1. [2007 Oxford Admission Test question 1C] (Multiple Choice) The number of solutions x to the equation

$$7\sin x + 2\cos^2 x = 5\,$$

in the range $0 \le x < 2\pi$, is

- (a) 1 (b) 2 (c) 3 (d) 4
- 2. [2007 Oxford Admission Test question 1F] (Multiple Choice) The equation

$$8^x + 4 = 4^x + 2^{x+2}$$

has

- (a) no real solutions (b) 1 real solution (c) 2 real solutions (d) 3 real solutions
- 3. [2007 Oxford Admission Test question 1I] (Multiple Choice) Given that a and b are positive and

$$4(\log_{10} a)^2 + (\log_{10} b)^2 = 1,$$

then the greatest possible value of a is

- (a) $\frac{1}{10}$ (b) 1 (c) $\sqrt{10}$ (d) $10^{\sqrt{2}}$
- 4. [2007 Oxford Admission Test question 1J] (Multiple Choice)
 The inequality

$$(n+1) + (n^2+2) + (n^3+3) + \dots + (n^{10000} + 100) > k$$

is true for all $n \geq 1$. It follows that

- (a) k < 1300
- (b) $k^2 < 101$
- (c) k > 10110000
- (d) k < 5150

5. [2007 Oxford Admission Test question 3]

Let

$$I(c) = \int_0^1 ((c-x)^2 + c^2) \, \mathrm{d}x$$

where c is a real number.

- (a) Sketch $y = (x-1)^2 + 1$ for the values $-1 \le x \le 3$ and show on your graph the area represented by the integral I(1).
- (b) Without explicitly calculating I(c), explain why I(c) > 0 for any value of c.
- (c) Calculate I(c).
- (d) What is the minimum value of I(c) (as c varies)?
- (e) What is the maximum value of $I(\sin \theta)$ as θ varies?

This week's theme: thinking carefully about calculus

6. Prove from first principles that if $y = \frac{1}{x}$ then $\frac{dy}{dx} = -\frac{1}{x^2}$.

[If you don't know what this means, consider the curve $y = \frac{1}{x}$ and calculate the gradient of the chord joining $(x+h, \frac{1}{x+h})$ and $(x, \frac{1}{x})$ where x and x+h are both positive. What happens as $h \to 0$? Relate this to the gradient of the tangent to the curve at $(x, \frac{1}{x})$.]

7. [2008 Oxford Admission Test question 1A] (Multiple Choice)

The function $y = 2x^3 - 6x^2 + 5x - 7$ has

- (a) no stationary points
- (b) one stationary point
- (c) two stationary points
- (d) three stationary points
- 8. [2008 Oxford Admission Test question 1F] (Multiple Choice)
 If the trapezium rule is used to estimate the integral

$$\int_0^1 f(x) \, \mathrm{d}x$$

by splitting the interval $0 \le x \le 1$ into 10 intervals then an overestimate of the integral is produced. It follows that

- (a) the trapezium rule with 10 intervals underestimates $\int_0^1 2f(x) dx$
- (b) the trapezium rule with 10 intervals underestimates $\int_0^1 (f(x) 1) dx$
- (c) the trapezium rule with 10 intervals underestimates $\int_1^2 f(x-1) dx$
- (d) the trapezium rule with 10 intervals underestimates $\int_0^1 (1 f(x)) dx$

9. [2009 Specimen Paper 1 Oxford Admission Test question 1B] (Multiple Choice)

The smallest value of the function

$$f(x) = 2x^3 - 9x^2 + 12x + 3$$

in the range $0 \le x \le 2$ is

- 10. [2007 AEA question 2]
 - (a) On the same diagram, sketch y = x and $y = \sqrt{x}$, for $x \ge 0$, and mark clearly the coordinates of the points of intersection of the two graphs.
 - (b) With reference to your sketch, explain why there exists a value a of x (a > 1) such that

$$\int_0^a x \, \mathrm{d}x = \int_0^a \sqrt{x} \, \mathrm{d}x \, .$$

- (c) Find the exact value of a.
- (d) Hence, or otherwise, find a non-constant function f(x) and a constant b (b > 0) such that

$$\int_{-b}^{b} f(x) \, \mathrm{d}x = \int_{-b}^{b} \sqrt{[f(x)]} \, \, \mathrm{d}x.$$

11. [2004 STEP I question 2]

The square bracket notation [x] means the greatest integer less than or equal to x. For example, $[\pi] = 3$, $[\sqrt{24}] = 4$ and [5] = 5.

(a) Sketch the graph of $y = \sqrt{[x]}$ and show that

$$\int_0^a \sqrt{[x]} \, \mathrm{d}x = \sum_{r=0}^{a-1} \sqrt{r}$$

when a is a positive integer.

(b) Show that

$$\int_0^a 2^{[x]} \, \mathrm{d}x = 2^a - 1$$

when a is a positive integer.

(c) Determine an expression for

$$\int_0^a 2^{[x]} dx$$

when a is positive but not an integer.

This week you are asked to get in a group of two, three or four where everyone is from a different school or college, and there is a mixture of gender.

Also, you are asked to take care to justify every statement you make. Discuss together how to write down well-argued answers to each question. (Do this even for multiple choice questions.)

- 12. Warm up
 - (a) Evaluate $1 + 4 + 7 + \cdots + 22$.
 - (b) What is the remainder when $x^3 + 3x^2 4x + 7$ is divided by x + 2?
- $13.\ [2008\ {\rm Oxford}\ {\rm Admission}\ {\rm Test}\ {\rm question}\ 1{\rm G}]\ ({\rm Multiple}\ {\rm choice})$

Which of the graphs below is a sketch of

$$y = \frac{1}{4x - x^2 - 5} ?$$

14. [2008 Oxford Admission Test question 1D] (Multiple Choice) When

$$1 + 3x + 5x^2 + 7x^3 + \dots + 99x^{49}$$

3500

is divided by x-1 the remainder is

- (a) 2000 (b) 2500 (c) 3000 (d)
- 15. [2008 Oxford Admission Test question 1J] (Multiple Choice)

In the range $0 \le x < 2\pi$ the equation $(3 + \cos x)^2 = 4 - 2\sin^8 x$ has

- (a) 0 solutions (b) 1 solution (c) 2 solutions (d) 3 solutions
- 16. [2004 STEP I question 5]

The positive integers can be split into five distinct arithmetic progressions, as shown:

$$A: 1, 6, 11, 16, \dots$$

$$B: 2, 7, 12, 17, \dots$$

$$C: 3, 8, 13, 18, \dots$$

$$D: 4, 9, 14, 19, \dots$$

$$E: 5, 10, 15, 20, \dots$$

Write down an expression for the value of the general term in each of the five progressions. Hence prove that the sum of any term in B and any term in C is a term in E.

Prove also that the square of every term in B is a term in D. State and prove a similar claim about the square of every term in C.

(i) Prove that there are no positive integers x and y such that

$$x^2 + 5y = 243723.$$

(ii) Prove also that there are no positive integers x and y such that

$$x^4 + 2y^4 = 26\,081\,974\,.$$

17. Warm up

Given $y = x^2(x-3)^3$, evaluate $\frac{dy}{dx}$ and simplify the result. (Do not multiply out the brackets!)

18. Warm up

Write down the formulae for sin(A + B) and cos(A + B) and use them to prove the formula for tan(A + B).

19. [2005 STEP 1 question 4]

- (a) Given that $\cos \theta = \frac{3}{5}$ and $\frac{3\pi}{2} \le \theta \le 2\pi$, show that $\sin 2\theta = -\frac{24}{25}$, and evaluate $\cos 3\theta$.
- (b) Prove the identity

$$\tan 3\theta = \frac{3\tan\theta - \tan^3\theta}{1 - 3\tan^2\theta}.$$

Hence evaluate θ given that $\tan 3\theta = \frac{11}{2}$ and $\frac{\pi}{4} \leq \theta \leq \frac{\pi}{2}$.

20. [2004 STEP I question 3]

(a) Show that x-3 is a factor of

$$x^3 - 5x^2 + 2x^2y + xy^2 - 8xy - 3y^2 + 6x + 6y.$$
 (*)

Express (*) in the form (x-3)(x+ay+b)(x+cy+d) where a, b, c and d are integers to be determined.

(b) Factorise $6y^3 - y^2 - 21y + 2x^2 + 12x - 4xy + x^2y - 5xy^2 + 10$ into three linear factors.

21. [2009 STEP II question 4]

The polynomial p(x) is of degree 9 and p(x) - 1 is exactly divisible by $(x - 1)^5$.

- (a) Find the value of p(1).
- (b) Show that p'(x) is exactly divisible by $(x-1)^4$.
- (c) Given also that p(x) + 1 is exactly divisible by $(x + 1)^5$, find p(x).

22. [1999 STEP I question 3]

The *n* positive numbers x_1, x_2, \ldots, x_n , where $n \geq 3$, satisfy

$$x_1 = 1 + \frac{1}{x_2}$$
, $x_2 = 1 + \frac{1}{x_3}$, ..., $x_{n-1} = 1 + \frac{1}{x_n}$, and also $x_n = 1 + \frac{1}{x_1}$.

Show that

- (a) $x_1, x_2, \dots, x_n > 1$.
- (b) $x_1 x_2 = -\frac{x_2 x_3}{x_2 x_3}$.
- (c) $x_1 = x_2 = \dots = x_n$.

Hence find the value of x_1 .

23. Warm up

Let
$$f(x) = x + 3$$
 and $g(p) = \frac{p}{2}$.

Evaluate
$$f^{-1}(z), g^{-1}(q), fg(t), gf(m)$$
, and verify that $f^{-1}g^{-1}(y) = (gf)^{-1}(y)$.

24. [2011 AEA question 1]

Solve, for $0 \le \theta \le 180^{\circ}$,

$$\tan(\theta + 35^{\circ}) = \cot(\theta - 53^{\circ}).$$

25. [2011 AEA question 7]

Figure 4

(a) Figure 4 shows a sketch of the curve with equation y = f(x), where

$$f(x) = \frac{x^2 - 5}{3 - x}, \quad x \in \mathbb{R}, \ x \neq 3$$

The curve has a minimum at the point A, with x-coordinate α , and a maximum at the point B, with x-coordinate β .

Find the value of α , the value of β and the y-coordinates of the points A and B.

question continues on next page

(b) The functions g and h are defined as follows

$$g: x \to x + p$$
 $x \in \mathbb{R}$

$$h: x \to |x| \qquad x \in \mathbb{R}$$

where p is a constant.

Figure 5

Figure 5 shows a sketch of the curve with equation y = h(fg(x) + q), $x \in \mathbb{R}$, $x \neq 0$, where q is a constant. The curve is symmetric about the y-axis and has minimum points at C and D.

- (i) Find the value of p and the value of q.
- (ii) Write down the coordinates of D.

(5)

(c) The function m is given by

$$m(x) = \frac{x^2 - 5}{3 - x}, \quad x \in \mathbb{R}, x \leqslant \alpha$$

where α is the x-coordinate of A as found in part (a).

- (i) Find m⁻¹
- (ii) Write down the domain of m⁻¹
- (iii) Find the value of t such that $m(t) = m^{-1}(t)$

26. [2007 STEP I question 3]

Prove the identities $\cos^4 \theta - \sin^4 \theta \equiv \cos 2\theta$ and $\cos^4 \theta + \sin^4 \theta \equiv 1 - \frac{1}{2}\sin^2 2\theta$. Hence or otherwise evaluate

$$\int_0^{\frac{\pi}{2}} \cos^4 \theta \, d\theta \quad \text{and} \quad \int_0^{\frac{\pi}{2}} \sin^4 \theta \, d\theta.$$

Evaluate also

$$\int_0^{\frac{\pi}{2}} \cos^6 \theta \, d\theta \quad \text{and} \quad \int_0^{\frac{\pi}{2}} \sin^6 \theta \, d\theta.$$