in

SU(2); to find this, you may use that for any complex 2× 2 matrix one has(
a b

c d

)−1

=
1

ad− bc

(
d −b
−c a

)
.

See Next Page
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6. Lie groups and Lie algebras:

(i) The unit spheres Sn := { x ∈ Rn+1 | x2 = 1 } are manifolds for all n =

0, 1, 2, 3, . . . – a fact that you may use throughout Question 6.

Find composition laws that make S0 and S1 into groups. (You need not

show associativity, but should give the identity elements and inverses.)

(ii) Show that the group SU(2) of unitary complex 2× 2 matrices with determi-

nant 1 is a manifold.

Hint: It will be advantageous to derive a concrete form of the matrices in

SU(2); to find this, you may use that for any complex 2× 2 matrix one has(
a b

c d

)−1

=
1

ad− bc

(
d −b
−c a

)
.

(iii) Compute the Lie algebra Lie(SO(n)) of the special orthogonal group SO(n).

(Hint: you may use that any g ∈ SO(n) can be written as g = exp(ξ) for

a suitable ξ ∈Lie(SO(n)), and also that exp(ξ) ∈ SO(n) implies exp(t ξ) ∈
SO(n) for all t ∈ R.)

(iv) Let G be Lie group G whose elements are real matrices, i.e. G ⊂ GL(n,R)

for some n. Then one can define its Lie algebra Lie(G) ⊂ M(n,R) in a

differerential geometry way, via derivatives of curves through the identity e

of G as follows:

Lie(G) :=

{
ξ =

dg(t)

dt
|t=0

∣∣∣ g(t) a curve in G with g(0) = e

}
.

Use this definition to show that G acts on Lie(G) in the adjoint representa-

tion.

(You should give the definition of the adjoint action πadj(g) for g ∈ G, point

out why each πadj(g) is a linear map on the Lie algebra, and show that πadj

satisfies the representation property.)
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