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Package Representations

Sometimes interesting subsets of factors of a string S of length
n can be described concisely (e.g. property pattern matching).

We show how to enumerate and count distinct factors
represented compactly by package representations.

A package (i , `, k) represents the factors of S of length ` that
start in the interval [i , i + k ].

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

b a b c a b c a b c a b c a b b b a

Set of packages {(15,2,1), (2,5,3), (10,5,2)}.
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Preliminaries

Period
A positive integer p is a period of a string S if S[i] = S[i + p] for
all i = 1, . . . , |S| − p.

The smallest period per(S) is the period of S.

A string S is periodic if per(S) ≤ |S|/2.

E.g. abcabcab is periodic with period 3.
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Squares and Runs I

Squares
A square is a non-empty string of the form UU; e.g. abcabc.

Runs
A run in a string S is a pair (S[a . .b],p) such that:

the substring S[a . .b] is periodic with shortest period p;
S[a . .b] cannot be extended to the left nor to the right
without violating the above property.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

abc bcb a b a b c a b c a b a bc bcb

run (S[2 . . 15], 3)

Each occurrence of a square UU in S is contained in a unique
generalised run (S[a . .b], |U|).
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Squares and Runs II

Theorem
[Fraenkel-Simpson, J. Comb. Theory A 1996; Gusfield-Stoye, JCSS 2014]

A string of length n has O(n) distinct squares and they can be
computed in O(n) time.

Theorem [Kolpakov-Kucherov, FOCS 1999]

A string of length n has O(n) runs and they can be computed in
O(n) time.

In particular, an algorithm of [Crochemore et al., TCS 2014] extracts
the distinct squares of a string from its runs in O(n) time.
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A Package Representation for Squares

A package (i , `, k) represents the factors of S of length ` that
start in the interval [i , i + k ].

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

b a b c a b c a b c a b c a b b b a

gen. run (S[2 . . 15], 3)
gen. run (S[2 . . 15], 6)

gen. run (S[15 . . 17], 1)

The three generalised runs generate the following package
representation of all squares: {

(15,2,1), (2,6,8), (2,12,2)

}.

A string of length n has O(n) generalised runs and each of
them yields one package.
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Package Representations

Consider a set F of m (disjoint) packages (i , `, k).

Factors(F) = {S[j . . j + `) : j ∈ [i , i + k ] and (i , `, k) ∈ F}.

We consider the problems of computing
Factors(F),
|Factors(F)|.

Remark
This is related to computing the subword complexity of S.
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A Special Case

F is a special package representation if every occurrence of ev-
ery factor represented by F is captured by some package in F .

(Our package representation for squares is special.)

Aim: Compute leftmost occurrences.

We use the longest previous factor array LPF [1 . .n].

Smaller` = { j ∈ [1,n] : LPF [j] < ` }

Observation
If F is special,

Factors(F) =
⋃

(i,`,k)∈F

{S[j . . j + `) : j ∈ [i , i + k ] ∩ Smaller`}.
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Reporting in the Special Case

Algorithm 1: High-level structure of the algorithm.
U := [1,n]; P := ∅
for ` := n down to 1 do

U := U \ {j : LPF [j] = `} ; // U = Smaller`
foreach (i , `, k) ∈ F do

foreach j ∈ [i , i + k ] ∩ U do
P := P ∪ {S[j . . j + `)}; // End: P = Factors(F)

We show an implementation of this idea in O(n + m + |output|),
using the Union-Find data structure of [Gabow-Tarjan, JCSS 1985].
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Counting in the Special Case I

For each (i , `, k) ∈ F , it suffices to count the number of
elements in LPF [i . . i + k ] that are smaller than `.

Consider the following queries:

Smaller`[i] = |{j ∈ [1, i] : LPF [j] < `}|.

|Factors(F)| =
∑

(i,`,k)∈F

Smaller`[i + k ]− Smaller`[i − 1].

We obtain an O(n + m)-time algorithm by showing how to
optimally answer these queries.
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Counting in the Special Case II

Maintain array A[1 . .n] such that during the i th phase:

A[`] =

{
i − Smaller`[i] if ` > LPF [i],
Smaller`[i] if ` ≤ LPF [i].

In the transition from the i th phase to the (i + 1)th phase, A[`]
remains unchanged for:

` > max(LPF [i + 1],LPF [i]), and

` ≤ min(LPF [i + 1],LPF [i]).

Number of updates to A:

∑n−1
i=1

|LPF [i + 1]− LPF [i]|

= O(n).
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Applications

Powers. (abc)8/3 = abcabcab

, (abc)3/2 is undefined.

Result: All distinct γ-powers in a length-n string can be
counted in O( γ

γ−1 n) time, and
reported in O( γ

γ−1 n + |output|) time.

Antipowers. A k-antipower (for an integer k ≥ 2) is a
concatenation of k pairwise distinct strings of the same
length [Fici et al., ICALP 2016], e.g. abbcaaba is a 4-antipower.

Result: All distinct k -antipowers in a length-n string can be
counted in O(nk2) time, and
reported in O(nk2 + |output|) time.

For counting distinct k -antipowers, we improve over the
O(nk4 log n log k)-time algorithm of [Kociumaka et al., arxiv].
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The General Case: Synchronisers

Let us assume that S is cube-free, i.e. it has no non-empty
factor of the form UUU.

S
∗ ∗ ∗ ∗ ∗ ∗∗j

Pj Qj

`
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Theorem [Kempa-Kociumaka, STOC 2019]

For a cube-free string of length n, and an integer τ ≤ n/2, we
can compute in O(n) time a set Sync of size O(n/τ) such that:

1 If S[i . . i + 2τ) = S[j . . j + 2τ), then i ∈ Sync⇔ j ∈ Sync.
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Idea: Assign each factor with ` ∈ [3τ,9τ) to its first
τ -synchroniser.
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We may have to split packages, ending up with O(n/τ) more for
each `.
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The General Case: Synchronisers

S
∗ ∗ ∗ ∗ ∗ ∗∗j

Pj Qj

`

Then, for each package, the loci of the relevant Qjs (resp. PR
j s)

correspond to a path in the suffix tree of S (resp. SR).
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The General Case: A Problem on Trees

Input: Two compact trees T and T ′ of total size N, and a set
Π of pairs (π, π′) of equal-length paths, with π going down-
wards in T and π′ going upwards in T ′.

Output: |
⋃

(π,π′)∈Π Induced(π, π′)|, where Induced(π, π′) is
the set of pairs of (explicit or implicit) nodes (u,u′) such that,
for some i , u is the i th node on π and u′ is the i th node on π′.
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The General Case: Wrap-up for Cube-Free Strings

Using a heavy paths decomposition of each tree, this problem
can be solved in time O(N + |Π| log N) [Kociumaka et al., arxiv].

Here, N = O(n).

Let us denote the number of packages representing factors of
length ` by m`. For each τ = 3x , for x ∈ [1, log3 n), we have

O

(
9τ−1∑
`=3τ

(
m` +

n
τ

))

= O

(
n +

9τ−1∑
`=3τ

m`

)

paths.

Hence, |Π| = O(n log n + m).

Overall, we solve the counting version of the problem in time
O(n log2 n + m log n).
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The General Case: Periodicity

We replace F by two sets of packages:

Fp representing highly-periodic factors, and
Fa representing non-highly-periodic factors.

The solution using synchronisers works for Fa.

For highly-periodic factors, we reduce the problem to the same
problem on trees using runs and Lyndon roots.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

b a b c a b c a b c a b c a b b b a

run (S[2 . . 15], 3)

We ensure that each package represents factors with the same
period. Each package yields at most two pairs of paths.
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Our Results

For a special package representation F consisting of m
packages and a string of length n we can compute:

Factors(F) in O(n + m + |output|) time,
|Factors(F)| in O(n + m) time.

For a general package representation F consisting of m
packages and a string of length n we can compute:

Factors(F) in O(n log2 n + m log n + |output|) time,
|Factors(F)| in O(n log2 n + m log n) time.
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The End

Thank you for your attention!

Questions?
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