1. [2004 STEP III question 5]

Show that if $\cos(x - \alpha) = \cos \beta$ then either $\tan x = \tan(\alpha + \beta)$ or $\tan x = \tan(\alpha - \beta)$. By choosing suitable values of x, α and β , give an example to show that if $\tan x = \tan(\alpha + \beta)$ then $\cos(x - \alpha)$ need not equal $\cos \beta$.

Let ω be the angle such that $\tan \omega = \frac{4}{3}$.

(a) For $0 \le x \le 2\pi$, solve the equatioon

$$\cos x - 7\sin x = 5$$

giving both solutions in terms of ω .

(b) For $0 \le x \le 2\pi$, solve the equation

$$2\cos x + 11\sin x = 10$$

showing that one solution is twice the other and giving both in terms of ω .

2. [2005 STEP III question 7]

Show that if $\int \frac{1}{uf(u)} du = F(u) + c$, then $\int \frac{m}{xf(x^m)} dx = F(x^m) + c$, where $m \neq 0$. Find

(a)
$$\int \frac{1}{x^n - x} \, \mathrm{d}x;$$

(b)
$$\int \frac{1}{\sqrt{x^n + x^2}} \, \mathrm{d}x$$

3. [2004 STEP II question 9] Mechanics

The base of a non-uniform solid hemisphere, of mass M, has radius r. The distance of the centre of gravity, G, of the hemisphere from the base is p and from the centre of the base is $\sqrt{p^2 + q^2}$. The hemisphere rests in equilibrium with its curved surface on a horizontal plane.

A particle of mass m, where m is small, is attached to A, the lowest point of the circumference of the base. In the new position of equilibrium, find the angle, α , that the base makes with the horizontal.

The particle is removed and attached to the point B of the base which is at the other end of the diameter through A. In the new position of equilibrium the base makes an angle β with the horizontal. Show that

$$\tan(\alpha - \beta) = \frac{2mMrp}{M^2(p^2 + q^2) - m^2r^2}$$

4. [2004 STEP II question 12] Statistics Sketch the graph, for $x \ge 0$, of

$$y = kxe^{-ax^2},$$

where a and k are positive constants.

The random variable X has probability density function f(x) given by

$$f(x) = \begin{cases} kxe^{-ax^2} & \text{for } 0 \le x \le 1\\ 0 & \text{otherwise.} \end{cases}$$

Show that $k = \frac{2a}{1 - e^{-a}}$ and find the mode *m* in terms of *a*, distinguishing between the cases $a < \frac{1}{2}$ and $a > \frac{1}{2}$.

Find the median *h* in terms of *a* and show that h > m if $a > -\ln\left(2e^{-\frac{1}{2}} - 1\right)$. Show that $-\ln\left(2e^{-\frac{1}{2}} - 1\right) > \frac{1}{2}$. Show that, if $a > -\ln\left(2e^{-\frac{1}{2}} - 1\right)$, then $P(X > m | X < h) = \frac{2e^{-\frac{1}{2}} - e^{-a} - 1}{1 - e^{-a}}$.