Relativity, Mechanics and Quantum Theory

Problem Sheet 2

Problem 2.1

The special unitary group of two-by-two square matrices is defined to be:

$$SU(2) \equiv \{M \in U(2) \mid \det(M) = 1\}$$

Where U(2) indicates the unitary group of two-by-two square matrices.

(a.) Given that SU(2) is three-dimensional, show that a general element of SU(2) may be written in the form:

$$\left(\begin{array}{cc} \alpha & -\beta^* \\ \beta & \alpha^* \end{array}\right)$$

Where $\alpha, \beta \in \mathbb{C}$ and such that $|\alpha|^2 + |\beta|^2 = 1$.

- (b.) Prove that SU(2) is a group.
- (c.) Find all elements contained in the centre of SU(2). Show that it is isomorphic to the cyclic group \mathbb{Z}_2 .
- (d.) Show that the centre of SU(2) is a normal subgroup of SU(2): $Z(SU(2)) \triangleleft SU(2)$
- (e.) Compute the conjugacy classes C_h of the elements

$$h = \left(\begin{array}{cc} \alpha & 0\\ 0 & \alpha^* \end{array}\right)$$

in SU(2) (i.e. find the sets $C_h = \{ghg^{-1} | g \in SU(2)\}$). If one considers the elements of SU(2) as points on a 3-sphere, S^3 , what are the geometric shapes of these subsets in S^3 ?

Problem 2.2

If H is a normal subgroup of G show that the set of cosets $\frac{G}{H}$ is itself a group with the composition law:

$$(g_1H) \cdot (g_2H) = (g_1 \cdot g_2H) \quad \forall \quad g_1, g_2 \in G$$

This group is called the quotient group.

Problem 2.3

Let \mathbb{Z}_p denote the cyclic group with p elements, i.e. $\mathbb{Z}_p = \frac{\mathbb{Z}}{p\mathbb{Z}}$. Show that there is no nontrivial homomorphism from \mathbb{Z}_{p_1} to \mathbb{Z}_{p_2} if p_1 and p_2 are different prime numbers. (Hint: One way to see this is to first show that \mathbb{Z}_p has no non-trivial subgroups, using Lagranges theorem without proof. From there, argue that any non-trivial homomorphism between the two groups in question must be surjective. To proceed, you may use the fact that for any non-zero $n \in \mathbb{Z}_{p_1}$, we have $p_2 \cdot n \neq 0$, where $p_2 \cdot n$ means $n + \ldots + n$: adding up p_2 "copies of n.)

Problem 2.4

Consider $g_1, g_2 \in G$ where G is a group endowed with composition law \circ .

- (a.) Give the definition of the conjugacy class C_g .
- (b.) Show that two conjugacy classes C_{g_1} and C_{g_2} either coincide or are disjoint.
- (c.) Show that if a conjugacy class has more than one element, then it cannot be a subgroup of G.