THE KING'S FACTOR

This file contains hints for questions set in Year 12 tKF sessions, to give you a nudge if you feel really stuck

Updated February 20, 2014

1. Warm up

Hints are included with the question.

- [2010 Oxford Admission Test question 1B] (Multiple Choice)
 This sequence contains two sequences of standard form intertwined.
- 3. [2009 Oxford Admission Test question 1F] (Multiple Choice) This is not an equation that can easily be solved directly.

As is often the case, sketching a graph is the best approach.

Begin by finding the turning points of

$$y = 3x^4 - 16x^3 + 18x^2 + k = 0.$$

(The y coordinate of each turning point will be given in terms of k, but the x coordinates are independent of k.)

Sketch the curve for some particular value of k, say k = 0. Mark in the three turning points. Consider how many solutions the equation has in this case.

Now think what happens if (a) k increases (b) k decreases.

- 4. [2009 Specimen paper 1 Oxford Admission Test question 1B] (Multiple Choice) Sketch the graph of the function y = f(x + 1).
- 5. [2005 STEP I question 2]

First find an expression for $\frac{dy}{dx}$. If you have learned implicit differentiation this is straightforward.

If you have not, then once you have an expression for $\frac{dy}{dx}$ in terms of x, replace it by one in terms of y. (If you think about it, this also handles the sign ambiguities which arise from taking a square root.)

To find R, first construct the equations of the tangents to C at P and Q.

For the second part, you will need to find the condition which p and q satisfy given that the (1,0) lies on the line PQ.

- 6. Warm up
 - (a) To evaluate $1 + 4 + 7 + \cdots + 22$ note that this is the sum of an Arithmetic Progression.
 - (b) Either use the *Remainder Theorem* or actually carry out the long division. Better still, do both.
- [2008 Oxford Admission Test question 1G] (Multiple Choice) To evaluate the sum

$$S(1) + S(2) + S(3) + \dots + S(99)$$

list the numbers from 0 to 99 systematically as

08 09		02	01	00
18 19		12	11	10
	•••		•••	
98 99		92	91	90

(1)

Add up all the units digits. Add up all the tens digits.

[2008 Oxford Admission Test question 1D] (Multiple Choice)
 Use the remainder theorem to give an expression for the remainder when

$$1 + 3x + 5x^2 + 7x^3 + \dots + 99x^{49}$$

is divided by x - 1.

- 9. [2008 AEA question 2]
 - (a) Let the coordinates of P be (x, y).
 You need two simultaneous equations satisfied by x and y.
 To find these equations, use the fact that you know of a line and a curve which pass through P.
 - (b) [To do this part question, you will need to know how to solve differential equations. You may not yet know how to do this.]To find the equation of C, you have to solve the differential equation, and use the coordinates of P to eliminate the arbitrary constant.