
Structural analysis of approximate pattern
matching and algorithmic applications

Panagiotis Charalampopoulos

Birkbeck, University of London, UK

Summer School, École normale supérieure
25 June 2023

Powered by BeamerikZ

Roadmap

Periodicity

Approximate pattern matching under Hamming and edit distance
▶ Structural results: either the pattern is almost periodic or it only has a few

approximate occurrences.
▶ A fast algorithm that relies on primitive (PILLAR) operations.

Implementations of PILLAR operations in different settings: the standard set-

ting and the compressed setting.

Further improvements to the obtained algorithm for approximate pattern match-

ing under edit distance.

1 / 32

Roadmap

Periodicity

Approximate pattern matching under Hamming and edit distance
▶ Structural results: either the pattern is almost periodic or it only has a few

approximate occurrences.
▶ A fast algorithm that relies on primitive (PILLAR) operations.

Implementations of PILLAR operations in different settings: the standard set-

ting and the compressed setting.

Further improvements to the obtained algorithm for approximate pattern match-

ing under edit distance.

1 / 32

Roadmap

Periodicity

Approximate pattern matching under Hamming and edit distance
▶ Structural results: either the pattern is almost periodic or it only has a few

approximate occurrences.
▶ A fast algorithm that relies on primitive (PILLAR) operations.

Implementations of PILLAR operations in different settings: the standard set-

ting and the compressed setting.

Further improvements to the obtained algorithm for approximate pattern match-

ing under edit distance.

1 / 32

Roadmap

Periodicity

Approximate pattern matching under Hamming and edit distance
▶ Structural results: either the pattern is almost periodic or it only has a few

approximate occurrences.
▶ A fast algorithm that relies on primitive (PILLAR) operations.

Implementations of PILLAR operations in different settings: the standard set-

ting and the compressed setting.

Further improvements to the obtained algorithm for approximate pattern match-

ing under edit distance.

1 / 32

Roadmap

Periodicity

Approximate pattern matching under Hamming and edit distance
▶ Structural results: either the pattern is almost periodic or it only has a few

approximate occurrences.
▶ A fast algorithm that relies on primitive (PILLAR) operations.

Implementations of PILLAR operations in different settings: the standard set-

ting and the compressed setting.

Further improvements to the obtained algorithm for approximate pattern match-

ing under edit distance.

1 / 32

Periodicity

Periodicity is one of the most elegant notions in algorithms and combinatorics

on strings.

An integer p > 0 is a period of a string S if S[i] = S[i+ p] for all i = 1, . . . , |S| − p.

The smallest period of string S is the period of S, and is denoted by per(S).

For example, the period of S = a b c a b c a b c a b is 3.

2 / 32

Periodicity

Periodicity is one of the most elegant notions in algorithms and combinatorics

on strings.

An integer p > 0 is a period of a string S if S[i] = S[i+ p] for all i = 1, . . . , |S| − p.

The smallest period of string S is the period of S, and is denoted by per(S).

For example, the period of S = a b c a b c a b c a b is 3.

2 / 32

Periodicity

Periodicity is one of the most elegant notions in algorithms and combinatorics

on strings.

An integer p > 0 is a period of a string S if S[i] = S[i+ p] for all i = 1, . . . , |S| − p.

The smallest period of string S is the period of S, and is denoted by per(S).

For example, the period of S = a b c a b c a b c a b is 3.

2 / 32

Periodicity

Periodicity is one of the most elegant notions in algorithms and combinatorics

on strings.

An integer p > 0 is a period of a string S if S[i] = S[i+ p] for all i = 1, . . . , |S| − p.

The smallest period of string S is the period of S, and is denoted by per(S).

For example, the period of S = a b c a b c a b c a b is 3.

2 / 32

Periodicity

Periodicity is one of the most elegant notions in algorithms and combinatorics

on strings.

An integer p > 0 is a period of a string S if S[i] = S[i+ p] for all i = 1, . . . , |S| − p.

The smallest period of string S is the period of S, and is denoted by per(S).

For example, the period of S = a b c a b c a b c a b is 3.

2 / 32

Periodicity

Periodicity is one of the most elegant notions in algorithms and combinatorics

on strings.

An integer p > 0 is a period of a string S if S[i] = S[i+ p] for all i = 1, . . . , |S| − p.

The smallest period of string S is the period of S, and is denoted by per(S).

For example, the period of S = a b c a b c a b c a b is 3.

6 and 9 are also periods of S.

2 / 32

Periodicity

Periodicity is one of the most elegant notions in algorithms and combinatorics

on strings.

An integer p > 0 is a period of a string S if S[i] = S[i+ p] for all i = 1, . . . , |S| − p.

The smallest period of string S is the period of S, and is denoted by per(S).

For example, the period of S = a b c a b c a b c a b is 3.

6 and 9 are also periods of S.

We say that a string S is periodic if per(S) ≤ |S|/2.

2 / 32

The periodicity lemma (weak version)

Periodicity Lemma (weak version) [Fine and Wilf ’65] If p < q are periods of a

string S and satisfy p + q ≤ |S|, then gcd(p, q) is also a period of S.

Proof. We show that q− p is a period of S.

S a
i j

Let j = i + q− p.

p + q ≤ |S| ⇒ either i− p ≥ 1 or i + q ≤ |S|.

a

(p, q)→ (p, q− p)→ · · · → (p, q mod p)

This yields gcd(p, q) as in Euclid’s algorithm (for computing the gcd of p and q).

3 / 32

The periodicity lemma (weak version)

Periodicity Lemma (weak version) [Fine and Wilf ’65] If p < q are periods of a

string S and satisfy p + q ≤ |S|, then gcd(p, q) is also a period of S.

Proof. We show that q− p is a period of S.

S a
i j

Let j = i + q− p.

p + q ≤ |S| ⇒ either i− p ≥ 1 or i + q ≤ |S|.

a

(p, q)→ (p, q− p)→ · · · → (p, q mod p)

This yields gcd(p, q) as in Euclid’s algorithm (for computing the gcd of p and q).

3 / 32

The periodicity lemma (weak version)

Periodicity Lemma (weak version) [Fine and Wilf ’65] If p < q are periods of a

string S and satisfy p + q ≤ |S|, then gcd(p, q) is also a period of S.

Proof. We show that q− p is a period of S.

S a
i j

Let j = i + q− p.

p + q ≤ |S| ⇒ either i− p ≥ 1 or i + q ≤ |S|.

a

(p, q)→ (p, q− p)→ · · · → (p, q mod p)

This yields gcd(p, q) as in Euclid’s algorithm (for computing the gcd of p and q).

3 / 32

The periodicity lemma (weak version)

Periodicity Lemma (weak version) [Fine and Wilf ’65] If p < q are periods of a

string S and satisfy p + q ≤ |S|, then gcd(p, q) is also a period of S.

Proof. We show that q− p is a period of S.

S a
i j

Let j = i + q− p.

p + q ≤ |S| ⇒ either i− p ≥ 1 or i + q ≤ |S|.

a

(p, q)→ (p, q− p)→ · · · → (p, q mod p)

This yields gcd(p, q) as in Euclid’s algorithm (for computing the gcd of p and q).

3 / 32

The periodicity lemma (weak version)

Periodicity Lemma (weak version) [Fine and Wilf ’65] If p < q are periods of a

string S and satisfy p + q ≤ |S|, then gcd(p, q) is also a period of S.

Proof. We show that q− p is a period of S.

S a
i j

Let j = i + q− p.

p + q ≤ |S| ⇒ either i− p ≥ 1 or i + q ≤ |S|.

a

(p, q)→ (p, q− p)→ · · · → (p, q mod p)

This yields gcd(p, q) as in Euclid’s algorithm (for computing the gcd of p and q).

3 / 32

The periodicity lemma (weak version)

Periodicity Lemma (weak version) [Fine and Wilf ’65] If p < q are periods of a

string S and satisfy p + q ≤ |S|, then gcd(p, q) is also a period of S.

Proof. We show that q− p is a period of S.

S a
i j

Let j = i + q− p.

p + q ≤ |S| ⇒ either i− p ≥ 1 or i + q ≤ |S|.

p

q

i− p
a a

(p, q)→ (p, q− p)→ · · · → (p, q mod p)

This yields gcd(p, q) as in Euclid’s algorithm (for computing the gcd of p and q).

3 / 32

The periodicity lemma (weak version)

Periodicity Lemma (weak version) [Fine and Wilf ’65] If p < q are periods of a

string S and satisfy p + q ≤ |S|, then gcd(p, q) is also a period of S.

Proof. We show that q− p is a period of S.

S a
i j

Let j = i + q− p.

p + q ≤ |S| ⇒ either i− p ≥ 1 or i + q ≤ |S|.

a

q

p

i + q
a

(p, q)→ (p, q− p)→ · · · → (p, q mod p)

This yields gcd(p, q) as in Euclid’s algorithm (for computing the gcd of p and q).

3 / 32

The periodicity lemma (weak version)

Periodicity Lemma (weak version) [Fine and Wilf ’65] If p < q are periods of a

string S and satisfy p + q ≤ |S|, then gcd(p, q) is also a period of S.

Proof. We show that q− p is a period of S.

S a
i j

Let j = i + q− p.

p + q ≤ |S| ⇒ either i− p ≥ 1 or i + q ≤ |S|.

a

(p, q)→ (p, q− p)→ · · · → (p, q mod p)

This yields gcd(p, q) as in Euclid’s algorithm (for computing the gcd of p and q).

3 / 32

Primitivity

A string is primitive if it is not the power of another string.

Examples: ababa is primitive while ababab is not, as it is the 3rd power of ab.

ab is the primitive root of ababab = (ab)3.

Observation: For any string S, the prefix S[1 . . per(S)] is primitive.

Primitivity Lemma: A primitive string U does not have any internal occurrence in

UU. (In other words, U does not match any of its rotations.)

Proof: U

U2

4 / 32

Primitivity

A string is primitive if it is not the power of another string.

Examples: ababa is primitive while ababab is not, as it is the 3rd power of ab.

ab is the primitive root of ababab = (ab)3.

Observation: For any string S, the prefix S[1 . . per(S)] is primitive.

Primitivity Lemma: A primitive string U does not have any internal occurrence in

UU. (In other words, U does not match any of its rotations.)

Proof: U

U2

4 / 32

Primitivity

A string is primitive if it is not the power of another string.

Examples: ababa is primitive while ababab is not, as it is the 3rd power of ab.

ab is the primitive root of ababab = (ab)3.

Observation: For any string S, the prefix S[1 . . per(S)] is primitive.

Primitivity Lemma: A primitive string U does not have any internal occurrence in

UU. (In other words, U does not match any of its rotations.)

Proof: U

U2

4 / 32

Primitivity

A string is primitive if it is not the power of another string.

Examples: ababa is primitive while ababab is not, as it is the 3rd power of ab.

ab is the primitive root of ababab = (ab)3.

Observation: For any string S, the prefix S[1 . . per(S)] is primitive.

Primitivity Lemma: A primitive string U does not have any internal occurrence in

UU. (In other words, U does not match any of its rotations.)

Proof: U

U2

4 / 32

Primitivity

A string is primitive if it is not the power of another string.

Examples: ababa is primitive while ababab is not, as it is the 3rd power of ab.

ab is the primitive root of ababab = (ab)3.

Observation: For any string S, the prefix S[1 . . per(S)] is primitive.

Primitivity Lemma: A primitive string U does not have any internal occurrence in

UU. (In other words, U does not match any of its rotations.)

Proof: U

U2

4 / 32

Primitivity

A string is primitive if it is not the power of another string.

Examples: ababa is primitive while ababab is not, as it is the 3rd power of ab.

ab is the primitive root of ababab = (ab)3.

Observation: For any string S, the prefix S[1 . . per(S)] is primitive.

Primitivity Lemma: A primitive string U does not have any internal occurrence in

UU. (In other words, U does not match any of its rotations.)

Proof: U

U2

4 / 32

Primitivity

A string is primitive if it is not the power of another string.

Examples: ababa is primitive while ababab is not, as it is the 3rd power of ab.

ab is the primitive root of ababab = (ab)3.

Observation: For any string S, the prefix S[1 . . per(S)] is primitive.

Primitivity Lemma: A primitive string U does not have any internal occurrence in

UU. (In other words, U does not match any of its rotations.)

Proof: U

U2

4 / 32

Primitivity

A string is primitive if it is not the power of another string.

Examples: ababa is primitive while ababab is not, as it is the 3rd power of ab.

ab is the primitive root of ababab = (ab)3.

Observation: For any string S, the prefix S[1 . . per(S)] is primitive.

Primitivity Lemma: A primitive string U does not have any internal occurrence in

UU. (In other words, U does not match any of its rotations.)

Proof: p and q are periods of U and p + q = |U|
p q
U

U2

4 / 32

Primitivity

A string is primitive if it is not the power of another string.

Examples: ababa is primitive while ababab is not, as it is the 3rd power of ab.

ab is the primitive root of ababab = (ab)3.

Observation: For any string S, the prefix S[1 . . per(S)] is primitive.

Primitivity Lemma: A primitive string U does not have any internal occurrence in

UU. (In other words, U does not match any of its rotations.)

Proof: p and q are periods of U and p + q = |U|
Periodicity lemma⇒ gcd(p, q) a period of U!p q

U

U2

4 / 32

Primitivity

A string is primitive if it is not the power of another string.

Examples: ababa is primitive while ababab is not, as it is the 3rd power of ab.

ab is the primitive root of ababab = (ab)3.

Observation: For any string S, the prefix S[1 . . per(S)] is primitive.

Primitivity Lemma: A primitive string U does not have any internal occurrence in

UU. (In other words, U does not match any of its rotations.)

Proof: p and q are periods of U and p + q = |U|
Periodicity lemma⇒ gcd(p, q) a period of U!

U is a power of U[1 . . gcd(p, q)]

U

U2

4 / 32

Algorithmic uses of periodicity

It is very often the case that an algorithmic problem on strings admits a simple

efficient solution if there is no periodicity.

In the presence of periodicity, one might be able to use the extra structure to

still obtain an efficient solution – but sometimes not/less simple!

The solutions to many string algorithmic problems distinguish between the ape-

riodic and periodic cases.

5 / 32

Algorithmic uses of periodicity

It is very often the case that an algorithmic problem on strings admits a simple

efficient solution if there is no periodicity.

In the presence of periodicity, one might be able to use the extra structure to

still obtain an efficient solution – but sometimes not/less simple!

The solutions to many string algorithmic problems distinguish between the ape-

riodic and periodic cases.

5 / 32

Algorithmic uses of periodicity

It is very often the case that an algorithmic problem on strings admits a simple

efficient solution if there is no periodicity.

In the presence of periodicity, one might be able to use the extra structure to

still obtain an efficient solution – but sometimes not/less simple!

The solutions to many string algorithmic problems distinguish between the ape-

riodic and periodic cases.

5 / 32

Algorithmic uses of periodicity

It is very often the case that an algorithmic problem on strings admits a simple

efficient solution if there is no periodicity.

In the presence of periodicity, one might be able to use the extra structure to

still obtain an efficient solution – but sometimes not/less simple!

The solutions to many string algorithmic problems distinguish between the ape-

riodic and periodic cases.

5 / 32

A prime example: Pattern matching and the Morris-Pratt algorithm I

Pattern Matching

Given a text T of length n and a pattern P of length m, compute the occur-

rences of P in T.

T ababacabcdeabcabababaabcbcc

6 / 32

A prime example: Pattern matching and the Morris-Pratt algorithm I

Pattern Matching

Given a text T of length n and a pattern P of length m, compute the occur-

rences of P in T.

T ababacabcdeabcabababaabcbcc

6 / 32

A prime example: Pattern matching and the Morris-Pratt algorithm I

Pattern Matching

Given a text T of length n and a pattern P of length m, compute the occur-

rences of P in T.

T ababacabcdeabcabababaabcbcc

P abababaabcb

Let us consider a naı̈ve sliding window approach that takes O(nm) time.

6 / 32

A prime example: Pattern matching and the Morris-Pratt algorithm I

Pattern Matching

Given a text T of length n and a pattern P of length m, compute the occur-

rences of P in T.

T ababacabcdeabcabababaabcbcc

P abababaabcb

Let us consider a naı̈ve sliding window approach that takes O(nm) time.

6 / 32

A prime example: Pattern matching and the Morris-Pratt algorithm I

Pattern Matching

Given a text T of length n and a pattern P of length m, compute the occur-

rences of P in T.

T ababacabcdeabcabababaabcbcc

P abababaabcb

Let us consider a naı̈ve sliding window approach that takes O(nm) time.

6 / 32

A prime example: Pattern matching and the Morris-Pratt algorithm I

Pattern Matching

Given a text T of length n and a pattern P of length m, compute the occur-

rences of P in T.

T ababacabcdeabcabababaabcbcc

What if there is no periodicity whatsoever in the pattern?

(That is, what if none of P’s substrings have a non-trivial period?)

For example, what if P = abcdefghijk?

6 / 32

A prime example: Pattern matching and the Morris-Pratt algorithm I

Pattern Matching

Given a text T of length n and a pattern P of length m, compute the occur-

rences of P in T.

T ababacabcdeabcabababaabcbcc

P abcdefghijk

What if there is no periodicity whatsoever in the pattern?

(That is, what if none of P’s substrings have a non-trivial period?)

For example, what if P = abcdefghijk?

6 / 32

A prime example: Pattern matching and the Morris-Pratt algorithm I

Pattern Matching

Given a text T of length n and a pattern P of length m, compute the occur-

rences of P in T.

T ababacabcdeabcabababaabcbcc

P abcdefghijk

What if there is no periodicity whatsoever in the pattern?

(That is, what if none of P’s substrings have a non-trivial period?)

For example, what if P = abcdefghijk?

We compare each letter of T with at most two letters of P. → O(n) time!

6 / 32

A prime example: Pattern matching and the Morris-Pratt algorithm I

Pattern Matching

Given a text T of length n and a pattern P of length m, compute the occur-

rences of P in T.

T ababacabcdeabcabababaabcbcc

P abcdefghijk

What if there is no periodicity whatsoever in the pattern?

(That is, what if none of P’s substrings have a non-trivial period?)

For example, what if P = abcdefghijk?

We compare each letter of T with at most two letters of P. → O(n) time!

6 / 32

A prime example: Pattern matching and the Morris-Pratt algorithm II

Morris-Pratt: A sliding window algorithm with the following rule for shifting:

shift by the period of the partial (or full) match!

T ababacabcdeabcabababaabcbcc

P abababaabcb

We do not lose any occurrences, as any smaller shift would give a mismatch.

We do not need to perform any comparisons involving letters of T that were

already matched!

Each successful letter comparison consumes a letter of T, while each unsuccess-

ful letter comparison shifts P. → O(n) time!

7 / 32

A prime example: Pattern matching and the Morris-Pratt algorithm II

Morris-Pratt: A sliding window algorithm with the following rule for shifting:

shift by the period of the partial (or full) match!

T ababacabcdeabcabababaabcbcc

P abababaabcb

We do not lose any occurrences, as any smaller shift would give a mismatch.

We do not need to perform any comparisons involving letters of T that were

already matched!

Each successful letter comparison consumes a letter of T, while each unsuccess-

ful letter comparison shifts P. → O(n) time!

7 / 32

A prime example: Pattern matching and the Morris-Pratt algorithm II

Morris-Pratt: A sliding window algorithm with the following rule for shifting:

shift by the period of the partial (or full) match!

T ababacabcdeabcabababaabcbcc

P abababaabcb

We do not lose any occurrences, as any smaller shift would give a mismatch.

We do not need to perform any comparisons involving letters of T that were

already matched!

Each successful letter comparison consumes a letter of T, while each unsuccess-

ful letter comparison shifts P. → O(n) time!

7 / 32

A prime example: Pattern matching and the Morris-Pratt algorithm II

Morris-Pratt: A sliding window algorithm with the following rule for shifting:

shift by the period of the partial (or full) match!

P abababaabcb

T ababacabcdeabcabababaabcbcc

P abababaabcb

We do not lose any occurrences, as any smaller shift would give a mismatch.

We do not need to perform any comparisons involving letters of T that were

already matched!

Each successful letter comparison consumes a letter of T, while each unsuccess-

ful letter comparison shifts P. → O(n) time!

7 / 32

A prime example: Pattern matching and the Morris-Pratt algorithm II

Morris-Pratt: A sliding window algorithm with the following rule for shifting:

shift by the period of the partial (or full) match!

P abababaabcb

T ababacabcdeabcabababaabcbcc

P abababaabcb

We do not lose any occurrences, as any smaller shift would give a mismatch.

We do not need to perform any comparisons involving letters of T that were

already matched!

Each successful letter comparison consumes a letter of T, while each unsuccess-

ful letter comparison shifts P. → O(n) time!

7 / 32

A prime example: Pattern matching and the Morris-Pratt algorithm II

Morris-Pratt: A sliding window algorithm with the following rule for shifting:

shift by the period of the partial (or full) match!

P abababaabcb

T ababacabcdeabcabababaabcbcc

P abababaabcb

We do not lose any occurrences, as any smaller shift would give a mismatch.

We do not need to perform any comparisons involving letters of T that were

already matched!

Each successful letter comparison consumes a letter of T, while each unsuccess-

ful letter comparison shifts P. → O(n) time!
7 / 32

The Structure of Exact Pattern Matching

T

P

Fact [folklore] Given a pattern P of length m and a text T of length n ≤ 3/2m at

least one of the following holds:

• The pattern P has at most one occurrence in T.

• The pattern P is periodic.

8 / 32

The Structure of Exact Pattern Matching

T

P

Fact [folklore] Given a pattern P of length m and a text T of length n ≤ 3/2m at

least one of the following holds:

• The pattern P has at most one occurrence in T.

• The pattern P is periodic.

8 / 32

The Structure of Exact Pattern Matching

T

P

Fact [folklore] Given a pattern P of length m and a text T of length n ≤ 3/2m at

least one of the following holds:

• The pattern P has at most one occurrence in T.

• The pattern P is periodic.

8 / 32

The Structure of Exact Pattern Matching

T

P

P

Fact [folklore] Given a pattern P of length m and a text T of length n ≤ 3/2m at

least one of the following holds:

• The pattern P has at most one occurrence in T.

• The pattern P is periodic.

8 / 32

The Structure of Exact Pattern Matching

T

P

P

Fact [folklore] Given a pattern P of length m and a text T of length n ≤ 3/2m at

least one of the following holds:

• The pattern P has at most one occurrence in T.

• The pattern P is periodic.

8 / 32

The Structure of Exact Pattern Matching

T

P

P

Fact [folklore] Given a pattern P of length m and a text T of length n ≤ 3/2m at

least one of the following holds:

• The pattern P has at most one occurrence in T.

• The pattern P is periodic.

8 / 32

The Structure of Exact Pattern Matching

T

P

P

Fact [folklore] Given a pattern P of length m and a text T of length n ≤ 3/2m at

least one of the following holds:

• The pattern P has at most one occurrence in T.

• The pattern P is periodic.

8 / 32

The Structure of Exact Pattern Matching

T

P

P

Fact [folklore] Given a pattern P of length m and a text T of length n ≤ 3/2m at

least one of the following holds:

• The pattern P has at most one occurrence in T.

• The pattern P is periodic.

8 / 32

The Structure of Exact Pattern Matching

T

P

P

Fact [folklore] Given a pattern P of length m and a text T of length n ≤ 3/2m at

least one of the following holds:

• The pattern P has at most one occurrence in T.

• The pattern P is periodic.

The fragment of T spanned by P’s occurrences is periodic as well.

8 / 32

The Structure of Exact Pattern Matching

T

P

P

Fact [folklore] Given a pattern P of length m and a text T of length n ≤ 3/2m at

least one of the following holds:

• The pattern P has at most one occurrence in T.

• The pattern P is periodic.

The standard trick: Our assumption on the length of the text is not restrictive.

If the text is much longer that the pattern, we can always consider separately

O(n/m) fragments of T of length ≤ 3/2m that overlap by m− 1 positions.
8 / 32

Exact pattern matching can be very restrictive

Think of human spelling mistakes or DNA sequencing errors, for example.

In approximate pattern matching, we are interested in finding substrings of T

that are similar to P. Today, we will talk about the two most commonly encoun-

tered metrics in this context: the Hamming distance and the edit distance.

The Hamming distance of two equal-length strings is the number of positions on

which they differ (equivalently, the number of mismatches).

The edit distance of two strings is the minimum number of edits (letter inser-

tions, deletions, substitutions) required to transform one string into the other.

We will discuss the structure of approximate pattern matching under each of

these metrics and see how the structural analysis yields efficient algorithms in

several settings.

9 / 32

Exact pattern matching can be very restrictive

Think of human spelling mistakes or DNA sequencing errors, for example.

In approximate pattern matching, we are interested in finding substrings of T

that are similar to P. Today, we will talk about the two most commonly encoun-

tered metrics in this context: the Hamming distance and the edit distance.

The Hamming distance of two equal-length strings is the number of positions on

which they differ (equivalently, the number of mismatches).

The edit distance of two strings is the minimum number of edits (letter inser-

tions, deletions, substitutions) required to transform one string into the other.

We will discuss the structure of approximate pattern matching under each of

these metrics and see how the structural analysis yields efficient algorithms in

several settings.

9 / 32

Exact pattern matching can be very restrictive

Think of human spelling mistakes or DNA sequencing errors, for example.

In approximate pattern matching, we are interested in finding substrings of T

that are similar to P. Today, we will talk about the two most commonly encoun-

tered metrics in this context: the Hamming distance and the edit distance.

The Hamming distance of two equal-length strings is the number of positions on

which they differ (equivalently, the number of mismatches).

The edit distance of two strings is the minimum number of edits (letter inser-

tions, deletions, substitutions) required to transform one string into the other.

We will discuss the structure of approximate pattern matching under each of

these metrics and see how the structural analysis yields efficient algorithms in

several settings.

9 / 32

Exact pattern matching can be very restrictive

Think of human spelling mistakes or DNA sequencing errors, for example.

In approximate pattern matching, we are interested in finding substrings of T

that are similar to P. Today, we will talk about the two most commonly encoun-

tered metrics in this context: the Hamming distance and the edit distance.

The Hamming distance of two equal-length strings is the number of positions on

which they differ (equivalently, the number of mismatches).

The edit distance of two strings is the minimum number of edits (letter inser-

tions, deletions, substitutions) required to transform one string into the other.

We will discuss the structure of approximate pattern matching under each of

these metrics and see how the structural analysis yields efficient algorithms in

several settings.

9 / 32

Exact pattern matching can be very restrictive

Think of human spelling mistakes or DNA sequencing errors, for example.

In approximate pattern matching, we are interested in finding substrings of T

that are similar to P. Today, we will talk about the two most commonly encoun-

tered metrics in this context: the Hamming distance and the edit distance.

The Hamming distance of two equal-length strings is the number of positions on

which they differ (equivalently, the number of mismatches).

The edit distance of two strings is the minimum number of edits (letter inser-

tions, deletions, substitutions) required to transform one string into the other.

We will discuss the structure of approximate pattern matching under each of

these metrics and see how the structural analysis yields efficient algorithms in

several settings.

9 / 32

Exact pattern matching can be very restrictive

Think of human spelling mistakes or DNA sequencing errors, for example.

In approximate pattern matching, we are interested in finding substrings of T

that are similar to P. Today, we will talk about the two most commonly encoun-

tered metrics in this context: the Hamming distance and the edit distance.

The Hamming distance of two equal-length strings is the number of positions on

which they differ (equivalently, the number of mismatches).

The edit distance of two strings is the minimum number of edits (letter inser-

tions, deletions, substitutions) required to transform one string into the other.

We will discuss the structure of approximate pattern matching under each of

these metrics and see how the structural analysis yields efficient algorithms in

several settings.
9 / 32

Approximate Pattern Matching under the Hamming Distance and the Edit Distance

Pattern Matching under Hamming Distance

Given a text T, a pattern P, and an integer threshold k, compute the length-

|P| substrings of T that are at Hamming distance at most k from P.

Pattern Matching under Edit Distance

Given a text T, a pattern P, and an integer threshold k, compute the (start-

ing positions of) substrings of T that are at edit distance at most k from P.

10 / 32

Approximate Pattern Matching under the Hamming Distance and the Edit Distance

Pattern Matching under Hamming Distance

Given a text T, a pattern P, and an integer threshold k, compute the length-

|P| substrings of T that are at Hamming distance at most k from P.

Pattern Matching under Edit Distance

Given a text T, a pattern P, and an integer threshold k, compute the (start-

ing positions of) substrings of T that are at edit distance at most k from P.

10 / 32

Approximate Pattern Matching under the Hamming Distance and the Edit Distance

Pattern Matching under Hamming Distance

Given a text T, a pattern P, and an integer threshold k, compute the length-

|P| substrings of T that are at Hamming distance at most k from P.

Pattern Matching under Edit Distance

Given a text T, a pattern P, and an integer threshold k, compute the (start-

ing positions of) substrings of T that are at edit distance at most k from P.

10 / 32

Approximate Pattern Matching under the Hamming Distance and the Edit Distance

Pattern Matching under Hamming Distance

Given a text T, a pattern P, and an integer threshold k, compute the length-

|P| substrings of T that are at Hamming distance at most k from P.

Pattern Matching under Edit Distance

Given a text T, a pattern P, and an integer threshold k, compute the (start-

ing positions of) substrings of T that are at edit distance at most k from P.

10 / 32

Approximate Pattern Matching under the Hamming Distance and the Edit Distance

Pattern Matching under Hamming Distance

Given a text T, a pattern P, and an integer threshold k, compute the length-

|P| substrings of T that are at Hamming distance at most k from P.

Pattern Matching under Edit Distance

Given a text T, a pattern P, and an integer threshold k, compute the (start-

ing positions of) substrings of T that are at edit distance at most k from P.

10 / 32

The structure was understood only recently!

There is a long history of algorithmic results for these problems, which we will

discuss later.

Some of these algorithms heavily relied on exploiting the periodic structure of P

and T, and even implied some (somewhat weak) structural results.

The first explicitly stated structural result (for Hamming distance) was proved by

Bringmann, Künnemann, and Wellnitz in 2019.

This result was tightened and extended to also cover approximate pattern

matching under the edit distance by C., Kociumaka, and Wellnitz in 2020.

11 / 32

The structure was understood only recently!

There is a long history of algorithmic results for these problems, which we will

discuss later.

Some of these algorithms heavily relied on exploiting the periodic structure of P

and T, and even implied some (somewhat weak) structural results.

The first explicitly stated structural result (for Hamming distance) was proved by

Bringmann, Künnemann, and Wellnitz in 2019.

This result was tightened and extended to also cover approximate pattern

matching under the edit distance by C., Kociumaka, and Wellnitz in 2020.

11 / 32

The structure was understood only recently!

There is a long history of algorithmic results for these problems, which we will

discuss later.

Some of these algorithms heavily relied on exploiting the periodic structure of P

and T, and even implied some (somewhat weak) structural results.

The first explicitly stated structural result (for Hamming distance) was proved by

Bringmann, Künnemann, and Wellnitz in 2019.

This result was tightened and extended to also cover approximate pattern

matching under the edit distance by C., Kociumaka, and Wellnitz in 2020.

11 / 32

The structure was understood only recently!

There is a long history of algorithmic results for these problems, which we will

discuss later.

Some of these algorithms heavily relied on exploiting the periodic structure of P

and T, and even implied some (somewhat weak) structural results.

The first explicitly stated structural result (for Hamming distance) was proved by

Bringmann, Künnemann, and Wellnitz in 2019.

This result was tightened and extended to also cover approximate pattern

matching under the edit distance by C., Kociumaka, and Wellnitz in 2020.

11 / 32

The structure was understood only recently!

There is a long history of algorithmic results for these problems, which we will

discuss later.

Some of these algorithms heavily relied on exploiting the periodic structure of P

and T, and even implied some (somewhat weak) structural results.

The first explicitly stated structural result (for Hamming distance) was proved by

Bringmann, Künnemann, and Wellnitz in 2019.

This result was tightened and extended to also cover approximate pattern

matching under the edit distance by C., Kociumaka, and Wellnitz in 2020.

11 / 32

Partitioning the pattern and extending seeds

We will now see a technique that is also useful in practice.

Observation: Let us partition P into k+ 1 (roughly) equal chunks, each of length

≈ m/(k+1). In any approximate match of P in T, at least one of the chunks must

be matched exactly.

P

T

Algorithm strategy: Find the exact matches of each chunk in T (called seeds)

and try to extend them to approximate matches of P.

Observation: If a chunk Pi is aperiodic, its occurrences cannot overlap by more

than |Pi|/2 positions⇒ at most n/(|Pi|/2) occurrences, which is O(k · n/m).

12 / 32

Partitioning the pattern and extending seeds

We will now see a technique that is also useful in practice.

Observation: Let us partition P into k+ 1 (roughly) equal chunks, each of length

≈ m/(k+1). In any approximate match of P in T, at least one of the chunks must

be matched exactly.

P

T

Algorithm strategy: Find the exact matches of each chunk in T (called seeds)

and try to extend them to approximate matches of P.

Observation: If a chunk Pi is aperiodic, its occurrences cannot overlap by more

than |Pi|/2 positions⇒ at most n/(|Pi|/2) occurrences, which is O(k · n/m).

12 / 32

Partitioning the pattern and extending seeds

We will now see a technique that is also useful in practice.

Observation: Let us partition P into k+ 1 (roughly) equal chunks, each of length

≈ m/(k+1). In any approximate match of P in T, at least one of the chunks must

be matched exactly.

P

T

Algorithm strategy: Find the exact matches of each chunk in T (called seeds)

and try to extend them to approximate matches of P.

Observation: If a chunk Pi is aperiodic, its occurrences cannot overlap by more

than |Pi|/2 positions⇒ at most n/(|Pi|/2) occurrences, which is O(k · n/m).

12 / 32

Partitioning the pattern and extending seeds

We will now see a technique that is also useful in practice.

Observation: Let us partition P into k+ 1 (roughly) equal chunks, each of length

≈ m/(k+1). In any approximate match of P in T, at least one of the chunks must

be matched exactly.

P

T

Algorithm strategy: Find the exact matches of each chunk in T (called seeds)

and try to extend them to approximate matches of P.

Observation: If a chunk Pi is aperiodic, its occurrences cannot overlap by more

than |Pi|/2 positions⇒ at most n/(|Pi|/2) occurrences, which is O(k · n/m).

12 / 32

Partitioning the pattern and extending seeds

We will now see a technique that is also useful in practice.

Observation: Let us partition P into k+ 1 (roughly) equal chunks, each of length

≈ m/(k+1). In any approximate match of P in T, at least one of the chunks must

be matched exactly.

P

T

Algorithm strategy: Find the exact matches of each chunk in T (called seeds)

and try to extend them to approximate matches of P.

Observation: If a chunk Pi is aperiodic, its occurrences cannot overlap by more

than |Pi|/2 positions⇒ at most n/(|Pi|/2) occurrences, which is O(k · n/m).
12 / 32

The Marking Trick (for Hamming distance and n ≤ 2m)

Complexity of the seeding technique in an aperiodic case:
▶ O(k) calls to exact pattern matching, one for each chunk;
▶ O(k2) attempts to extend a seed (O(k) for each of the O(k) chunks).

Marking trick: Partition P into 2k chunks, each of length ≈ m/(2k). In any ap-

proximate match of P in T, at least k of the chunks must be matched exactly.

P

T

For each exact match of a chunk, give a mark to the candidate starting position

of an approximate occurrence in T. Then, we only need to verify candidate start-

ing positions with ≥ k marks. These are O(k) as we have O(k2) marks overall.

13 / 32

The Marking Trick (for Hamming distance and n ≤ 2m)

Complexity of the seeding technique in an aperiodic case:
▶ O(k) calls to exact pattern matching, one for each chunk;
▶ O(k2) attempts to extend a seed (O(k) for each of the O(k) chunks).

Each seed gives a candidate starting position for an approximate

occurrence.

This gives us an O(k2) bound on approximate occurrences in the case

where all chunks are aperiodic!

Marking trick: Partition P into 2k chunks, each of length ≈ m/(2k). In any ap-

proximate match of P in T, at least k of the chunks must be matched exactly.

P

T

For each exact match of a chunk, give a mark to the candidate starting position

of an approximate occurrence in T. Then, we only need to verify candidate start-

ing positions with ≥ k marks. These are O(k) as we have O(k2) marks overall.

13 / 32

The Marking Trick (for Hamming distance and n ≤ 2m)

Complexity of the seeding technique in an aperiodic case:
▶ O(k) calls to exact pattern matching, one for each chunk;
▶ O(k2) attempts to extend a seed (O(k) for each of the O(k) chunks).

Marking trick: Partition P into 2k chunks, each of length ≈ m/(2k). In any ap-

proximate match of P in T, at least k of the chunks must be matched exactly.

P

T

For each exact match of a chunk, give a mark to the candidate starting position

of an approximate occurrence in T. Then, we only need to verify candidate start-

ing positions with ≥ k marks. These are O(k) as we have O(k2) marks overall.

13 / 32

The Marking Trick (for Hamming distance and n ≤ 2m)

Complexity of the seeding technique in an aperiodic case:
▶ O(k) calls to exact pattern matching, one for each chunk;
▶ O(k2) attempts to extend a seed (O(k) for each of the O(k) chunks).

Marking trick: Partition P into 2k chunks, each of length ≈ m/(2k). In any ap-

proximate match of P in T, at least k of the chunks must be matched exactly.

P

T

For each exact match of a chunk, give a mark to the candidate starting position

of an approximate occurrence in T. Then, we only need to verify candidate start-

ing positions with ≥ k marks. These are O(k) as we have O(k2) marks overall.
13 / 32

The First Structural Result for Hamming Distance [BKW’19]

Theorem (Bringmann-Künnemann-Wellnitz, SODA 2019)

Given a pattern 𝑃 of length 𝑚, a text 𝑇 of length 𝑛 ≤ 2𝑚, and a threshold 𝑘 ≤ 𝑚,
at least one of the following holds:
The number of 𝑘-mismatch occurrences of 𝑃 in 𝑇 is 𝑂(𝑘2).
The pattern 𝑃 is almost periodic (at HD ≤ 6𝑘 to a string with period 𝑂(𝑚/𝑘)).

Proof Overview

Structural Theorem (HD) [Bringmann-Künnemann-Wellnitz, SODA 2019]

For a pattern 𝑃 of length 𝑚 and a text 𝑇 of length ≤ 2|𝑃|, at least one of the following holds:
The number of 𝑘-mismatch occurrences of 𝑃 in 𝑇 is at most 1000𝑘2.
𝑃 is at Hamming distance ≤ 6𝑘 to a string with period 𝑂(𝑚/𝑘).

𝑃1

𝑃

𝑇

𝑄∗𝑖 ⋯ ⋯

𝑇𝑗

Proof Overview

Structural Theorem (HD) [Bringmann-Künnemann-Wellnitz, SODA 2019]

For a pattern 𝑃 of length 𝑚 and a text 𝑇 of length ≤ 2|𝑃|, at least one of the following holds:
The number of 𝑘-mismatch occurrences of 𝑃 in 𝑇 is at most 1000𝑘2.
𝑃 is at Hamming distance ≤ 6𝑘 to a string with period 𝑂(𝑚/𝑘).

𝑃1

𝑃

𝑇 ′

𝑄∗𝑖 ⋯ ⋯

𝑇𝑗

Consider 𝑇 ′: shortest substring of 𝑇 that contains all 𝑘-mismatch occurrences of 𝑃.

Proof Overview

Structural Theorem (HD) [Bringmann-Künnemann-Wellnitz, SODA 2019]

For a pattern 𝑃 of length 𝑚 and a text 𝑇 of length ≤ 2|𝑃|, at least one of the following holds:
The number of 𝑘-mismatch occurrences of 𝑃 in 𝑇 is at most 1000𝑘2.
𝑃 is at Hamming distance ≤ 6𝑘 to a string with period 𝑂(𝑚/𝑘).

𝑃1

𝑃

𝑇 ′

𝑄∗𝑖 ⋯ ⋯

𝑇𝑗

𝑃1 𝑃2 𝑃𝑖 𝑃16𝑘

⋯ ⋯

Partition 𝑃 into 16𝑘 parts 𝑃𝑖 of (roughly) equal length.

Proof Overview

Structural Theorem (HD) [Bringmann-Künnemann-Wellnitz, SODA 2019]

For a pattern 𝑃 of length 𝑚 and a text 𝑇 of length ≤ 2|𝑃|, at least one of the following holds:
The number of 𝑘-mismatch occurrences of 𝑃 in 𝑇 is at most 1000𝑘2.
𝑃 is at Hamming distance ≤ 6𝑘 to a string with period 𝑂(𝑚/𝑘).

𝑃1

𝑃

𝑇 ′

𝑄∗𝑖 ⋯ ⋯

𝑇𝑗

𝑃𝑖

In any 𝑘-mismatch occurrence of 𝑃 in 𝑇 ′ at least one of the 𝑃𝑖’s must be matched exactly. Fix
some 𝑃𝑖 and assume that it is periodic; otherwise it only has 𝑂(𝑘) occurrences in 𝑇.

Proof Overview

Structural Theorem (HD) [Bringmann-Künnemann-Wellnitz, SODA 2019]

For a pattern 𝑃 of length 𝑚 and a text 𝑇 of length ≤ 2|𝑃|, at least one of the following holds:
The number of 𝑘-mismatch occurrences of 𝑃 in 𝑇 is at most 1000𝑘2.
𝑃 is at Hamming distance ≤ 6𝑘 to a string with period 𝑂(𝑚/𝑘).

𝑃1

𝑃

𝑇 ′

𝑄∗𝑖 ⋯ ⋯

𝑇𝑗

𝑃𝑖

𝑄𝑖𝑄𝑖

Let 𝑄𝑖 be the prefix of 𝑃𝑖 whose length is equal to the period of 𝑃𝑖.

Proof Overview

Structural Theorem (HD) [Bringmann-Künnemann-Wellnitz, SODA 2019]

For a pattern 𝑃 of length 𝑚 and a text 𝑇 of length ≤ 2|𝑃|, at least one of the following holds:
The number of 𝑘-mismatch occurrences of 𝑃 in 𝑇 is at most 1000𝑘2.
𝑃 is at Hamming distance ≤ 6𝑘 to a string with period 𝑂(𝑚/𝑘).

𝑃1

𝑃

𝑇 ′

𝑄∗𝑖 ⋯ ⋯

𝑇𝑗

𝑃𝑖

𝑄𝑖 𝑄𝑖

𝑄∗𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖⋯ ⋯

Find the first 3𝑘 mismatches between 𝑃 and 𝑄∗𝑖 before and after 𝑃𝑖.
(We call such mismatches misperiods from now on.)

Proof Overview

Structural Theorem (HD) [Bringmann-Künnemann-Wellnitz, SODA 2019]

For a pattern 𝑃 of length 𝑚 and a text 𝑇 of length ≤ 2|𝑃|, at least one of the following holds:
The number of 𝑘-mismatch occurrences of 𝑃 in 𝑇 is at most 1000𝑘2.
𝑃 is at Hamming distance ≤ 6𝑘 to a string with period 𝑂(𝑚/𝑘).

𝑃1

𝑃

𝑇 ′

𝑄∗𝑖 ⋯ ⋯

𝑇𝑗

𝑃𝑖

𝑄𝑖 𝑄𝑖

≤ 3𝑘 misp. ≤ 3𝑘 misp.

𝑄∗𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖⋯ ⋯

Find the first 3𝑘 mismatches between 𝑃 and 𝑄∗𝑖 before and after 𝑃𝑖.
(We call such mismatches misperiods from now on.)

Proof Overview

Structural Theorem (HD) [Bringmann-Künnemann-Wellnitz, SODA 2019]

For a pattern 𝑃 of length 𝑚 and a text 𝑇 of length ≤ 2|𝑃|, at least one of the following holds:
The number of 𝑘-mismatch occurrences of 𝑃 in 𝑇 is at most 1000𝑘2.
𝑃 is at Hamming distance ≤ 6𝑘 to a string with period 𝑂(𝑚/𝑘).

𝑃1

𝑃

𝑇 ′

𝑄∗𝑖 ⋯ ⋯

𝑇𝑗

𝑄𝑖 𝑄𝑖

< 6𝑘 misp.

𝑄∗𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖⋯ ⋯

Proof Overview

Structural Theorem (HD) [Bringmann-Künnemann-Wellnitz, SODA 2019]

For a pattern 𝑃 of length 𝑚 and a text 𝑇 of length ≤ 2|𝑃|, at least one of the following holds:
The number of 𝑘-mismatch occurrences of 𝑃 in 𝑇 is at most 1000𝑘2.
𝑃 is at Hamming distance ≤ 6𝑘 to a string with period 𝑂(𝑚/𝑘).

𝑃1

𝑃

𝑇 ′

𝑄∗𝑖 ⋯ ⋯

𝑇𝑗

𝑄𝑖 𝑄𝑖

≤ 3𝑘 misp. ≤ 3𝑘 misp.

𝑄∗𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖⋯ ⋯

We henceforth assume that we have found 3𝑘 misperiods in at least one of the two sides of 𝑃𝑖.

Proof Overview

Structural Theorem (HD) [Bringmann-Künnemann-Wellnitz, SODA 2019]

For a pattern 𝑃 of length 𝑚 and a text 𝑇 of length ≤ 2|𝑃|, at least one of the following holds:
The number of 𝑘-mismatch occurrences of 𝑃 in 𝑇 is at most 1000𝑘2.
𝑃 is at Hamming distance ≤ 6𝑘 to a string with period 𝑂(𝑚/𝑘).

𝑃1

𝑃

𝑇 ′

𝑄∗𝑖 ⋯ ⋯

𝑇𝑗

𝑃𝑖

𝑄𝑖 𝑄𝑖

= 3𝑘 misp.

𝑄∗𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖⋯ ⋯

We henceforth assume that we have found 3𝑘 misperiods in at least one of the two sides of 𝑃𝑖.

Proof Overview

Structural Theorem (HD) [Bringmann-Künnemann-Wellnitz, SODA 2019]

For a pattern 𝑃 of length 𝑚 and a text 𝑇 of length ≤ 2|𝑃|, at least one of the following holds:
The number of 𝑘-mismatch occurrences of 𝑃 in 𝑇 is at most 1000𝑘2.
𝑃 is at Hamming distance ≤ 6𝑘 to a string with period 𝑂(𝑚/𝑘).

𝑃1

𝑃

𝑇 ′

𝑄∗𝑖 ⋯ ⋯

𝑇𝑗

𝑃𝑖

𝑄𝑖 𝑄𝑖

= 3𝑘 misp.

𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖

𝑄∗𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖⋯ ⋯

Consider the occurrences of 𝑄𝑖 in 𝑇
′.

Proof Overview

Structural Theorem (HD) [Bringmann-Künnemann-Wellnitz, SODA 2019]

For a pattern 𝑃 of length 𝑚 and a text 𝑇 of length ≤ 2|𝑃|, at least one of the following holds:
The number of 𝑘-mismatch occurrences of 𝑃 in 𝑇 is at most 1000𝑘2.
𝑃 is at Hamming distance ≤ 6𝑘 to a string with period 𝑂(𝑚/𝑘).

𝑃1

𝑃

𝑇 ′

𝑄∗𝑖 ⋯ ⋯

𝑇𝑗

𝑃𝑖

𝑄𝑖 𝑄𝑖

= 3𝑘 misp.

𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖

𝑄∗𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖⋯ ⋯

Problem
Up to 𝑂(𝑚) exact matches of 𝑄𝑖 in 𝑇

′.

Proof Overview

Structural Theorem (HD) [Bringmann-Künnemann-Wellnitz, SODA 2019]

For a pattern 𝑃 of length 𝑚 and a text 𝑇 of length ≤ 2|𝑃|, at least one of the following holds:
The number of 𝑘-mismatch occurrences of 𝑃 in 𝑇 is at most 1000𝑘2.
𝑃 is at Hamming distance ≤ 6𝑘 to a string with period 𝑂(𝑚/𝑘).

𝑃1

𝑃

𝑇 ′

𝑄∗𝑖 ⋯ ⋯

𝑇𝑗

𝑃𝑖

𝑄𝑖 𝑄𝑖

= 3𝑘 misp.

𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖

𝑄∗𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖⋯ ⋯

Consider power stretches of 𝑄𝑖 in 𝑇
′ of length ≥ |𝑃𝑖|

Proof Overview

Structural Theorem (HD) [Bringmann-Künnemann-Wellnitz, SODA 2019]

For a pattern 𝑃 of length 𝑚 and a text 𝑇 of length ≤ 2|𝑃|, at least one of the following holds:
The number of 𝑘-mismatch occurrences of 𝑃 in 𝑇 is at most 1000𝑘2.
𝑃 is at Hamming distance ≤ 6𝑘 to a string with period 𝑂(𝑚/𝑘).

𝑃1

𝑃

𝑇 ′

𝑄∗𝑖 ⋯ ⋯

𝑇𝑗

𝑃𝑖

𝑄𝑖 𝑄𝑖

= 3𝑘 misp.

𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖

𝑄∗𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖⋯ ⋯

Consider power stretches of 𝑄𝑖 in 𝑇
′ of length ≥ |𝑃𝑖|

 at most 150𝑘 different power stretches.

Proof Overview

Structural Theorem (HD) [Bringmann-Künnemann-Wellnitz, SODA 2019]

For a pattern 𝑃 of length 𝑚 and a text 𝑇 of length ≤ 2|𝑃|, at least one of the following holds:
The number of 𝑘-mismatch occurrences of 𝑃 in 𝑇 is at most 1000𝑘2.
𝑃 is at Hamming distance ≤ 6𝑘 to a string with period 𝑂(𝑚/𝑘).

𝑃1

𝑃

𝑇 ′

𝑄∗𝑖 ⋯ ⋯

𝑇𝑗

𝑃𝑖

𝑄𝑖 𝑄𝑖

= 3𝑘 misp.

𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖

𝑇𝑗

𝑄∗𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖⋯ ⋯

Fix a power stretch 𝑇𝑗 of 𝑄𝑖 in 𝑇
′.

Proof Overview

Structural Theorem (HD) [Bringmann-Künnemann-Wellnitz, SODA 2019]

For a pattern 𝑃 of length 𝑚 and a text 𝑇 of length ≤ 2|𝑃|, at least one of the following holds:
The number of 𝑘-mismatch occurrences of 𝑃 in 𝑇 is at most 1000𝑘2.
𝑃 is at Hamming distance ≤ 6𝑘 to a string with period 𝑂(𝑚/𝑘).

𝑃1

𝑃

𝑇 ′

𝑄∗𝑖 ⋯ ⋯

𝑇𝑗

𝑃𝑖

𝑄𝑖 𝑄𝑖

= 3𝑘 misp.

𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖

𝑇𝑗≥ 2𝑘 misp.

𝑄∗𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖⋯ ⋯

Fix a power stretch 𝑇𝑗 of 𝑄𝑖 in 𝑇
′.

Proof Overview

Structural Theorem (HD) [Bringmann-Künnemann-Wellnitz, SODA 2019]

For a pattern 𝑃 of length 𝑚 and a text 𝑇 of length ≤ 2|𝑃|, at least one of the following holds:
The number of 𝑘-mismatch occurrences of 𝑃 in 𝑇 is at most 1000𝑘2.
𝑃 is at Hamming distance ≤ 6𝑘 to a string with period 𝑂(𝑚/𝑘).

𝑃1

𝑃

𝑇 ′

𝑄∗𝑖 ⋯ ⋯

𝑇𝑗

𝑃𝑖

𝑄𝑖 𝑄𝑖

= 3𝑘 misp.

𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖

𝑇𝑗≥ 2𝑘 misp.

𝑄∗𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖⋯ ⋯

Insight
Must align at least one misperiod. (For intuition, consider the case where 𝑇 ′ = 𝑄𝑡𝑖 for some integer 𝑡.
Then, for any exact match of 𝑃𝑖 all misperiods in 𝑃 yield mismatches between 𝑃 and 𝑇

′!)

Proof Overview

Structural Theorem (HD) [Bringmann-Künnemann-Wellnitz, SODA 2019]

For a pattern 𝑃 of length 𝑚 and a text 𝑇 of length ≤ 2|𝑃|, at least one of the following holds:
The number of 𝑘-mismatch occurrences of 𝑃 in 𝑇 is at most 1000𝑘2.
𝑃 is at Hamming distance ≤ 6𝑘 to a string with period 𝑂(𝑚/𝑘).

𝑃1

𝑃

𝑇 ′

𝑄∗𝑖 ⋯ ⋯

𝑇𝑗

𝑃𝑖

𝑄𝑖 𝑄𝑖

= 3𝑘 misp.

𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖

𝑇𝑗≥ 2𝑘 misp.

𝑄∗𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖 𝑄𝑖⋯ ⋯

Almost there
At most 𝑂(𝑘4) 𝑘-mismatch occurrences: 𝑂(𝑘) choices for 𝑃𝑖, 𝑂(𝑘) choices for a power stretch,
𝑂(𝑘2) pairs of aligned misperiods per combination.

Summary of the proof and a challenge: 𝑂(𝑘2) bound using the marking trick?
Partition the pattern into 16𝑘 chunks 𝑃𝑖 of length ≈ 𝑚/16𝑘.
Each aperiodic chunk has 𝑂(𝑘) exact occurrences. Each such occurrence gives a single
candidate starting position for a 𝑘-mismatch occurrence of 𝑃. 𝑂(𝑘2) overall.
For each periodic chunk 𝑃𝑖, extend the periodicity in both sides, allowing 3𝑘 misp.
– If all of 𝑃 gets covered, we conclude that the pattern is almost periodic.
– Else, for each of the 𝑂(𝑘) power stretches with period per(𝑃𝑖) that contain occurrences of
𝑃𝑖, extend the periodicity in both sides, allowing 2𝑘 misperiods.
Crucial observation: in any 𝑘-error occurrence that matches 𝑃𝑖 exactly, a misperiod in 𝑃
must be aligned with a misperiod in 𝑇.

Summary of the proof and a challenge: 𝑂(𝑘2) bound using the marking trick?
Partition the pattern into 16𝑘 chunks 𝑃𝑖 of length ≈ 𝑚/16𝑘.
Each aperiodic chunk has 𝑂(𝑘) exact occurrences. Each such occurrence gives a single
candidate starting position for a 𝑘-mismatch occurrence of 𝑃. 𝑂(𝑘2) overall.
For each periodic chunk 𝑃𝑖, extend the periodicity in both sides, allowing 3𝑘 misp.
– If all of 𝑃 gets covered, we conclude that the pattern is almost periodic.
– Else, for each of the 𝑂(𝑘) power stretches with period per(𝑃𝑖) that contain occurrences of
𝑃𝑖, extend the periodicity in both sides, allowing 2𝑘 misperiods.
Crucial observation: in any 𝑘-error occurrence that matches 𝑃𝑖 exactly, a misperiod in 𝑃
must be aligned with a misperiod in 𝑇.

Almost there
We have 𝑂(𝑘4) 𝑘-mismatch occurrences: 𝑂(𝑘) choices for 𝑃𝑖, 𝑂(𝑘) choices for a power stretch,
𝑂(𝑘2) pairs of aligned misp. per combination.

Summary of the proof and a challenge: 𝑂(𝑘2) bound using the marking trick?
Partition the pattern into 16𝑘 chunks 𝑃𝑖 of length ≈ 𝑚/16𝑘.
Each aperiodic chunk has 𝑂(𝑘) exact occurrences. Each such occurrence gives a single
candidate starting position for a 𝑘-mismatch occurrence of 𝑃. 𝑂(𝑘2) overall.
For each periodic chunk 𝑃𝑖, extend the periodicity in both sides, allowing 3𝑘 misp.
– If all of 𝑃 gets covered, we conclude that the pattern is almost periodic.
– Else, for each of the 𝑂(𝑘) power stretches with period per(𝑃𝑖) that contain occurrences of
𝑃𝑖, extend the periodicity in both sides, allowing 2𝑘 misperiods.
Crucial observation: in any 𝑘-error occurrence that matches 𝑃𝑖 exactly, 𝑘 misperiods in 𝑃
must be aligned with misperiods in 𝑇.

Nearly there
We have 𝑂(𝑘3) 𝑘-mismatch occurrences: 𝑂(𝑘) choices for 𝑃𝑖, 𝑂(𝑘) choices for a power stretch,
𝑂(𝑘2) pairs of aligned misp. per combination. Need ≥ 𝑘 pairs of alinged misp.

Summary of the proof and a challenge: 𝑂(𝑘2) bound using the marking trick?
Partition the pattern into 16𝑘 chunks 𝑃𝑖 of length ≈ 𝑚/16𝑘.
Each aperiodic chunk has 𝑂(𝑘) exact occurrences. Each such occurrence gives a single
candidate starting position for a 𝑘-mismatch occurrence of 𝑃. 𝑂(𝑘2) overall.
For each periodic chunk 𝑃𝑖, extend the periodicity in both sides, allowing 3𝑘 misp.
– If all of 𝑃 gets covered, we conclude that the pattern is almost periodic.
– Else, for each of the 𝑂(𝑘) power stretches with period per(𝑃𝑖) that contain occurrences of
𝑃𝑖, extend the periodicity in both sides, allowing 2𝑘 misperiods.
Crucial observation: in any 𝑘-error occurrence that matches 𝑃𝑖 exactly, 𝑘 misperiods in 𝑃
must be aligned with misperiods in 𝑇.
At least 𝑘 𝑃𝑗’s must nominate any potential starting position.

Finally there, maybe
At most 𝑂(𝑘2) 𝑘-mismatch occurrences: 𝑂(𝑘) choices for 𝑃𝑖, 𝑂(𝑘) choices for a power stretch,
𝑂(𝑘2) pairs of aligned misp. per combination. Need ≥ 𝑘 pairs of alinged misp. Need ≥ 𝑘 nominations.

Is this result tight?
Can we find a pattern 𝑃 of length 𝑚 that is not almost periodic and has 𝑂(𝑘2) 𝑘-mismatch
occurrences in a text 𝑇 of length 𝑛 ≤ 2𝑚?
Is 6𝑘 the right value for defining “almost periodic”?

Is this result tight?
Can we find a pattern 𝑃 of length 𝑚 that is not almost periodic and has 𝑂(𝑘2) 𝑘-mismatch
occurrences in a text 𝑇 of length 𝑛 ≤ 2𝑚?
Is 6𝑘 the right value for defining “almost periodic”?

Exercise
Construct an example where the pattern 𝑃

is not at Hamming distance 𝑂(𝑘) from any string with period 𝑂(𝑚/𝑘),

has Ω(𝑘) 𝑘-mismatch occurrences in 𝑇.

Is this result tight?
Can we find a pattern 𝑃 of length 𝑚 that is not almost periodic and has 𝑂(𝑘2) 𝑘-mismatch
occurrences in a text 𝑇 of length 𝑛 ≤ 2𝑚?
Is 6𝑘 the right value for defining “almost periodic”?

Exercise
Construct an example where the pattern 𝑃

is not at Hamming distance 𝑂(𝑘) from any string with period 𝑂(𝑚/𝑘),

has Ω(𝑘) 𝑘-mismatch occurrences in 𝑇.

Exercise
Construct an example where the pattern 𝑃

is not periodic,

it is at Hamming distance 𝑂(𝑘) from a string with period 𝑂(𝑚/𝑘),

it has Ω(𝑛) 𝑘-mismatch occurrences in 𝑇.

Examples

𝑇

𝑃

a a a c c cc c c

a a c cc c

⋯ ⋯ ⋯ ⋯

⋯ ⋯

a3𝑚/4 c3𝑚/4

a𝑚/2 c𝑚/2

Both 𝑃 and 𝑇 far from periodic, but there are 2𝑘 + 1 𝑘-mismatch occurrences of 𝑃 in 𝑇.

Examples

𝑇

𝑃

a a a c c cc c c

a a c cc c

⋯ ⋯ ⋯ ⋯

⋯ ⋯

a3𝑚/4 c3𝑚/4

a𝑚/2 c𝑚/2

Both 𝑃 and 𝑇 far from periodic, but there are 2𝑘 + 1 𝑘-mismatch occurrences of 𝑃 in 𝑇.

Examples

𝑇

𝑃

a a a a a

a a a
c at 𝑘 random positions distributed over both strings

c c c

c c

⋯ ⋯

⋯

a3𝑚/2

a𝑚

Both 𝑃 and 𝑇 at HD up to 𝑘 from periodic, and 𝑃 matches all 𝑚-length substrings of 𝑇.

Examples

𝑇

𝑃

a a a a a

a a a
c at 𝑘 random positions distributed over both strings

c c c

c c

⋯ ⋯

⋯

a3𝑚/2

a𝑚

Both 𝑃 and 𝑇 at HD up to 𝑘 from periodic, and 𝑃 matches all 𝑚-length substrings of 𝑇.

Main Idea Towards an Improvement

In the approach we just saw: The pattern P is independently aligned with a substring of
𝑄∞𝑖 for each chunk 𝑃𝑖.

Main Idea Towards an Improvement

In the approach we just saw: The pattern P is independently aligned with a substring of
𝑄∞𝑖 for each chunk 𝑃𝑖.

The same position in 𝑃 may be accounted for as a misperiod for multiple chunks 𝑃𝑖.

Main Idea Towards an Improvement

In the approach we just saw: The pattern P is independently aligned with a substring of
𝑄∞𝑖 for each chunk 𝑃𝑖.

The same position in 𝑃 may be accounted for as a misperiod for multiple chunks 𝑃𝑖.

In particular, this happens if several adjacent chunks share the same period. This leads to
an overcounting of the 𝑘-mismatch occurrences that is hard to control.

Main Idea Towards an Improvement

In the approach we just saw: The pattern P is independently aligned with a substring of
𝑄∞𝑖 for each chunk 𝑃𝑖.

The same position in 𝑃 may be accounted for as a misperiod for multiple chunks 𝑃𝑖.

In particular, this happens if several adjacent chunks share the same period. This leads to
an overcounting of the 𝑘-mismatch occurrences that is hard to control.

Idea: Analyse the (periodic structure of the) pattern as a whole.

Improved Structural Results for PM with Mismatches

Structural Theorem (HD) [C.-Kociumaka-Wellnitz, FOCS 2020]

Given a pattern 𝑃 of length 𝑚, a text 𝑇 of length 𝑛 ≤ 3/2𝑚, and a threshold 𝑘 ≤ 𝑚,
at least one of the following holds:
The number of 𝑘-mismatch occurrences of 𝑃 in 𝑇 is 𝑂(𝑘2) 𝑂(𝑘).
The pattern 𝑃 is almost periodic (at HD ≤ 6𝑘 < 2𝑘 to a string 𝑄 with period 𝑂(𝑚/𝑘)).

Structural Theorem (HD) [C.-Kociumaka-Wellnitz, FOCS 2020]

Given a pattern 𝑃 of length 𝑚, a text 𝑇 of length 𝑛 ≤ 3/2𝑚, and a threshold 𝑘 ≤ 𝑚, at least one of the
following holds:
The number of 𝑘-mismatch occurrences of 𝑃 in 𝑇 is 𝑂(𝑘).
The pattern 𝑃 is almost periodic (at HD < 2𝑘 to a string with period 𝑂(𝑚/𝑘)).

Structural Theorem (HD) [C.-Kociumaka-Wellnitz, FOCS 2020]

Given a pattern 𝑃 of length 𝑚, a text 𝑇 of length 𝑛 ≤ 3/2𝑚, and a threshold 𝑘 ≤ 𝑚, at least one of the
following holds:
The number of 𝑘-mismatch occurrences of 𝑃 in 𝑇 is 𝑂(𝑘).
The pattern 𝑃 is almost periodic (at HD < 2𝑘 to a string with period 𝑂(𝑚/𝑘)).

Key Lemma (Analyze)
For each string 𝑃 of length 𝑚, at least one of the following holds:
𝑃 contains 2𝑘 disjoint breaks; each break has length 𝑚/8𝑘 and period > 𝑚/128𝑘.
𝑃 contains disjoint repetitive regions 𝑅𝑖 with total length ≥ 3/8 ⋅ 𝑚;
each region has length ≥ 𝑚/8𝑘 and is almost periodic with HD exactly 8𝑘/𝑚 ⋅ |𝑅𝑖|.
𝑃 is almost periodic (at HD < 8𝑘 to a string with period ≤ 𝑚/(128𝑘)).

Structural Theorem (HD) [C.-Kociumaka-Wellnitz, FOCS 2020]

Given a pattern 𝑃 of length 𝑚, a text 𝑇 of length 𝑛 ≤ 3/2𝑚, and a threshold 𝑘 ≤ 𝑚, at least one of the
following holds:
The number of 𝑘-mismatch occurrences of 𝑃 in 𝑇 is 𝑂(𝑘).
The pattern 𝑃 is almost periodic (at HD < 2𝑘 to a string with period 𝑂(𝑚/𝑘)).

Key Lemma (Analyze)
For each string 𝑃 of length 𝑚, at least one of the following holds:
𝑃 contains 2𝑘 disjoint breaks; each break has length 𝑚/8𝑘 and period > 𝑚/128𝑘.
𝑃 contains disjoint repetitive regions 𝑅𝑖 with total length ≥ 3/8 ⋅ 𝑚;
each region has length ≥ 𝑚/8𝑘 and is almost periodic with HD exactly 8𝑘/𝑚 ⋅ |𝑅𝑖|.
𝑃 is almost periodic (at HD < 8𝑘 to a string with period ≤ 𝑚/(128𝑘)).

Observation [BKW’19, refined]
If 𝑃 contains ≥ 2𝑘 disjoint breaks, there are 𝑂(𝑘) 𝑘-mismatch occ’s of 𝑃 in 𝑇.

Consider an example with 𝑘 = 2.

𝑃

𝑇

Observation [BKW’19, refined]
If 𝑃 contains ≥ 2𝑘 disjoint breaks, there are 𝑂(𝑘) 𝑘-mismatch occ’s of 𝑃 in 𝑇.

Let us focus on a single break 𝐵.

𝑃

𝑇

Observation [BKW’19, refined]
If 𝑃 contains ≥ 2𝑘 disjoint breaks, there are 𝑂(𝑘) 𝑘-mismatch occ’s of 𝑃 in 𝑇.

𝐵 has 𝑂(𝑘) occurrences in 𝑇 since 𝑛 ≤ 3/2𝑚 and the period of 𝐵 is > 𝑚/(128𝑘).

𝑃

𝑇

Observation [BKW’19, refined]
If 𝑃 contains ≥ 2𝑘 disjoint breaks, there are 𝑂(𝑘) 𝑘-mismatch occ’s of 𝑃 in 𝑇.

For each such occurrence, we put a mark in the position of 𝑇 where 𝑃 starts if we align the
break with the occurrence.

𝑃

𝑇
∗

Observation [BKW’19, refined]
If 𝑃 contains ≥ 2𝑘 disjoint breaks, there are 𝑂(𝑘) 𝑘-mismatch occ’s of 𝑃 in 𝑇.

For each such occurrence, we put a mark in the position of 𝑇 where 𝑃 starts if we align the
break with the occurrence.

𝑃

𝑇
∗ ∗

Observation [BKW’19, refined]
If 𝑃 contains ≥ 2𝑘 disjoint breaks, there are 𝑂(𝑘) 𝑘-mismatch occ’s of 𝑃 in 𝑇.

Over all breaks, we place 𝑂(𝑘2) marks.

𝑃

𝑇
∗ ∗ ∗

Observation [BKW’19, refined]
If 𝑃 contains ≥ 2𝑘 disjoint breaks, there are 𝑂(𝑘) 𝑘-mismatch occ’s of 𝑃 in 𝑇.

Over all breaks, we place 𝑂(𝑘2) marks. A position of 𝑇 can be the starting position of a
𝑘-mismatch occurrence of 𝑃 in 𝑇 only if it has ≥ 𝑘 marks.

𝑃

𝑇
≥ 𝑘 marks

Observation [BKW’19, refined]
If 𝑃 contains ≥ 2𝑘 disjoint breaks, there are 𝑂(𝑘) 𝑘-mismatch occ’s of 𝑃 in 𝑇.

Structural Theorem (HD) [C.-Kociumaka-Wellnitz, FOCS 2020]

Given a pattern 𝑃 of length 𝑚, a text 𝑇 of length 𝑛 ≤ 3/2𝑚, and a threshold 𝑘 ≤ 𝑚, at least one of the
following holds:
The number of 𝑘-mismatch occurrences of 𝑃 in 𝑇 is 𝑂(𝑘).
The pattern 𝑃 is almost periodic (at HD < 2𝑘 to a string with period 𝑂(𝑚/𝑘)).

Key Lemma (Analyze)
For each string 𝑃 of length 𝑚, at least one of the following holds:
𝑃 contains 2𝑘 disjoint breaks; each break has length 𝑚/8𝑘 and period > 𝑚/128𝑘.
𝑃 contains disjoint repetitive regions 𝑅𝑖 with total length ≥ 3/8 ⋅ 𝑚;
each region has length ≥ 𝑚/8𝑘 and is almost periodic with HD exactly 8𝑘/𝑚 ⋅ |𝑅𝑖|.
𝑃 is almost periodic (at HD < 8𝑘 to a string with period ≤ 𝑚/(128𝑘)).

Observation [BKW’19, refined]
If 𝑃 contains ≥ 2𝑘 disjoint breaks, there are 𝑂(𝑘) 𝑘-mismatch occ’s of 𝑃 in 𝑇.

Structural Theorem (HD) [C.-Kociumaka-Wellnitz, FOCS 2020]

Given a pattern 𝑃 of length 𝑚, a text 𝑇 of length 𝑛 ≤ 3/2𝑚, and a threshold 𝑘 ≤ 𝑚, at least one of the
following holds:
The number of 𝑘-mismatch occurrences of 𝑃 in 𝑇 is 𝑂(𝑘).
The pattern 𝑃 is almost periodic (at HD < 2𝑘 to a string with period 𝑂(𝑚/𝑘)).

Key Lemma (Analyze)
For each string 𝑃 of length 𝑚, at least one of the following holds:
𝑃 contains 2𝑘 disjoint breaks; each break has length 𝑚/8𝑘 and period > 𝑚/128𝑘.
𝑃 contains disjoint repetitive regions 𝑅𝑖 with total length ≥ 3/8 ⋅ 𝑚;
each region has length ≥ 𝑚/8𝑘 and is almost periodic with HD exactly 8𝑘/𝑚 ⋅ |𝑅𝑖|.
𝑃 is almost periodic (at HD < 8𝑘 to a string with period ≤ 𝑚/(128𝑘)).

Observation [BKW’19, refined]
If 𝑃 has HD ≥ 2𝑘 and < 8𝑘 to a string w/ period 𝑂(𝑚/𝑘), there are 𝑂(𝑘) 𝑘-mism. occ’s of 𝑃 in 𝑇.

Consider again 𝑘 = 2. We denote only the letters at positions where 𝑃 differs from the
length-𝑚 prefix of 𝑄∞, that is the misperiods.

𝑃 𝑎 𝑏 𝑏 𝑎

𝑄∞[1 . . 𝑛]

𝑇

Observation [BKW’19, refined]
If 𝑃 has HD ≥ 2𝑘 and < 8𝑘 to a string w/ period 𝑂(𝑚/𝑘), there are 𝑂(𝑘) 𝑘-mism. occ’s of 𝑃 in 𝑇.

Claim: The part of 𝑇 that contains all 𝑘-mismatch occurrences of 𝑃 is at Hamming distance
Θ(𝑘) from the length-𝑛 prefix of 𝑄∞. (By the triangle inequality.)

𝑃 𝑎 𝑏 𝑏 𝑎

𝑄∞[1 . . 𝑛]

𝑇

Observation [BKW’19, refined]
If 𝑃 has HD ≥ 2𝑘 and < 8𝑘 to a string w/ period 𝑂(𝑚/𝑘), there are 𝑂(𝑘) 𝑘-mism. occ’s of 𝑃 in 𝑇.

Claim: The part of 𝑇 that contains all 𝑘-mismatch occurrences of 𝑃 is at Hamming distance
Θ(𝑘) from the length-𝑛 prefix of 𝑄∞. (By the triangle inequality.)

𝑃 𝑎 𝑏 𝑏 𝑎

𝑄∞[1 . . 𝑛]

𝑇

∗ ∗

Observation [BKW’19, refined]
If 𝑃 has HD ≥ 2𝑘 and < 8𝑘 to a string w/ period 𝑂(𝑚/𝑘), there are 𝑂(𝑘) 𝑘-mism. occ’s of 𝑃 in 𝑇.

Claim: The part of 𝑇 that contains all 𝑘-mismatch occurrences of 𝑃 is at Hamming distance
Θ(𝑘) from the length-𝑛 prefix of 𝑄∞. (By the triangle inequality.)

𝑃 𝑎 𝑏 𝑏 𝑎

𝑄∞[1 . . 𝑛]

𝑇

∗ ∗

𝑏 𝑏 𝑏 𝑎

Observation [BKW’19, refined]
If 𝑃 has HD ≥ 2𝑘 and < 8𝑘 to a string w/ period 𝑂(𝑚/𝑘), there are 𝑂(𝑘) 𝑘-mism. occ’s of 𝑃 in 𝑇.

Claim: The part of 𝑇 that contains all 𝑘-mismatch occurrences of 𝑃 is at Hamming distance
Θ(𝑘) from the length-𝑛 prefix of 𝑄∞. (By the triangle inequality.)

𝑃 𝑎 𝑏 𝑎 𝑏

𝑄∞[1 . . 𝑛]

𝑇

∗ ∗

Observation [BKW’19, refined]
If 𝑃 has HD ≥ 2𝑘 and < 8𝑘 to a string w/ period 𝑂(𝑚/𝑘), there are 𝑂(𝑘) 𝑘-mism. occ’s of 𝑃 in 𝑇.

Claim: The part of 𝑇 that contains all 𝑘-mismatch occurrences of 𝑃 is at Hamming distance
Θ(𝑘) from the length-𝑛 prefix of 𝑄∞. (By the triangle inequality.)

𝑃 𝑎 𝑏 𝑎 𝑏

𝑄∞[1 . . 𝑛]

𝑇 𝑏 𝑏 𝑏 𝑎

∗ ∗

𝑏

Observation [BKW’19, refined]
If 𝑃 has HD ≥ 2𝑘 and < 8𝑘 to a string w/ period 𝑂(𝑚/𝑘), there are 𝑂(𝑘) 𝑘-mism. occ’s of 𝑃 in 𝑇.

𝑃 can only have 𝑘-mismatch occurrences in positions equiv. 1 mod |𝑄| due to periodicity.
(We have many copies of 𝑄, and 𝑄 does not match any of its rotations.)

𝑃 𝑎 𝑏 𝑎 𝑏

𝑄∞[1 . . 𝑛]

𝑇 𝑏 𝑏 𝑏 𝑎 𝑏

Observation [BKW’19, refined]
If 𝑃 has HD ≥ 2𝑘 and < 8𝑘 to a string w/ period 𝑂(𝑚/𝑘), there are 𝑂(𝑘) 𝑘-mism. occ’s of 𝑃 in 𝑇.

For each 𝑘-mismatch occurrence 𝑇[𝑖..𝑗] of 𝑃, as 𝑃 has ≥ 2𝑘 mismatches with 𝑄∞[1 . .𝑚], at
least 𝑘 of 𝑃’s misperiods must coincide with misperiods of 𝑇[𝑖 . . 𝑗].

𝑃 𝑎 𝑏 𝑎 𝑏

𝑄∞[1 . . 𝑛]

𝑇 𝑏 𝑏 𝑏 𝑎 𝑏

Observation [BKW’19, refined]
If 𝑃 has HD ≥ 2𝑘 and < 8𝑘 to a string w/ period 𝑂(𝑚/𝑘), there are 𝑂(𝑘) 𝑘-mism. occ’s of 𝑃 in 𝑇.

For each 𝑘-mismatch occurrence 𝑇[𝑖..𝑗] of 𝑃, as 𝑃 has ≥ 2𝑘 mismatches with 𝑄∞[1 . .𝑚], at
least 𝑘 of 𝑃’s misperiods must coincide with misperiods of 𝑇[𝑖 . . 𝑗].

𝑃 𝑎 𝑏 𝑎 𝑏

𝑄∞[1 . . 𝑛]

𝑇 𝑏 𝑏 𝑏 𝑎 𝑏

𝑏

𝑏

Observation [BKW’19, refined]
If 𝑃 has HD ≥ 2𝑘 and < 8𝑘 to a string w/ period 𝑂(𝑚/𝑘), there are 𝑂(𝑘) 𝑘-mism. occ’s of 𝑃 in 𝑇.

As we have Θ(𝑘2) pairs of misperiods, we have 𝑂(𝑘) 𝑘-mismatch occurrences of 𝑃 in 𝑇.

𝑃 𝑎 𝑏 𝑎 𝑏

𝑄∞[1 . . 𝑛]

𝑇 𝑏 𝑏 𝑏 𝑎 𝑏

Observation [BKW’19, refined]
If 𝑃 has HD ≥ 2𝑘 and < 8𝑘 to a string w/ period 𝑂(𝑚/𝑘), there are 𝑂(𝑘) 𝑘-mism. occ’s of 𝑃 in 𝑇.

Structural Theorem (HD) [C.-Kociumaka-Wellnitz, FOCS 2020]

Given a pattern 𝑃 of length 𝑚, a text 𝑇 of length 𝑛 ≤ 3/2𝑚, and a threshold 𝑘 ≤ 𝑚, at least one of the
following holds:
The number of 𝑘-mismatch occurrences of 𝑃 in 𝑇 is 𝑂(𝑘).
The pattern 𝑃 is almost periodic (at HD < 2𝑘 to a string with period 𝑂(𝑚/𝑘)).

Key Lemma (Analyze)
For each string 𝑃 of length 𝑚, at least one of the following holds:
𝑃 contains 2𝑘 disjoint breaks; each break has length 𝑚/8𝑘 and period > 𝑚/128𝑘.
𝑃 contains disjoint repetitive regions 𝑅𝑖 with total length ≥ 3/8 ⋅ 𝑚;
each region has length ≥ 𝑚/8𝑘 and is almost periodic with HD exactly 8𝑘/𝑚 ⋅ |𝑅𝑖|.
𝑃 is almost periodic (at HD < 8𝑘 to a string with period ≤ 𝑚/(128𝑘)).

Observation [BKW’19, refined]
If 𝑃 has HD ≥ 2𝑘 and < 8𝑘 to a string w/ period 𝑂(𝑚/𝑘), there are 𝑂(𝑘) 𝑘-mism. occ’s of 𝑃 in 𝑇.

Structural Theorem (HD) [C.-Kociumaka-Wellnitz, FOCS 2020]

Given a pattern 𝑃 of length 𝑚, a text 𝑇 of length 𝑛 ≤ 3/2𝑚, and a threshold 𝑘 ≤ 𝑚, at least one of the
following holds:
The number of 𝑘-mismatch occurrences of 𝑃 in 𝑇 is 𝑂(𝑘).
The pattern 𝑃 is almost periodic (at HD < 2𝑘 to a string with period 𝑂(𝑚/𝑘)).

Key Lemma (Analyze)
For each string 𝑃 of length 𝑚, at least one of the following holds:
𝑃 contains 2𝑘 disjoint breaks; each break has length 𝑚/8𝑘 and period > 𝑚/128𝑘.
𝑃 contains disjoint repetitive regions 𝑅𝑖 with total length ≥ 3/8 ⋅ 𝑚;
each region has length ≥ 𝑚/8𝑘 and is almost periodic with HD exactly 8𝑘/𝑚 ⋅ |𝑅𝑖|.
𝑃 is almost periodic (at HD < 8𝑘 to a string with period ≤ 𝑚/(128𝑘)).

Structural Theorem (HD) [C.-Kociumaka-Wellnitz, FOCS 2020]

Given a pattern 𝑃 of length 𝑚, a text 𝑇 of length 𝑛 ≤ 3/2𝑚, and a threshold 𝑘 ≤ 𝑚, at least one of the
following holds:
The number of 𝑘-mismatch occurrences of 𝑃 in 𝑇 is 𝑂(𝑘).
The pattern 𝑃 is almost periodic (at HD < 2𝑘 to a string with period 𝑂(𝑚/𝑘)).

Key Lemma (Analyze)
For each string 𝑃 of length 𝑚, at least one of the following holds:
𝑃 contains 2𝑘 disjoint breaks; each break has length 𝑚/8𝑘 and period > 𝑚/128𝑘.
𝑃 contains disjoint repetitive regions 𝑅𝑖 with total length ≥ 3/8 ⋅ 𝑚;
each region has length ≥ 𝑚/8𝑘 and is almost periodic with HD exactly 8𝑘/𝑚 ⋅ |𝑅𝑖|.
𝑃 is almost periodic (at HD < 8𝑘 to a string with period ≤ 𝑚/(128𝑘)).

Observation [BKW’19, refined]
If 𝑃 has HD ≥ 2𝑘 and < 8𝑘 to a string w/ period 𝑂(𝑚/𝑘), there are 𝑂(𝑘) 𝑘-mism. occ’s of 𝑃 in 𝑇.

Structural Theorem (HD) [C.-Kociumaka-Wellnitz, FOCS 2020]

Given a pattern 𝑃 of length 𝑚, a text 𝑇 of length 𝑛 ≤ 3/2𝑚, and a threshold 𝑘 ≤ 𝑚, at least one of the
following holds:
The number of 𝑘-mismatch occurrences of 𝑃 in 𝑇 is 𝑂(𝑘).
The pattern 𝑃 is almost periodic (at HD < 2𝑘 to a string with period 𝑂(𝑚/𝑘)).

Key Lemma (Analyze)
For each string 𝑃 of length 𝑚, at least one of the following holds:
𝑃 contains 2𝑘 disjoint breaks; each break has length 𝑚/8𝑘 and period > 𝑚/128𝑘.
𝑃 contains disjoint repetitive regions 𝑅𝑖 with total length ≥ 3/8 ⋅ 𝑚;
each region has length ≥ 𝑚/8𝑘 and is almost periodic with HD exactly 8𝑘/𝑚 ⋅ |𝑅𝑖|.
𝑃 is almost periodic (at HD < 8𝑘 to a string with period ≤ 𝑚/(128𝑘)).

Observation [BKW’19, refined]
If 𝑃 has HD ≥ 2𝑘 and < 8𝑘 to a string w/ period 𝑂(𝑚/𝑘), there are 𝑂(𝑘) 𝑘-mism. occ’s of 𝑃 in 𝑇.

Analyzing the Pattern, Proof Idea
Key Lemma (Analyze)
For each string 𝑃 of length 𝑚, at least one of the following holds:
𝑃 contains 2𝑘 disjoint breaks; each break has length 𝑚/8𝑘 and period > 𝑚/(128𝑘).
𝑃 contains disjoint repetitive regions 𝑅𝑖 with total length ≥ 3/8 ⋅ 𝑚;
each region has length ≥ 𝑚/8𝑘 and is almost periodic with HD exactly 8𝑘/𝑚 ⋅ |𝑅𝑖|.
𝑃 is almost periodic (at HD < 8𝑘 to a string with period ≤ 𝑚/(128𝑘)).

𝑃

Breaks 𝐵 = { }

Repetitive Regions 𝑅 = { }

Analyzing the Pattern, Proof Idea
Key Lemma (Analyze)
For each string 𝑃 of length 𝑚, at least one of the following holds:
𝑃 contains 2𝑘 disjoint breaks; each break has length 𝑚/8𝑘 and period > 𝑚/(128𝑘).
𝑃 contains disjoint repetitive regions 𝑅𝑖 with total length ≥ 3/8 ⋅ 𝑚;
each region has length ≥ 𝑚/8𝑘 and is almost periodic with HD exactly 8𝑘/𝑚 ⋅ |𝑅𝑖|.
𝑃 is almost periodic (at HD < 8𝑘 to a string with period ≤ 𝑚/(128𝑘)).

𝑃

Breaks 𝐵 = { }

Repetitive Regions 𝑅 = { }

Process 𝑃 from left to right, 𝑚/8𝑘 new characters at a time.

Analyzing the Pattern, Proof Idea
Key Lemma (Analyze)
For each string 𝑃 of length 𝑚, at least one of the following holds:
𝑃 contains 2𝑘 disjoint breaks; each break has length 𝑚/8𝑘 and period > 𝑚/(128𝑘).
𝑃 contains disjoint repetitive regions 𝑅𝑖 with total length ≥ 3/8 ⋅ 𝑚;
each region has length ≥ 𝑚/8𝑘 and is almost periodic with HD exactly 8𝑘/𝑚 ⋅ |𝑅𝑖|.
𝑃 is almost periodic (at HD < 8𝑘 to a string with period ≤ 𝑚/(128𝑘)).

𝑃

Breaks 𝐵 = { }

Repetitive Regions 𝑅 = { }

If a fragment has a period > 𝑚/128𝑘, add it to the found breaks.

Analyzing the Pattern, Proof Idea
Key Lemma (Analyze)
For each string 𝑃 of length 𝑚, at least one of the following holds:
𝑃 contains 2𝑘 disjoint breaks; each break has length 𝑚/8𝑘 and period > 𝑚/(128𝑘).
𝑃 contains disjoint repetitive regions 𝑅𝑖 with total length ≥ 3/8 ⋅ 𝑚;
each region has length ≥ 𝑚/8𝑘 and is almost periodic with HD exactly 8𝑘/𝑚 ⋅ |𝑅𝑖|.
𝑃 is almost periodic (at HD < 8𝑘 to a string with period ≤ 𝑚/(128𝑘)).

𝑃

Breaks 𝐵 = { }

Repetitive Regions 𝑅 = { }

Otherwise, find the shortest prefix (longer than 𝑚/8𝑘) that is a repetitive region.

Analyzing the Pattern, Proof Idea
Key Lemma (Analyze)
For each string 𝑃 of length 𝑚, at least one of the following holds:
𝑃 contains 2𝑘 disjoint breaks; each break has length 𝑚/8𝑘 and period > 𝑚/(128𝑘).
𝑃 contains disjoint repetitive regions 𝑅𝑖 with total length ≥ 3/8 ⋅ 𝑚;
each region has length ≥ 𝑚/8𝑘 and is almost periodic with HD exactly 8𝑘/𝑚 ⋅ |𝑅𝑖|.
𝑃 is almost periodic (at HD < 8𝑘 to a string with period ≤ 𝑚/(128𝑘)).

𝑃

Breaks 𝐵 = { }

Repetitive Regions 𝑅 = { } }

Otherwise, find the shortest prefix (longer than 𝑚/8𝑘) that is a repetitive region.

Analyzing the Pattern, Proof Idea
Key Lemma (Analyze)
For each string 𝑃 of length 𝑚, at least one of the following holds:
𝑃 contains 2𝑘 disjoint breaks; each break has length 𝑚/8𝑘 and period > 𝑚/(128𝑘).
𝑃 contains disjoint repetitive regions 𝑅𝑖 with total length ≥ 3/8 ⋅ 𝑚;
each region has length ≥ 𝑚/8𝑘 and is almost periodic with HD exactly 8𝑘/𝑚 ⋅ |𝑅𝑖|.
𝑃 is almost periodic (at HD < 8𝑘 to a string with period ≤ 𝑚/(128𝑘)).

𝑃

Repetitive Regions 𝑅 = { }

Breaks 𝐵 = { , , , }

, }

If we found 2𝑘 breaks, return the breaks.

Analyzing the Pattern, Proof Idea
Key Lemma (Analyze)
For each string 𝑃 of length 𝑚, at least one of the following holds:
𝑃 contains 2𝑘 disjoint breaks; each break has length 𝑚/8𝑘 and period > 𝑚/(128𝑘).
𝑃 contains disjoint repetitive regions 𝑅𝑖 with total length ≥ 3/8 ⋅ 𝑚;
each region has length ≥ 𝑚/8𝑘 and is almost periodic with HD exactly 8𝑘/𝑚 ⋅ |𝑅𝑖|.
𝑃 is almost periodic (at HD < 8𝑘 to a string with period ≤ 𝑚/(128𝑘)).

𝑃

Breaks 𝐵 = { , , }

, }Repetitive Regions 𝑅 = {

If the total length of the repetitive regions is > 3/8 ⋅ 𝑚, return the repetitive regions.

Analyzing the Pattern, Proof Idea
Key Lemma (Analyze)
For each string 𝑃 of length 𝑚, at least one of the following holds:
𝑃 contains 2𝑘 disjoint breaks; each break has length 𝑚/8𝑘 and period > 𝑚/(128𝑘).
𝑃 contains disjoint repetitive regions 𝑅𝑖 with total length ≥ 3/8 ⋅ 𝑚;
each region has length ≥ 𝑚/8𝑘 and is almost periodic with HD exactly 8𝑘/𝑚 ⋅ |𝑅𝑖|.
𝑃 is almost periodic (at HD < 8𝑘 to a string with period ≤ 𝑚/(128𝑘)).

𝑃

Repetitive Regions 𝑅 = { }

Breaks 𝐵 = { , , }

}

If we reach the end of 𝑃, try to find a single repetitive region starting from the end.

Analyzing the Pattern, Proof Idea
Key Lemma (Analyze)
For each string 𝑃 of length 𝑚, at least one of the following holds:
𝑃 contains 2𝑘 disjoint breaks; each break has length 𝑚/8𝑘 and period > 𝑚/(128𝑘).
𝑃 contains disjoint repetitive regions 𝑅𝑖 with total length ≥ 3/8 ⋅ 𝑚;
each region has length ≥ 𝑚/8𝑘 and is almost periodic with HD exactly 8𝑘/𝑚 ⋅ |𝑅𝑖|.
𝑃 is almost periodic (at HD < 8𝑘 to a string with period ≤ 𝑚/(128𝑘)).

𝑃

Breaks 𝐵 = { }

Repetitive Regions 𝑅 = { }

If we reach the end of 𝑃, try to find a single repetitive region starting from the end.

Analyzing the Pattern, Proof Idea
Key Lemma (Analyze)
For each string 𝑃 of length 𝑚, at least one of the following holds:
𝑃 contains 2𝑘 disjoint breaks; each break has length 𝑚/8𝑘 and period > 𝑚/(128𝑘).
𝑃 contains disjoint repetitive regions 𝑅𝑖 with total length ≥ 3/8 ⋅ 𝑚;
each region has length ≥ 𝑚/8𝑘 and is almost periodic with HD exactly 8𝑘/𝑚 ⋅ |𝑅𝑖|.
𝑃 is almost periodic (at HD < 8𝑘 to a string with period ≤ 𝑚/(128𝑘)).

𝑃

Breaks 𝐵 = { }

}Repetitive Regions 𝑅 = {

If we found a repetitive region, return it.

Analyzing the Pattern, Proof Idea
Key Lemma (Analyze)
For each string 𝑃 of length 𝑚, at least one of the following holds:
𝑃 contains 2𝑘 disjoint breaks; each break has length 𝑚/8𝑘 and period > 𝑚/(128𝑘).
𝑃 contains disjoint repetitive regions 𝑅𝑖 with total length ≥ 3/8 ⋅ 𝑚;
each region has length ≥ 𝑚/8𝑘 and is almost periodic with HD exactly 8𝑘/𝑚 ⋅ |𝑅𝑖|.
𝑃 is almost periodic (at HD < 8𝑘 to a string with period ≤ 𝑚/(128𝑘)).

𝑃

Breaks 𝐵 = { }

Repetitive Regions 𝑅 = { }

If we again don’t obtain a repetitive region, 𝑃 is almost periodic.

Analyzing the Pattern, Proof Idea
Key Lemma (Analyze)
For each string 𝑃 of length 𝑚, at least one of the following holds:
𝑃 contains 2𝑘 disjoint breaks; each break has length 𝑚/8𝑘 and period > 𝑚/(128𝑘).
𝑃 contains disjoint repetitive regions 𝑅𝑖 with total length ≥ 3/8 ⋅ 𝑚;
each region has length ≥ 𝑚/8𝑘 and is almost periodic with HD exactly 8𝑘/𝑚 ⋅ |𝑅𝑖|.
𝑃 is almost periodic (at HD < 8𝑘 to a string with period ≤ 𝑚/(128𝑘)).

What about PM with errors?

Structural Results for PM with Errors

Structural Theorem (HD) [C.-Kociumaka-Wellnitz, FOCS 2020]

Given a pattern 𝑃 of length 𝑚, a text 𝑇 of length 𝑛 ≤ 3/2𝑚, and a threshold 𝑘 ≤ 𝑚, at least one of the
following holds:
The number of 𝑘-mismatch occurrences of 𝑃 in 𝑇 is 𝑂(𝑘).
The pattern 𝑃 is almost periodic (at HD < 2𝑘 to a string 𝑄 with period 𝑂(𝑚/𝑘)).

Structural Theorem (ED) [C.-Kociumaka-Wellnitz, FOCS 2020]

Given a pattern 𝑃 of length 𝑚, a text 𝑇 of length 𝑛 ≤ 3/2𝑚, and a threshold 𝑘 ≤ 𝑚,
at least one of the following holds:
The number of (starting positions of) 𝑘-error occurrences of 𝑃 in 𝑇 is 𝑂(𝑘2).
The pattern 𝑃 is almost periodic (at ED < 2𝑘 to a string 𝑄 with period 𝑂(𝑚/𝑘)).

Structural Results for PM with Errors

Structural Theorem (HD) [C.-Kociumaka-Wellnitz, FOCS 2020]

Given a pattern 𝑃 of length 𝑚, a text 𝑇 of length 𝑛 ≤ 3/2𝑚, and a threshold 𝑘 ≤ 𝑚, at least one of the
following holds:
The number of 𝑘-mismatch occurrences of 𝑃 in 𝑇 is 𝑂(𝑘).
The pattern 𝑃 is almost periodic (at HD < 2𝑘 to a string 𝑄 with period 𝑂(𝑚/𝑘)).

Structural Theorem (ED) [C.-Kociumaka-Wellnitz, FOCS 2020]

Given a pattern 𝑃 of length 𝑚, a text 𝑇 of length 𝑛 ≤ 3/2𝑚, and a threshold 𝑘 ≤ 𝑚,
at least one of the following holds:
The starting positions of all 𝑘-error occurrences of 𝑃 in 𝑇 lie in
𝑂(𝑘) intervals of length 𝑂(𝑘) each.
The pattern 𝑃 is almost periodic (at ED < 2𝑘 to a string 𝑄 with period 𝑂(𝑚/𝑘)).

What next?

Consider more complicated settings.

For instance, the case where (approximately) matching any rotation of the pattern
is acceptable has been already considered.

P = a
0

a
1

b
2

b
3

b
4

b
5

T = a
0

a
1

c
2

c
3

b
4

b
5

x
6

b
7

a
8

a
9

a
10

b
11

anchor=8

rot2(P) = b b b b a a
2 3 4 5 0 1

Either the pattern is almost periodic or there are 𝑂(𝑘) anchors for 𝑘-mismatch
circular occurrences. (Each anchor gives 𝑂(𝑘) intervals of occurrences.)

[CKPRRSWZ, ESA’22]

Results on Approximate Pattern Matching under HD

𝑂(𝑛√𝑚 log𝑚) – [Abrahamson, SICOMP’87], [Kosaraju ’87]

Results on Approximate Pattern Matching under HD

𝑂(𝑛√𝑚 log𝑚) – [Abrahamson, SICOMP’87], [Kosaraju ’87]
𝑂(𝑛𝑘) – [Landau-Vishkin, TCS’86]

Results on Approximate Pattern Matching under HD

𝑂(𝑛√𝑚 log𝑚) – [Abrahamson, SICOMP’87], [Kosaraju ’87]
𝑂(𝑛𝑘) – [Landau-Vishkin, TCS’86]
𝑂(𝑛√𝑘 log 𝑘) – [Amir et al., J. Alg.’04]

Results on Approximate Pattern Matching under HD

𝑂(𝑛√𝑚 log𝑚) – [Abrahamson, SICOMP’87], [Kosaraju ’87]
𝑂(𝑛𝑘) – [Landau-Vishkin, TCS’86]
𝑂(𝑛√𝑘 log 𝑘) – [Amir et al., J. Alg.’04]
𝑂(𝑛 + 𝑘3 ⋅ 𝑛/𝑚) – [Amir et al., J. Alg.’04]

Results on Approximate Pattern Matching under HD

𝑂(𝑛√𝑚 log𝑚) – [Abrahamson, SICOMP’87], [Kosaraju ’87]
𝑂(𝑛𝑘) – [Landau-Vishkin, TCS’86]
𝑂(𝑛√𝑘 log 𝑘) – [Amir et al., J. Alg.’04]
𝑂(𝑛 + 𝑘3 ⋅ 𝑛/𝑚) – [Amir et al., J. Alg.’04]
∼
𝑂(𝑛 + 𝑘2 ⋅ 𝑛/𝑚) – [Clifford et al., SODA’16]

Results on Approximate Pattern Matching under HD

𝑂(𝑛√𝑚 log𝑚) – [Abrahamson, SICOMP’87], [Kosaraju ’87]
𝑂(𝑛𝑘) – [Landau-Vishkin, TCS’86]
𝑂(𝑛√𝑘 log 𝑘) – [Amir et al., J. Alg.’04]
𝑂(𝑛 + 𝑘3 ⋅ 𝑛/𝑚) – [Amir et al., J. Alg.’04]
∼
𝑂(𝑛 + 𝑘2 ⋅ 𝑛/𝑚) – [Clifford et al., SODA’16]
∼
𝑂(𝑛 + 𝑘𝑛/√𝑚) – [Gawrychowski-Uznański, ICALP’18]

Results on Approximate Pattern Matching under HD

𝑂(𝑛√𝑚 log𝑚) – [Abrahamson, SICOMP’87], [Kosaraju ’87]
𝑂(𝑛𝑘) – [Landau-Vishkin, TCS’86]
𝑂(𝑛√𝑘 log 𝑘) – [Amir et al., J. Alg.’04]
𝑂(𝑛 + 𝑘3 ⋅ 𝑛/𝑚) – [Amir et al., J. Alg.’04]
∼
𝑂(𝑛 + 𝑘2 ⋅ 𝑛/𝑚) – [Clifford et al., SODA’16]
∼
𝑂(𝑛 + 𝑘𝑛/√𝑚) – [Gawrychowski-Uznański, ICALP’18]
matching (conditional) lower bound (for combinatorial algorithms) – [G-U, ICALP’18]

Results on Approximate Pattern Matching under HD

𝑂(𝑛√𝑚 log𝑚) – [Abrahamson, SICOMP’87], [Kosaraju ’87]
𝑂(𝑛𝑘) – [Landau-Vishkin, TCS’86]
𝑂(𝑛√𝑘 log 𝑘) – [Amir et al., J. Alg.’04]
𝑂(𝑛 + 𝑘3 ⋅ 𝑛/𝑚) – [Amir et al., J. Alg.’04]
∼
𝑂(𝑛 + 𝑘2 ⋅ 𝑛/𝑚) – [Clifford et al., SODA’16]
∼
𝑂(𝑛 + 𝑘𝑛/√𝑚) – [Gawrychowski-Uznański, ICALP’18]
matching (conditional) lower bound (for combinatorial algorithms) – [G-U, ICALP’18]
𝑂(𝑛 + 𝑘2 ⋅ 𝑛/𝑚) – [Chan et al. STOC’20] (improvement in log-factors, at the cost of
randomisation)

Results on Approximate Pattern Matching under HD

𝑂(𝑛√𝑚 log𝑚) – [Abrahamson, SICOMP’87], [Kosaraju ’87]
𝑂(𝑛𝑘) – [Landau-Vishkin, TCS’86]
𝑂(𝑛√𝑘 log 𝑘) – [Amir et al., J. Alg.’04]
𝑂(𝑛 + 𝑘3 ⋅ 𝑛/𝑚) – [Amir et al., J. Alg.’04]
∼
𝑂(𝑛 + 𝑘2 ⋅ 𝑛/𝑚) – [Clifford et al., SODA’16]
∼
𝑂(𝑛 + 𝑘𝑛/√𝑚) – [Gawrychowski-Uznański, ICALP’18]
matching (conditional) lower bound (for combinatorial algorithms) – [G-U, ICALP’18]
𝑂(𝑛 + 𝑘2 ⋅ 𝑛/𝑚) – [Chan et al. STOC’20] (improvement in log-factors, at the cost of
randomisation)
∼
𝑂(𝑛 + 𝑘2 ⋅ 𝑛/𝑚) – [CKW’20] (improvement in log-factors)

How do we turn the structural insights into algorithms?

Obtaining Faster Algorithms

Create algorithms that rely on a small set of essential operations:
– LCP(𝑆, 𝑇): Compute the length of the longest common prefix of 𝑆 and 𝑇.
– LCP𝑅(𝑆, 𝑇): Compute the length of the longest common suffix of 𝑆 and 𝑇.
– IPM(𝑃, 𝑇): Compute all exact matches of 𝑃 in 𝑇.
– Length(𝑆): Compute the length |𝑆| of 𝑆.
– Access(𝑆, 𝑖): Retrieve the character 𝑆[𝑖].
– Extract(𝑆, ℓ, 𝑟): Extract the fragment (or substring) 𝑆[ℓ . . 𝑟) from 𝑆.

The PILLAR Model

Create algorithms that rely on a small set of essential operations:
– LCP(𝑆, 𝑇): Compute the length of the longest common prefix of 𝑆 and 𝑇.
– LCP𝑅(𝑆, 𝑇): Compute the length of the longest common suffix of 𝑆 and 𝑇.
– IPM(𝑃, 𝑇): Compute all exact matches of 𝑃 in 𝑇.
– Length(𝑆): Compute the length |𝑆| of 𝑆.
– Access(𝑆, 𝑖): Retrieve the character 𝑆[𝑖].
– ExtRact(𝑆, ℓ, 𝑟): Extract the fragment (or substring) 𝑆[ℓ . . 𝑟) from 𝑆.

The PILLAR Model

Create algorithms that rely on a small set of essential operations:
– LCP(𝑆, 𝑇): Compute the length of the longest common prefix of 𝑆 and 𝑇.
– LCP𝑅(𝑆, 𝑇): Compute the length of the longest common suffix of 𝑆 and 𝑇.
– IPM(𝑃, 𝑇): Compute all exact matches of 𝑃 in 𝑇.
– Length(𝑆): Compute the length |𝑆| of 𝑆.
– Access(𝑆, 𝑖): Retrieve the character 𝑆[𝑖].
– ExtRact(𝑆, ℓ, 𝑟): Extract the fragment (or substring) 𝑆[ℓ . . 𝑟) from 𝑆.

Theorem

Fast PILLAR
Algorithm

Theorem

Fast PILLAR
Implementation

Theorem

Fast
Algorithm

An algorithm for the almost periodic case
Consider a pattern 𝑃 that is at Hamming distance < 2𝑘 from a prefix of 𝑄∞, where
𝑄 is primitive and |𝑄| ≤ 𝑚/(128𝑘), and a string 𝑃 that is at Hamming distance < 6𝑘
from a prefix of 𝑄∞.

Suppose that we are given the 𝑂(𝑘) misperiods for each of 𝑃 and 𝑇.

How fast can we compute a representation of 𝑘-mismatch occurrences of 𝑃 in 𝑇?

Hint 1: The exact occurrences of (ab)70 in (ab)100 can be represented as a single
arithmetic progression {1 + 2𝑖 ∶ 𝑖 ∈ [0, 30]}.

Hint 2: 𝑘-mismatch occurrences of 𝑃 can only start at positions of 𝑇 that are ≡ 1 mod
|𝑄|.

What Changes for Edit Distance?

Brief discussion on the board.

The PILLAR Model: Fast PILLAR Algorithms

The PILLAR operations: LCP, LCP𝑅, IPM, Length, Access, Extract

Theorem (PILLAR Alg. for PM w/ Mism.)
Given a pattern 𝑃 of length 𝑚, a text 𝑇 of length 𝑛, and a positive threshold 𝑘 ≤ 𝑚,
we can compute (a representation of) all 𝑘-mismatch occurrences of 𝑃 in 𝑇 using
𝑂(𝑛/𝑚 ⋅ 𝑘2 log log 𝑘) time plus 𝑂(𝑛/𝑚 ⋅ 𝑘2) PILLAR operations.

The PILLAR Model: Fast PILLAR Algorithms

The PILLAR operations: LCP, LCP𝑅, IPM, Length, Access, Extract

Theorem (PILLAR Alg. for PM w/ Mism.)
Given a pattern 𝑃 of length 𝑚, a text 𝑇 of length 𝑛, and a positive threshold 𝑘 ≤ 𝑚,
we can compute (a representation of) all 𝑘-mismatch occurrences of 𝑃 in 𝑇 using
𝑂(𝑛/𝑚 ⋅ 𝑘2 log log 𝑘) time plus 𝑂(𝑛/𝑚 ⋅ 𝑘2) PILLAR operations.

Theorem (PILLAR Alg. for PM w/ Errors)
Given a pattern 𝑃 of length 𝑚, a text 𝑇 of length 𝑛, and a positive threshold 𝑘 ≤ 𝑚,
we can compute (a representation of) all 𝑘-error occurrences of 𝑃 in 𝑇 using

∼
𝑂(𝑛/𝑚 ⋅

𝑘3.5) PILLAR operations.

The PILLAR Model: The Standard Setting (HD)

The PILLAR operations: LCP, LCP𝑅, IPM, Length, Access, Extract
Uncompressed strings: pattern 𝑃 of length 𝑚, text 𝑇 of length 𝑛.

The PILLAR Model: The Standard Setting (HD)

The PILLAR operations: LCP, LCP𝑅, IPM, Length, Access, Extract
Uncompressed strings: pattern 𝑃 of length 𝑚, text 𝑇 of length 𝑛.
We can perform each operation in 𝑂(1) time. (After 𝑂(𝑛 + 𝑚)-time preprocessing.)

The PILLAR Model: The Standard Setting (HD)

The PILLAR operations: LCP, LCP𝑅, IPM, Length, Access, Extract
Uncompressed strings: pattern 𝑃 of length 𝑚, text 𝑇 of length 𝑛.
We can perform each operation in 𝑂(1) time. (After 𝑂(𝑛 + 𝑚)-time preprocessing.)

Theorem (Algorithm for PM w/ Mism.)
For any positive threshold 𝑘 ≤ 𝑚,
we can compute all 𝑘-mismatch occurrences of 𝑃 in 𝑇 in time 𝑂(𝑛+𝑛/𝑚⋅𝑘2 log log 𝑘).

What if the text and the pattern are huge?

a n p a n i s o n e o f t h e p o p u l a r j a p a n e s e s w e e t b u n w i t h s w e e t b e a n i n t h e c e n t e r t o d a y t h e r e a r e m a n y t y p e s o f s w e e t b e e n c e n t e r e d i n t h e a n p a n f o r e x a m p l e g o m a a n s h i r o a n u g u i s u a n k u r i a n a n d e t c b u t t h e o r i g i n a l o f i t i s t h e n o r m a l a n k o m a d e w i t h r e d b e a n

a n p a n i s a j a p a n e s e s w e e t r o l l m o s t c o m m o n l y f i l l e d w i t h r e d b e a n p a s t e a n p a n c a n a l s o b e p r e p a r e d w i t h o t h e r f i l l i n g s i n c l u d i n g w h i t e b e a n s g r e e n b e a n s s e s a m e a n d c h e s t n u t

What if the text and the pattern are huge?

a n p a n i s o n e o f t h e p o p u l a r j a p a n e s e s w e e t b u n w i t h s w e e t b e a n i n t h e c e n t e r t o d a y t h e r e a r e m a n y t y p e s o f s w e e t b e e n c e n t e r e d i n t h e a n p a n f o r e x a m p l e g o m a a n s h i r o a n u g u i s u a n k u r i a n a n d e t c b u t t h e o r i g i n a l o f i t i s t h e n o r m a l a n k o m a d e w i t h r e d b e a n

a n p a n i s a j a p a n e s e s w e e t r o l l m o s t c o m m o n l y f i l l e d w i t h r e d b e a n p a s t e a n p a n c a n a l s o b e p r e p a r e d w i t h o t h e r f i l l i n g s i n c l u d i n g w h i t e b e a n s g r e e n b e a n s s e s a m e a n d c h e s t n u t

What if the text and the pattern are given
in a compressed representation?

a n p a n i s o n e o f t h e p o p u l a r j a p a n e s e s w e e t b u n w i t h s w e e t b e a n i n t h e c e n t e r t o d a y t h e r e a r e m a n y t y p e s o f s w e e t b e e n c e n t e r e d i n t h e a n p a n f o r e x a m p l e g o m a a n s h i r o a n u g u i s u a n k u r i a n a n d e t c b u t t h e o r i g i n a l o f i t i s t h e n o r m a l a n k o m a d e w i t h r e d b e a n

a n p a n i s a j a p a n e s e s w e e t r o l l m o s t c o m m o n l y f i l l e d w i t h r e d b e a n p a s t e a n p a n c a n a l s o b e p r e p a r e d w i t h o t h e r f i l l i n g s i n c l u d i n g w h i t e b e a n s g r e e n b e a n s s e s a m e a n d c h e s t n u t

Grammar Compression

Grammar Compression
For a string 𝑇, a grammar compression of 𝑇 is a context-free grammar 𝐺𝑇 that
generates {𝑇}. The grammar 𝐺𝑇 is wlog. a straight-line program or SLP.

Grammar Compression

Straight-Line Program (SLP)
An SLP 𝐺𝑇 is a set of non-terminals {𝑇1, …, 𝑇𝑛} and productions of the form 𝑇𝑖 →
𝑎, 𝑎 ∈ Σ or 𝑇𝑖 → 𝑇ℓ𝑇𝑟, where ℓ, 𝑟 < 𝑖. The starting symbol is 𝑇𝑛.

Grammar Compression

Straight-Line Program (SLP)
An SLP 𝐺𝑇 is a set of non-terminals {𝑇1, …, 𝑇𝑛} and productions of the form 𝑇𝑖 →
𝑎, 𝑎 ∈ Σ or 𝑇𝑖 → 𝑇ℓ𝑇𝑟, where ℓ, 𝑟 < 𝑖. The starting symbol is 𝑇𝑛.

𝑇1 → a; 𝑇2 → n; 𝑇3 → p
a n p

𝑇1 𝑇2 𝑇3

Grammar Compression

Straight-Line Program (SLP)
An SLP 𝐺𝑇 is a set of non-terminals {𝑇1, …, 𝑇𝑛} and productions of the form 𝑇𝑖 →
𝑎, 𝑎 ∈ Σ or 𝑇𝑖 → 𝑇ℓ𝑇𝑟, where ℓ, 𝑟 < 𝑖. The starting symbol is 𝑇𝑛.

𝑇1 → a; 𝑇2 → n; 𝑇3 → p

𝑇4 → 𝑇1𝑇2; 𝑇5 → 𝑇4𝑇3

a n p

𝑇1 𝑇2 𝑇3

𝑇4

𝑇5

Grammar Compression

Straight-Line Program (SLP)
An SLP 𝐺𝑇 is a set of non-terminals {𝑇1, …, 𝑇𝑛} and productions of the form 𝑇𝑖 →
𝑎, 𝑎 ∈ Σ or 𝑇𝑖 → 𝑇ℓ𝑇𝑟, where ℓ, 𝑟 < 𝑖. The starting symbol is 𝑇𝑛.

𝑇1 → a; 𝑇2 → n; 𝑇3 → p

𝑇4 → 𝑇1𝑇2; 𝑇5 → 𝑇4𝑇3

𝑇6 → 𝑇5𝑇4
a n p

𝑇1

a

𝑇2

n

𝑇1 𝑇2 𝑇3

𝑇4 𝑇4

𝑇5

𝑇6

Grammar Compression

Straight-Line Program (SLP)
An SLP 𝐺𝑇 is a set of non-terminals {𝑇1, …, 𝑇𝑛} and productions of the form 𝑇𝑖 →
𝑎, 𝑎 ∈ Σ or 𝑇𝑖 → 𝑇ℓ𝑇𝑟, where ℓ, 𝑟 < 𝑖. The starting symbol is 𝑇𝑛.

𝑇1 → a; 𝑇2 → n; 𝑇3 → p

𝑇4 → 𝑇1𝑇2; 𝑇5 → 𝑇4𝑇3

𝑇6 → 𝑇5𝑇4; 𝑇7 → 𝑇5𝑇6
a n p

𝑇1

a

𝑇2

n

𝑇3

p

𝑇1

a

𝑇2

n

𝑇1 𝑇2 𝑇3

𝑇4 𝑇4 𝑇4

𝑇5 𝑇5

𝑇6
𝑇7

Faster Algorithms

Problem uncompressed SLP text and pattern
text and pattern 𝑛 = Ω(log𝑁), 𝑚 = Ω(log𝑀)

Pattern 𝑂(𝑁 + 𝑀)
∼
𝑂(𝑛 + 𝑚)

Matching [KMP’77] [Jeż’15]

PM with 𝑘
∼
𝑂(𝑁 + 𝑘2 ⋅ 𝑁/𝑀),

∼
𝑂(𝑁 + 𝑘𝑁/√𝑀)

∼
𝑂(𝑛𝑘4 + 𝑀𝑘)

Mismatches [CFPSS’16] [GU’18] [BKW’19]

PM with 𝑘 𝑂(𝑁 + 𝑘4 ⋅ 𝑁/𝑀) 𝑂(𝑛𝑚poly(𝑘))
Errors [CH’02] [BLRSSW’15]

𝑁: length of uncompressed text 𝑀: length of uncompressed pattern
𝑛: size of compressed text 𝑚: size of compressed pattern
𝑘: number of mismatches/errors

Faster Algorithms

Problem uncompressed SLP text and pattern
text and pattern 𝑛 = Ω(log𝑁), 𝑚 = Ω(log𝑀)

Pattern 𝑂(𝑁 + 𝑀)
∼
𝑂(𝑛 + 𝑚)

Matching [KMP’77] [Jeż’15]

PM with 𝑘
∼
𝑂(𝑁 + 𝑘2 ⋅ 𝑁/𝑀),

∼
𝑂(𝑁 + 𝑘𝑁/√𝑀)

∼
𝑂(𝑛𝑘4 + 𝑀𝑘)

Mismatches [CFPSS’16] [GU’18] [BKW’19]

PM with 𝑘 𝑂(𝑁 + 𝑘4 ⋅ 𝑁/𝑀) 𝑂(𝑛𝑚poly(𝑘))
Errors [CH’02] [BLRSSW’15]

𝑁: length of uncompressed text 𝑀: length of uncompressed pattern
𝑛: size of compressed text 𝑚: size of compressed pattern
𝑘: number of mismatches/errors

Faster Algorithms

Problem uncompressed SLP text and pattern
text and pattern 𝑛 = Ω(log𝑁), 𝑚 = Ω(log𝑀)

Pattern 𝑂(𝑁 + 𝑀)
∼
𝑂(𝑛 + 𝑚)

Matching [KMP’77] [Jeż’15]

PM with 𝑘
∼
𝑂(𝑁 + 𝑘2 ⋅ 𝑁/𝑀),

∼
𝑂(𝑁 + 𝑘𝑁/√𝑀)

∼
𝑂(𝑛𝑘4 + 𝑀𝑘)

Mismatches [CFPSS’16] [GU’18] [BKW’19]

PM with 𝑘 𝑂(𝑁 + 𝑘4 ⋅ 𝑁/𝑀) 𝑂(𝑛𝑚poly(𝑘))
Errors [CH’02] [BLRSSW’15]

𝑁: length of uncompressed text 𝑀: length of uncompressed pattern
𝑛: size of compressed text 𝑚: size of compressed pattern
𝑘: number of mismatches/errors

Faster Algorithms

Problem uncompressed SLP text and pattern
text and pattern 𝑛 = Ω(log𝑁), 𝑚 = Ω(log𝑀)

Pattern 𝑂(𝑁 + 𝑀)
∼
𝑂(𝑛 + 𝑚)

Matching [KMP’77] [Jeż’15]

PM with 𝑘
∼
𝑂(𝑁 + 𝑘2 ⋅ 𝑁/𝑀),

∼
𝑂(𝑁 + 𝑘𝑁/√𝑀)

∼
𝑂(𝑛𝑘4 + 𝑀𝑘)

Mismatches [CFPSS’16] [GU’18]
∼
𝑂(𝑛𝑘2 + 𝑚)

PM with 𝑘 𝑂(𝑁 + 𝑘4 ⋅ 𝑁/𝑀) 𝑂(𝑛𝑚poly(𝑘))
Errors [CH’02]

∼
𝑂(𝑛𝑘3.5 + 𝑚)

𝑁: length of uncompressed text 𝑀: length of uncompressed pattern
𝑛: size of compressed text 𝑚: size of compressed pattern
𝑘: number of mismatches/errors

Faster Algorithms

Problem uncompressed SLP text and pattern
text and pattern 𝑛 = Ω(log𝑁), 𝑚 = Ω(log𝑀)

Pattern 𝑂(𝑁 + 𝑀)
∼
𝑂(𝑛 + 𝑚)

Matching [KMP’77] [Jeż’15]

PM with 𝑘
∼
𝑂(𝑁 + 𝑘2 ⋅ 𝑁/𝑀),

∼
𝑂(𝑁 + 𝑘𝑁/√𝑀)

∼
𝑂(𝑛𝑘4 + 𝑀𝑘)

Mismatches
∼
𝑂(𝑁 + 𝑘2 ⋅ 𝑁/𝑀)

∼
𝑂(𝑛𝑘2 + 𝑚)

PM with 𝑘 𝑂(𝑁 + 𝑘4 ⋅ 𝑁/𝑀) 𝑂(𝑛𝑚poly(𝑘))
Errors

∼
𝑂(𝑁 + 𝑘3.5 ⋅ 𝑁/𝑀)

∼
𝑂(𝑛𝑘3.5 + 𝑚)

𝑁: length of uncompressed text 𝑀: length of uncompressed pattern
𝑛: size of compressed text 𝑚: size of compressed pattern
𝑘: number of mismatches/errors

Faster Algorithms

Problem uncompressed SLP text and pattern
text and pattern 𝑛 = Ω(log𝑁), 𝑚 = Ω(log𝑀)

Pattern 𝑂(𝑁 + 𝑀)
∼
𝑂(𝑛 + 𝑚)

Matching [KMP’77] [Jeż’15]

PM with 𝑘
∼
𝑂(𝑁 + 𝑘2 ⋅ 𝑁/𝑀),

∼
𝑂(𝑁 + 𝑘𝑁/√𝑀)

∼
𝑂(𝑛𝑘4 + 𝑀𝑘)

Mismatches
∼
𝑂(𝑁 + 𝑘2 ⋅ 𝑁/𝑀)

∼
𝑂(𝑛𝑘2 + 𝑚)

PM with 𝑘 𝑂(𝑁 + 𝑘4 ⋅ 𝑁/𝑀) 𝑂(𝑛𝑚poly(𝑘))
Errors

∼
𝑂(𝑁 + 𝑘3.5 ⋅ 𝑁/𝑀)

∼
𝑂(𝑛𝑘3.5 + 𝑚)

Improvements obtained via improved/new structural insights in solution structure.

Known Results: The Fully-Compressed Setting (HD)

The PILLAR operations: LCP, LCP𝑅, IPM, Length, Access, Extract
SLPs: 𝐺𝑃 of size 𝑚 generating pattern 𝑃, 𝐺𝑇 of size 𝑛 generating text 𝑇.

Known Results: The Fully-Compressed Setting (HD)

The PILLAR operations: LCP, LCP𝑅, IPM, Length, Access, Extract
SLPs: 𝐺𝑃 of size 𝑚 generating pattern 𝑃, 𝐺𝑇 of size 𝑛 generating text 𝑇.
Using Recompression [Jeż’15], we can implement each operation in 𝑂(log3(|𝑃| + |𝑇|)) time.
(After 𝑂((𝑛 + 𝑚) log(|𝑃| + |𝑇|)) preprocessing.)

Known Results: The Fully-Compressed Setting (HD)

The PILLAR operations: LCP, LCP𝑅, IPM, Length, Access, Extract
SLPs: 𝐺𝑃 of size 𝑚 generating pattern 𝑃, 𝐺𝑇 of size 𝑛 generating text 𝑇.
Using Recompression [Jeż’15], we can implement each operation in 𝑂(log3(|𝑃| + |𝑇|)) time.
(After 𝑂((𝑛 + 𝑚) log(|𝑃| + |𝑇|)) preprocessing.)

Theorem (Algorithm for PM w/ Mism.)
For any positive threshold 𝑘 ≤ |𝑃|, we can compute the number of all 𝑘-mismatch
occ’s of 𝑃 in 𝑇 in time 𝑂(𝑚 log(|𝑃| + |𝑇|) + 𝑛𝑘2 log3(|𝑃| + |𝑇|)).
(Reporting of all occurrences takes time linear in the number of occurrencess.)

Known Results: The Fully-Compressed Setting (HD)

The PILLAR operations: LCP, LCP𝑅, IPM, Length, Access, Extract
SLPs: 𝐺𝑃 of size 𝑚 generating pattern 𝑃, 𝐺𝑇 of size 𝑛 generating text 𝑇.
Using Recompression [Jeż’15], we can implement each operation in 𝑂(log3(|𝑃| + |𝑇|)) time.
(After 𝑂((𝑛 + 𝑚) log(|𝑃| + |𝑇|)) preprocessing.)

Theorem (Algorithm for PM w/ Mism.)
For any positive threshold 𝑘 ≤ |𝑃|, we can compute the number of all 𝑘-mismatch
occ’s of 𝑃 in 𝑇 in time 𝑂(𝑚 log(|𝑃| + |𝑇|) + 𝑛𝑘2 log3(|𝑃| + |𝑇|)).
(Reporting of all occurrences takes time linear in the number of occurrencess.)

Let us see how on the board!

Known Results: The Dynamic Setting (HD)

The PILLAR operations: LCP, LCP𝑅, IPM, Length, Access, Extract
Dynamic maintenance of a collection of (non-empty persistent) strings 𝑋 of total length 𝑁;
supporting makestring, concat, split.

Known Results: The Dynamic Setting (HD)

The PILLAR operations: LCP, LCP𝑅, IPM, Length, Access, Extract
Dynamic maintenance of a collection of (non-empty persistent) strings 𝑋 of total length 𝑁;
supporting makestring, concat, split.
Using Optimal Dynamic Strings [Gawrychowski et al, SODA 2018], we can implement each
PILLAR operation in 𝑂(log2 𝑁) time (w.h.p).

Known Results: The Dynamic Setting (HD)

The PILLAR operations: LCP, LCP𝑅, IPM, Length, Access, Extract
Dynamic maintenance of a collection of (non-empty persistent) strings 𝑋 of total length 𝑁;
supporting makestring, concat, split.
Using Optimal Dynamic Strings [Gawrychowski et al, SODA 2018], we can implement each
PILLAR operation in 𝑂(log2 𝑁) time (w.h.p).

Theorem (Algorithm for PM w/ Mism.)
For any two strings 𝑃, 𝑇 ∈ 𝑋 and any threshold 𝑘, we support the additional
operation “Find all 𝑘-mismatch occ’s of 𝑃 in 𝑇” in 𝑂(|𝑇|/|𝑃| ⋅ 𝑘2 log2 𝑁) time (w.h.p).

Known Results: The Quantum Setting

Exercise

PILLAR operations can be performed in roughly𝑂(√𝑛) time by a quantum computer
(without any preprocessing). How fast can we solve approximate pattern matching
under each of the two studied distances in the quantum setting using the results
we have already seen?

Known Results: The Quantum Setting

Exercise

PILLAR operations can be performed in roughly𝑂(√𝑛) time by a quantum computer
(without any preprocessing). How fast can we solve approximate pattern matching
under each of the two studied distances in the quantum setting using the results
we have already seen?

For HD, an
∼
𝑂(𝑘√𝑛)-time algorithm is known [Jin-Nogler, SODA 2023].

Longest common extension (LCE) queries (standard setting)

Longest common prefix

Input: A string S of length n.

Query: Given positions i and j, compute the length of the longest common

prefix of S[i . . n] and S[j . . n].

Suffix tree [McCreight, JACM’76] and Lowest common ancestors [Harel and Tarjan,

SICOMP’84]⇒ space O(n), tquery = O(1).

The suffix tree of S = aaab.

a b

a b

ab b

The longest common prefix of S[1 . . 4] and S[2 . . 4] is the string spelled on

the path from the root to the lowest common ancestor of the two nodes “repre-

senting” these substrings.

14 / 32

Longest common extension (LCE) queries (standard setting)

Longest common prefix

Input: A string S of length n.

Query: Given positions i and j, compute the length of the longest common

prefix of S[i . . n] and S[j . . n].

Suffix tree [McCreight, JACM’76] and Lowest common ancestors [Harel and Tarjan,

SICOMP’84]⇒ space O(n), tquery = O(1).

The suffix tree of S = aaab.

a b

a b

ab b

The longest common prefix of S[1 . . 4] and S[2 . . 4] is the string spelled on

the path from the root to the lowest common ancestor of the two nodes “repre-

senting” these substrings.

14 / 32

Longest common extension (LCE) queries (standard setting)

Longest common prefix

Input: A string S of length n.

Query: Given positions i and j, compute the length of the longest common

prefix of S[i . . n] and S[j . . n].

Suffix tree [McCreight, JACM’76] and Lowest common ancestors [Harel and Tarjan,

SICOMP’84]⇒ space O(n), tquery = O(1).

The suffix tree of S = aaab.

a b

a b

ab b

The longest common prefix of S[1 . . 4] and S[2 . . 4] is the string spelled on

the path from the root to the lowest common ancestor of the two nodes “repre-

senting” these substrings.

14 / 32

Longest common extension (LCE) queries (standard setting)

Longest common prefix

Input: A string S of length n.

Query: Given positions i and j, compute the length of the longest common

prefix of S[i . . n] and S[j . . n].

Suffix tree [McCreight, JACM’76] and Lowest common ancestors [Harel and Tarjan,

SICOMP’84]⇒ space O(n), tquery = O(1).

The suffix tree of S = aaab.

a b

a b

ab b

The longest common prefix of S[1 . . 4] and S[2 . . 4] is the string spelled on

the path from the root to the lowest common ancestor of the two nodes “repre-

senting” these substrings.

14 / 32

Longest common extension (LCE) queries (standard setting)

Longest common prefix

Input: A string S of length n.

Query: Given positions i and j, compute the length of the longest common

prefix of S[i . . n] and S[j . . n].

Suffix tree [McCreight, JACM’76] and Lowest common ancestors [Harel and Tarjan,

SICOMP’84]⇒ space O(n), tquery = O(1).

The suffix tree of S = aaab.

a b

a b

ab b

The longest common prefix of S[1 . . 4] and S[2 . . 4] is the string spelled on

the path from the root to the lowest common ancestor of the two nodes “repre-

senting” these substrings.

14 / 32

Internal pattern matching queries (standard setting)

Internal Pattern Matching

Input: A string S of length n.

Query: Compute the occurrences of a substring U of S in another substring

V of S.

Keller et al. [TCS 2014]: space Õ(n), tquery = O(log log n + |output|).

Kociumaka et al. [SODA 2015]: space O(n), tquery = O(|V|/|U|). ← heavily ex-

ploits the periodic structure of S

We will see a very cool reduction due to Mäkinen and Navarro [LATIN 2006].

15 / 32

Internal pattern matching queries (standard setting)

Internal Pattern Matching

Input: A string S of length n.

Query: Compute the occurrences of a substring U of S in another substring

V of S.

Keller et al. [TCS 2014]: space Õ(n), tquery = O(log log n + |output|).

Kociumaka et al. [SODA 2015]: space O(n), tquery = O(|V|/|U|). ← heavily ex-

ploits the periodic structure of S

We will see a very cool reduction due to Mäkinen and Navarro [LATIN 2006].

15 / 32

Internal pattern matching queries (standard setting)

Internal Pattern Matching

Input: A string S of length n.

Query: Compute the occurrences of a substring U of S in another substring

V of S.

Keller et al. [TCS 2014]: space Õ(n), tquery = O(log log n + |output|).

Kociumaka et al. [SODA 2015]: space O(n), tquery = O(|V|/|U|). ← heavily ex-

ploits the periodic structure of S

We will see a very cool reduction due to Mäkinen and Navarro [LATIN 2006].

15 / 32

Internal pattern matching queries (standard setting)

Internal Pattern Matching

Input: A string S of length n.

Query: Compute the occurrences of a substring U of S in another substring

V of S.

Keller et al. [TCS 2014]: space Õ(n), tquery = O(log log n + |output|).

Kociumaka et al. [SODA 2015]: space O(n), tquery = O(|V|/|U|). ← heavily ex-

ploits the periodic structure of S

We will see a very cool reduction due to Mäkinen and Navarro [LATIN 2006].

15 / 32

Internal pattern matching queries (standard setting)

Internal Pattern Matching

Input: A string S of length n.

Query: Compute the occurrences of a substring U of S in another substring

V of S.

Keller et al. [TCS 2014]: space Õ(n), tquery = O(log log n + |output|).

Kociumaka et al. [SODA 2015]: space O(n), tquery = O(|V|/|U|). ← heavily ex-

ploits the periodic structure of S

We will see a very cool reduction due to Mäkinen and Navarro [LATIN 2006].

15 / 32

IPM queries→ 2D Range Reporting

14 2
13 1

12

3 4 5 8

6 9

10
7 11

a
b

c$
daaaabaabbaac$

a b
c$

daaaabaabbaac$
a b

c$

ab
aa
bb
aa
c$ baabbaac$ aa

bb
aa
c$ baac$

aa
bb
aa
c$ ba

ac$

aa

baac$

bb
aa
c$ c$

T: a
1
d
2
a
3
a
4
a
5
a
6
b
7
a
8
a
9
b
10
b
11
a
12
a
13
c
14

1
2
3
4
5
6
7
8
9

10
11
12
13
14

O(log log n) time

16 / 32

IPM queries→ 2D Range Reporting

14 2
13 1

12

3 4 5 8

6 9

10
7 11

a
b

c$
daaaabaabbaac$

a b
c$

daaaabaabbaac$
a b

c$

ab
aa
bb
aa
c$ baabbaac$ aa

bb
aa
c$ baac$

aa
bb
aa
c$ ba

ac$

aa

baac$

bb
aa
c$ c$

T: a
1
d
2
a
3
a
4
a
5
a
6
b
7
a
8
a
9
b
10
b
11
a
12
a
13
c
14

1
2
3
4
5
6
7
8
9

10
11
12
13
14

O(log log n) time

16 / 32

IPM queries→ 2D Range Reporting

14 2
13 1

12

3 4 5 8

6 9

10
7 11

a
b

c$
daaaabaabbaac$

a b
c$

daaaabaabbaac$
a b

c$

ab
aa
bb
aa
c$ baabbaac$ aa

bb
aa
c$ baac$

aa
bb
aa
c$ ba

ac$

aa

baac$

bb
aa
c$ c$

T: a
1
d
2
a
3
a
4
a
5
a
6
b
7
a
8
a
9
b
10
b
11
a
12
a
13
c
14

1
2
3
4
5
6
7
8
9

10
11
12
13
14

O(log log n) time

16 / 32

IPM queries→ 2D Range Reporting

14 2
13 1

12

3 4 5 8

6 9

10
7 11

a
b

c$
daaaabaabbaac$

a b
c$

daaaabaabbaac$
a b

c$

ab
aa
bb
aa
c$ baabbaac$ aa

bb
aa
c$ baac$

aa
bb
aa
c$ ba

ac$

aa

baac$

bb
aa
c$ c$

T: a
1
d
2
a
3
a
4
a
5
a
6
b
7
a
8
a
9
b
10
b
11
a
12
a
13
c
14

1
2
3
4
5
6
7
8
9

10
11
12
13
14

O(log log n) time

16 / 32

IPM queries→ 2D Range Reporting

14 2
13 1

12

3 4 5 8

6 9

10
7 11

a
b

c$
daaaabaabbaac$

a b
c$

daaaabaabbaac$
a b

c$

ab
aa
bb
aa
c$ baabbaac$ aa

bb
aa
c$ baac$

aa
bb
aa
c$ ba

ac$

aa

baac$

bb
aa
c$ c$

T: a
1
d
2
a
3
a
4
a
5
a
6
b
7
a
8
a
9
b
10
b
11
a
12
a
13
c
14

1
2
3
4
5
6
7
8
9

10
11
12
13
14

O(log log n) time

16 / 32

IPM queries→ 2D Range Reporting

14 2
13 1

12

3 4 5 8

6 9

10
7 11

a
b

c$
daaaabaabbaac$

a b
c$

daaaabaabbaac$
a b

c$

ab
aa
bb
aa
c$ baabbaac$ aa

bb
aa
c$ baac$

aa
bb
aa
c$ ba

ac$

aa

baac$

bb
aa
c$ c$

T: a
1
d
2
a
3
a
4
a
5
a
6
b
7
a
8
a
9
b
10
b
11
a
12
a
13
c
14

1
2
3
4
5
6
7
8
9

10
11
12
13
14

O(log log n) time

16 / 32

IPM queries→ 2D Range Reporting

14 2
13 1

12

3 4 5 8

6 9

10
7 11

a
b

c$
daaaabaabbaac$

a b
c$

daaaabaabbaac$
a b

c$

ab
aa
bb
aa
c$ baabbaac$ aa

bb
aa
c$ baac$

aa
bb
aa
c$ ba

ac$

aa

baac$

bb
aa
c$ c$

T: a
1
d
2
a
3
a
4
a
5
a
6
b
7
a
8
a
9
b
10
b
11
a
12
a
13
c
14

1
2
3
4
5
6
7
8
9

10
11
12
13
14

O(log log n) time

16 / 32

IPM queries→ 2D Range Reporting

14 2
13 1

12

3 4 5 8

6 9

10
7 11

a
b

c$
daaaabaabbaac$

a b
c$

daaaabaabbaac$
a b

c$

ab
aa
bb
aa
c$ baabbaac$ aa

bb
aa
c$ baac$

aa
bb
aa
c$ ba

ac$

aa

baac$

bb
aa
c$ c$

T: a
1
d
2
a
3
a
4
a
5
a
6
b
7
a
8
a
9
b
10
b
11
a
12
a
13
c
14

1
2
3
4
5
6
7
8
9

10
11
12
13
14

O(log log n) time

16 / 32

Exercises

Exercise: Given a fragment S[i . . j] = abcabc of a text and the period of this

fragment, explain how we can find how much the periodicity extends (on both

sides) using LCE queries. In other words, the task is to compute the longest

fragment of S that contains S[i . . j] and has period 3.

Exercise: Reduce a query that checks if a fragment of a string S is periodic

(and if so, also returns its period) to an internal pattern matching query and

a longest common extension query on S.

17 / 32

Exercises

Exercise: Given a fragment S[i . . j] = abcabc of a text and the period of this

fragment, explain how we can find how much the periodicity extends (on both

sides) using LCE queries. In other words, the task is to compute the longest

fragment of S that contains S[i . . j] and has period 3.

Exercise: Reduce a query that checks if a fragment of a string S is periodic

(and if so, also returns its period) to an internal pattern matching query and

a longest common extension query on S.

17 / 32

Exercises

Exercise: Given a fragment S[i . . j] = abcabc of a text and the period of this

fragment, explain how we can find how much the periodicity extends (on both

sides) using LCE queries. In other words, the task is to compute the longest

fragment of S that contains S[i . . j] and has period 3.

Exercise: Reduce a query that checks if a fragment of a string S is periodic

(and if so, also returns its period) to an internal pattern matching query and

a longest common extension query on S.

17 / 32

SLPs: Equal Fragments can be Parsed Differently

X0 → b
X1 → a
X2 → X1X0

X3 → X2X1

X4 → X3X2

X5 → X4X3 a b a a b a b a
X1 X0 X1 X1 X0 X1 X0 X1

X2 X2 X2

X3 X3

X4

X5

18 / 32

SLPs: Equal Fragments can be Parsed Differently

X0 → b
X1 → a
X2 → X1X0

X3 → X2X1

X4 → X3X2

X5 → X4X3 a b a a b a b a
X1 X0 X1 X1 X0 X1 X0 X1

X2 X2 X2

X3 X3

X4

X5

18 / 32

SLPs: Equal Fragments can be Parsed Differently

X0 → b
X1 → a
X2 → X1X0

X3 → X2X1

X4 → X3X2

X5 → X4X3 a b a a b a b a
X1 X0 X1 X1 X0 X1 X0 X1

X2 X2 X2

X3 X3

X4

X5

18 / 32

SLPs: Equal Fragments can be Parsed Differently

X0 → b
X1 → a
X2 → X1X0

X3 → X2X1

X4 → X3X2

X5 → X4X3 a b a a b a b a
X1 X0 X1 X1 X0 X1 X0 X1

X2 X2 X2

X3 X3

X4

X5

18 / 32

Locally Consistent Parsing

Locally Consistent Parsing: equal fragments are parsed similarly.

U U

▶ Some nodes in the parse tree of w are preserved no matter the context.
▶ Topmost such nodes form a small layer: O(logN) nodes.
▶ These nodes define O(logN) breakpoints for each substring; they partition

it into phrases.

19 / 32

Locally Consistent Parsing

Locally Consistent Parsing: equal fragments are parsed similarly.

U U

▶ Some nodes in the parse tree of w are preserved no matter the context.
▶ Topmost such nodes form a small layer: O(logN) nodes.
▶ These nodes define O(logN) breakpoints for each substring; they partition

it into phrases.

19 / 32

Locally Consistent Parsing

Locally Consistent Parsing: equal fragments are parsed similarly.

U U

▶ Some nodes in the parse tree of w are preserved no matter the context.

▶ Topmost such nodes form a small layer: O(logN) nodes.
▶ These nodes define O(logN) breakpoints for each substring; they partition

it into phrases.

19 / 32

Locally Consistent Parsing

Locally Consistent Parsing: equal fragments are parsed similarly.

U U

▶ Some nodes in the parse tree of w are preserved no matter the context.
▶ Topmost such nodes form a small layer: O(logN) nodes.

▶ These nodes define O(logN) breakpoints for each substring; they partition

it into phrases.

19 / 32

Locally Consistent Parsing

Locally Consistent Parsing: equal fragments are parsed similarly.

U U

▶ Some nodes in the parse tree of w are preserved no matter the context.
▶ Topmost such nodes form a small layer: O(logN) nodes.
▶ These nodes define O(logN) breakpoints for each substring; they partition

it into phrases.

19 / 32

Occurrences of P in T

T
i j

PP

Either fully contained in a phrase

Two SLPs that correspond to P and T, can be efficiently recompressed, so that

the resulting parsings are locally consistent and have depth O(logN).
[Jeż, TALG’15; Jeż, JACM’16; I, CPM’17]

How can we efficiently compute the occurrences of a substring U in a substring

V if |V| < 2|U|?

20 / 32

Occurrences of P in T

T
i jP

P

Either fully contained in a phrase

Two SLPs that correspond to P and T, can be efficiently recompressed, so that

the resulting parsings are locally consistent and have depth O(logN).
[Jeż, TALG’15; Jeż, JACM’16; I, CPM’17]

How can we efficiently compute the occurrences of a substring U in a substring

V if |V| < 2|U|?

20 / 32

Occurrences of P in T

T
i j

P

P

Either fully contained in a phrase, or a breakpoint of P is aligned with a break-

point of T[i . . j].

Two SLPs that correspond to P and T, can be efficiently recompressed, so that

the resulting parsings are locally consistent and have depth O(logN).
[Jeż, TALG’15; Jeż, JACM’16; I, CPM’17]

How can we efficiently compute the occurrences of a substring U in a substring

V if |V| < 2|U|?

20 / 32

Occurrences of P in T

T
i j

P

P

Either fully contained in a phrase, or a breakpoint of P is aligned with a break-

point of T[i . . j].

Two SLPs that correspond to P and T, can be efficiently recompressed, so that

the resulting parsings are locally consistent and have depth O(logN).
[Jeż, TALG’15; Jeż, JACM’16; I, CPM’17]

How can we efficiently compute the occurrences of a substring U in a substring

V if |V| < 2|U|?

20 / 32

Occurrences of P in T

T
i j

P

P

Either fully contained in a phrase, or a breakpoint of P is aligned with a break-

point of T[i . . j].

Two SLPs that correspond to P and T, can be efficiently recompressed, so that

the resulting parsings are locally consistent and have depth O(logN).
[Jeż, TALG’15; Jeż, JACM’16; I, CPM’17]

How can we efficiently compute the occurrences of a substring U in a substring

V if |V| < 2|U|?

20 / 32

Occurrences of P in T

T
i j

P

P

Either fully contained in a phrase, or a breakpoint of P is aligned with a break-

point of T[i . . j].

Two SLPs that correspond to P and T, can be efficiently recompressed, so that

the resulting parsings are locally consistent and have depth O(logN).
[Jeż, TALG’15; Jeż, JACM’16; I, CPM’17]

How can we efficiently compute the occurrences of a substring U in a substring

V if |V| < 2|U|? For each non-terminal in the parse tree whose production

“breaks” a fragment of V of length at least m, try to align the breakpoint with

each of U’s O(logN) breakpoints!

20 / 32

Recompression

Run-length straight line program: context-free grammar generating exactly one

string T by concatenations A→ BC and powers A→ Bk.

Perform two types of steps interleaved until |T| = 1:

▶ RunCompress – for each Br, r > 1, replace all occurrences of Br as a run by

a new letter A.
▶ HalfCompress – partition Σ into Σℓ and Σr and replace all occurrences of

BC (B ∈ Σℓ and C ∈ Σr) by a new letter A.

21 / 32

Recompression
Run-length straight line program: context-free grammar generating exactly one

string T by concatenations A→ BC and powers A→ Bk.

Perform two types of steps interleaved until |T| = 1:

▶ RunCompress – for each Br, r > 1, replace all occurrences of Br as a run by

a new letter A.
▶ HalfCompress – partition Σ into Σℓ and Σr and replace all occurrences of

BC (B ∈ Σℓ and C ∈ Σr) by a new letter A.

c a c a b d b b
21 / 32

Recompression
Run-length straight line program: context-free grammar generating exactly one

string T by concatenations A→ BC and powers A→ Bk.

Perform two types of steps interleaved until |T| = 1:
▶ RunCompress – for each Br, r > 1, replace all occurrences of Br as a run by

a new letter A.

▶ HalfCompress – partition Σ into Σℓ and Σr and replace all occurrences of

BC (B ∈ Σℓ and C ∈ Σr) by a new letter A.

c a c a b d b b
C A C A B D E

RunCompress

21 / 32

Recompression
Run-length straight line program: context-free grammar generating exactly one

string T by concatenations A→ BC and powers A→ Bk.

Perform two types of steps interleaved until |T| = 1:

▶ RunCompress – for each Br, r > 1, replace all occurrences of Br as a run by

a new letter A.

▶ HalfCompress – partition Σ into Σℓ and Σr and replace all occurrences of

BC (B ∈ Σℓ and C ∈ Σr) by a new letter A.

c a c a b d b b
C A C A B D E

RunCompress

F F G H
HalfCompress

21 / 32

Recompression
Run-length straight line program: context-free grammar generating exactly one

string T by concatenations A→ BC and powers A→ Bk.

Perform two types of steps interleaved until |T| = 1:
▶ RunCompress – for each Br, r > 1, replace all occurrences of Br as a run by

a new letter A.

▶ HalfCompress – partition Σ into Σℓ and Σr and replace all occurrences of

BC (B ∈ Σℓ and C ∈ Σr) by a new letter A.

c a c a b d b b
C A C A B D E

RunCompress

F F G H
HalfCompress

I J K
RunCompress

21 / 32

Recompression
Run-length straight line program: context-free grammar generating exactly one

string T by concatenations A→ BC and powers A→ Bk.

Perform two types of steps interleaved until |T| = 1:

▶ RunCompress – for each Br, r > 1, replace all occurrences of Br as a run by

a new letter A.

▶ HalfCompress – partition Σ into Σℓ and Σr and replace all occurrences of

BC (B ∈ Σℓ and C ∈ Σr) by a new letter A.

c a c a b d b b
C A C A B D E

RunCompress

F F G H
HalfCompress

I J K
RunCompress

L M
HalfCompress

N O
RunCompress

P
HalfCompress

21 / 32

Recompression
Run-length straight line program: context-free grammar generating exactly one

string T by concatenations A→ BC and powers A→ Bk.

Perform two types of steps interleaved until |T| = 1:
▶ RunCompress – for each Br, r > 1, replace all occurrences of Br as a run by

a new letter A.
▶ HalfCompress – partition Σ into Σℓ and Σr and replace all occurrences of

BC (B ∈ Σℓ and C ∈ Σr) by a new letter A.

c a c a b d b b
C A C A B D E

RunCompress

F F G H
HalfCompress

I J K
RunCompress

L M
HalfCompress

N O
RunCompress

P
HalfCompress

21 / 32

Recompression
Run-length straight line program: context-free grammar generating exactly one

string T by concatenations A→ BC and powers A→ Bk.

Perform two types of steps interleaved until |T| = 1:
▶ RunCompress – for each Br, r > 1, replace all occurrences of Br as a run by

a new letter A.
▶ HalfCompress – partition Σ into Σℓ and Σr and replace all occurrences of

BC (B ∈ Σℓ and C ∈ Σr) by a new letter A.

c a c a b a b b
C A C A B D E

F F G H

I J K

L M

N O

P

21 / 32

Recompression
Run-length straight line program: context-free grammar generating exactly one

string T by concatenations A→ BC and powers A→ Bk.

Perform two types of steps interleaved until |T| = 1:
▶ RunCompress – for each Br, r > 1, replace all occurrences of Br as a run by

a new letter A.
▶ HalfCompress – partition Σ into Σℓ and Σr and replace all occurrences of

BC (B ∈ Σℓ and C ∈ Σr) by a new letter A.

21 / 32

Recompression
Run-length straight line program: context-free grammar generating exactly one

string T by concatenations A→ BC and powers A→ Bk.

Perform two types of steps interleaved until |T| = 1:
▶ RunCompress – for each Br, r > 1, replace all occurrences of Br as a run by

a new letter A.
▶ HalfCompress – partition Σ into Σℓ and Σr and replace all occurrences of

BC (B ∈ Σℓ and C ∈ Σr) by a new letter A.

Of course, periodicity causes trouble:

we haveO(logN) groups of breakpoints.

21 / 32

PILLAR Operations in the Compressed Setting

After a preprocessing that runs in time nearly-linear in the size of the SLPs that

generate P and T, we can perform each PILLAR operation in O(log2 N log logN)

time.

[I, CPM’17; CKW’20]

22 / 32

PILLAR Operations in the Compressed Setting

After a preprocessing that runs in time nearly-linear in the size of the SLPs that

generate P and T, we can perform each PILLAR operation in O(log2 N log logN)

time.

[I, CPM’17; CKW’20]

22 / 32

Approximate Pattern Matching under Edit Distance: Summary of Results

23 / 32

Approximate Pattern Matching under Edit Distance: Summary of Results

O(n2) [Sellers; J. Algorithms 1980]

O(nk2) [Landau, Vishkin; JCSS 1988]

O(nk) [Landau, Vishkin; J. Algorithms 1989]

Õ(n + k8+1/3 · n/m1/3) [Sahinalp, Vishkin; FOCS 1996]

O(n + k4 · n/m) [Cole, Hariharan; SICOMP 2002]

Õ(n + k3.5 · n/m) Using the structural result [CKW’22]

Ω(k2) [Backurs, Indyk; SICOMP 2018]

23 / 32

Approximate Pattern Matching under Edit Distance: Summary of Results

O(n2) [Sellers; J. Algorithms 1980]

O(nk2) [Landau, Vishkin; JCSS 1988]

O(nk) [Landau, Vishkin; J. Algorithms 1989]

Õ(n + k8+1/3 · n/m1/3) [Sahinalp, Vishkin; FOCS 1996]

O(n + k4 · n/m) [Cole, Hariharan; SICOMP 2002]

Õ(n + k3.5 · n/m) Using the structural result [CKW’22]

Ω(k2) [Backurs, Indyk; SICOMP 2018]

23 / 32

Approximate Pattern Matching under Edit Distance: Summary of Results

O(n2) [Sellers; J. Algorithms 1980]

O(nk2) [Landau, Vishkin; JCSS 1988]

O(nk) [Landau, Vishkin; J. Algorithms 1989]

Õ(n + k8+1/3 · n/m1/3) [Sahinalp, Vishkin; FOCS 1996]

O(n + k4 · n/m) [Cole, Hariharan; SICOMP 2002]

Õ(n + k3.5 · n/m) Using the structural result [CKW’22]

Ω(k2) [Backurs, Indyk; SICOMP 2018]

23 / 32

Approximate Pattern Matching under Edit Distance: Summary of Results

O(n2) [Sellers; J. Algorithms 1980]

O(nk2) [Landau, Vishkin; JCSS 1988]

O(nk) [Landau, Vishkin; J. Algorithms 1989]

Õ(n + k8+1/3 · n/m1/3) [Sahinalp, Vishkin; FOCS 1996]

O(n + k4 · n/m) [Cole, Hariharan; SICOMP 2002]

Õ(n + k3.5 · n/m) Using the structural result [CKW’22]

Ω(k2) [Backurs, Indyk; SICOMP 2018]

23 / 32

Approximate Pattern Matching under Edit Distance: Summary of Results

O(n2) [Sellers; J. Algorithms 1980]

O(nk2) [Landau, Vishkin; JCSS 1988]

O(nk) [Landau, Vishkin; J. Algorithms 1989]

Õ(n + k8+1/3 · n/m1/3) [Sahinalp, Vishkin; FOCS 1996]

O(n + k4 · n/m) [Cole, Hariharan; SICOMP 2002]

Õ(n + k3.5 · n/m) Using the structural result [CKW’22]

Ω(k2) [Backurs, Indyk; SICOMP 2018]

23 / 32

Approximate Pattern Matching under Edit Distance: Summary of Results

O(n2) [Sellers; J. Algorithms 1980]

O(nk2) [Landau, Vishkin; JCSS 1988]

O(nk) [Landau, Vishkin; J. Algorithms 1989]

Õ(n + k8+1/3 · n/m1/3) [Sahinalp, Vishkin; FOCS 1996]

O(n + k4 · n/m) [Cole, Hariharan; SICOMP 2002]

Õ(n + k3.5 · n/m) Using the structural result [CKW’22]

Ω(k2) [Backurs, Indyk; SICOMP 2018]

23 / 32

Approximate Pattern Matching under Edit Distance: Summary of Results

O(n2) [Sellers; J. Algorithms 1980]

O(nk2) [Landau, Vishkin; JCSS 1988]

O(nk) [Landau, Vishkin; J. Algorithms 1989]

Õ(n + k8+1/3 · n/m1/3) [Sahinalp, Vishkin; FOCS 1996]

O(n + k4 · n/m) [Cole, Hariharan; SICOMP 2002]

Õ(n + k3.5 · n/m) Using the structural result [CKW’22]

Ω(k2) [Backurs, Indyk; SICOMP 2018]

23 / 32

Approximate Pattern Matching under Edit Distance: Summary of Results

𝑂(𝑛
𝑘),

LV

𝑂(
𝑛
+ 𝑘

4),
CH

Ω(
𝑘2
),

BI

𝑘 ≈
1

𝑘 ≈
𝑛
1/
4

𝑘 ≈
𝑛
1/
3

𝑘 ≈
𝑛
1/
2

𝑘 ≈
𝑛

𝑡(𝑛, 𝑘) ≈ 𝑛

𝑡(𝑛, 𝑘) ≈ 𝑛4/3

𝑡(𝑛, 𝑘) ≈ 𝑛2

23 / 32

Approximate Pattern Matching under Edit Distance: Summary of Results

̃𝑂(
𝑛
+ 𝑘

3.
5),

Th
is

wo
rk

𝑂(𝑛
𝑘),

LV

𝑂(
𝑛
+ 𝑘

4),
CH

Ω(
𝑘2
),

BI

𝑘 ≈
1

𝑘 ≈
𝑛
1/
4

𝑘 ≈
𝑛
2/
7

𝑘 ≈
𝑛
1/
3

𝑘 ≈
𝑛
2/
5

𝑘 ≈
𝑛
1/
2

𝑘 ≈
𝑛

𝑡(𝑛, 𝑘) ≈ 𝑛

𝑡(𝑛, 𝑘) ≈ 𝑛4/3
𝑡(𝑛, 𝑘) ≈ 𝑛7/5

𝑡(𝑛, 𝑘) ≈ 𝑛2

23 / 32

The Structure of Pattern Matching under Edit Distance

Theorem [CKW; FOCS’20] Given a pattern P of length m and a text T of length

n ≤ 3/2m, and a threshold k ≤ m at least one of the following holds:

• The pattern P hasO(k2) k-error occurrences in T.

• The pattern is almost periodic: at edit distance < 2k from a string with

periodO(m/k).

P

Q∞ Q Q Q Q Q Q Q Q . . .

Q will denote a primitive string; it does not match any of its rotations.

We call this a tile decomposition of P with respect to Q.

24 / 32

The Structure of Pattern Matching under Edit Distance

Theorem [CKW; FOCS’20] Given a pattern P of length m and a text T of length

n ≤ 3/2m, and a threshold k ≤ m at least one of the following holds:

• The pattern P hasO(k2) k-error occurrences in T.

• The pattern is almost periodic: at edit distance < 2k from a string with

periodO(m/k).

P

Q∞ Q Q Q Q Q Q Q Q . . .

Q will denote a primitive string; it does not match any of its rotations.

We call this a tile decomposition of P with respect to Q.

24 / 32

The Structure of Pattern Matching under Edit Distance

Theorem [CKW; FOCS’20] Given a pattern P of length m and a text T of length

n ≤ 3/2m, and a threshold k ≤ m at least one of the following holds:

• The pattern P hasO(k2) k-error occurrences in T.

• The pattern is almost periodic: at edit distance < 2k from a string with

periodO(m/k).

P

Q∞ Q Q Q Q Q Q Q Q . . .

Q will denote a primitive string; it does not match any of its rotations.

We call this a tile decomposition of P with respect to Q.

24 / 32

The Structure of Pattern Matching under Edit Distance

Theorem [CKW; FOCS’20] Given a pattern P of length m and a text T of length

n ≤ 3/2m, and a threshold k ≤ m at least one of the following holds:

• The pattern P hasO(k2) k-error occurrences in T.

• The pattern is almost periodic: at edit distance < 2k from a string with

periodO(m/k).

P

Q∞ Q Q Q Q Q Q Q Q . . .

Q will denote a primitive string; it does not match any of its rotations.

We call this a tile decomposition of P with respect to Q.

24 / 32

The Structure of Pattern Matching under Edit Distance

Theorem [CKW; FOCS’20] Given a pattern P of length m and a text T of length

n ≤ 3/2m, and a threshold k ≤ m at least one of the following holds:

• The pattern P hasO(k2) k-error occurrences in T.

• The pattern is almost periodic: at edit distance < 2k from a string with

periodO(m/k). This is the bottleneck.

P

Q∞ Q Q Q Q Q Q Q Q . . .

Q will denote a primitive string; it does not match any of its rotations.

We call this a tile decomposition of P with respect to Q.

24 / 32

The Structure of Pattern Matching under Edit Distance

Theorem [CKW; FOCS’20] Given a pattern P of length m and a text T of length

n ≤ 3/2m, and a threshold k ≤ m at least one of the following holds:

• The pattern P hasO(k2) k-error occurrences in T.

• The pattern is almost periodic: at edit distance < 2k from a string with

periodO(m/k). This is the bottleneck.

P

Q∞ Q Q Q Q Q Q Q Q . . .

Q will denote a primitive string; it does not match any of its rotations.

We call this a tile decomposition of P with respect to Q.

24 / 32

The Structure of Pattern Matching under Edit Distance

Theorem [CKW; FOCS’20] Given a pattern P of length m and a text T of length

n ≤ 3/2m, and a threshold k ≤ m at least one of the following holds:

• The pattern P hasO(k2) k-error occurrences in T.

• The pattern is almost periodic: at edit distance < 2k from a string with

periodO(m/k). This is the bottleneck.

P

Q∞ Q Q Q Q Q Q Q Q . . .

Q will denote a primitive string; it does not match any of its rotations.

We call this a tile decomposition of P with respect to Q.

24 / 32

Reduction to the Almost Periodic Case [CKW’20]

O(k4 · n/m) PILLAR-time algorithm [CKW’20] matches [Cole, Hariharan; SICOMP

2002] for the standard setting.

Reduction [CKW’20]: An algorithm that solves the almost periodic case in

Õ(ka · n/m) PILLAR-time, for a ≥ 3, implies an algorithm that solves the

general case in Õ(ka · n/m) PILLAR-time.

25 / 32

Reduction to the Almost Periodic Case [CKW’20]

O(k4 · n/m) PILLAR-time algorithm [CKW’20] matches [Cole, Hariharan; SICOMP

2002] for the standard setting.

Reduction [CKW’20]: An algorithm that solves the almost periodic case in

Õ(ka · n/m) PILLAR-time, for a ≥ 3, implies an algorithm that solves the

general case in Õ(ka · n/m) PILLAR-time.

25 / 32

Reduction to the Almost Periodic Case [CKW’20]

O(k4 · n/m) PILLAR-time algorithm [CKW’20] matches [Cole, Hariharan; SICOMP

2002] for the standard setting.

Reduction [CKW’20]: An algorithm that solves the almost periodic case in

Õ(ka · n/m) PILLAR-time, for a ≥ 3, implies an algorithm that solves the

general case in Õ(ka · n/m) PILLAR-time.

25 / 32

Dynamic Puzzle Matching

Input: An integer k and a family F of strings containing a distinguished primi-

tive string Q with
∑

F∈F δE(F,Q) = O(k).

Maintain: A sequence I = (U1, V1) · · · (Uz, Vz) of pairs from F2.

Updates: Insertions and deletions of pairs in I .

Queries: Compute the k-error occurrences of U1 · · ·Uz in V1 · · · Vz.

After Õ(k3)-time preprocessing, updates and queries take Õ(k) time.

26 / 32

Dynamic Puzzle Matching

Input: An integer k and a family F of strings containing a distinguished primi-

tive string Q with
∑

F∈F δE(F,Q) = O(k).

Maintain: A sequence I = (U1, V1) · · · (Uz, Vz) of pairs from F2.

Updates: Insertions and deletions of pairs in I .

Queries: Compute the k-error occurrences of U1 · · ·Uz in V1 · · · Vz.

After Õ(k3)-time preprocessing, updates and queries take Õ(k) time.

26 / 32

Dynamic Puzzle Matching

Input: An integer k and a family F of strings containing a distinguished primi-

tive string Q with
∑

F∈F δE(F,Q) = O(k).

Maintain: A sequence I = (U1, V1) · · · (Uz, Vz) of pairs from F2.

Updates: Insertions and deletions of pairs in I .

Queries: Compute the k-error occurrences of U1 · · ·Uz in V1 · · · Vz.

After Õ(k3)-time preprocessing, updates and queries take Õ(k) time.

26 / 32

Dynamic Puzzle Matching

Input: An integer k and a family F of strings containing a distinguished primi-

tive string Q with
∑

F∈F δE(F,Q) = O(k).

Maintain: A sequence I = (U1, V1) · · · (Uz, Vz) of pairs from F2.

Updates: Insertions and deletions of pairs in I .

Queries: Compute the k-error occurrences of U1 · · ·Uz in V1 · · · Vz.

After Õ(k3)-time preprocessing, updates and queries take Õ(k) time.

26 / 32

Dynamic Puzzle Matching

Input: An integer k and a family F of strings containing a distinguished primi-

tive string Q with
∑

F∈F δE(F,Q) = O(k).

Maintain: A sequence I = (U1, V1) · · · (Uz, Vz) of pairs from F2.

Updates: Insertions and deletions of pairs in I .

Queries: Compute the k-error occurrences of U1 · · ·Uz in V1 · · · Vz.

After Õ(k3)-time preprocessing, updates and queries take Õ(k) time.

26 / 32

Dynamic Puzzle Matching

Input: An integer k and a family F of strings containing a distinguished primi-

tive string Q with
∑

F∈F δE(F,Q) = O(k).

Maintain: A sequence I = (U1, V1) · · · (Uz, Vz) of pairs from F2.

Updates: Insertions and deletions of pairs in I .

Queries: Compute the k-error occurrences of U1 · · ·Uz in V1 · · · Vz.

After Õ(k3)-time preprocessing, updates and queries take Õ(k) time.

26 / 32

Using Dynamic Puzzle Matching

Think of: k = 4 and |Q| ≈ √m.

27 / 32

Using Dynamic Puzzle Matching
Think of: k = 4 and |Q| ≈ √m.

P

T

Each string hasO(k) special tiles.

27 / 32

Using Dynamic Puzzle Matching
Think of: k = 4 and |Q| ≈ √m.

T

P

27 / 32

Using Dynamic Puzzle Matching
Think of: k = 4 and |Q| ≈ √m.

T

P

> k copies of Q in P =⇒ ≥ 1 must be matched exactly

27 / 32

Using Dynamic Puzzle Matching
Think of: k = 4 and |Q| ≈ √m.

T

P

> k copies of Q in P =⇒ ≥ 1 must be matched exactly

Starting positions of k-error occs in T are withinO(k) from endpoints of tiles.

27 / 32

Using Dynamic Puzzle Matching
Think of: k = 4 and |Q| ≈ √m.

T

P

m+ k

27 / 32

Using Dynamic Puzzle Matching
Think of: k = 4 and |Q| ≈ √m.

P

T1

m+ k

|Tj| = m +O(k)

27 / 32

Using Dynamic Puzzle Matching
Think of: k = 4 and |Q| ≈ √m.

P

T1

{ {} }
8

{ }{ } { }{ }{ }{ } { }

m+ k

I1

27 / 32

Using Dynamic Puzzle Matching
Think of: k = 4 and |Q| ≈ √m.

P

T1

{ {} }
8

{ }{ } { }{ }{ }{ } { }

m+ k

I1

Goal: Iterate over all Ij’s in a DPM instance.

27 / 32

Using Dynamic Puzzle Matching
Think of: k = 4 and |Q| ≈ √m.

P

T1

{ {} }
8

{ }{ } { }{ }{ }{ } { }

m+ k

I1

Goal: Iterate over all Ij’s in a DPM instance.

(The leading and trailing pairs are treated separately.)

27 / 32

Using Dynamic Puzzle Matching
Think of: k = 4 and |Q| ≈ √m.

T

P

{ {} }
8

{ }{ } { }{ }{ }{ } { }

m+ k

I1

27 / 32

Using Dynamic Puzzle Matching
Think of: k = 4 and |Q| ≈ √m.

T

{ {} }
8

{ }{ } { }{ }{ }

P

{ } { }

m+ k

I1

27 / 32

Using Dynamic Puzzle Matching
Think of: k = 4 and |Q| ≈ √m.

{ {} }
8

{ }{ } { }{ }{ }

P

T2

{ } { }

m+ k

I1

27 / 32

Using Dynamic Puzzle Matching
Think of: k = 4 and |Q| ≈ √m.

{ {} }
8

{ }{ } { }{ }{ }

P

T2

{ {} }
8

{ }{ } { } { }{ }{ } { }

{ } { }

m+ k

I1

I2

27 / 32

Using Dynamic Puzzle Matching
Think of: k = 4 and |Q| ≈ √m.

{ {} }
8

{ }{ } { }{ }{ }

P

T2

{ {} }
8

{ }{ } { } { }{ }{ } { }

{ } { }

m+ k

I1

I2

We only need to updateO(k) pairs; there has to be a pair ̸= (Q,Q) involved!

27 / 32

Using Dynamic Puzzle Matching
Think of: k = 4 and |Q| ≈ √m.

{ {} }
8

{ }{ } { }{ }{ }

P

T2

{ {} }
8

{ }{ } { } { }{ }{ } { }

{ } { }

m+ k

I1

I2

We only need to updateO(k) pairs; there has to be a pair ̸= (Q,Q) involved!

Over the Θ(
√
m) shifts of P, we needO(√m · k) DPM-updates.

27 / 32

Using Dynamic Puzzle Matching
Think of: k = 4 and |Q| ≈ √m.

{ {} }
8

{ }{ } { }{ }{ }

P

T2

{ {} }
8

{ }{ } { } { }{ }{ } { }

{ } { }

m+ k

I1

I2

We only need to updateO(k) pairs; there has to be a pair ̸= (Q,Q) involved!

Over the Θ(
√
m) shifts of P, we needO(√m · k) DPM-updates.

Yields Õ(k3 +
√
m · k2).

27 / 32

O(k3) DPM-updates via Primitivity

k = 2

{ {} }
50

{ {} }
49

{ }

{ }I1

I2

{ }
50

{ }
51

{ {} }{ }I50 { }
99

{ {} }I51 { }
101

{ }I52 { }
102

{ {} }
3

{ {} }
2

{ }

{ }I48

I49

{ }
97

{ }
98

{ {} }
3

{ {} }
3

{ }

{ }I ′
1

I ′
2

{ }
3

{ }
3

{ {} }{ }I ′
50 { }

3

{ {} }I ′
51 { }

3

{ }I ′
52 { }

3

{ {} }
3

{ {} }
2

{ }

{ }I ′
48

I ′
49

{ }
3

{ }
3

28 / 32

O(k3) DPM-updates via Primitivity
k = 2

{ {} }
50

{ {} }
49

{ }

{ }I1

I2

{ }
50

{ }
51

{ {} }{ }I50 { }
99

{ {} }I51 { }
101

{ }I52 { }
102

{ {} }
3

{ {} }
2

{ }

{ }I48

I49

{ }
97

{ }
98

{ {} }
3

{ {} }
3

{ }

{ }I ′
1

I ′
2

{ }
3

{ }
3

{ {} }{ }I ′
50 { }

3

{ {} }I ′
51 { }

3

{ }I ′
52 { }

3

{ {} }
3

{ {} }
2

{ }

{ }I ′
48

I ′
49

{ }
3

{ }
3

28 / 32

O(k3) DPM-updates via Primitivity
k = 2

{ {} }
50

{ {} }
49

{ }

{ }I1

I2

{ }
50

{ }
51

{ {} }{ }I50 { }
99

{ {} }I51 { }
101

{ }I52 { }
102

{ {} }
3

{ {} }
2

{ }

{ }I48

I49

{ }
97

{ }
98

For a plain run (Q,Q)y, at least y − k

copies of Q will be matched exactly

in a k-error occurrence.

Cap exponents of plain runs at k + 1.

We do not lose or gain any k-error occs.

{ {} }
3

{ {} }
3

{ }

{ }I ′
1

I ′
2

{ }
3

{ }
3

{ {} }{ }I ′
50 { }

3

{ {} }I ′
51 { }

3

{ }I ′
52 { }

3

{ {} }
3

{ {} }
2

{ }

{ }I ′
48

I ′
49

{ }
3

{ }
3

28 / 32

O(k3) DPM-updates via Primitivity
k = 2

{ {} }
50

{ {} }
49

{ }

{ }I1

I2

{ }
50

{ }
51

{ {} }{ }I50 { }
99

{ {} }I51 { }
101

{ }I52 { }
102

{ {} }
3

{ {} }
2

{ }

{ }I48

I49

{ }
97

{ }
98

For a plain run (Q,Q)y, at least y − k

copies of Q will be matched exactly

in a k-error occurrence.

Cap exponents of plain runs at k + 1.

We do not lose or gain any k-error occs.

{ {} }
3

{ {} }
3

{ }

{ }I ′
1

I ′
2

{ }
3

{ }
3

{ {} }{ }I ′
50 { }

3

{ {} }I ′
51 { }

3

{ }I ′
52 { }

3

{ {} }
3

{ {} }
2

{ }

{ }I ′
48

I ′
49

{ }
3

{ }
3

28 / 32

O(k3) DPM-updates via Primitivity
k = 2

{ {} }
50

{ {} }
49

{ }

{ }I1

I2

{ }
50

{ }
51

{ {} }{ }I50 { }
99

{ {} }I51 { }
101

{ }I52 { }
102

{ {} }
3

{ {} }
2

{ }

{ }I48

I49

{ }
97

{ }
98

For a plain run (Q,Q)y, at least y − k

copies of Q will be matched exactly

in a k-error occurrence.

Cap exponents of plain runs at k + 1.

We do not lose or gain any k-error occs.

{ {} }
3

{ {} }
3

{ }

{ }I ′
1

I ′
2

{ }
3

{ }
3

{ {} }{ }I ′
50 { }

3

{ {} }I ′
51 { }

3

{ }I ′
52 { }

3

{ {} }
3

{ {} }
2

{ }

{ }I ′
48

I ′
49

{ }
3

{ }
3

28 / 32

O(k3) DPM-updates via Primitivity
k = 2

{ {} }
50

{ {} }
49

{ }

{ }I1

I2

{ }
50

{ }
51

{ {} }{ }I50 { }
99

{ {} }I51 { }
101

{ }I52 { }
102

{ {} }
3

{ {} }
2

{ }

{ }I48

I49

{ }
97

{ }
98

{ {} }
3

{ {} }
3

{ }

{ }I ′
1

I ′
2

{ }
3

{ }
3

{ {} }{ }I ′
50 { }

3

{ {} }I ′
51 { }

3

{ }I ′
52 { }

3

{ {} }
3

{ {} }
2

{ }

{ }I ′
48

I ′
49

{ }
3

{ }
3

28 / 32

O(k3) DPM-updates via Primitivity
k = 2

{ {} }
50

{ {} }
49

{ }

{ }I1

I2

{ }
50

{ }
51

{ {} }{ }I50 { }
99

{ {} }I51 { }
101

{ }I52 { }
102

{ {} }
3

{ {} }
2

{ }

{ }I48

I49

{ }
97

{ }
98

{ {} }
3

{ {} }
3

{ }

{ }I ′
1

I ′
2

{ }
3

{ }
3

{ {} }{ }I ′
50 { }

3

{ {} }I ′
51 { }

3

{ }I ′
52 { }

3

{ {} }
3

{ {} }
2

{ }

{ }I ′
48

I ′
49

{ }
3

{ }
3

The shown pair of special tiles impliesO(k) DPM-updates.

28 / 32

O(k3) DPM-updates via Primitivity
k = 2

{ {} }
50

{ {} }
49

{ }

{ }I1

I2

{ }
50

{ }
51

{ {} }{ }I50 { }
99

{ {} }I51 { }
101

{ }I52 { }
102

{ {} }
3

{ {} }
2

{ }

{ }I48

I49

{ }
97

{ }
98

{ {} }
3

{ {} }
3

{ }

{ }I ′
1

I ′
2

{ }
3

{ }
3

{ {} }{ }I ′
50 { }

3

{ {} }I ′
51 { }

3

{ }I ′
52 { }

3

{ {} }
3

{ {} }
2

{ }

{ }I ′
48

I ′
49

{ }
3

{ }
3

The shown pair of special tiles impliesO(k) DPM-updates.

We haveO(k2) pairs of special tiles!
28 / 32

O(k3) DPM-updates via Primitivity
k = 2

{ {} }
50

{ {} }
49

{ }

{ }I1

I2

{ }
50

{ }
51

{ {} }{ }I50 { }
99

{ {} }I51 { }
101

{ }I52 { }
102

{ {} }
3

{ {} }
2

{ }

{ }I48

I49

{ }
97

{ }
98

{ {} }
3

{ {} }
3

{ }

{ }I ′
1

I ′
2

{ }
3

{ }
3

{ {} }{ }I ′
50 { }

3

{ {} }I ′
51 { }

3

{ }I ′
52 { }

3

{ {} }
3

{ {} }
2

{ }

{ }I ′
48

I ′
49

{ }
3

{ }
3

Alternative Õ(k4)-time algorithm!

28 / 32

Overview forO(k2.5) DPM-updates

Cap exponents of plain runs at
√
k.

We may get false positives when we have ≥
√
k edits in a run of (Q,Q).

In this case, we must be saving ≥
√
k by canceling out errors between P and

Q∞ with errors between T and Q∞.

We quantify potential savings using a marking scheme based on overlaps of spe-

cial tiles and verify O(k2.5) positions with ≥
√
k marks using known techniques.

This yieldsO(k2.5) DPM-updates and hence Õ(k3.5) time overall.

29 / 32

Overview forO(k2.5) DPM-updates

Cap exponents of plain runs at
√
k.

We may get false positives when we have ≥
√
k edits in a run of (Q,Q).

In this case, we must be saving ≥
√
k by canceling out errors between P and

Q∞ with errors between T and Q∞.

We quantify potential savings using a marking scheme based on overlaps of spe-

cial tiles and verify O(k2.5) positions with ≥
√
k marks using known techniques.

This yieldsO(k2.5) DPM-updates and hence Õ(k3.5) time overall.

29 / 32

Overview forO(k2.5) DPM-updates

Cap exponents of plain runs at
√
k.

We may get false positives when we have ≥
√
k edits in a run of (Q,Q).

In this case, we must be saving ≥
√
k by canceling out errors between P and

Q∞ with errors between T and Q∞.

We quantify potential savings using a marking scheme based on overlaps of spe-

cial tiles and verify O(k2.5) positions with ≥
√
k marks using known techniques.

This yieldsO(k2.5) DPM-updates and hence Õ(k3.5) time overall.

29 / 32

Overview forO(k2.5) DPM-updates

Cap exponents of plain runs at
√
k.

We may get false positives when we have ≥
√
k edits in a run of (Q,Q).

P

T

2k 2k

In this case, we must be saving ≥
√
k by canceling out errors between P and

Q∞ with errors between T and Q∞.

We quantify potential savings using a marking scheme based on overlaps of spe-

cial tiles and verify O(k2.5) positions with ≥
√
k marks using known techniques.

This yieldsO(k2.5) DPM-updates and hence Õ(k3.5) time overall.

29 / 32

Overview forO(k2.5) DPM-updates

Cap exponents of plain runs at
√
k.

We may get false positives when we have ≥
√
k edits in a run of (Q,Q).

P ′

T ′

√
k

√
k

In this case, we must be saving ≥
√
k by canceling out errors between P and

Q∞ with errors between T and Q∞.

We quantify potential savings using a marking scheme based on overlaps of spe-

cial tiles and verify O(k2.5) positions with ≥
√
k marks using known techniques.

This yieldsO(k2.5) DPM-updates and hence Õ(k3.5) time overall.

29 / 32

Overview forO(k2.5) DPM-updates

Cap exponents of plain runs at
√
k.

We may get false positives when we have ≥
√
k edits in a run of (Q,Q).

P ′

T ′

√
k

√
k

2k/3

Cost: 0 + (k/3 + 1) +
√
k · δE(Q, rot2k/3(Q)).

In this case, we must be saving ≥
√
k by canceling out errors between P and

Q∞ with errors between T and Q∞.

We quantify potential savings using a marking scheme based on overlaps of spe-

cial tiles and verify O(k2.5) positions with ≥
√
k marks using known techniques.

This yieldsO(k2.5) DPM-updates and hence Õ(k3.5) time overall.

29 / 32

Overview forO(k2.5) DPM-updates

Cap exponents of plain runs at
√
k.

We may get false positives when we have ≥
√
k edits in a run of (Q,Q).

In this case, we must be saving ≥
√
k by canceling out errors between P and

Q∞ with errors between T and Q∞.

We quantify potential savings using a marking scheme based on overlaps of spe-

cial tiles and verify O(k2.5) positions with ≥
√
k marks using known techniques.

This yieldsO(k2.5) DPM-updates and hence Õ(k3.5) time overall.

29 / 32

Overview forO(k2.5) DPM-updates

Cap exponents of plain runs at
√
k.

We may get false positives when we have ≥
√
k edits in a run of (Q,Q).

In this case, we must be saving ≥
√
k by canceling out errors between P and

Q∞ with errors between T and Q∞.

We quantify potential savings using a marking scheme based on overlaps of spe-

cial tiles and verify O(k2.5) positions with ≥
√
k marks using known techniques.

This yieldsO(k2.5) DPM-updates and hence Õ(k3.5) time overall.

29 / 32

Overview forO(k2.5) DPM-updates

Cap exponents of plain runs at
√
k.

We may get false positives when we have ≥
√
k edits in a run of (Q,Q).

In this case, we must be saving ≥
√
k by canceling out errors between P and

Q∞ with errors between T and Q∞.

We quantify potential savings using a marking scheme based on overlaps of spe-

cial tiles and verify O(k2.5) positions with ≥
√
k marks using known techniques.

This yieldsO(k2.5) DPM-updates and hence Õ(k3.5) time overall.

29 / 32

A Solution to DPM and a Grid View

30 / 32

A Solution to DPM and a Grid View

1

10

1

c

e

d

c

c

b

a a c b c d

30 / 32

A Solution to DPM and a Grid View

A := distance matrix B := distance matrix

C := distance matrix

Theorem [Tiskin; Algorithmica 2015] Matrix C can be computed from (small rep-

resentations of) n× n matrices A and B in O(n log n) time.

30 / 32

A Solution to DPM and a Grid View

a

a

a

a

b

b

b

b

b

b

a a a a ab b b b b b b

P

Tj

P = 10, Tj = 12, k = 2.

Only |Tj| − |P| + 2k + 1 = O(k) diagonals are relevant.

30 / 32

A Solution to DPM and a Grid View

Tj,1

Tj,2

Tj,3

Tj,4

P1

P2

P3

P4

Preprocessing: Build distance matrices for these small alignment grids.

30 / 32

A Solution to DPM and a Grid View

Preprocessing: Build distance matrices for these small alignment grids.

Tj,1

Tj,2

Tj,3

Tj,4

P1

P2

P3

P4

Update: Maintain a balanced binary tree over them, stitching them together.

30 / 32

A Solution to DPM and a Grid View

Preprocessing: Build distance matrices for these small alignment grids.

Tj,1

Tj,2

Tj,3

Tj,4

P1

P2

P3

P4

Update: Maintain a balanced binary tree over them, stitching them together.

Each stitching operation takes Õ(k) time.
30 / 32

Final Remarks and Open Problems

What is the right exponent?

Cole and Hariharan’s conjecture: O(n + k3 · n/m) should be possible.

Is the decision version easier?

What if we allow for some approximation by also reporting an arbitrary subset

of the positions in OccE(1+ϵ)k(P, T) \ OccEk(P, T) for a small ϵ > 0?

We report starting positions. How fast can we report substrings?

31 / 32

Final Remarks and Open Problems

What is the right exponent?

Cole and Hariharan’s conjecture: O(n + k3 · n/m) should be possible.

Is the decision version easier?

What if we allow for some approximation by also reporting an arbitrary subset

of the positions in OccE(1+ϵ)k(P, T) \ OccEk(P, T) for a small ϵ > 0?

We report starting positions. How fast can we report substrings?

31 / 32

Final Remarks and Open Problems

What is the right exponent?

Cole and Hariharan’s conjecture: O(n + k3 · n/m) should be possible.

Is the decision version easier?

What if we allow for some approximation by also reporting an arbitrary subset

of the positions in OccE(1+ϵ)k(P, T) \ OccEk(P, T) for a small ϵ > 0?

We report starting positions. How fast can we report substrings?

31 / 32

Final Remarks and Open Problems

What is the right exponent?

Cole and Hariharan’s conjecture: O(n + k3 · n/m) should be possible.

Is the decision version easier?

What if we allow for some approximation by also reporting an arbitrary subset

of the positions in OccE(1+ϵ)k(P, T) \ OccEk(P, T) for a small ϵ > 0?

We report starting positions. How fast can we report substrings?

31 / 32

Final Remarks and Open Problems

What is the right exponent?

Cole and Hariharan’s conjecture: O(n + k3 · n/m) should be possible.

Is the decision version easier?

What if we allow for some approximation by also reporting an arbitrary subset

of the positions in OccE(1+ϵ)k(P, T) \ OccEk(P, T) for a small ϵ > 0?

We report starting positions. How fast can we report substrings?

31 / 32

The End

Thank you for your attention!

Many thanks to Philip Wellnitz for sharing his slides from SODA 2019!

I have edited the portion I used, so I am responsible for any errors. :)

32 / 32

