THE KING'S FACTOR

This file contains hints for questions set in Year 13 tKF sessions, to give you a nudge if you feel really stuck

Updated February 19, 2014

- 1. Warm up
 - (a) Note that

$$\frac{3}{x-1} - \frac{2}{x+3} \equiv \frac{3(x+3) - 2(x-1)}{(x-1)(x+3)}$$

(b) Note that

$$\frac{A}{x+1} + \frac{B}{x+2} \equiv \frac{A(x+2) + B(x+1)}{(x+1)(x+2)}.$$

2. [2011 Oxford Admission Test question 1B] (Multiple Choice)

Let the sides of the rectangle be x and y. Express A in terms of P and x.

(Also consider the units which the various terms might be in, or (more technically) the dimensions of the terms. Only one of the relationships makes sense.)

3. [2010 AEA question 2]

First recall the formula for the sum of the first n terms of an arithmetic progression with first term a and common difference d.

Use this to give two equations involving p, q, a and d.

 $\mathbf{2}$

- 4. [2007 STEP I question 2]
 - (a) You need to use the idea that these two statements are equivalent:
 θ = arctan x and x = tan θ.
 You also need to know (don't rely on formula sheets) the expansion of tan(A + B).

Once you have solved the part relating to $\arctan \frac{1}{2}$ and $\arctan \frac{1}{3}$, use the same idea with $\arctan \frac{1}{p} + \arctan \frac{1}{q}$, and then tidy up the algebra to show that (p-1)(q-1) = 2. To evaluate p and q, use the fact that p and q are non-zero integers. (Without this information there would be an infinite number of possible solutions.)

(b) Using experience gained in the first part build an equation relating r, s and t. Using the fact that s and t are integers with no common factor other than 1, and the fact that r is an integer, you should (if you think about it) be able to see that t can only take two values, and then work out r in terms of s in each case.

5. [2004 STEP I question 7]

- (a) To simplify $f(x) 7xf(x) + 10x^2f(x)$: first write out the first few terms of the series f(x) and then see how higher powers of xwill cancel out in the combination $f(x) - 7xf(x) + 10x^2f(x)$. (If you can, present a full proof of the result using Σ notation, once you see how things work.) To obtain $f(x) = \frac{1}{1-2x} + \frac{1}{1-5x}$, use the first part and then partial fractions. To show that $a_n = 2^n + 5^n$ you need to be able to recognise the sums of some infinite geometric series. For instance, what is $\sum_{n=0}^{\infty} (2x)^n$ if |2x| < 1?
- (b) This part is similar to the first part, except that you first need to evaluate p and q.
- 6. [2010 AEA question 5]
 - (a) This part of the question instructs you to use a standard method.
 - (b) It will help you if you can prove that, if $t = \tan \frac{\alpha}{2}$, then $\sec \alpha = \frac{1+t^2}{1-t^2}$.

$$I = \int \frac{1}{(x-1)\sqrt{x^2-1}} \, \mathrm{d}x \quad x > 1$$