
Almost Optimal Distance Oracles
for Planar Graphs

Panagiotis Charalampopoulos1,3 Paweł Gawrychowski2

Shay Mozes3 Oren Weimann4

1King’s College London, UK

2University of Wrocław, Poland

3Interdisciplinary Center Herzliya, Israel

4University of Haifa, Israel

STOC 2019

P. Charalampopoulos et al. Almost Optimal Distance Oracles for Planar Graphs



Problem definition
17

Preprocess an n-vertex planar graph G = (V ,E) with nonnegative arc
lengths, so that given any u, v ∈ V we can compute d(u, v) efficiently.
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Goals

We want:
Fast queries, ideally Q = O(1).
Small size, ideally S = O(n).
Fast construction, ideally T = O(n).

The most important tradeoff is between query-time Q and size S.
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Previous work
The tradeoff between the query-time Q and the size S of the structure:
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Our result

Djidjev and Arikati et al. achieved Q = O(n2/S).
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The tradeoff between the query-time Q and the size S of the structure:
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Our result

Fakcharoenphol and Rao showed that S = Õ(n) and Q = Õ(
√

n) is
possible.

P. Charalampopoulos et al. Almost Optimal Distance Oracles for Planar Graphs



Previous work
The tradeoff between the query-time Q and the size S of the structure:

4/3 23/2 5/31

1/4
1/3

1/2

1

0

lg S/ lg n

lg Q/ lg n

WG‘96

ESA‘96

FOCS‘01

WG‘96

STOC‘00SODA‘06

SODA‘12

FOCS‘17

SODA‘18

Our result

This has been extended to Q = Õ(n/
√

S) for essentially the whole
range of S in a series of papers.
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Previous work
The tradeoff between the query-time Q and the size S of the structure:
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Our result

In 2017, Cohen-Addad, Dahlgaard, and Wulff-Nilsen showed that this
is not optimal, and S = O(n5/3) with Q = O(log n) is possible.
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Previous work
The tradeoff between the query-time Q and the size S of the structure:
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Our result

In 2018, Gawrychowski et al. improved this to S = O(n1.5) and
Q = O(log n).
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Previous work
The tradeoff between the query-time Q and the size S of the structure:
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Our result

We improve this to S = O(n1+ε) and Q = Õ(1) for any ε > 0.
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Main result

We show the following tradeoffs for 〈space , query-time〉:

1 〈Õ(n1+ε),O(log1/ε n)〉, for any constant 1/2 ≥ ε > 0;
2 〈O(n log2+1/ε n), Õ(nε)〉, for any constant ε > 0;
3 〈n1+o(1),no(1)〉.

The oracle is based on a recursive view of the point location
mechanism for Voronoi diagrams of Gawrychowski et al. [SODA’18].
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2 〈O(n log2+1/ε n), Õ(nε)〉, for any constant ε > 0;
3 〈n1+o(1),no(1)〉.

The oracle is based on a recursive view of the point location
mechanism for Voronoi diagrams of Gawrychowski et al. [SODA’18].

P. Charalampopoulos et al. Almost Optimal Distance Oracles for Planar Graphs



Main result

We show the following tradeoffs for 〈space , query-time〉:
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Cycle Separators
Miller [JCSS’86]
There always exists a Jordan curve separator of size O(

√
n) such that

there are at most 2
3n vertices on its inside/outside.

P. Charalampopoulos et al. Almost Optimal Distance Oracles for Planar Graphs



Cycle Separators
Miller [JCSS’86]
There always exists a Jordan curve separator of size O(

√
n) such that

there are at most 2
3n vertices on its inside/outside.

P. Charalampopoulos et al. Almost Optimal Distance Oracles for Planar Graphs



r -divisions

For r ∈ [1,n], a decomposition of the graph into:

O(n/r) pieces;
each piece has O(r) vertices;
each piece has O(

√
r) boundary

vertices (vertices incident to
edges in other pieces).

We denote the boundary of a piece P by ∂P and assume that all such
vertices lie on a single face of P.
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Recursive r -divisions
For r1 < r2 < · · · < rm ∈ [1,n], we can efficiently compute ri -divisions,
such that each ri -division respects the ri+1-division.
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Multiple Source Shortest Paths (MSSP)

Klein [SODA’05]
There exists a data structure requiring O(n log n) space that can report
in O(log n) time the distance between any vertex on the infinite face
(boundary vertex) and any vertex in the graph.

P
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Warm-up: Space Õ(n4/3), Query-time Õ(n1/3)

Compute an r -division.

For each vertex u ∈ P, store
additive weights dG(u,p) for
p ∈ ∂P.
Space O(n ·

√
r).

For each piece P, store an MSSP
data structure for the outside of P
with sources ∂P.
Space Õ(n/r · n).
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√
r).

For each piece P, store an MSSP
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with sources ∂P.
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Interesting case.
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Compute an r -division.

For each vertex u ∈ P, store
additive weights dG(u,p) for
p ∈ ∂P.
Space O(n ·

√
r).

For each piece P, store an MSSP
data structure for the outside of P
with sources ∂P.
Space Õ(n/r · n).

u

v
s

We decompose the path on the last boundary vertex it visits.
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At query, find vertex s ∈ ∂P, minimizing dG(u, s) + dG\(P\∂P)(s, v).
This is called point location.
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At query, find vertex s ∈ ∂P, minimizing dG(u, s) + dG\(P\∂P)(s, v).
This is called point location.

Perform point location by trying all O(
√

r) boundary vertices.
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First goal

u

v
s

Instead of trying all possible O(
√

r) = O(n1/3) candidate boundary
vertices, we want to compute the last boundary vertex s visited by the
shortest path in Õ(1) time.
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Point location

Each vertex u defines a set of
additive weights dG(u,p) for
p ∈ ∂P.
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8
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29

u

Gawrychowski et. al. [SODA’18]
Given an MSSP data structure for the outside of P, with sources ∂P,
there exists an Õ(|∂P|)-sized data structure for each set of additive
weights for ∂P that answers point location queries in Õ(1) time.
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Each vertex u defines a set of
additive weights dG(u,p) for
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Gawrychowski et. al. [SODA’18]
Given an MSSP data structure for the outside of P, with sources ∂P,
there exists an Õ(|∂P|)-sized data structure for each set of additive
weights for ∂P that answers point location queries in Õ(1) time.
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Warm-up 2: Space Õ(n4/3), Query-time Õ(1)

Compute an r -division.

For each vertex u ∈ P, store
additive weights dG(u,p) for
p ∈ ∂P. Preprocess these for
point location.
Space O(n ·

√
r).

For each piece P, store an MSSP
data structure for the outside of P
with sources ∂P.
Space Õ(n/r · n).
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At query, perform point location by trying all possible O(
√

r) candidate
boundary vertices.
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At query, perform point location in Õ(1) time!
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Second goal

Shrink pieces so that cost for storing additive weights shrinks.

Compute an nε-division.

For each vertex u ∈ P, store
additive weights dG(u,p) for
p ∈ ∂P. Preprocess these for
point location.

For each piece P, store the
required information to support:

I distance queries from ∂P to
vertices outside P;

I point location.

P
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Point Location via Voronoi Diagrams

The Voronoi cell of each site consists of all vertices closer to it with
respect to the additive distances.
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Point Location via Voronoi Diagrams

Because all sites are adjacent to one face, the diagram can be
described by a tree on O(|∂P|) = O(

√
r) vertices (independent of n).
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Point Location via Voronoi Diagrams

Any tree on k vertices contains a centroid vertex x such that every
component of T \ {x} is of size 2

3k .
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Point Location via Voronoi Diagrams

x

Main idea: Consider the centroid. Find which subtree contains edges
adjacent to the Voronoi cell containing v . Recurse.
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Point Location via Voronoi Diagrams

x

v

Main idea: Consider the centroid. Find which subtree contains edges
adjacent to the Voronoi cell containing v . Recurse.
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Point Location via Voronoi Diagrams

x

v

s1

s2

s3

The centroid vertex corresponds to a trichromatic face of the original
graph.
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Point Location via Voronoi Diagrams

x

v

s1

s2

s3

p2

p3

p1

Find which sk among s1, s2, s3 is closest to v .
(distance queries from boundary vertices – MSSP)
Check whether v is left or right of pk . (left/right query – MSSP)
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Point Location via Voronoi Diagrams

v

Find which sk among s1, s2, s3 is closest to v .
(distance queries from boundary vertices – MSSP)
Check whether v is left or right of pk . (left/right query – MSSP)
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Idea

Recurse, exploiting the structure of such queries.

Find which sk among s1, s2, s3 is closest to v .
(distance query from boundary vertices)
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Main result: Space Õ(n1+ε), Query-time Õ(1)

Compute a recursive r -division for
ri = ni·ε.

For each piece P of the nε-division,
for each vertex u ∈ P, store a Voronoi
diagram for the outside of P with sites
∂P and additive weight dG(u,p) for
p ∈ ∂P. Space Õ(n ·

√
r1).

For each piece P, store the required
information to answer distance
queries from ∂P to vertices outside P.

P

At query, perform point location.
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Main result: Space Õ(n1+ε), Query-time Õ(1)

We can not afford to store an Ω(n)-sized MSSP for each of the n1−ε

pieces.

P
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Main result: Space Õ(n1+ε), Query-time Õ(1)

Store an MSSP for piece Q of the n2·ε-division that contains P. This
handles the case v ∈ Q.
Space: Õ(n1−ε · n2ε) = Õ(n1+ε).

P

Qv
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Main result: Space Õ(n1+ε), Query-time Õ(1)

v

P

Q

P. Charalampopoulos et al. Almost Optimal Distance Oracles for Planar Graphs



Main result: Space Õ(n1+ε), Query-time Õ(1)

Case v /∈ Q: each p ∈ ∂P stores a Voronoi diagram for the outside of
Q with sites ∂Q.
Space: Õ(n1−ε · nε/2 · n2ε/2) = Õ(n1+ε/2).

v

Q

P

p
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Main result: Space Õ(n1+ε), Query-time Õ(1)

Repeat the same reasoning for increasingly larger pieces of sizes ni·ε,
for i = 1, . . . ,1/ε. There are n1−iε pieces at level i , each stores MSSP
and Voronoi diagrams of size Õ(n(i+1)ε). Total space: Õ(1

εn
1+ε).

Q
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Main result: Space Õ(n1+ε), Query-time Õ(1)

Smaller pieces share the MSSP data structures at higher levels.

v

Q

P
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Main result: Space Õ(n1+ε), Query-time Õ(1)

Each point location query, either gets answered at the current level, or
reduces to O(log n) point location queries at a higher level.

v

P

Q
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Main result: Space Õ(n1+ε), Query-time Õ(1)

If not earlier, then in the top level we answer the point location query in
O(log2 n) time.
Query time: O(log1/ε n).

Q

P. Charalampopoulos et al. Almost Optimal Distance Oracles for Planar Graphs



Tradeoffs and construction time

We show the following tradeoffs for 〈S,Q〉:

1 〈Õ(n1+ε),O(log1/ε n)〉, for any constant 1/2 ≥ ε > 0;
2 〈O(n log2+1/ε n), Õ(nε)〉, for any constant ε > 0;
3 〈n1+o(1),no(1)〉.

Issues and extras:
left/right queries;
∂P is not a single face of P (holes);
constructing these oracles in O(n3/2+ε) time.
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2 〈O(n log2+1/ε n), Õ(nε)〉, for any constant ε > 0;
3 〈n1+o(1),no(1)〉.

Issues and extras:
left/right queries;
∂P is not a single face of P (holes);
constructing these oracles in O(n3/2+ε) time.

P. Charalampopoulos et al. Almost Optimal Distance Oracles for Planar Graphs



Tradeoffs and construction time

We show the following tradeoffs for 〈S,Q〉:
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Open problems

Can we get Õ(n) space and Õ(1) query time?

Can we get the construction time to be Õ(n)?

Improvements on dynamic distance oracles?
Currently:

1 exact: UB Õ(n2/3) ; LB Õ(n1/2) (conditioned on APSP)
2 approx.: UB Õ(n1/2) (undirected) ; no LB.
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Our result

Thanks! Questions?
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