1. [2004 STEP III question 5]

 $\cos x - 7\sin x = \sqrt{50}\cos(x - \alpha)$

where $\cos \alpha = \frac{1}{\sqrt{50}}$ and $\sin \alpha = -\frac{7}{\sqrt{50}}$. Also since $\cos(x - \alpha) = \frac{1}{\sqrt{2}}$, $\tan(x - \alpha) = \pm 1$. Using the first part, it can then be shown that either $\tan x = \frac{4}{3}$ or $\tan x = -\frac{3}{4}$. Hence $x = \omega$ or $x = \frac{3\pi}{2} + \omega$.

(b) Similar arguments give $\tan x = \frac{4}{3}$ or $\tan x = -\frac{24}{7}$. The two solutions are ω and 2ω .

2. [2005 STEP III question 7]

Let
$$u = x^m$$
. Then $\frac{\mathrm{d}u}{\mathrm{d}x} = mx^{m-1}$ and so
 $\int \frac{m}{xf(x^m)} \mathrm{d}x = \int \frac{m}{mx^m f(u)} \mathrm{d}u = \int \frac{1}{uf(u)} \mathrm{d}u = F(u) + c = F(x^m) + c.$

(a) Using
$$f(u) = u - 1$$
 and $m = n - 1$,
 $\int \frac{1}{x^n - x} dx = \frac{1}{n - 1} \ln \left(\frac{x^{n - 1} - 1}{x^{n - 1}} \right) + c$;

(b) Using
$$f(u) = \sqrt{u+1}$$
 and $m = n-2$ gives

$$\int \frac{1}{\sqrt{x^n + x^2}} \, \mathrm{d}x = \frac{1}{n-2} \ln \left| \frac{\sqrt{x^{n-2} + 1} - 1}{\sqrt{x^{n-2} + 1} + 1} \right| + c.$$

3. [2004 STEP II question 9] Mechanics

$$\tan \alpha = \frac{mr + Mq}{Mp}.$$
$$\tan \beta = \frac{-mr + Mq}{Mp}.$$

(Hence, using formula for $\tan(\alpha - \beta)$,

$$\tan(\alpha - \beta) = \frac{2mMrp}{M^2(p^2 + q^2) - m^2r^2} .)$$

4. [2004 STEP II question 12] Statistics

The mode *m* is $\frac{1}{\sqrt{2a}}$ if $a > \frac{1}{2}$ and is 1 when $a < \frac{1}{2}$. The median $h = \sqrt{\frac{1}{a} \ln \frac{2}{1 + e^{-a}}}$.