- 1. Calculate the square root of 24×150 (without first evaluating 24×150). Repeat for 147×48 Repeat for $abc^2 \times c^4 ab$
- 2. Prove that if n is an integer then

$$n^{3} - n$$

is divisible by 3.

3. [2007 Oxford Admission Test question 1B] (Multiple Choice) The greatest value which the function

$$f(x) = \left(3\sin^2(10x + 11) - 7\right)^2$$

takes, as x varies over all real values, equals

(a) -9 (b) 16 (c) 49 (d) 100

4. [2008 Oxford Admission Test question 1E] (Multiple Choice) The highest power of x in

$$f(x) = \left\{ \left[\left(2x^6 + 7 \right)^3 + \left(3x^8 - 12 \right)^4 \right]^5 + \left[\left(3x^5 - 12x^2 \right)^5 + \left(x^7 + 6 \right)^4 \right]^6 \right\}^3$$
(a) x^{424} (b) x^{450} (c) x^{500} (d) x^{504}

is

- 5. [2008 Oxford Admission Test question 2]
 - (a) Find a pair of positive integers x_1 and y_1 , that solve the equation

$$(x_1)^2 - 2(y_1)^2 = 1$$

(b) Given integers a and b we define sequences x_1, x_2, x_3, \ldots and y_1, y_2, y_3, \ldots by setting

$$x_{n+1} = 3x_n + 4y_n \quad \text{and} \quad y_{n+1} = ax_n + by_n \quad \text{for} \quad n \ge 1$$

Find *positive* values of a and b such that

$$(x_n)^2 - 2(y_n)^2 = (x_{n+1})^2 - 2(y_{n+1})^2$$

- (c) Find a pair of integers X, Y which satisfy $X^2 2Y^2 = 1$ such that X > Y > 50.
- (d) (Using the values of a and b found in part (b).) What is the approximate value of $\frac{x_n}{y_n}$ as n increases?

6. [2004 STEP I question 3]

(a) Show that x - 3 is a factor of

$$x^{3} - 5x^{2} + 2x^{2}y + xy^{2} - 8xy - 3y^{2} + 6x + 6y.$$
 (*)

Express (*) in the form (x-3)(x+ay+b)(x+cy+d) where a, b, c and d are integers to be determined.

(b) Factorise $6y^3 - y^2 - 21y + 2x^2 + 12x - 4xy + x^2y - 5xy^2 + 10$ into three linear factors.

- 7. For each of the following statements *either* prove that it is true *or* give a counter-example to show that it is false:
 - (a) The product of any two even numbers is a multiple of 4.
 - (b) The product of any two even numbers is a multiple of 8.
 - (c) The product of any two odd numbers is a multiple of 3.
 - (d) The product of any two odd numbers is and odd number.
- 8. (a) Show that if

$$x^2 + y^2 - 4x + 10y + 4 = 0 \tag{(*)}$$

then the distance of the point (x, y) from the point (2, -5) is equal to 5.

- (b) Sketch the set of points which satisfy (*) (i.e. sketch the curve $x^2 + y^2 4x + 10y + 4 = 0$.)
- (c) Find the equation of the tangent to this curve at the point (5, -1).
- 9. [2009 Specimen paper Oxford Admission Test question 1A]

The point lying between P(2,3) and Q(8,-3) which divides the line PQ in the ratio 1:2 has co-ordinates (a) (4,-1) (b) (6,-2) (c) $(\frac{14}{3},2)$ (d) (4,1)

10. [2009 Specimen paper Oxford Admission Test question 1D] The numbers x and y satisfy the following inequalities

$$2x + 3y \leq 23$$

$$x + 2 \leq 3y,$$

$$3y + 1 \leq 4x.$$
(1)

The largest possible value of x is

(a) 6 (b) 7 (c) 8 (d) 9

11. [2009 AEA question 1]

(a) On the same diagram, sketch

y = (x+1)(2-x) and $y = x^2 - 2|x|$.

Mark clearly the coordinates of the points where these curves cross the coordinate axes.

- (b) Find the *x*-coordinates of the points of intersection of these two curves.
- 12. [2006 STEP I question 1]

Find the integer, n, that satisfies $n^2 < 33\,127 < (n+1)^2$. Find also a small integer m such that $(n+m)^2 - 33\,127$ is a perfect square. Hence express $33\,127$ in the form pq, where p and q are integers greater than 1.

By considering the possible factorisations of 33 127, show that there are exactly two values of m for which $(n + m)^2 - 33127$ is a perfect square, and find the other value.

13. Warm up:

- (a) Without even thinking of using a calculator evaluate $\frac{4^5 \times 5^{-3}}{2^8 \times 10^{-4}}$.
- (b) Express $\frac{(1+\sqrt{7})^2}{3+\sqrt{7}}$ in the form $a+b\sqrt{7}$.
- 14. [2010 Oxford Admission Test question 1A] (Multiple choice) The values of k for which the line y = kx intersects the parabola $y = (x 1)^2$ are precisely
 - (a) $k \leq 0$
 - (b) $k \ge -4$
 - (c) $k \ge 0$ or $k \le -4$
 - (d) $-4 \le k \le 0$

15. [2004 AEA question 3]

 $f(x) = x^3 - (k+4)x + 2k$ where k is a constant.

- (a) Show that, for all values of k, the curve with equation y = f(x) passes through the point (2,0).
- (b) Find the values of k for which the equation f(x) = 0 has exactly two distinct roots.
- (c) Given that k > 0, that the x-axis is a tangent to the curve with equation y = f(x), and that the line y = p intersects the curve in three distinct points, find the set of values that p can take.

16. [2007 Oxford Admission Test question 1A] (Multiple Choice) Let r and s be integers. Then

$$\frac{6^{r+s} \times 12^{r-s}}{8^r \times 9^{r+2s}}$$

is an integer if

- (a) $r + s \le 0$
- (b) $s \le 0$
- (c) $r \le 0$
- (d) $r \ge s$
- 17. [2000 STEP I question 6]

Show that

$$x^{2} - y^{2} + x + 3y - 2 = (x - y + 2)(x + y - 1)$$

and hence, or otherwise, indicate by means of a sketch the region of the x-y plane where

$$x^2 - y^2 + x + 3y > 2.$$

Sketch also the region of the x-y plane for which

$$x^2 - 4y^2 + 3x - 2y < -2.$$

Give the coordinates of a point for which both inequalities are satisfied or explain why no such point exists.

18. [2004 STEP I question 1]

- (a) Express $(3 + 2\sqrt{5})^3$ in the form $(a + b\sqrt{5})$ where a and b are integers.
- (b) Find the positive integers c and d such that $\sqrt[3]{99-70\sqrt{2}} = c d\sqrt{2}$.
- (c) Find the two real solutions of $x^6 198x^3 + 1 = 0$.

19. Warm up:

Given that $f(x) = x^2 - 6x + 13$ show that $f(x) \ge 4$. Sketch the graph of f(x). (If you can, do this in two ways, one using calculus and the other not using calculus.)

20. [2009 Specimen 2 Oxford Admission Test question 1F] (Multiple Choice) The turning point of the parabola

$$y = x^2 - 2ax + 1$$

is closest to the origin when

(a)
$$a = 0$$
 (b) $a = \pm 1$ (c) $\pm \frac{1}{\sqrt{2}}$ or 0 (d) $\pm \frac{1}{\sqrt{2}}$

21. [2008 Oxford Admission Test question 1G] (Multiple choice)Which of the graphs below is a sketch of

$$y = \frac{1}{4x - x^2 - 5}?$$

22. [2007 Oxford Admission Test question 1E] (Multiple choice)

If x and n are integers then

$$(1-x)^n(2-x)^{2n}(3-x)^{3n}(4-x)^{4n}(5-x)^{5n}$$

is

- (a) negative when n > 5 and x < 5
- (b) negative when n is odd and x > 5
- (c) negative when n is a multiple of 3 and x > 5
- (d) negative when n is even and x < 5
- 23. [2009 Specimen 2 Oxford Admission Test question 1G] (Multiple Choice)

The four digit number 2652 is such that any two consecutive digits from it make a multiple of 13. Another number N has this same property, is 100 digits long, and begins in a 9. What is the last digit of N?

(a) 2 (b) 3 (c) 6 (d) 9

24. Warm up

Given that $g(x) = x^2$

(a) Copy and complete this table

x	-6	-4	-2	0	2	4	6
g(x)							
g(x-3) + 7							

- (b) Show that if $g(x) = x^2$ then $g(x-3) + 7 = x^2 6x + 16$
- (c) Find the turning points of y = g(x) and y = g(x-3) + 7 and sketch (on the same axes) the graphs y = g(x) and y = g(x-3) + 7.

25. (a) If the graph of the function y = f(x) has a single turning point, a minimum point at (3, 2), where is the minimum point on the graphs of the following functions?

- i. f(x-3)
- ii. f(x-3) + 7
- iii. f(x+4) 8
- (b) What can you say about the turning points of the graphs of the following functions?
 - i. -f(x)ii. $\frac{1}{f(x)}$
- 26. [2009 Oxford Admission Test question 1C] Given a real constant c, the equation

$$x^4 = (x - c)^2$$

has four real solutions (including possible repeated roots) for

(a) $c \leq \frac{1}{4}$ (b) $-\frac{1}{4} \leq c \leq \frac{1}{4}$ (c) $c \leq -\frac{1}{4}$ (d) all values of c

27. [2007 Oxford Admission Test question 1G]

G. On which of the axes below is a sketch of the graph

28. [2005 STEP I question 6]

(a) The point A has coordinates (5, 16) and the point B has coordinates (-4, 4). The variable point P has coordinates (x, y) and moves on a path such that AP = 2BP. Show that the Cartesian equation of the path of P is

$$(x+7)^2 + y^2 = 100$$

(b) The point C has coordinates (a, 0) and the point D has coordinates (b, 0). The variable point Q moves on a path such that

$$QC = k \times QD$$
,

where k > 1. Given that the path of Q is the same as the path of P show that

$$\frac{a+7}{b+7} = \frac{a^2+51}{b^2+51}.$$

Show further that (a+7)(b+7) = 100 in the case $a \neq b$.