1. Warm up

(a) Show that

$$\frac{x+11}{x^2+2x-3} \equiv \frac{3}{x-1} - \frac{2}{x+3}$$

(b) Evaluate A and B if

 $\frac{5x+7}{x^2+3x+2} \equiv \frac{A}{x+1} + \frac{B}{x+2} \,.$

(Splitting a rational expression f(x) as the sum of fractions with simpler denominators is known as expressing f(x) in *partial fractions*.)

2. [2011 Oxford Admission Test question 1B] (Multiple Choice)

A rectangle has perimeter P and area A. The values P and A must satisfy

(a) $P^3 > A$ (b) $A^2 > P + 1$ (c) $P^2 \ge 16A$ (d) $PA \ge A + P$

3. [2010 AEA question 2]

The sum of the first p terms of an arithmetic series is q and the sum of the first q terms of the same arithmetic series is p, where p and q are positive integers and $p \neq q$. Giving simplified answers in terms of p and q, find

- (a) the common difference of the terms in this series,
- (b) the first term of the series,
- (c) the sum of the first (p+q) terms of the series.
- 4. [2007 STEP I question 2]
 - (a) Given that $A = \arctan \frac{1}{2}$ and that $B = \arctan \frac{1}{3}$ (where A and B are acute) show, by considering $\tan(A+B)$, that $A+B=\frac{\pi}{4}$.

The non-zero integers p and q satisfy

$$\arctan\frac{1}{p} + \arctan\frac{1}{q} = \frac{\pi}{4}$$

Show that (p-1)(q-1) = 2 and hence determine p and q. continued overleaf (b) Let r, s and t be positive integers such that the highest common factor of s and t is 1. Show that, if

$$\arctan\frac{1}{r} + \arctan\frac{s}{s+t} = \frac{\pi}{4},$$

then there are only two possible values for t, and give r in terms of s in each case.

- 5. [2004 STEP I question 7]
 - (a) The function f(x) is defined for $|x| < \frac{1}{5}$ by

$$f(x) = \sum_{n=0}^{\infty} a_n x^n$$

where $a_0 = 2$, $a_1 = 7$ and $a_n = 7a_{n-1} - 10a_{n-2}$ for $n \ge 2$. Simplify $f(x) - 7xf(x) + 10x^2f(x)$, and hence show that $f(x) = \frac{1}{1 - 2x} + \frac{1}{1 - 5x}$. Hence show that $a_n = 2^n + 5^n$.

(b) The function g(x) is defined for $|x| < \frac{1}{3}$ by

$$g(x) = \sum_{n=0}^{\infty} b_n x^n$$

where $b_0 = 5$, $b_1 = 10$, $b_2 = 40$, $b_3 = 100$ and $b_n = pb_{n-1} + qb_{n-2}$ for $n \ge 2$. Obtain an expression for g(x) as the sum of two algebraic fractions and determine b_n in terms of n.

6. [2010 AEA question 5]

$$I = \int \frac{1}{(x-1)\sqrt{x^2-1}} \, \mathrm{d}x \quad x > 1$$

(a) Use the substitution $x = 1 + u^{-1}$ to show that

$$I = -\left(\frac{x+1}{x-1}\right)^{\frac{1}{2}} + c\,.$$

(b) Hence show that

$$\int_{\sec\alpha}^{\sec\beta} \frac{1}{(x-1)\sqrt{x^2-1}} = \cot\left(\frac{\alpha}{2}\right) - \cot\left(\frac{\beta}{2}\right), 0 < \alpha < \beta < \frac{\pi}{2}.$$