Efficient Enumeration of Distinct Factors Using Package Representations

Panagiotis Charalampopoulos ${ }^{1}$ Tomasz Kociumaka² Jakub Radoszewski ${ }^{3}$ Wojciech Rytter ${ }^{3}$ Tomasz Waleń ${ }^{3}$ Wiktor Zuba ${ }^{3}$

${ }^{1}$ King's College London, UK
${ }^{2}$ University of California, Berkeley, USA
${ }^{3}$ University of Warsaw, Poland

SPIRE 2020

13 October 2020

Sometimes interesting subsets of factors of a string S of length n can be described concisely (e.g. property pattern matching).

Sometimes interesting subsets of factors of a string S of length n can be described concisely (e.g. property pattern matching).

We show how to enumerate and count distinct factors represented compactly by package representations.

Sometimes interesting subsets of factors of a string S of length n can be described concisely (e.g. property pattern matching).

We show how to enumerate and count distinct factors represented compactly by package representations.

A package (i, ℓ, k) represents the factors of S of length ℓ that start in the interval $[i, i+k]$.

Sometimes interesting subsets of factors of a string S of length n can be described concisely (e.g. property pattern matching).

We show how to enumerate and count distinct factors represented compactly by package representations.

A package (i, ℓ, k) represents the factors of S of length ℓ that start in the interval $[i, i+k]$.

$$
\begin{array}{llllllllllllllllll}
\mathrm{b} & \mathrm{a} & \mathrm{~b} & \mathrm{c} & \mathrm{a} & \mathrm{~b} & \mathrm{~b} & \mathrm{~b} & \mathrm{a} \\
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18
\end{array}
$$

Package Representations

Sometimes interesting subsets of factors of a string S of length n can be described concisely (e.g. property pattern matching).

We show how to enumerate and count distinct factors represented compactly by package representations.

A package (i, ℓ, k) represents the factors of S of length ℓ that start in the interval $[i, i+k]$.

Set of packages $\{(15,2,1),(2,5,3),(10,5,2)\}$.

Package Representations

Sometimes interesting subsets of factors of a string S of length n can be described concisely (e.g. property pattern matching).

We show how to enumerate and count distinct factors represented compactly by package representations.

A package (i, ℓ, k) represents the factors of S of length ℓ that start in the interval $[i, i+k]$.

Set of packages $\{(15,2,1),(2,5,3),(10,5,2)\}$.

Package Representations

Sometimes interesting subsets of factors of a string S of length n can be described concisely (e.g. property pattern matching).

We show how to enumerate and count distinct factors represented compactly by package representations.

A package (i, ℓ, k) represents the factors of S of length ℓ that start in the interval $[i, i+k]$.

Set of packages $\{(15,2,1),(2,5,3),(10,5,2)\}$.

Preliminaries

Period

A positive integer p is a period of a string S if $S[i]=S[i+p]$ for all $i=1, \ldots,|S|-p$.

Preliminaries

Period

A positive integer p is a period of a string S if $S[i]=S[i+p]$ for all $i=1, \ldots,|S|-p$.
The smallest period $\operatorname{per}(S)$ is the period of S.

Preliminaries

Period

A positive integer p is a period of a string S if $S[i]=S[i+p]$ for all $i=1, \ldots,|S|-p$.
The smallest period $\operatorname{per}(S)$ is the period of S.

A string S is periodic if $\operatorname{per}(S) \leq|S| / 2$.

Preliminaries

Period

A positive integer p is a period of a string S if $S[i]=S[i+p]$ for all $i=1, \ldots,|S|-p$.
The smallest period $\operatorname{per}(S)$ is the period of S.

A string S is periodic if $\operatorname{per}(S) \leq|S| / 2$.
E.g. abcabcab is periodic with period 3.

Squares and Runs I

Squares

A square is a non-empty string of the form UU; e.g. abcabc.

Squares and Runs I

Squares

A square is a non-empty string of the form UU; e.g. abcabc.

Runs

A run in a string S is a pair $(S[a . . b], p)$ such that:

Squares and Runs I

Squares

A square is a non-empty string of the form UU; e.g. abcabc.

Runs

A run in a string S is a pair $(S[a . . b], p)$ such that:

- the substring $S[a \ldots b]$ is periodic with shortest period p;

Squares and Runs I

Squares

A square is a non-empty string of the form UU; e.g. abcabc.

Runs

A run in a string S is a pair $(S[a . . b], p)$ such that:

- the substring $S[a . . b]$ is periodic with shortest period p;
- $S[a . . b]$ cannot be extended to the left nor to the right without violating the above property.

Squares and Runs I

Squares

A square is a non-empty string of the form UU; e.g. abcabc.

Runs

A run in a string S is a pair $(S[a . . b], p)$ such that:

- the substring $S[a \ldots b]$ is periodic with shortest period p;
- $S[a . . b]$ cannot be extended to the left nor to the right without violating the above property.

Squares and Runs I

Squares

A square is a non-empty string of the form UU; e.g. abcabc.

Runs

A run in a string S is a pair $(S[a . . b], p)$ such that:

- the substring $S[a \ldots b]$ is periodic with shortest period p;
- $S[a . . b]$ cannot be extended to the left nor to the right without violating the above property.

Squares and Runs I

Squares

A square is a non-empty string of the form UU; e.g. abcabc.

Runs

A run in a string S is a pair $(S[a . . b], p)$ such that:

- the substring $S[a \ldots b]$ is periodic with shortest period p;
- $S[a . . b]$ cannot be extended to the left nor to the right without violating the above property.

Squares and Runs I

Squares

A square is a non-empty string of the form UU; e.g. abcabc.

Runs

A run in a string S is a pair $(S[a . . b], p)$ such that:

- the substring $S[a \ldots b]$ is periodic with shortest period p;
- $S[a . . b]$ cannot be extended to the left nor to the right without violating the above property.

Squares and Runs I

Squares

A square is a non-empty string of the form UU; e.g. abcabc.

Runs

A generalised run in a string S is a pair $(S[a . . b], p)$ such that:

- the substring $S[a . . b]$ is periodic with shortest/a period p;
- $S[a . . b]$ cannot be extended to the left nor to the right without violating the above property.

Squares and Runs I

Squares

A square is a non-empty string of the form UU; e.g. abcabc.

Runs

A generalised run in a string S is a pair $(S[a . . b], p)$ such that:

- the substring $S[a . . b]$ is periodic with shortest/a period p;
- $S[a . . b]$ cannot be extended to the left nor to the right without violating the above property.

gen. run $(S[2 \ldots 15], 6)$ gen. run $(S[2 \ldots 15], 3)$

Squares and Runs I

Squares

A square is a non-empty string of the form UU; e.g. abcabc.

Runs

A generalised run in a string S is a pair $(S[a . . b], p)$ such that:

- the substring $S[a . . b]$ is periodic with shortest/a period p;
- $S[a . . b]$ cannot be extended to the left nor to the right without violating the above property.

gen. run $(S[2 \ldots 15], 6)$ gen. run $(S[2 \ldots 15], 3)$

Each occurrence of a square $U U$ in S is contained in a unique generalised run ($S[a \ldots b],|U|)$.

Squares and Runs I

Squares

A square is a non-empty string of the form $U U$; e.g. abcabc.

Runs

A generalised run in a string S is a pair $(S[a . . b], p)$ such that:

- the substring $S[a . . b]$ is periodic with shortest/a period p;
- $S[a . . b]$ cannot be extended to the left nor to the right without violating the above property.

gen. run $(S[2 \ldots 15], 6)$ gen. run $(S[2 \ldots 15], 3)$

Each occurrence of a square $U U$ in S is contained in a unique generalised run ($S[a \ldots b],|U|)$.

Squares and Runs I

Squares

A square is a non-empty string of the form $U U$; e.g. abcabc.

Runs

A generalised run in a string S is a pair $(S[a . . b], p)$ such that:

- the substring $S[a . . b]$ is periodic with shortest/a period p;
- $S[a . . b]$ cannot be extended to the left nor to the right without violating the above property.

gen. run $(S[2 \ldots 15], 6)$ gen. run $(S[2 \ldots 15], 3)$

Each occurrence of a square $U U$ in S is contained in a unique generalised run ($S[a \ldots b],|U|)$.

Squares and Runs II

Theorem
 [Fraenkel-Simpson, J. Comb. Theory A 1996; Gusfield-Stoye, JCSS 2014]
 A string of length n has $\mathcal{O}(n)$ distinct squares and they can be computed in $\mathcal{O}(n)$ time.

Squares and Runs II

Theorem
 [Fraenkel-Simpson, J. Comb. Theory A 1996; Gusfield-Stoye, JCSS 2014]
 A string of length n has $\mathcal{O}(n)$ distinct squares and they can be computed in $\mathcal{O}(n)$ time.

Theorem [Kolpakov-Kucherov, FOCS 1999]

A string of length n has $\mathcal{O}(n)$ runs and they can be computed in $\mathcal{O}(n)$ time.

Squares and Runs II

Theorem
 [Fraenkel-Simpson, J. Comb. Theory A 1996; Gusfield-Stoye, JCSS 2014]
 A string of length n has $\mathcal{O}(n)$ distinct squares and they can be computed in $\mathcal{O}(n)$ time.

Theorem [Kolpakov-Kucherov, FOCS 1999]
 A string of length n has $\mathcal{O}(n)$ runs and they can be computed in $\mathcal{O}(n)$ time.

In particular, an algorithm of [Crochemore et al., TCS 2014] extracts the distinct squares of a string from its runs in $\mathcal{O}(n)$ time.

A Package Representation for Squares

A package (i, ℓ, k) represents the factors of S of length ℓ that start in the interval $[i, i+k]$.

A Package Representation for Squares

A package (i, ℓ, k) represents the factors of S of length ℓ that start in the interval $[i, i+k]$.

gen. run $(S[2 \ldots 15], 6)$ gen. run $(S[2.15], 3)$ gen. run $(S[15 . .17], 1)$
$\begin{array}{llllllllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18\end{array}$

A Package Representation for Squares

A package (i, ℓ, k) represents the factors of S of length ℓ that start in the interval $[i, i+k]$.

gen. run (S[2.. 15], 6) gen. run (S[2.. 15], 3) gen. run ($S[15 . .17], 1$)
$\begin{array}{llllllllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18\end{array}$

The three generalised runs generate the following package representation of all squares: \{
\}.

A Package Representation for Squares

A package (i, ℓ, k) represents the factors of S of length ℓ that start in the interval $[i, i+k]$.

gen. run (S[2.. 15], 6) gen. run (S[2.. 15], 3) gen. run ($S[15 . .17], 1$)

The three generalised runs generate the following package representation of all squares: $\{(15,2,1)$

A Package Representation for Squares

A package (i, ℓ, k) represents the factors of S of length ℓ that start in the interval $[i, i+k]$.

gen. run (S[2.. 15], 6) gen. run (S[2.. 15], 3) gen. run ($S[15 . .17], 1$)
.

A Package Representation for Squares

A package (i, ℓ, k) represents the factors of S of length ℓ that start in the interval $[i, i+k]$.

The three generalised runs generate the following package representation of all squares: $\{(15,2,1),(2,6,8),(2,12,2)\}$.

A Package Representation for Squares

A package (i, ℓ, k) represents the factors of S of length ℓ that start in the interval $[i, i+k]$.

The three generalised runs generate the following package representation of all squares: $\{(15,2,1),(2,6,8),(2,12,2)\}$.

A string of length n has $\mathcal{O}(n)$ generalised runs and each of them yields one package.

Package Representations

Consider a set \mathcal{F} of m (disjoint) packages (i, ℓ, k).

Package Representations

Consider a set \mathcal{F} of m (disjoint) packages (i, ℓ, k).

$$
\text { Factors }(\mathcal{F})=\{S[j . . j+\ell): j \in[i, i+k] \text { and }(i, \ell, k) \in \mathcal{F}\} .
$$

Package Representations

Consider a set \mathcal{F} of m (disjoint) packages (i, ℓ, k).

Factors $(\mathcal{F})=\{S[j . . j+\ell): j \in[i, i+k]$ and $(i, \ell, k) \in \mathcal{F}\}$.

We consider the problems of computing

- Factors (\mathcal{F}),
- |Factors $(\mathcal{F}) \mid$.

Package Representations

Consider a set \mathcal{F} of m (disjoint) packages (i, ℓ, k).

Factors $(\mathcal{F})=\{S[j . . j+\ell): j \in[i, i+k]$ and $(i, \ell, k) \in \mathcal{F}\}$.

We consider the problems of computing

- Factors (\mathcal{F}),
- |Factors $(\mathcal{F}) \mid$.

Remark

This is related to computing the subword complexity of S.

A Special Case

\mathcal{F} is a special package representation if every occurrence of every factor represented by \mathcal{F} is captured by some package in \mathcal{F}.

A Special Case

\mathcal{F} is a special package representation if every occurrence of every factor represented by \mathcal{F} is captured by some package in \mathcal{F}. (Our package representation for squares is special.)

A Special Case

\mathcal{F} is a special package representation if every occurrence of every factor represented by \mathcal{F} is captured by some package in \mathcal{F}. (Our package representation for squares is special.)

Aim: Compute leftmost occurrences.

A Special Case

\mathcal{F} is a special package representation if every occurrence of every factor represented by \mathcal{F} is captured by some package in \mathcal{F}. (Our package representation for squares is special.)

Aim: Compute leftmost occurrences.

We use the longest previous factor array $\operatorname{LPF}[1 . . n]$.

$$
\operatorname{LPF}[3]=1
$$

A Special Case

\mathcal{F} is a special package representation if every occurrence of every factor represented by \mathcal{F} is captured by some package in \mathcal{F}. (Our package representation for squares is special.)

Aim: Compute leftmost occurrences.

We use the longest previous factor array $\operatorname{LPF}[1 . . n]$.

$\operatorname{LPF}[6]=10$

A Special Case

\mathcal{F} is a special package representation if every occurrence of every factor represented by \mathcal{F} is captured by some package in \mathcal{F}. (Our package representation for squares is special.)

Aim: Compute leftmost occurrences.

We use the longest previous factor array $\operatorname{LPF}[1 . . n]$.

```
b a b c a bl c c a b c a b c a b b b a L b LPF[6]=10
1

\section*{A Special Case}
\(\mathcal{F}\) is a special package representation if every occurrence of every factor represented by \(\mathcal{F}\) is captured by some package in \(\mathcal{F}\). (Our package representation for squares is special.)

\section*{Aim: Compute leftmost occurrences.}

We use the longest previous factor array \(\operatorname{LPF}[1 . . n]\).
```

b a b c a
1
leftmost

```

\section*{A Special Case}
\(\mathcal{F}\) is a special package representation if every occurrence of every factor represented by \(\mathcal{F}\) is captured by some package in \(\mathcal{F}\). (Our package representation for squares is special.)

\section*{Aim: Compute leftmost occurrences.}

We use the longest previous factor array \(\operatorname{LPF}[1 . . n]\).
\[
\text { Smaller }_{\ell}=\{j \in[1, n]: \operatorname{LPF}[j]<\ell\}
\]

\section*{A Special Case}
\(\mathcal{F}\) is a special package representation if every occurrence of every factor represented by \(\mathcal{F}\) is captured by some package in \(\mathcal{F}\). (Our package representation for squares is special.)

\section*{Aim: Compute leftmost occurrences.}

We use the longest previous factor array \(\operatorname{LPF}[1 . . n]\).
\[
\text { Smaller }_{\ell}=\{j \in[1, n]: \operatorname{LPF}[j]<\ell\}
\]

\section*{Observation}

If \(\mathcal{F}\) is special,
\[
\operatorname{Factors}(\mathcal{F})=\bigcup_{(i, \ell, k) \in \mathcal{F}}\left\{S[j \ldots j+\ell): j \in[i, i+k] \cap \text { Smaller }_{\ell}\right\}
\]

\section*{Reporting in the Special Case}

Algorithm 1: High-level structure of the algorithm.
\(\bar{U}:=[1, n] ; \mathcal{P}:=\emptyset\)
for \(\ell:=n\) down to 1 do
\(U:=U \backslash\{j: L P F[j]=\ell\} ; \quad / / U=\) Smaller \(_{\ell}\)
foreach \((i, \ell, k) \in \mathcal{F}\) do
foreach \(j \in[i, i+k] \cap U\) do
\[
\mathcal{P}:=\mathcal{P} \cup\{S[j \ldots j+\ell)\} ; \quad / / \text { End }: \quad \mathcal{P}=\operatorname{Factors}(\mathcal{F})
\]

\section*{Reporting in the Special Case}

Algorithm 1: High-level structure of the algorithm.
\(\bar{U}:=[1, n] ; \mathcal{P}:=\emptyset\)
for \(\ell:=n\) down to 1 do
\(U:=U \backslash\{j: L P F[j]=\ell\} ; \quad / / U=\) Smaller \(_{\ell}\)
foreach \((i, \ell, k) \in \mathcal{F}\) do
foreach \(j \in[i, i+k] \cap U\) do
\[
\mathcal{P}:=\mathcal{P} \cup\{S[j \ldots j+\ell)\} ; \quad / / \text { End }: \quad \mathcal{P}=\operatorname{Factors}(\mathcal{F})
\]

We show an implementation of this idea in \(\mathcal{O}(n+m+\mid\) output \(\mid)\), using the Union-Find data structure of [Gabow-Tarjan, JCSS 1985].

\section*{Counting in the Special Case I}

For each \((i, \ell, k) \in \mathcal{F}\), it suffices to count the number of elements in \(L P F[i . . i+k]\) that are smaller than \(\ell\).

\section*{Counting in the Special Case I}

For each \((i, \ell, k) \in \mathcal{F}\), it suffices to count the number of elements in \(L P F[i . . i+k]\) that are smaller than \(\ell\).

Consider the following queries:
\[
\text { Smaller }_{\ell}[i]=|\{j \in[1, i]: \operatorname{LPF}[j]<\ell\}| .
\]

\section*{Counting in the Special Case I}

For each \((i, \ell, k) \in \mathcal{F}\), it suffices to count the number of elements in \(L P F[i . . i+k]\) that are smaller than \(\ell\).

Consider the following queries:
\[
\text { Smaller }_{\ell}[i]=|\{j \in[1, i]: \operatorname{LPF}[j]<\ell\}| .
\]
\[
|\operatorname{Factors}(\mathcal{F})|=\sum_{(i, \ell, k) \in \mathcal{F}} \text { Smaller }_{\ell}[i+k]-\text { Smaller }_{\ell}[i-1] .
\]

\section*{Counting in the Special Case I}

For each \((i, \ell, k) \in \mathcal{F}\), it suffices to count the number of elements in \(L P F[i . . i+k]\) that are smaller than \(\ell\).

Consider the following queries:
\[
\text { Smaller }_{\ell}[i]=|\{j \in[1, i]: \operatorname{LPF}[j]<\ell\}| .
\]
\[
\mid \text { Factors }(\mathcal{F}) \mid=\sum_{(i, \ell, k) \in \mathcal{F}} \text { Smaller }_{\ell}[i+k]-\text { Smaller }_{\ell}[i-1]
\]

We obtain an \(\mathcal{O}(n+m)\)-time algorithm by showing how to optimally answer these queries.

\section*{Counting in the Special Case II}

Maintain array \(A[1 . . n]\) such that during the \(i\) th phase:
\[
A[\ell]= \begin{cases}i-\text { Smaller }_{\ell}[i] & \text { if } \ell>\operatorname{LPF}[i], \\ \text { Smaller }_{\ell}[i] & \text { if } \ell \leq \operatorname{LPF}[i] .\end{cases}
\]

\section*{Counting in the Special Case II}

Maintain array \(A[1 . . n]\) such that during the \(i\) th phase:
\[
A[\ell]= \begin{cases}|\{j \in[1, i]: \operatorname{LPF}[j] \geq \ell\}| & \text { if } \ell>\operatorname{LPF}[i], \\ |\{j \in[1, i]: \operatorname{LPF}[j]<\ell\}| & \text { if } \ell \leq \operatorname{LPF}[i] .\end{cases}
\]

\section*{Counting in the Special Case II}

Maintain array \(A[1 . . n]\) such that during the \(i\) th phase:
\[
A[\ell]= \begin{cases}|\{j \in[1, i]: \operatorname{LPF}[j] \geq \ell\}| & \text { if } \ell>\operatorname{LPF}[i], \\ |\{j \in[1, i]: \operatorname{LPF}[j]<\ell\}| & \text { if } \ell \leq \operatorname{LPF}[i] .\end{cases}
\]

In the transition from the \(i\) th phase to the \((i+1)\) th phase, \(A[\ell]\) remains unchanged for:

\section*{Counting in the Special Case II}

Maintain array \(A[1 . . n]\) such that during the \(i\) th phase:
\[
A[\ell]= \begin{cases}|\{j \in[1, i]: \operatorname{LPF}[j] \geq \ell\}| & \text { if } \ell>\operatorname{LPF}[i], \\ |\{j \in[1, i]: \operatorname{LPF}[j]<\ell\}| & \text { if } \ell \leq \operatorname{LPF}[i] .\end{cases}
\]

In the transition from the \(i\) th phase to the \((i+1)\) th phase, \(A[\ell]\) remains unchanged for:
- \(\ell>\max (L P F[i+1], L P F[i])\), and

\section*{Counting in the Special Case II}

Maintain array \(A[1 . . n]\) such that during the \(i\) th phase:
\[
A[\ell]= \begin{cases}|\{j \in[1, i]: \operatorname{LPF}[j] \geq \ell\}| & \text { if } \ell>\operatorname{LPF}[i], \\ |\{j \in[1, i]: \operatorname{LPF}[j]<\ell\}| & \text { if } \ell \leq \operatorname{LPF}[i] .\end{cases}
\]

In the transition from the \(i\) th phase to the \((i+1)\) th phase, \(A[\ell]\) remains unchanged for:
- \(\ell>\max (L P F[i+1], L P F[i])\), and
- \(\ell \leq \min (L P F[i+1], \operatorname{LPF}[i])\).

\section*{Counting in the Special Case II}

Maintain array \(A[1 . . n]\) such that during the \(i\) th phase:
\[
A[\ell]= \begin{cases}|\{j \in[1, i]: \operatorname{LPF}[j] \geq \ell\}| & \text { if } \ell>\operatorname{LPF}[i], \\ |\{j \in[1, i]: \operatorname{LPF}[j]<\ell\}| & \text { if } \ell \leq \operatorname{LPF}[i] .\end{cases}
\]

In the transition from the \(i\) th phase to the \((i+1)\) th phase, \(A[\ell]\) remains unchanged for:
- \(\ell>\max (L P F[i+1], L P F[i])\), and
- \(\ell \leq \min (L P F[i+1], \operatorname{LPF}[i])\).

Number of updates to \(A\) :
\[
|\operatorname{LPF}[i+1]-\operatorname{LPF}[i]|
\]

\section*{Counting in the Special Case II}

Maintain array \(A[1 . . n]\) such that during the \(i\) th phase:
\[
A[\ell]= \begin{cases}|\{j \in[1, i]: \operatorname{LPF}[j] \geq \ell\}| & \text { if } \ell>\operatorname{LPF}[i], \\ |\{j \in[1, i]: \operatorname{LPF}[j]<\ell\}| & \text { if } \ell \leq \operatorname{LPF}[i] .\end{cases}
\]

In the transition from the \(i\) th phase to the \((i+1)\) th phase, \(A[\ell]\) remains unchanged for:
- \(\ell>\max (L P F[i+1], L P F[i])\), and
- \(\ell \leq \min (L P F[i+1], L P F[i])\).

Number of updates to \(A\) :
\[
\sum_{i=1}^{n-1}|\operatorname{LPF}[i+1]-\operatorname{LPF}[i]|=\mathcal{O}(n) .
\]

\section*{Applications}
- Powers. \((a b c)^{8 / 3}=a b c a b c a b\)

\section*{Applications}
- Powers. \((a b c)^{8 / 3}=a b c a b c a b,(a b c)^{3 / 2}\) is undefined.

\section*{Applications}
- Powers. \((a b c)^{8 / 3}=a b c a b c a b,(a b c)^{3 / 2}\) is undefined. Result: All distinct \(\gamma\)-powers in a length- \(n\) string can be
- counted in \(\mathcal{O}\left(\frac{\gamma}{\gamma-1} n\right)\) time, and
- reported in \(\mathcal{O}\left(\frac{\gamma}{\gamma-1} n+\mid\right.\) output \(\left.\mid\right)\) time.

\section*{Applications}
- Powers. \((a b c)^{8 / 3}=a b c a b c a b,(a b c)^{3 / 2}\) is undefined. Result: All distinct \(\gamma\)-powers in a length- \(n\) string can be
- counted in \(\mathcal{O}\left(\frac{\gamma}{\gamma-1} n\right)\) time, and
- reported in \(\mathcal{O}\left(\frac{\gamma}{\gamma-1} n+\mid\right.\) output \(\left.\mid\right)\) time.
- Antipowers. A \(k\)-antipower (for an integer \(k \geq 2\) ) is a concatenation of \(k\) pairwise distinct strings of the same length [Fici et al., ICALP 2016], e.g. abbcaaba is a 4-antipower.

\section*{Applications}
- Powers. \((a b c)^{8 / 3}=a b c a b c a b,(a b c)^{3 / 2}\) is undefined.

Result: All distinct \(\gamma\)-powers in a length- \(n\) string can be
- counted in \(\mathcal{O}\left(\frac{\gamma}{\gamma-1} n\right)\) time, and
- reported in \(\mathcal{O}\left(\frac{\gamma}{\gamma-1} n+\mid\right.\) output \(\left.\mid\right)\) time.
- Antipowers. A \(k\)-antipower (for an integer \(k \geq 2\) ) is a concatenation of \(k\) pairwise distinct strings of the same length [Fici et al., ICALP 2016], e.g. abbcaaba is a 4-antipower.
Result: All distinct \(k\)-antipowers in a length- \(n\) string can be
- counted in \(\mathcal{O}\left(n k^{2}\right)\) time, and
- reported in \(\mathcal{O}\left(n k^{2}+\mid\right.\) output \(\left.\mid\right)\) time.

\section*{Applications}
- Powers. \((a b c)^{8 / 3}=a b c a b c a b,(a b c)^{3 / 2}\) is undefined.

Result: All distinct \(\gamma\)-powers in a length- \(n\) string can be
- counted in \(\mathcal{O}\left(\frac{\gamma}{\gamma-1} n\right)\) time, and
- reported in \(\mathcal{O}\left(\frac{\gamma}{\gamma-1} n+\mid\right.\) output \(\left.\mid\right)\) time.
- Antipowers. A \(k\)-antipower (for an integer \(k \geq 2\) ) is a concatenation of \(k\) pairwise distinct strings of the same length [Fici et al., ICALP 2016], e.g. abbcaaba is a 4-antipower.
Result: All distinct \(k\)-antipowers in a length- \(n\) string can be
- counted in \(\mathcal{O}\left(n k^{2}\right)\) time, and
- reported in \(\mathcal{O}\left(n k^{2}+\mid\right.\) output \(\left.\mid\right)\) time.

For counting distinct \(k\)-antipowers, we improve over the \(\mathcal{O}\left(n k^{4} \log n \log k\right)\)-time algorithm of [Kociumaka et al., arxiv].

\section*{The General Case: Synchronisers}

Let us assume that \(S\) is cube-free, i.e. it has no non-empty factor of the form UUU.

\section*{The General Case: Synchronisers}

Let us assume that \(S\) is cube-free, i.e. it has no non-empty factor of the form UUU.

\section*{Theorem [Kempa-Kociumaka, STOC 2019]}

For a cube-free string of length \(n\), and an integer \(\tau \leq n / 2\), we can compute in \(\mathcal{O}(n)\) time a set Sync of size \(\mathcal{O}(n / \tau)\) such that:

\section*{The General Case: Synchronisers}

Let us assume that \(S\) is cube-free, i.e. it has no non-empty factor of the form UUU.

\section*{Theorem [Kempa-Kociumaka, STOC 2019]}

For a cube-free string of length \(n\), and an integer \(\tau \leq n / 2\), we can compute in \(\mathcal{O}(n)\) time a set Sync of size \(\mathcal{O}(n / \tau)\) such that:
(1) If \(S[i \ldots i+2 \tau)=S[j \ldots j+2 \tau)\), then \(i \in\) Sync \(\Leftrightarrow j \in\) Sync.

\section*{The General Case: Synchronisers}

Let us assume that \(S\) is cube-free, i.e. it has no non-empty factor of the form UUU.

\section*{Theorem [Kempa-Kociumaka, STOC 2019]}

For a cube-free string of length \(n\), and an integer \(\tau \leq n / 2\), we can compute in \(\mathcal{O}(n)\) time a set Sync of size \(\mathcal{O}(n / \tau)\) such that:
(1) If \(S[i \ldots i+2 \tau)=S[j \ldots j+2 \tau)\), then \(i \in\) Sync \(\Leftrightarrow j \in\) Sync.
(2) For \(i \in[1, n-3 \tau+2]\), Sync \(\cap[i, i+\tau) \neq \emptyset\).

\section*{The General Case: Synchronisers}

Let us assume that \(S\) is cube-free, i.e. it has no non-empty factor of the form UUU.

\section*{Theorem [Kempa-Kociumaka, STOC 2019]}

For a cube-free string of length \(n\), and an integer \(\tau \leq n / 2\), we can compute in \(\mathcal{O}(n)\) time a set Sync of size \(\mathcal{O}(n / \tau)\) such that:
(1) If \(S[i \ldots i+2 \tau)=S[j \ldots j+2 \tau)\), then \(i \in\) Sync \(\Leftrightarrow j \in\) Sync.
(2) For \(i \in[1, n-3 \tau+2]\), Sync \(\cap[i, i+\tau) \neq \emptyset\).


Idea: Assign each factor with \(\ell \in[3 \tau, 9 \tau)\) to its first \(\tau\)-synchroniser.

\section*{The General Case: Synchronisers}

Let us assume that \(S\) is cube-free, i.e. it has no non-empty factor of the form UUU.

\section*{Theorem [Kempa-Kociumaka, STOC 2019]}

For a cube-free string of length \(n\), and an integer \(\tau \leq n / 2\), we can compute in \(\mathcal{O}(n)\) time a set Sync of size \(\mathcal{O}(n / \tau)\) such that:
(1) If \(S[i \ldots i+2 \tau)=S[j \ldots j+2 \tau)\), then \(i \in\) Sync \(\Leftrightarrow j \in\) Sync.
(2) For \(i \in[1, n-3 \tau+2]\), Sync \(\cap[i, i+\tau) \neq \emptyset\).


We may have to split packages, ending up with \(\mathcal{O}(n / \tau)\) more for each \(\ell\).

\section*{The General Case: Synchronisers}

Let us assume that \(S\) is cube-free, i.e. it has no non-empty factor of the form UUU.

\section*{Theorem [Kempa-Kociumaka, STOC 2019]}

For a cube-free string of length \(n\), and an integer \(\tau \leq n / 2\), we can compute in \(\mathcal{O}(n)\) time a set Sync of size \(\mathcal{O}(n / \tau)\) such that:
(1) If \(S[i \ldots i+2 \tau)=S[j \ldots j+2 \tau)\), then \(i \in\) Sync \(\Leftrightarrow j \in\) Sync.
(2) For \(i \in[1, n-3 \tau+2]\), Sync \(\cap[i, i+\tau) \neq \emptyset\).


We may have to split packages, ending up with \(\mathcal{O}(n / \tau)\) more for each \(\ell\).

\section*{The General Case: Synchronisers}


Then, for each package, the loci of the relevant \(Q_{j} \mathrm{~s}\) (resp. \(P_{j}^{R} \mathrm{~s}\) ) correspond to a path in the suffix tree of \(S\) (resp. \(S^{R}\) ).

\section*{The General Case: Synchronisers}


Suffix tree of \(S^{R}\).


Suffix tree of \(S\).


Then, for each package, the loci of the relevant \(Q_{j} \mathrm{~s}\) (resp. \(P_{j}^{R} \mathrm{~s}\) ) correspond to a path in the suffix tree of \(S\left(\right.\) resp. \(\left.S^{R}\right)\).

\section*{The General Case: Synchronisers}


Suffix tree of \(S^{R}\).


Suffix tree of \(S\).


Then, for each package, the loci of the relevant \(Q_{j} \mathrm{~s}\) (resp. \(P_{j}^{R} \mathrm{~s}\) ) correspond to a path in the suffix tree of \(S\left(\right.\) resp. \(\left.S^{R}\right)\).

\section*{The General Case: A Problem on Trees}

Input: Two compact trees \(\mathcal{T}\) and \(\mathcal{T}^{\prime}\) of total size \(N\), and a set \(\Pi\) of pairs ( \(\pi, \pi^{\prime}\) ) of equal-length paths, with \(\pi\) going downwards in \(\mathcal{T}\) and \(\pi^{\prime}\) going upwards in \(\mathcal{T}^{\prime}\).

\section*{The General Case: A Problem on Trees}

Input: Two compact trees \(\mathcal{T}\) and \(\mathcal{T}^{\prime}\) of total size \(N\), and a set \(\Pi\) of pairs ( \(\pi, \pi^{\prime}\) ) of equal-length paths, with \(\pi\) going downwards in \(\mathcal{T}\) and \(\pi^{\prime}\) going upwards in \(\mathcal{T}^{\prime}\).
Output: \(\left|\bigcup_{\left(\pi, \pi^{\prime}\right) \in \Pi} \operatorname{Induced}\left(\pi, \pi^{\prime}\right)\right|\), where \(\operatorname{Induced}\left(\pi, \pi^{\prime}\right)\) is the set of pairs of (explicit or implicit) nodes ( \(u, u^{\prime}\) ) such that, for some \(i, u\) is the \(i\) th node on \(\pi\) and \(u^{\prime}\) is the \(i\) th node on \(\pi^{\prime}\).

\section*{The General Case: A Problem on Trees}

Input: Two compact trees \(\mathcal{T}\) and \(\mathcal{T}^{\prime}\) of total size \(N\), and a set \(\Pi\) of pairs ( \(\pi, \pi^{\prime}\) ) of equal-length paths, with \(\pi\) going downwards in \(\mathcal{T}\) and \(\pi^{\prime}\) going upwards in \(\mathcal{T}^{\prime}\).
Output: \(\left|\bigcup_{\left(\pi, \pi^{\prime}\right) \in \Pi} \operatorname{Induced}\left(\pi, \pi^{\prime}\right)\right|\), where \(\operatorname{Induced}\left(\pi, \pi^{\prime}\right)\) is the set of pairs of (explicit or implicit) nodes ( \(u, u^{\prime}\) ) such that, for some \(i, u\) is the \(i\) th node on \(\pi\) and \(u^{\prime}\) is the \(i\) th node on \(\pi^{\prime}\).


\section*{The General Case: A Problem on Trees}

Input: Two compact trees \(\mathcal{T}\) and \(\mathcal{T}^{\prime}\) of total size \(N\), and a set \(\Pi\) of pairs ( \(\pi, \pi^{\prime}\) ) of equal-length paths, with \(\pi\) going downwards in \(\mathcal{T}\) and \(\pi^{\prime}\) going upwards in \(\mathcal{T}^{\prime}\).
Output: \(\left|\bigcup_{\left(\pi, \pi^{\prime}\right) \in \Pi} \operatorname{Induced}\left(\pi, \pi^{\prime}\right)\right|\), where \(\operatorname{Induced}\left(\pi, \pi^{\prime}\right)\) is the set of pairs of (explicit or implicit) nodes ( \(u, u^{\prime}\) ) such that, for some \(i, u\) is the \(i\) th node on \(\pi\) and \(u^{\prime}\) is the \(i\) th node on \(\pi^{\prime}\).


\section*{The General Case: A Problem on Trees}

Input: Two compact trees \(\mathcal{T}\) and \(\mathcal{T}^{\prime}\) of total size \(N\), and a set \(\Pi\) of pairs ( \(\pi, \pi^{\prime}\) ) of equal-length paths, with \(\pi\) going downwards in \(\mathcal{T}\) and \(\pi^{\prime}\) going upwards in \(\mathcal{T}^{\prime}\).
Output: \(\left|\bigcup_{\left(\pi, \pi^{\prime}\right) \in \Pi} \operatorname{Induced}\left(\pi, \pi^{\prime}\right)\right|\), where \(\operatorname{Induced}\left(\pi, \pi^{\prime}\right)\) is the set of pairs of (explicit or implicit) nodes ( \(u, u^{\prime}\) ) such that, for some \(i, u\) is the \(i\) th node on \(\pi\) and \(u^{\prime}\) is the \(i\) th node on \(\pi^{\prime}\).


\section*{The General Case: A Problem on Trees}

Input: Two compact trees \(\mathcal{T}\) and \(\mathcal{T}^{\prime}\) of total size \(N\), and a set \(\Pi\) of pairs ( \(\pi, \pi^{\prime}\) ) of equal-length paths, with \(\pi\) going downwards in \(\mathcal{T}\) and \(\pi^{\prime}\) going upwards in \(\mathcal{T}^{\prime}\).
Output: \(\left|\bigcup_{\left(\pi, \pi^{\prime}\right) \in \Pi} \operatorname{Induced}\left(\pi, \pi^{\prime}\right)\right|\), where \(\operatorname{Induced}\left(\pi, \pi^{\prime}\right)\) is the set of pairs of (explicit or implicit) nodes ( \(u, u^{\prime}\) ) such that, for some \(i, u\) is the \(i\) th node on \(\pi\) and \(u^{\prime}\) is the \(i\) th node on \(\pi^{\prime}\).


\section*{The General Case: A Problem on Trees}

Input: Two compact trees \(\mathcal{T}\) and \(\mathcal{T}^{\prime}\) of total size \(N\), and a set \(\Pi\) of pairs ( \(\pi, \pi^{\prime}\) ) of equal-length paths, with \(\pi\) going downwards in \(\mathcal{T}\) and \(\pi^{\prime}\) going upwards in \(\mathcal{T}^{\prime}\).
Output: \(\left|\bigcup_{\left(\pi, \pi^{\prime}\right) \in \Pi} \operatorname{Induced}\left(\pi, \pi^{\prime}\right)\right|\), where \(\operatorname{Induced}\left(\pi, \pi^{\prime}\right)\) is the set of pairs of (explicit or implicit) nodes ( \(u, u^{\prime}\) ) such that, for some \(i, u\) is the \(i\) th node on \(\pi\) and \(u^{\prime}\) is the \(i\) th node on \(\pi^{\prime}\).


\section*{The General Case: A Problem on Trees}

Input: Two compact trees \(\mathcal{T}\) and \(\mathcal{T}^{\prime}\) of total size \(N\), and a set \(\Pi\) of pairs ( \(\pi, \pi^{\prime}\) ) of equal-length paths, with \(\pi\) going downwards in \(\mathcal{T}\) and \(\pi^{\prime}\) going upwards in \(\mathcal{T}^{\prime}\).
Output: \(\left|\bigcup_{\left(\pi, \pi^{\prime}\right) \in \Pi} \operatorname{Induced}\left(\pi, \pi^{\prime}\right)\right|\), where \(\operatorname{Induced}\left(\pi, \pi^{\prime}\right)\) is the set of pairs of (explicit or implicit) nodes ( \(u, u^{\prime}\) ) such that, for some \(i, u\) is the \(i\) th node on \(\pi\) and \(u^{\prime}\) is the \(i\) th node on \(\pi^{\prime}\).


\section*{The General Case: A Problem on Trees}

Input: Two compact trees \(\mathcal{T}\) and \(\mathcal{T}^{\prime}\) of total size \(N\), and a set \(\Pi\) of pairs ( \(\pi, \pi^{\prime}\) ) of equal-length paths, with \(\pi\) going downwards in \(\mathcal{T}\) and \(\pi^{\prime}\) going upwards in \(\mathcal{T}^{\prime}\).
Output: \(\left|\bigcup_{\left(\pi, \pi^{\prime}\right) \in \Pi} \operatorname{Induced}\left(\pi, \pi^{\prime}\right)\right|\), where \(\operatorname{Induced}\left(\pi, \pi^{\prime}\right)\) is the set of pairs of (explicit or implicit) nodes ( \(u, u^{\prime}\) ) such that, for some \(i, u\) is the \(i\) th node on \(\pi\) and \(u^{\prime}\) is the \(i\) th node on \(\pi^{\prime}\).


\section*{The General Case: Wrap-up for Cube-Free Strings}

Using a heavy paths decomposition of each tree, this problem can be solved in time \(\mathcal{O}(N+|\Pi| \log N)\) [Kociumaka et al., arxiv].

\section*{The General Case: Wrap-up for Cube-Free Strings}

Using a heavy paths decomposition of each tree, this problem can be solved in time \(\mathcal{O}(N+|\Pi| \log N)\) [Kociumaka et al., arxiv].

Here, \(N=\mathcal{O}(n)\).

\section*{The General Case: Wrap-up for Cube-Free Strings}

Using a heavy paths decomposition of each tree, this problem can be solved in time \(\mathcal{O}(N+|\Pi| \log N)\) [Kociumaka et al., arxiv].

Here, \(N=\mathcal{O}(n)\).
Let us denote the number of packages representing factors of length \(\ell\) by \(m_{\ell}\).

\section*{The General Case: Wrap-up for Cube-Free Strings}

Using a heavy paths decomposition of each tree, this problem can be solved in time \(\mathcal{O}(N+|\Pi| \log N)\) [Kociumaka et al., arxiv].

Here, \(N=\mathcal{O}(n)\).
Let us denote the number of packages representing factors of length \(\ell\) by \(m_{\ell}\). For each \(\tau=3^{x}\), for \(x \in\left[1, \log _{3} n\right)\), we have
\[
\mathcal{O}\left(\sum_{\ell=3 \tau}^{9 \tau-1}\left(m_{\ell}+\frac{n}{\tau}\right)\right)
\]
paths.

\section*{The General Case: Wrap-up for Cube-Free Strings}

Using a heavy paths decomposition of each tree, this problem can be solved in time \(\mathcal{O}(N+|\Pi| \log N)\) [Kociumaka et al., arxiv].

Here, \(N=\mathcal{O}(n)\).
Let us denote the number of packages representing factors of length \(\ell\) by \(m_{\ell}\). For each \(\tau=3^{x}\), for \(x \in\left[1, \log _{3} n\right)\), we have
\[
\mathcal{O}\left(\sum_{\ell=3 \tau}^{9 \tau-1}\left(m_{\ell}+\frac{n}{\tau}\right)\right)=\mathcal{O}\left(n+\sum_{\ell=3 \tau}^{9 \tau-1} m_{\ell}\right) \text { paths. }
\]

\section*{The General Case: Wrap-up for Cube-Free Strings}

Using a heavy paths decomposition of each tree, this problem can be solved in time \(\mathcal{O}(N+|\Pi| \log N)\) [Kociumaka et al., arxiv].

Here, \(N=\mathcal{O}(n)\).
Let us denote the number of packages representing factors of length \(\ell\) by \(m_{\ell}\). For each \(\tau=3^{x}\), for \(x \in\left[1, \log _{3} n\right)\), we have
\[
\mathcal{O}\left(\sum_{\ell=3 \tau}^{9 \tau-1}\left(m_{\ell}+\frac{n}{\tau}\right)\right)=\mathcal{O}\left(n+\sum_{\ell=3 \tau}^{9 \tau-1} m_{\ell}\right) \text { paths. }
\]

Hence, \(|\Pi|=\mathcal{O}(n \log n+m)\).

\section*{The General Case: Wrap-up for Cube-Free Strings}

Using a heavy paths decomposition of each tree, this problem can be solved in time \(\mathcal{O}(N+|\Pi| \log N)\) [Kociumaka et al., arxiv].

Here, \(N=\mathcal{O}(n)\).
Let us denote the number of packages representing factors of length \(\ell\) by \(m_{\ell}\). For each \(\tau=3^{x}\), for \(x \in\left[1, \log _{3} n\right)\), we have
\[
\mathcal{O}\left(\sum_{\ell=3 \tau}^{9 \tau-1}\left(m_{\ell}+\frac{n}{\tau}\right)\right)=\mathcal{O}\left(n+\sum_{\ell=3 \tau}^{9 \tau-1} m_{\ell}\right) \text { paths. }
\]

Hence, \(|\Pi|=\mathcal{O}(n \log n+m)\).
Overall, we solve the counting version of the problem in time \(\mathcal{O}\left(n \log ^{2} n+m \log n\right)\).

\section*{The General Case: Periodicity}

We replace \(\mathcal{F}\) by two sets of packages:

\section*{The General Case: Periodicity}

We replace \(\mathcal{F}\) by two sets of packages:
- \(\mathcal{F}_{p}\) representing highly-periodic factors, and

\section*{The General Case: Periodicity}

We replace \(\mathcal{F}\) by two sets of packages:
- \(\mathcal{F}_{p}\) representing highly-periodic factors, and
- \(\mathcal{F}_{a}\) representing non-highly-periodic factors.

\section*{The General Case: Periodicity}

We replace \(\mathcal{F}\) by two sets of packages:
- \(\mathcal{F}_{p}\) representing highly-periodic factors, and
- \(\mathcal{F}_{a}\) representing non-highly-periodic factors.

The solution using synchronisers works for \(\mathcal{F}_{a}\).

\section*{The General Case: Periodicity}

We replace \(\mathcal{F}\) by two sets of packages:
- \(\mathcal{F}_{p}\) representing highly-periodic factors, and
- \(\mathcal{F}_{a}\) representing non-highly-periodic factors.

The solution using synchronisers works for \(\mathcal{F}_{a}\).
For highly-periodic factors, we reduce the problem to the same problem on trees using runs and Lyndon roots.

\section*{The General Case: Periodicity}

We replace \(\mathcal{F}\) by two sets of packages:
- \(\mathcal{F}_{p}\) representing highly-periodic factors, and
- \(\mathcal{F}_{a}\) representing non-highly-periodic factors.

The solution using synchronisers works for \(\mathcal{F}_{a}\).
For highly-periodic factors, we reduce the problem to the same problem on trees using runs and Lyndon roots.

run (S[2.. 15], 3)

\section*{The General Case: Periodicity}

We replace \(\mathcal{F}\) by two sets of packages:
- \(\mathcal{F}_{p}\) representing highly-periodic factors, and
- \(\mathcal{F}_{a}\) representing non-highly-periodic factors.

The solution using synchronisers works for \(\mathcal{F}_{a}\).
For highly-periodic factors, we reduce the problem to the same problem on trees using runs and Lyndon roots.

run (S[2.. 15], 3)

\section*{The General Case: Periodicity}

We replace \(\mathcal{F}\) by two sets of packages:
- \(\mathcal{F}_{p}\) representing highly-periodic factors, and
- \(\mathcal{F}_{a}\) representing non-highly-periodic factors.

The solution using synchronisers works for \(\mathcal{F}_{a}\).
For highly-periodic factors, we reduce the problem to the same problem on trees using runs and Lyndon roots.

run (S[2.. 15], 3)

\section*{The General Case: Periodicity}

We replace \(\mathcal{F}\) by two sets of packages:
- \(\mathcal{F}_{p}\) representing highly-periodic factors, and
- \(\mathcal{F}_{a}\) representing non-highly-periodic factors.

The solution using synchronisers works for \(\mathcal{F}_{a}\).
For highly-periodic factors, we reduce the problem to the same problem on trees using runs and Lyndon roots.

run (S[2.. 15], 3)

We ensure that each package represents factors with the same period.

\section*{The General Case: Periodicity}

We replace \(\mathcal{F}\) by two sets of packages:
- \(\mathcal{F}_{p}\) representing highly-periodic factors, and
- \(\mathcal{F}_{a}\) representing non-highly-periodic factors.

The solution using synchronisers works for \(\mathcal{F}_{a}\).
For highly-periodic factors, we reduce the problem to the same problem on trees using runs and Lyndon roots.

run (S[2.. 15], 3)

We ensure that each package represents factors with the same period.

\section*{The General Case: Periodicity}

We replace \(\mathcal{F}\) by two sets of packages:
- \(\mathcal{F}_{p}\) representing highly-periodic factors, and
- \(\mathcal{F}_{a}\) representing non-highly-periodic factors.

The solution using synchronisers works for \(\mathcal{F}_{a}\).
For highly-periodic factors, we reduce the problem to the same problem on trees using runs and Lyndon roots.

run (S[2.. 15], 3)

We ensure that each package represents factors with the same period. Each package yields at most two pairs of paths.

\section*{Our Results}

For a special package representation \(\mathcal{F}\) consisting of \(m\) packages and a string of length \(n\) we can compute:

\section*{Our Results}

For a special package representation \(\mathcal{F}\) consisting of \(m\) packages and a string of length \(n\) we can compute:
- Factors \((\mathcal{F})\) in \(\mathcal{O}(n+m+\mid\) output \(\mid)\) time,
- \(\mid\) Factors \((\mathcal{F}) \mid\) in \(\mathcal{O}(n+m)\) time.

\section*{Our Results}

For a special package representation \(\mathcal{F}\) consisting of \(m\) packages and a string of length \(n\) we can compute:
- Factors \((\mathcal{F})\) in \(\mathcal{O}(n+m+\) |output \(\mid)\) time,
- \(\mid\) Factors \((\mathcal{F}) \mid\) in \(\mathcal{O}(n+m)\) time.

For a general package representation \(\mathcal{F}\) consisting of \(m\) packages and a string of length \(n\) we can compute:

\section*{Our Results}

For a special package representation \(\mathcal{F}\) consisting of \(m\) packages and a string of length \(n\) we can compute:
- Factors \((\mathcal{F})\) in \(\mathcal{O}(n+m+\) |output \(\mid)\) time,
- \(\mid\) Factors \((\mathcal{F}) \mid\) in \(\mathcal{O}(n+m)\) time.

For a general package representation \(\mathcal{F}\) consisting of \(m\) packages and a string of length \(n\) we can compute:
- Factors \((\mathcal{F})\) in \(\mathcal{O}\left(n \log ^{2} n+m \log n+\mid\right.\) output \(\left.\mid\right)\) time,
- \(\mid\) Factors \((\mathcal{F}) \mid\) in \(\mathcal{O}\left(n \log ^{2} n+m \log n\right)\) time.

\title{
Thank you for your attention!
}

\section*{Questions?}```

