
Efficient Enumeration of Distinct Factors Using
Package Representations

Panagiotis Charalampopoulos1 Tomasz Kociumaka2

Jakub Radoszewski3 Wojciech Rytter3

Tomasz Waleń3 Wiktor Zuba3

1King’s College London, UK

2University of California, Berkeley, USA

3University of Warsaw, Poland

SPIRE 2020
13 October 2020

P. Charalampopoulos et al. Efficient Enumeration of Distinct Factors Using Package Representations

Package Representations

Sometimes interesting subsets of factors of a string S of length
n can be described concisely (e.g. property pattern matching).

We show how to enumerate and count distinct factors
represented compactly by package representations.

A package (i , `, k) represents the factors of S of length ` that
start in the interval [i , i + k].

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

b a b c a b c a b c a b c a b b b a

Set of packages {(15,2,1), (2,5,3), (10,5,2)}.

P. Charalampopoulos et al. Efficient Enumeration of Distinct Factors Using Package Representations

Package Representations

Sometimes interesting subsets of factors of a string S of length
n can be described concisely (e.g. property pattern matching).

We show how to enumerate and count distinct factors
represented compactly by package representations.

A package (i , `, k) represents the factors of S of length ` that
start in the interval [i , i + k].

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

b a b c a b c a b c a b c a b b b a

Set of packages {(15,2,1), (2,5,3), (10,5,2)}.

P. Charalampopoulos et al. Efficient Enumeration of Distinct Factors Using Package Representations

Package Representations

Sometimes interesting subsets of factors of a string S of length
n can be described concisely (e.g. property pattern matching).

We show how to enumerate and count distinct factors
represented compactly by package representations.

A package (i , `, k) represents the factors of S of length ` that
start in the interval [i , i + k].

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

b a b c a b c a b c a b c a b b b a

Set of packages {(15,2,1), (2,5,3), (10,5,2)}.

P. Charalampopoulos et al. Efficient Enumeration of Distinct Factors Using Package Representations

Package Representations

Sometimes interesting subsets of factors of a string S of length
n can be described concisely (e.g. property pattern matching).

We show how to enumerate and count distinct factors
represented compactly by package representations.

A package (i , `, k) represents the factors of S of length ` that
start in the interval [i , i + k].

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

b a b c a b c a b c a b c a b b b a

Set of packages {(15,2,1), (2,5,3), (10,5,2)}.

P. Charalampopoulos et al. Efficient Enumeration of Distinct Factors Using Package Representations

Package Representations

Sometimes interesting subsets of factors of a string S of length
n can be described concisely (e.g. property pattern matching).

We show how to enumerate and count distinct factors
represented compactly by package representations.

A package (i , `, k) represents the factors of S of length ` that
start in the interval [i , i + k].

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

b a b c a b c a b c a b c a b b b a

Set of packages {(15,2,1), (2,5,3), (10,5,2)}.

P. Charalampopoulos et al. Efficient Enumeration of Distinct Factors Using Package Representations

Package Representations

Sometimes interesting subsets of factors of a string S of length
n can be described concisely (e.g. property pattern matching).

We show how to enumerate and count distinct factors
represented compactly by package representations.

A package (i , `, k) represents the factors of S of length ` that
start in the interval [i , i + k].

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

b a b c a b c a b c a b c a b b b a

Set of packages {(15,2,1), (2,5,3), (10,5,2)}.

P. Charalampopoulos et al. Efficient Enumeration of Distinct Factors Using Package Representations

Package Representations

Sometimes interesting subsets of factors of a string S of length
n can be described concisely (e.g. property pattern matching).

We show how to enumerate and count distinct factors
represented compactly by package representations.

A package (i , `, k) represents the factors of S of length ` that
start in the interval [i , i + k].

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

b a b c a b c a b c a b c a b b b a

Set of packages {(15,2,1), (2,5,3), (10,5,2)}.

P. Charalampopoulos et al. Efficient Enumeration of Distinct Factors Using Package Representations

Preliminaries

Period
A positive integer p is a period of a string S if S[i] = S[i + p] for
all i = 1, . . . , |S| − p.

The smallest period per(S) is the period of S.

A string S is periodic if per(S) ≤ |S|/2.

E.g. abcabcab is periodic with period 3.

P. Charalampopoulos et al. Efficient Enumeration of Distinct Factors Using Package Representations

Preliminaries

Period
A positive integer p is a period of a string S if S[i] = S[i + p] for
all i = 1, . . . , |S| − p.
The smallest period per(S) is the period of S.

A string S is periodic if per(S) ≤ |S|/2.

E.g. abcabcab is periodic with period 3.

P. Charalampopoulos et al. Efficient Enumeration of Distinct Factors Using Package Representations

Preliminaries

Period
A positive integer p is a period of a string S if S[i] = S[i + p] for
all i = 1, . . . , |S| − p.
The smallest period per(S) is the period of S.

A string S is periodic if per(S) ≤ |S|/2.

E.g. abcabcab is periodic with period 3.

P. Charalampopoulos et al. Efficient Enumeration of Distinct Factors Using Package Representations

Preliminaries

Period
A positive integer p is a period of a string S if S[i] = S[i + p] for
all i = 1, . . . , |S| − p.
The smallest period per(S) is the period of S.

A string S is periodic if per(S) ≤ |S|/2.

E.g. abcabcab is periodic with period 3.

P. Charalampopoulos et al. Efficient Enumeration of Distinct Factors Using Package Representations

Squares and Runs I

Squares
A square is a non-empty string of the form UU; e.g. abcabc.

Runs
A run in a string S is a pair (S[a . .b],p) such that:

the substring S[a . .b] is periodic with shortest period p;
S[a . .b] cannot be extended to the left nor to the right
without violating the above property.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

abc bcb a b a b c a b c a b a bc bcb

run (S[2 . . 15], 3)

Each occurrence of a square UU in S is contained in a unique
generalised run (S[a . .b], |U|).

P. Charalampopoulos et al. Efficient Enumeration of Distinct Factors Using Package Representations

Squares and Runs I

Squares
A square is a non-empty string of the form UU; e.g. abcabc.

Runs
A run in a string S is a pair (S[a . .b],p) such that:

the substring S[a . .b] is periodic with shortest period p;
S[a . .b] cannot be extended to the left nor to the right
without violating the above property.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

abc bcb a b a b c a b c a b a bc bcb

run (S[2 . . 15], 3)

Each occurrence of a square UU in S is contained in a unique
generalised run (S[a . .b], |U|).

P. Charalampopoulos et al. Efficient Enumeration of Distinct Factors Using Package Representations

Squares and Runs I

Squares
A square is a non-empty string of the form UU; e.g. abcabc.

Runs
A run in a string S is a pair (S[a . .b],p) such that:

the substring S[a . .b] is periodic with shortest period p;

S[a . .b] cannot be extended to the left nor to the right
without violating the above property.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

abc bcb a b a b c a b c a b a bc bcb

run (S[2 . . 15], 3)

Each occurrence of a square UU in S is contained in a unique
generalised run (S[a . .b], |U|).

P. Charalampopoulos et al. Efficient Enumeration of Distinct Factors Using Package Representations

Squares and Runs I

Squares
A square is a non-empty string of the form UU; e.g. abcabc.

Runs
A run in a string S is a pair (S[a . .b],p) such that:

the substring S[a . .b] is periodic with shortest period p;
S[a . .b] cannot be extended to the left nor to the right
without violating the above property.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

abc bcb a b a b c a b c a b a bc bcb

run (S[2 . . 15], 3)

Each occurrence of a square UU in S is contained in a unique
generalised run (S[a . .b], |U|).

P. Charalampopoulos et al. Efficient Enumeration of Distinct Factors Using Package Representations

Squares and Runs I

Squares
A square is a non-empty string of the form UU; e.g. abcabc.

Runs
A run in a string S is a pair (S[a . .b],p) such that:

the substring S[a . .b] is periodic with shortest period p;
S[a . .b] cannot be extended to the left nor to the right
without violating the above property.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

abc bcb a b a b c a b c a b a b

c bcb

run (S[2 . . 15], 3)

Each occurrence of a square UU in S is contained in a unique
generalised run (S[a . .b], |U|).

P. Charalampopoulos et al. Efficient Enumeration of Distinct Factors Using Package Representations

Squares and Runs I

Squares
A square is a non-empty string of the form UU; e.g. abcabc.

Runs
A run in a string S is a pair (S[a . .b],p) such that:

the substring S[a . .b] is periodic with shortest period p;
S[a . .b] cannot be extended to the left nor to the right
without violating the above property.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

ab

c b

cb a b a b c a b c a b a bc b

cb

run (S[2 . . 15], 3)

Each occurrence of a square UU in S is contained in a unique
generalised run (S[a . .b], |U|).

P. Charalampopoulos et al. Efficient Enumeration of Distinct Factors Using Package Representations

Squares and Runs I

Squares
A square is a non-empty string of the form UU; e.g. abcabc.

Runs
A run in a string S is a pair (S[a . .b],p) such that:

the substring S[a . .b] is periodic with shortest period p;
S[a . .b] cannot be extended to the left nor to the right
without violating the above property.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

abc b

cb

a b a b c a b c a b a b

c b

cb

run (S[2 . . 15], 3)

Each occurrence of a square UU in S is contained in a unique
generalised run (S[a . .b], |U|).

P. Charalampopoulos et al. Efficient Enumeration of Distinct Factors Using Package Representations

Squares and Runs I

Squares
A square is a non-empty string of the form UU; e.g. abcabc.

Runs
A run in a string S is a pair (S[a . .b],p) such that:

the substring S[a . .b] is periodic with shortest period p;
S[a . .b] cannot be extended to the left nor to the right
without violating the above property.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

abc bcb a b a b c a b c a b a b

c bcb

run (S[2 . . 15], 3)

Each occurrence of a square UU in S is contained in a unique
generalised run (S[a . .b], |U|).

P. Charalampopoulos et al. Efficient Enumeration of Distinct Factors Using Package Representations

Squares and Runs I

Squares
A square is a non-empty string of the form UU; e.g. abcabc.

Runs
A generalised run in a string S is a pair (S[a . .b],p) such that:

the substring S[a . .b] is periodic with shortest/a period p;
S[a . .b] cannot be extended to the left nor to the right
without violating the above property.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

abc bcb a b a b c a b c a b a b

c bcb

gen. run (S[2 . . 15], 3)

Each occurrence of a square UU in S is contained in a unique
generalised run (S[a . .b], |U|).

P. Charalampopoulos et al. Efficient Enumeration of Distinct Factors Using Package Representations

Squares and Runs I

Squares
A square is a non-empty string of the form UU; e.g. abcabc.

Runs
A generalised run in a string S is a pair (S[a . .b],p) such that:

the substring S[a . .b] is periodic with shortest/a period p;
S[a . .b] cannot be extended to the left nor to the right
without violating the above property.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

abc bcb a b a b c a b c a b a b

c bcb

gen. run (S[2 . . 15], 3)
gen. run (S[2 . . 15], 6)

Each occurrence of a square UU in S is contained in a unique
generalised run (S[a . .b], |U|).

P. Charalampopoulos et al. Efficient Enumeration of Distinct Factors Using Package Representations

Squares and Runs I

Squares
A square is a non-empty string of the form UU; e.g. abcabc.

Runs
A generalised run in a string S is a pair (S[a . .b],p) such that:

the substring S[a . .b] is periodic with shortest/a period p;
S[a . .b] cannot be extended to the left nor to the right
without violating the above property.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

abc bcb a b a b c a b c a b a b

c bcb

gen. run (S[2 . . 15], 3)
gen. run (S[2 . . 15], 6)

Each occurrence of a square UU in S is contained in a unique
generalised run (S[a . .b], |U|).

P. Charalampopoulos et al. Efficient Enumeration of Distinct Factors Using Package Representations

Squares and Runs I

Squares
A square is a non-empty string of the form UU; e.g. abcabc.

Runs
A generalised run in a string S is a pair (S[a . .b],p) such that:

the substring S[a . .b] is periodic with shortest/a period p;
S[a . .b] cannot be extended to the left nor to the right
without violating the above property.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

abc bcb a b a b c a b c a b a b

c bcb

gen. run (S[2 . . 15], 3)
gen. run (S[2 . . 15], 6)

Each occurrence of a square UU in S is contained in a unique
generalised run (S[a . .b], |U|).

P. Charalampopoulos et al. Efficient Enumeration of Distinct Factors Using Package Representations

Squares and Runs I

Squares
A square is a non-empty string of the form UU; e.g. abcabc.

Runs
A generalised run in a string S is a pair (S[a . .b],p) such that:

the substring S[a . .b] is periodic with shortest/a period p;
S[a . .b] cannot be extended to the left nor to the right
without violating the above property.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

abc bcb a b a b c a b c a b a b

c bcb

gen. run (S[2 . . 15], 3)
gen. run (S[2 . . 15], 6)

Each occurrence of a square UU in S is contained in a unique
generalised run (S[a . .b], |U|).

P. Charalampopoulos et al. Efficient Enumeration of Distinct Factors Using Package Representations

Squares and Runs II

Theorem
[Fraenkel-Simpson, J. Comb. Theory A 1996; Gusfield-Stoye, JCSS 2014]

A string of length n has O(n) distinct squares and they can be
computed in O(n) time.

Theorem [Kolpakov-Kucherov, FOCS 1999]

A string of length n has O(n) runs and they can be computed in
O(n) time.

In particular, an algorithm of [Crochemore et al., TCS 2014] extracts
the distinct squares of a string from its runs in O(n) time.

P. Charalampopoulos et al. Efficient Enumeration of Distinct Factors Using Package Representations

Squares and Runs II

Theorem
[Fraenkel-Simpson, J. Comb. Theory A 1996; Gusfield-Stoye, JCSS 2014]

A string of length n has O(n) distinct squares and they can be
computed in O(n) time.

Theorem [Kolpakov-Kucherov, FOCS 1999]

A string of length n has O(n) runs and they can be computed in
O(n) time.

In particular, an algorithm of [Crochemore et al., TCS 2014] extracts
the distinct squares of a string from its runs in O(n) time.

P. Charalampopoulos et al. Efficient Enumeration of Distinct Factors Using Package Representations

Squares and Runs II

Theorem
[Fraenkel-Simpson, J. Comb. Theory A 1996; Gusfield-Stoye, JCSS 2014]

A string of length n has O(n) distinct squares and they can be
computed in O(n) time.

Theorem [Kolpakov-Kucherov, FOCS 1999]

A string of length n has O(n) runs and they can be computed in
O(n) time.

In particular, an algorithm of [Crochemore et al., TCS 2014] extracts
the distinct squares of a string from its runs in O(n) time.

P. Charalampopoulos et al. Efficient Enumeration of Distinct Factors Using Package Representations

A Package Representation for Squares

A package (i , `, k) represents the factors of S of length ` that
start in the interval [i , i + k].

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

b a b c a b c a b c a b c a b b b a

gen. run (S[2 . . 15], 3)
gen. run (S[2 . . 15], 6)

gen. run (S[15 . . 17], 1)

The three generalised runs generate the following package
representation of all squares: {

(15,2,1), (2,6,8), (2,12,2)

}.

A string of length n has O(n) generalised runs and each of
them yields one package.

P. Charalampopoulos et al. Efficient Enumeration of Distinct Factors Using Package Representations

A Package Representation for Squares

A package (i , `, k) represents the factors of S of length ` that
start in the interval [i , i + k].

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

b a b c a b c a b c a b c a b b b a

gen. run (S[2 . . 15], 3)
gen. run (S[2 . . 15], 6)

gen. run (S[15 . . 17], 1)

The three generalised runs generate the following package
representation of all squares: {

(15,2,1), (2,6,8), (2,12,2)

}.

A string of length n has O(n) generalised runs and each of
them yields one package.

P. Charalampopoulos et al. Efficient Enumeration of Distinct Factors Using Package Representations

A Package Representation for Squares

A package (i , `, k) represents the factors of S of length ` that
start in the interval [i , i + k].

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

b a b c a b c a b c a b c a b b b a

gen. run (S[2 . . 15], 3)
gen. run (S[2 . . 15], 6)

gen. run (S[15 . . 17], 1)

The three generalised runs generate the following package
representation of all squares: {

(15,2,1), (2,6,8), (2,12,2)

}.

A string of length n has O(n) generalised runs and each of
them yields one package.

P. Charalampopoulos et al. Efficient Enumeration of Distinct Factors Using Package Representations

A Package Representation for Squares

A package (i , `, k) represents the factors of S of length ` that
start in the interval [i , i + k].

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

b a b c a b c a b c a b c a b b b a

gen. run (S[2 . . 15], 3)
gen. run (S[2 . . 15], 6)

gen. run (S[15 . . 17], 1)

The three generalised runs generate the following package
representation of all squares: {(15,2,1)

, (2,6,8), (2,12,2)

}.

A string of length n has O(n) generalised runs and each of
them yields one package.

P. Charalampopoulos et al. Efficient Enumeration of Distinct Factors Using Package Representations

A Package Representation for Squares

A package (i , `, k) represents the factors of S of length ` that
start in the interval [i , i + k].

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

b a b c a b c a b c a b c a b b b a

gen. run (S[2 . . 15], 3)
gen. run (S[2 . . 15], 6)

gen. run (S[15 . . 17], 1)

The three generalised runs generate the following package
representation of all squares: {(15,2,1), (2,6,8)

, (2,12,2)

}.

A string of length n has O(n) generalised runs and each of
them yields one package.

P. Charalampopoulos et al. Efficient Enumeration of Distinct Factors Using Package Representations

A Package Representation for Squares

A package (i , `, k) represents the factors of S of length ` that
start in the interval [i , i + k].

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

b a b c a b c a b c a b c a b b b a

gen. run (S[2 . . 15], 3)
gen. run (S[2 . . 15], 6)

gen. run (S[15 . . 17], 1)

The three generalised runs generate the following package
representation of all squares: {(15,2,1), (2,6,8), (2,12,2)}.

A string of length n has O(n) generalised runs and each of
them yields one package.

P. Charalampopoulos et al. Efficient Enumeration of Distinct Factors Using Package Representations

A Package Representation for Squares

A package (i , `, k) represents the factors of S of length ` that
start in the interval [i , i + k].

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

b a b c a b c a b c a b c a b b b a

gen. run (S[2 . . 15], 3)
gen. run (S[2 . . 15], 6)

gen. run (S[15 . . 17], 1)

The three generalised runs generate the following package
representation of all squares: {(15,2,1), (2,6,8), (2,12,2)}.

A string of length n has O(n) generalised runs and each of
them yields one package.

P. Charalampopoulos et al. Efficient Enumeration of Distinct Factors Using Package Representations

Package Representations

Consider a set F of m (disjoint) packages (i , `, k).

Factors(F) = {S[j . . j + `) : j ∈ [i , i + k] and (i , `, k) ∈ F}.

We consider the problems of computing
Factors(F),
|Factors(F)|.

Remark
This is related to computing the subword complexity of S.

P. Charalampopoulos et al. Efficient Enumeration of Distinct Factors Using Package Representations

Package Representations

Consider a set F of m (disjoint) packages (i , `, k).

Factors(F) = {S[j . . j + `) : j ∈ [i , i + k] and (i , `, k) ∈ F}.

We consider the problems of computing
Factors(F),
|Factors(F)|.

Remark
This is related to computing the subword complexity of S.

P. Charalampopoulos et al. Efficient Enumeration of Distinct Factors Using Package Representations

Package Representations

Consider a set F of m (disjoint) packages (i , `, k).

Factors(F) = {S[j . . j + `) : j ∈ [i , i + k] and (i , `, k) ∈ F}.

We consider the problems of computing
Factors(F),
|Factors(F)|.

Remark
This is related to computing the subword complexity of S.

P. Charalampopoulos et al. Efficient Enumeration of Distinct Factors Using Package Representations

Package Representations

Consider a set F of m (disjoint) packages (i , `, k).

Factors(F) = {S[j . . j + `) : j ∈ [i , i + k] and (i , `, k) ∈ F}.

We consider the problems of computing
Factors(F),
|Factors(F)|.

Remark
This is related to computing the subword complexity of S.

P. Charalampopoulos et al. Efficient Enumeration of Distinct Factors Using Package Representations

A Special Case

F is a special package representation if every occurrence of ev-
ery factor represented by F is captured by some package in F .

(Our package representation for squares is special.)

Aim: Compute leftmost occurrences.

We use the longest previous factor array LPF [1 . .n].

Smaller` = { j ∈ [1,n] : LPF [j] < ` }

Observation
If F is special,

Factors(F) =
⋃

(i,`,k)∈F

{S[j . . j + `) : j ∈ [i , i + k] ∩ Smaller`}.

P. Charalampopoulos et al. Efficient Enumeration of Distinct Factors Using Package Representations

A Special Case

F is a special package representation if every occurrence of ev-
ery factor represented by F is captured by some package in F .
(Our package representation for squares is special.)

Aim: Compute leftmost occurrences.

We use the longest previous factor array LPF [1 . .n].

Smaller` = { j ∈ [1,n] : LPF [j] < ` }

Observation
If F is special,

Factors(F) =
⋃

(i,`,k)∈F

{S[j . . j + `) : j ∈ [i , i + k] ∩ Smaller`}.

P. Charalampopoulos et al. Efficient Enumeration of Distinct Factors Using Package Representations

A Special Case

F is a special package representation if every occurrence of ev-
ery factor represented by F is captured by some package in F .
(Our package representation for squares is special.)

Aim: Compute leftmost occurrences.

We use the longest previous factor array LPF [1 . .n].

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

b a b c a b c a b c a b c a b b b a

LPF [3] = 1LPF [6] = 10
not leftmostleftmost

Smaller` = { j ∈ [1,n] : LPF [j] < ` }

Observation
If F is special,

Factors(F) =
⋃

(i,`,k)∈F

{S[j . . j + `) : j ∈ [i , i + k] ∩ Smaller`}.

P. Charalampopoulos et al. Efficient Enumeration of Distinct Factors Using Package Representations

A Special Case

F is a special package representation if every occurrence of ev-
ery factor represented by F is captured by some package in F .
(Our package representation for squares is special.)

Aim: Compute leftmost occurrences.

We use the longest previous factor array LPF [1 . .n].

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

b a b c a b c a b c a b c a b b b a LPF [3] = 1

LPF [6] = 10
not leftmostleftmost

Smaller` = { j ∈ [1,n] : LPF [j] < ` }

Observation
If F is special,

Factors(F) =
⋃

(i,`,k)∈F

{S[j . . j + `) : j ∈ [i , i + k] ∩ Smaller`}.

P. Charalampopoulos et al. Efficient Enumeration of Distinct Factors Using Package Representations

A Special Case

F is a special package representation if every occurrence of ev-
ery factor represented by F is captured by some package in F .
(Our package representation for squares is special.)

Aim: Compute leftmost occurrences.

We use the longest previous factor array LPF [1 . .n].

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

b a b c a b c a b c a b c a b b b a

LPF [3] = 1

LPF [6] = 10

not leftmostleftmost

Smaller` = { j ∈ [1,n] : LPF [j] < ` }

Observation
If F is special,

Factors(F) =
⋃

(i,`,k)∈F

{S[j . . j + `) : j ∈ [i , i + k] ∩ Smaller`}.

P. Charalampopoulos et al. Efficient Enumeration of Distinct Factors Using Package Representations

A Special Case

F is a special package representation if every occurrence of ev-
ery factor represented by F is captured by some package in F .
(Our package representation for squares is special.)

Aim: Compute leftmost occurrences.

We use the longest previous factor array LPF [1 . .n].

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

b a b c a b c a b c a b c a b b b a

LPF [3] = 1

LPF [6] = 10
not leftmost

leftmost

Smaller` = { j ∈ [1,n] : LPF [j] < ` }

Observation
If F is special,

Factors(F) =
⋃

(i,`,k)∈F

{S[j . . j + `) : j ∈ [i , i + k] ∩ Smaller`}.

P. Charalampopoulos et al. Efficient Enumeration of Distinct Factors Using Package Representations

A Special Case

F is a special package representation if every occurrence of ev-
ery factor represented by F is captured by some package in F .
(Our package representation for squares is special.)

Aim: Compute leftmost occurrences.

We use the longest previous factor array LPF [1 . .n].

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

b a b c a b c a b c a b c a b b b a

LPF [3] = 1

LPF [6] = 10

not leftmost

leftmost

Smaller` = { j ∈ [1,n] : LPF [j] < ` }

Observation
If F is special,

Factors(F) =
⋃

(i,`,k)∈F

{S[j . . j + `) : j ∈ [i , i + k] ∩ Smaller`}.

P. Charalampopoulos et al. Efficient Enumeration of Distinct Factors Using Package Representations

A Special Case

F is a special package representation if every occurrence of ev-
ery factor represented by F is captured by some package in F .
(Our package representation for squares is special.)

Aim: Compute leftmost occurrences.

We use the longest previous factor array LPF [1 . .n].

Smaller` = { j ∈ [1,n] : LPF [j] < ` }

Observation
If F is special,

Factors(F) =
⋃

(i,`,k)∈F

{S[j . . j + `) : j ∈ [i , i + k] ∩ Smaller`}.

P. Charalampopoulos et al. Efficient Enumeration of Distinct Factors Using Package Representations

A Special Case

F is a special package representation if every occurrence of ev-
ery factor represented by F is captured by some package in F .
(Our package representation for squares is special.)

Aim: Compute leftmost occurrences.

We use the longest previous factor array LPF [1 . .n].

Smaller` = { j ∈ [1,n] : LPF [j] < ` }

Observation
If F is special,

Factors(F) =
⋃

(i,`,k)∈F

{S[j . . j + `) : j ∈ [i , i + k] ∩ Smaller`}.

P. Charalampopoulos et al. Efficient Enumeration of Distinct Factors Using Package Representations

Reporting in the Special Case

Algorithm 1: High-level structure of the algorithm.
U := [1,n]; P := ∅
for ` := n down to 1 do

U := U \ {j : LPF [j] = `} ; // U = Smaller`
foreach (i , `, k) ∈ F do

foreach j ∈ [i , i + k] ∩ U do
P := P ∪ {S[j . . j + `)}; // End: P = Factors(F)

We show an implementation of this idea in O(n + m + |output|),
using the Union-Find data structure of [Gabow-Tarjan, JCSS 1985].

P. Charalampopoulos et al. Efficient Enumeration of Distinct Factors Using Package Representations

Reporting in the Special Case

Algorithm 1: High-level structure of the algorithm.
U := [1,n]; P := ∅
for ` := n down to 1 do

U := U \ {j : LPF [j] = `} ; // U = Smaller`
foreach (i , `, k) ∈ F do

foreach j ∈ [i , i + k] ∩ U do
P := P ∪ {S[j . . j + `)}; // End: P = Factors(F)

We show an implementation of this idea in O(n + m + |output|),
using the Union-Find data structure of [Gabow-Tarjan, JCSS 1985].

P. Charalampopoulos et al. Efficient Enumeration of Distinct Factors Using Package Representations

Counting in the Special Case I

For each (i , `, k) ∈ F , it suffices to count the number of
elements in LPF [i . . i + k] that are smaller than `.

Consider the following queries:

Smaller`[i] = |{j ∈ [1, i] : LPF [j] < `}|.

|Factors(F)| =
∑

(i,`,k)∈F

Smaller`[i + k]− Smaller`[i − 1].

We obtain an O(n + m)-time algorithm by showing how to
optimally answer these queries.

P. Charalampopoulos et al. Efficient Enumeration of Distinct Factors Using Package Representations

Counting in the Special Case I

For each (i , `, k) ∈ F , it suffices to count the number of
elements in LPF [i . . i + k] that are smaller than `.

Consider the following queries:

Smaller`[i] = |{j ∈ [1, i] : LPF [j] < `}|.

|Factors(F)| =
∑

(i,`,k)∈F

Smaller`[i + k]− Smaller`[i − 1].

We obtain an O(n + m)-time algorithm by showing how to
optimally answer these queries.

P. Charalampopoulos et al. Efficient Enumeration of Distinct Factors Using Package Representations

Counting in the Special Case I

For each (i , `, k) ∈ F , it suffices to count the number of
elements in LPF [i . . i + k] that are smaller than `.

Consider the following queries:

Smaller`[i] = |{j ∈ [1, i] : LPF [j] < `}|.

|Factors(F)| =
∑

(i,`,k)∈F

Smaller`[i + k]− Smaller`[i − 1].

We obtain an O(n + m)-time algorithm by showing how to
optimally answer these queries.

P. Charalampopoulos et al. Efficient Enumeration of Distinct Factors Using Package Representations

Counting in the Special Case I

For each (i , `, k) ∈ F , it suffices to count the number of
elements in LPF [i . . i + k] that are smaller than `.

Consider the following queries:

Smaller`[i] = |{j ∈ [1, i] : LPF [j] < `}|.

|Factors(F)| =
∑

(i,`,k)∈F

Smaller`[i + k]− Smaller`[i − 1].

We obtain an O(n + m)-time algorithm by showing how to
optimally answer these queries.

P. Charalampopoulos et al. Efficient Enumeration of Distinct Factors Using Package Representations

Counting in the Special Case II

Maintain array A[1 . .n] such that during the i th phase:

A[`] =

{
i − Smaller`[i] if ` > LPF [i],
Smaller`[i] if ` ≤ LPF [i].

In the transition from the i th phase to the (i + 1)th phase, A[`]
remains unchanged for:

` > max(LPF [i + 1],LPF [i]), and

` ≤ min(LPF [i + 1],LPF [i]).

Number of updates to A:

∑n−1
i=1

|LPF [i + 1]− LPF [i]|

= O(n).

P. Charalampopoulos et al. Efficient Enumeration of Distinct Factors Using Package Representations

Counting in the Special Case II

Maintain array A[1 . .n] such that during the i th phase:

A[`] =

{
|{j ∈ [1, i] : LPF [j] ≥ `}| if ` > LPF [i],
|{j ∈ [1, i] : LPF [j] < `}| if ` ≤ LPF [i].

In the transition from the i th phase to the (i + 1)th phase, A[`]
remains unchanged for:

` > max(LPF [i + 1],LPF [i]), and

` ≤ min(LPF [i + 1],LPF [i]).

Number of updates to A:

∑n−1
i=1

|LPF [i + 1]− LPF [i]|

= O(n).

P. Charalampopoulos et al. Efficient Enumeration of Distinct Factors Using Package Representations

Counting in the Special Case II

Maintain array A[1 . .n] such that during the i th phase:

A[`] =

{
|{j ∈ [1, i] : LPF [j] ≥ `}| if ` > LPF [i],
|{j ∈ [1, i] : LPF [j] < `}| if ` ≤ LPF [i].

In the transition from the i th phase to the (i + 1)th phase, A[`]
remains unchanged for:

` > max(LPF [i + 1],LPF [i]), and

` ≤ min(LPF [i + 1],LPF [i]).

Number of updates to A:

∑n−1
i=1

|LPF [i + 1]− LPF [i]|

= O(n).

P. Charalampopoulos et al. Efficient Enumeration of Distinct Factors Using Package Representations

Counting in the Special Case II

Maintain array A[1 . .n] such that during the i th phase:

A[`] =

{
|{j ∈ [1, i] : LPF [j] ≥ `}| if ` > LPF [i],
|{j ∈ [1, i] : LPF [j] < `}| if ` ≤ LPF [i].

In the transition from the i th phase to the (i + 1)th phase, A[`]
remains unchanged for:

` > max(LPF [i + 1],LPF [i]), and

` ≤ min(LPF [i + 1],LPF [i]).

Number of updates to A:

∑n−1
i=1

|LPF [i + 1]− LPF [i]|

= O(n).

P. Charalampopoulos et al. Efficient Enumeration of Distinct Factors Using Package Representations

Counting in the Special Case II

Maintain array A[1 . .n] such that during the i th phase:

A[`] =

{
|{j ∈ [1, i] : LPF [j] ≥ `}| if ` > LPF [i],
|{j ∈ [1, i] : LPF [j] < `}| if ` ≤ LPF [i].

In the transition from the i th phase to the (i + 1)th phase, A[`]
remains unchanged for:

` > max(LPF [i + 1],LPF [i]), and
` ≤ min(LPF [i + 1],LPF [i]).

Number of updates to A:

∑n−1
i=1

|LPF [i + 1]− LPF [i]|

= O(n).

P. Charalampopoulos et al. Efficient Enumeration of Distinct Factors Using Package Representations

Counting in the Special Case II

Maintain array A[1 . .n] such that during the i th phase:

A[`] =

{
|{j ∈ [1, i] : LPF [j] ≥ `}| if ` > LPF [i],
|{j ∈ [1, i] : LPF [j] < `}| if ` ≤ LPF [i].

In the transition from the i th phase to the (i + 1)th phase, A[`]
remains unchanged for:

` > max(LPF [i + 1],LPF [i]), and
` ≤ min(LPF [i + 1],LPF [i]).

Number of updates to A:

∑n−1
i=1

|LPF [i + 1]− LPF [i]|

= O(n).

P. Charalampopoulos et al. Efficient Enumeration of Distinct Factors Using Package Representations

Counting in the Special Case II

Maintain array A[1 . .n] such that during the i th phase:

A[`] =

{
|{j ∈ [1, i] : LPF [j] ≥ `}| if ` > LPF [i],
|{j ∈ [1, i] : LPF [j] < `}| if ` ≤ LPF [i].

In the transition from the i th phase to the (i + 1)th phase, A[`]
remains unchanged for:

` > max(LPF [i + 1],LPF [i]), and
` ≤ min(LPF [i + 1],LPF [i]).

Number of updates to A:∑n−1
i=1 |LPF [i + 1]− LPF [i]| = O(n).

P. Charalampopoulos et al. Efficient Enumeration of Distinct Factors Using Package Representations

Applications

Powers. (abc)8/3 = abcabcab

, (abc)3/2 is undefined.

Result: All distinct γ-powers in a length-n string can be
counted in O(γ

γ−1 n) time, and
reported in O(γ

γ−1 n + |output|) time.

Antipowers. A k-antipower (for an integer k ≥ 2) is a
concatenation of k pairwise distinct strings of the same
length [Fici et al., ICALP 2016], e.g. abbcaaba is a 4-antipower.

Result: All distinct k -antipowers in a length-n string can be
counted in O(nk2) time, and
reported in O(nk2 + |output|) time.

For counting distinct k -antipowers, we improve over the
O(nk4 log n log k)-time algorithm of [Kociumaka et al., arxiv].

P. Charalampopoulos et al. Efficient Enumeration of Distinct Factors Using Package Representations

Applications

Powers. (abc)8/3 = abcabcab, (abc)3/2 is undefined.

Result: All distinct γ-powers in a length-n string can be
counted in O(γ

γ−1 n) time, and
reported in O(γ

γ−1 n + |output|) time.

Antipowers. A k-antipower (for an integer k ≥ 2) is a
concatenation of k pairwise distinct strings of the same
length [Fici et al., ICALP 2016], e.g. abbcaaba is a 4-antipower.

Result: All distinct k -antipowers in a length-n string can be
counted in O(nk2) time, and
reported in O(nk2 + |output|) time.

For counting distinct k -antipowers, we improve over the
O(nk4 log n log k)-time algorithm of [Kociumaka et al., arxiv].

P. Charalampopoulos et al. Efficient Enumeration of Distinct Factors Using Package Representations

Applications

Powers. (abc)8/3 = abcabcab, (abc)3/2 is undefined.

Result: All distinct γ-powers in a length-n string can be
counted in O(γ

γ−1 n) time, and
reported in O(γ

γ−1 n + |output|) time.

Antipowers. A k-antipower (for an integer k ≥ 2) is a
concatenation of k pairwise distinct strings of the same
length [Fici et al., ICALP 2016], e.g. abbcaaba is a 4-antipower.

Result: All distinct k -antipowers in a length-n string can be
counted in O(nk2) time, and
reported in O(nk2 + |output|) time.

For counting distinct k -antipowers, we improve over the
O(nk4 log n log k)-time algorithm of [Kociumaka et al., arxiv].

P. Charalampopoulos et al. Efficient Enumeration of Distinct Factors Using Package Representations

Applications

Powers. (abc)8/3 = abcabcab, (abc)3/2 is undefined.

Result: All distinct γ-powers in a length-n string can be
counted in O(γ

γ−1 n) time, and
reported in O(γ

γ−1 n + |output|) time.

Antipowers. A k-antipower (for an integer k ≥ 2) is a
concatenation of k pairwise distinct strings of the same
length [Fici et al., ICALP 2016], e.g. abbcaaba is a 4-antipower.

Result: All distinct k -antipowers in a length-n string can be
counted in O(nk2) time, and
reported in O(nk2 + |output|) time.

For counting distinct k -antipowers, we improve over the
O(nk4 log n log k)-time algorithm of [Kociumaka et al., arxiv].

P. Charalampopoulos et al. Efficient Enumeration of Distinct Factors Using Package Representations

Applications

Powers. (abc)8/3 = abcabcab, (abc)3/2 is undefined.

Result: All distinct γ-powers in a length-n string can be
counted in O(γ

γ−1 n) time, and
reported in O(γ

γ−1 n + |output|) time.

Antipowers. A k-antipower (for an integer k ≥ 2) is a
concatenation of k pairwise distinct strings of the same
length [Fici et al., ICALP 2016], e.g. abbcaaba is a 4-antipower.

Result: All distinct k -antipowers in a length-n string can be
counted in O(nk2) time, and
reported in O(nk2 + |output|) time.

For counting distinct k -antipowers, we improve over the
O(nk4 log n log k)-time algorithm of [Kociumaka et al., arxiv].

P. Charalampopoulos et al. Efficient Enumeration of Distinct Factors Using Package Representations

Applications

Powers. (abc)8/3 = abcabcab, (abc)3/2 is undefined.

Result: All distinct γ-powers in a length-n string can be
counted in O(γ

γ−1 n) time, and
reported in O(γ

γ−1 n + |output|) time.

Antipowers. A k-antipower (for an integer k ≥ 2) is a
concatenation of k pairwise distinct strings of the same
length [Fici et al., ICALP 2016], e.g. abbcaaba is a 4-antipower.

Result: All distinct k -antipowers in a length-n string can be
counted in O(nk2) time, and
reported in O(nk2 + |output|) time.

For counting distinct k -antipowers, we improve over the
O(nk4 log n log k)-time algorithm of [Kociumaka et al., arxiv].

P. Charalampopoulos et al. Efficient Enumeration of Distinct Factors Using Package Representations

The General Case: Synchronisers

Let us assume that S is cube-free, i.e. it has no non-empty
factor of the form UUU.

S
∗ ∗ ∗ ∗ ∗ ∗∗j

Pj Qj

`

P. Charalampopoulos et al. Efficient Enumeration of Distinct Factors Using Package Representations

The General Case: Synchronisers

Let us assume that S is cube-free, i.e. it has no non-empty
factor of the form UUU.

Theorem [Kempa-Kociumaka, STOC 2019]

For a cube-free string of length n, and an integer τ ≤ n/2, we
can compute in O(n) time a set Sync of size O(n/τ) such that:

1 If S[i . . i + 2τ) = S[j . . j + 2τ), then i ∈ Sync⇔ j ∈ Sync.

2 For i ∈ [1,n − 3τ + 2], Sync ∩ [i , i + τ) 6= ∅.

S
∗ ∗ ∗ ∗ ∗ ∗∗j

Pj Qj

`

P. Charalampopoulos et al. Efficient Enumeration of Distinct Factors Using Package Representations

The General Case: Synchronisers

Let us assume that S is cube-free, i.e. it has no non-empty
factor of the form UUU.

Theorem [Kempa-Kociumaka, STOC 2019]

For a cube-free string of length n, and an integer τ ≤ n/2, we
can compute in O(n) time a set Sync of size O(n/τ) such that:

1 If S[i . . i + 2τ) = S[j . . j + 2τ), then i ∈ Sync⇔ j ∈ Sync.

2 For i ∈ [1,n − 3τ + 2], Sync ∩ [i , i + τ) 6= ∅.

S
∗ ∗ ∗ ∗ ∗ ∗∗j

Pj Qj

`

P. Charalampopoulos et al. Efficient Enumeration of Distinct Factors Using Package Representations

The General Case: Synchronisers

Let us assume that S is cube-free, i.e. it has no non-empty
factor of the form UUU.

Theorem [Kempa-Kociumaka, STOC 2019]

For a cube-free string of length n, and an integer τ ≤ n/2, we
can compute in O(n) time a set Sync of size O(n/τ) such that:

1 If S[i . . i + 2τ) = S[j . . j + 2τ), then i ∈ Sync⇔ j ∈ Sync.

2 For i ∈ [1,n − 3τ + 2], Sync ∩ [i , i + τ) 6= ∅.

S
∗ ∗ ∗ ∗ ∗ ∗∗j

Pj Qj

`

P. Charalampopoulos et al. Efficient Enumeration of Distinct Factors Using Package Representations

The General Case: Synchronisers

Let us assume that S is cube-free, i.e. it has no non-empty
factor of the form UUU.

Theorem [Kempa-Kociumaka, STOC 2019]

For a cube-free string of length n, and an integer τ ≤ n/2, we
can compute in O(n) time a set Sync of size O(n/τ) such that:

1 If S[i . . i + 2τ) = S[j . . j + 2τ), then i ∈ Sync⇔ j ∈ Sync.

2 For i ∈ [1,n − 3τ + 2], Sync ∩ [i , i + τ) 6= ∅.

S
∗ ∗ ∗ ∗ ∗ ∗∗j

Pj Qj

`

Idea: Assign each factor with ` ∈ [3τ,9τ) to its first
τ -synchroniser.

P. Charalampopoulos et al. Efficient Enumeration of Distinct Factors Using Package Representations

The General Case: Synchronisers

Let us assume that S is cube-free, i.e. it has no non-empty
factor of the form UUU.

Theorem [Kempa-Kociumaka, STOC 2019]

For a cube-free string of length n, and an integer τ ≤ n/2, we
can compute in O(n) time a set Sync of size O(n/τ) such that:

1 If S[i . . i + 2τ) = S[j . . j + 2τ), then i ∈ Sync⇔ j ∈ Sync.

2 For i ∈ [1,n − 3τ + 2], Sync ∩ [i , i + τ) 6= ∅.

S
∗ ∗ ∗ ∗ ∗ ∗∗j

Pj Qj

`

We may have to split packages, ending up with O(n/τ) more for
each `.

P. Charalampopoulos et al. Efficient Enumeration of Distinct Factors Using Package Representations

The General Case: Synchronisers

Let us assume that S is cube-free, i.e. it has no non-empty
factor of the form UUU.

Theorem [Kempa-Kociumaka, STOC 2019]

For a cube-free string of length n, and an integer τ ≤ n/2, we
can compute in O(n) time a set Sync of size O(n/τ) such that:

1 If S[i . . i + 2τ) = S[j . . j + 2τ), then i ∈ Sync⇔ j ∈ Sync.

2 For i ∈ [1,n − 3τ + 2], Sync ∩ [i , i + τ) 6= ∅.

S
∗ ∗ ∗ ∗ ∗ ∗∗j

Pj Qj

`

We may have to split packages, ending up with O(n/τ) more for
each `.

P. Charalampopoulos et al. Efficient Enumeration of Distinct Factors Using Package Representations

The General Case: Synchronisers

S
∗ ∗ ∗ ∗ ∗ ∗∗j

Pj Qj

`

Then, for each package, the loci of the relevant Qjs (resp. PR
j s)

correspond to a path in the suffix tree of S (resp. SR).

P. Charalampopoulos et al. Efficient Enumeration of Distinct Factors Using Package Representations

The General Case: Synchronisers

Suffix tree of SR.

PR
j

Suffix tree of S.

Qj

S
∗ ∗ ∗ ∗ ∗ ∗∗j

Pj Qj

`

Then, for each package, the loci of the relevant Qjs (resp. PR
j s)

correspond to a path in the suffix tree of S (resp. SR).

P. Charalampopoulos et al. Efficient Enumeration of Distinct Factors Using Package Representations

The General Case: Synchronisers

Suffix tree of SR.

Loci of PR
j s.

Suffix tree of S.

Loci of Qjs.

S
∗ ∗ ∗ ∗ ∗ ∗∗j

Pj Qj

`

Then, for each package, the loci of the relevant Qjs (resp. PR
j s)

correspond to a path in the suffix tree of S (resp. SR).

P. Charalampopoulos et al. Efficient Enumeration of Distinct Factors Using Package Representations

The General Case: A Problem on Trees

Input: Two compact trees T and T ′ of total size N, and a set
Π of pairs (π, π′) of equal-length paths, with π going down-
wards in T and π′ going upwards in T ′.

Output: |
⋃

(π,π′)∈Π Induced(π, π′)|, where Induced(π, π′) is
the set of pairs of (explicit or implicit) nodes (u,u′) such that,
for some i , u is the i th node on π and u′ is the i th node on π′.

1

2

3 12

4 13 15

5 7

6 8

11 9

14

10

T
1

2
3 11

4 12
5 13

6 14

7

9

8

10

T ′

P. Charalampopoulos et al. Efficient Enumeration of Distinct Factors Using Package Representations

The General Case: A Problem on Trees

Input: Two compact trees T and T ′ of total size N, and a set
Π of pairs (π, π′) of equal-length paths, with π going down-
wards in T and π′ going upwards in T ′.
Output: |

⋃
(π,π′)∈Π Induced(π, π′)|, where Induced(π, π′) is

the set of pairs of (explicit or implicit) nodes (u,u′) such that,
for some i , u is the i th node on π and u′ is the i th node on π′.

1

2

3 12

4 13 15

5 7

6 8

11 9

14

10

T
1

2
3 11

4 12
5 13

6 14

7

9

8

10

T ′

P. Charalampopoulos et al. Efficient Enumeration of Distinct Factors Using Package Representations

The General Case: A Problem on Trees

Input: Two compact trees T and T ′ of total size N, and a set
Π of pairs (π, π′) of equal-length paths, with π going down-
wards in T and π′ going upwards in T ′.
Output: |

⋃
(π,π′)∈Π Induced(π, π′)|, where Induced(π, π′) is

the set of pairs of (explicit or implicit) nodes (u,u′) such that,
for some i , u is the i th node on π and u′ is the i th node on π′.

1

2

3 12

4 13 15

5 7

6 8

11 9

14

10

T
1

2
3 11

4 12
5 13

6 14

7

9

8

10

T ′

P. Charalampopoulos et al. Efficient Enumeration of Distinct Factors Using Package Representations

The General Case: A Problem on Trees

Input: Two compact trees T and T ′ of total size N, and a set
Π of pairs (π, π′) of equal-length paths, with π going down-
wards in T and π′ going upwards in T ′.
Output: |

⋃
(π,π′)∈Π Induced(π, π′)|, where Induced(π, π′) is

the set of pairs of (explicit or implicit) nodes (u,u′) such that,
for some i , u is the i th node on π and u′ is the i th node on π′.

1

2

3 12

4 13 15

5 7

6 8

11 9

14

10

T
1

2
3 11

4 12
5 13

6 14

7

9

8

10

T ′

P. Charalampopoulos et al. Efficient Enumeration of Distinct Factors Using Package Representations

The General Case: A Problem on Trees

Input: Two compact trees T and T ′ of total size N, and a set
Π of pairs (π, π′) of equal-length paths, with π going down-
wards in T and π′ going upwards in T ′.
Output: |

⋃
(π,π′)∈Π Induced(π, π′)|, where Induced(π, π′) is

the set of pairs of (explicit or implicit) nodes (u,u′) such that,
for some i , u is the i th node on π and u′ is the i th node on π′.

1

2

3 12

4 13 15

5 7

6 8

11 9

14

10

T
1

2
3 11

4 12
5 13

6 14

7

9

8

10

T ′

P. Charalampopoulos et al. Efficient Enumeration of Distinct Factors Using Package Representations

The General Case: A Problem on Trees

Input: Two compact trees T and T ′ of total size N, and a set
Π of pairs (π, π′) of equal-length paths, with π going down-
wards in T and π′ going upwards in T ′.
Output: |

⋃
(π,π′)∈Π Induced(π, π′)|, where Induced(π, π′) is

the set of pairs of (explicit or implicit) nodes (u,u′) such that,
for some i , u is the i th node on π and u′ is the i th node on π′.

1

2

3 12

4 13 15

5 7

6 8

11 9

14

10

T
1

2
3 11

4 12
5 13

6 14

7

9

8

10

T ′

P. Charalampopoulos et al. Efficient Enumeration of Distinct Factors Using Package Representations

The General Case: A Problem on Trees

Input: Two compact trees T and T ′ of total size N, and a set
Π of pairs (π, π′) of equal-length paths, with π going down-
wards in T and π′ going upwards in T ′.
Output: |

⋃
(π,π′)∈Π Induced(π, π′)|, where Induced(π, π′) is

the set of pairs of (explicit or implicit) nodes (u,u′) such that,
for some i , u is the i th node on π and u′ is the i th node on π′.

1

2

3 12

4 13 15

5 7

6 8

11 9

14

10

T
1

2
3 11

4 12
5 13

6 14

7

9

8

10

T ′

P. Charalampopoulos et al. Efficient Enumeration of Distinct Factors Using Package Representations

The General Case: A Problem on Trees

Input: Two compact trees T and T ′ of total size N, and a set
Π of pairs (π, π′) of equal-length paths, with π going down-
wards in T and π′ going upwards in T ′.
Output: |

⋃
(π,π′)∈Π Induced(π, π′)|, where Induced(π, π′) is

the set of pairs of (explicit or implicit) nodes (u,u′) such that,
for some i , u is the i th node on π and u′ is the i th node on π′.

1

2

3 12

4 13 15

5 7

6 8

11 9

14

10

T
1

2
3 11

4 12
5 13

6 14

7

9

8

10

T ′

P. Charalampopoulos et al. Efficient Enumeration of Distinct Factors Using Package Representations

The General Case: A Problem on Trees

Input: Two compact trees T and T ′ of total size N, and a set
Π of pairs (π, π′) of equal-length paths, with π going down-
wards in T and π′ going upwards in T ′.
Output: |

⋃
(π,π′)∈Π Induced(π, π′)|, where Induced(π, π′) is

the set of pairs of (explicit or implicit) nodes (u,u′) such that,
for some i , u is the i th node on π and u′ is the i th node on π′.

1

2

3 12

4 13 15

5 7

6 8

11 9

14

10

T
1

2
3 11

4 12
5 13

6 14

7

9

8

10

T ′

P. Charalampopoulos et al. Efficient Enumeration of Distinct Factors Using Package Representations

The General Case: Wrap-up for Cube-Free Strings

Using a heavy paths decomposition of each tree, this problem
can be solved in time O(N + |Π| log N) [Kociumaka et al., arxiv].

Here, N = O(n).

Let us denote the number of packages representing factors of
length ` by m`. For each τ = 3x , for x ∈ [1, log3 n), we have

O

(
9τ−1∑
`=3τ

(
m` +

n
τ

))

= O

(
n +

9τ−1∑
`=3τ

m`

)

paths.

Hence, |Π| = O(n log n + m).

Overall, we solve the counting version of the problem in time
O(n log2 n + m log n).

P. Charalampopoulos et al. Efficient Enumeration of Distinct Factors Using Package Representations

The General Case: Wrap-up for Cube-Free Strings

Using a heavy paths decomposition of each tree, this problem
can be solved in time O(N + |Π| log N) [Kociumaka et al., arxiv].

Here, N = O(n).

Let us denote the number of packages representing factors of
length ` by m`. For each τ = 3x , for x ∈ [1, log3 n), we have

O

(
9τ−1∑
`=3τ

(
m` +

n
τ

))

= O

(
n +

9τ−1∑
`=3τ

m`

)

paths.

Hence, |Π| = O(n log n + m).

Overall, we solve the counting version of the problem in time
O(n log2 n + m log n).

P. Charalampopoulos et al. Efficient Enumeration of Distinct Factors Using Package Representations

The General Case: Wrap-up for Cube-Free Strings

Using a heavy paths decomposition of each tree, this problem
can be solved in time O(N + |Π| log N) [Kociumaka et al., arxiv].

Here, N = O(n).

Let us denote the number of packages representing factors of
length ` by m`.

For each τ = 3x , for x ∈ [1, log3 n), we have

O

(
9τ−1∑
`=3τ

(
m` +

n
τ

))

= O

(
n +

9τ−1∑
`=3τ

m`

)

paths.

Hence, |Π| = O(n log n + m).

Overall, we solve the counting version of the problem in time
O(n log2 n + m log n).

P. Charalampopoulos et al. Efficient Enumeration of Distinct Factors Using Package Representations

The General Case: Wrap-up for Cube-Free Strings

Using a heavy paths decomposition of each tree, this problem
can be solved in time O(N + |Π| log N) [Kociumaka et al., arxiv].

Here, N = O(n).

Let us denote the number of packages representing factors of
length ` by m`. For each τ = 3x , for x ∈ [1, log3 n), we have

O

(
9τ−1∑
`=3τ

(
m` +

n
τ

))

= O

(
n +

9τ−1∑
`=3τ

m`

)

paths.

Hence, |Π| = O(n log n + m).

Overall, we solve the counting version of the problem in time
O(n log2 n + m log n).

P. Charalampopoulos et al. Efficient Enumeration of Distinct Factors Using Package Representations

The General Case: Wrap-up for Cube-Free Strings

Using a heavy paths decomposition of each tree, this problem
can be solved in time O(N + |Π| log N) [Kociumaka et al., arxiv].

Here, N = O(n).

Let us denote the number of packages representing factors of
length ` by m`. For each τ = 3x , for x ∈ [1, log3 n), we have

O

(
9τ−1∑
`=3τ

(
m` +

n
τ

))
= O

(
n +

9τ−1∑
`=3τ

m`

)
paths.

Hence, |Π| = O(n log n + m).

Overall, we solve the counting version of the problem in time
O(n log2 n + m log n).

P. Charalampopoulos et al. Efficient Enumeration of Distinct Factors Using Package Representations

The General Case: Wrap-up for Cube-Free Strings

Using a heavy paths decomposition of each tree, this problem
can be solved in time O(N + |Π| log N) [Kociumaka et al., arxiv].

Here, N = O(n).

Let us denote the number of packages representing factors of
length ` by m`. For each τ = 3x , for x ∈ [1, log3 n), we have

O

(
9τ−1∑
`=3τ

(
m` +

n
τ

))
= O

(
n +

9τ−1∑
`=3τ

m`

)
paths.

Hence, |Π| = O(n log n + m).

Overall, we solve the counting version of the problem in time
O(n log2 n + m log n).

P. Charalampopoulos et al. Efficient Enumeration of Distinct Factors Using Package Representations

The General Case: Wrap-up for Cube-Free Strings

Using a heavy paths decomposition of each tree, this problem
can be solved in time O(N + |Π| log N) [Kociumaka et al., arxiv].

Here, N = O(n).

Let us denote the number of packages representing factors of
length ` by m`. For each τ = 3x , for x ∈ [1, log3 n), we have

O

(
9τ−1∑
`=3τ

(
m` +

n
τ

))
= O

(
n +

9τ−1∑
`=3τ

m`

)
paths.

Hence, |Π| = O(n log n + m).

Overall, we solve the counting version of the problem in time
O(n log2 n + m log n).

P. Charalampopoulos et al. Efficient Enumeration of Distinct Factors Using Package Representations

The General Case: Periodicity

We replace F by two sets of packages:

Fp representing highly-periodic factors, and
Fa representing non-highly-periodic factors.

The solution using synchronisers works for Fa.

For highly-periodic factors, we reduce the problem to the same
problem on trees using runs and Lyndon roots.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

b a b c a b c a b c a b c a b b b a

run (S[2 . . 15], 3)

We ensure that each package represents factors with the same
period. Each package yields at most two pairs of paths.

P. Charalampopoulos et al. Efficient Enumeration of Distinct Factors Using Package Representations

The General Case: Periodicity

We replace F by two sets of packages:
Fp representing highly-periodic factors, and

Fa representing non-highly-periodic factors.

The solution using synchronisers works for Fa.

For highly-periodic factors, we reduce the problem to the same
problem on trees using runs and Lyndon roots.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

b a b c a b c a b c a b c a b b b a

run (S[2 . . 15], 3)

We ensure that each package represents factors with the same
period. Each package yields at most two pairs of paths.

P. Charalampopoulos et al. Efficient Enumeration of Distinct Factors Using Package Representations

The General Case: Periodicity

We replace F by two sets of packages:
Fp representing highly-periodic factors, and
Fa representing non-highly-periodic factors.

The solution using synchronisers works for Fa.

For highly-periodic factors, we reduce the problem to the same
problem on trees using runs and Lyndon roots.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

b a b c a b c a b c a b c a b b b a

run (S[2 . . 15], 3)

We ensure that each package represents factors with the same
period. Each package yields at most two pairs of paths.

P. Charalampopoulos et al. Efficient Enumeration of Distinct Factors Using Package Representations

The General Case: Periodicity

We replace F by two sets of packages:
Fp representing highly-periodic factors, and
Fa representing non-highly-periodic factors.

The solution using synchronisers works for Fa.

For highly-periodic factors, we reduce the problem to the same
problem on trees using runs and Lyndon roots.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

b a b c a b c a b c a b c a b b b a

run (S[2 . . 15], 3)

We ensure that each package represents factors with the same
period. Each package yields at most two pairs of paths.

P. Charalampopoulos et al. Efficient Enumeration of Distinct Factors Using Package Representations

The General Case: Periodicity

We replace F by two sets of packages:
Fp representing highly-periodic factors, and
Fa representing non-highly-periodic factors.

The solution using synchronisers works for Fa.

For highly-periodic factors, we reduce the problem to the same
problem on trees using runs and Lyndon roots.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

b a b c a b c a b c a b c a b b b a

run (S[2 . . 15], 3)

We ensure that each package represents factors with the same
period. Each package yields at most two pairs of paths.

P. Charalampopoulos et al. Efficient Enumeration of Distinct Factors Using Package Representations

The General Case: Periodicity

We replace F by two sets of packages:
Fp representing highly-periodic factors, and
Fa representing non-highly-periodic factors.

The solution using synchronisers works for Fa.

For highly-periodic factors, we reduce the problem to the same
problem on trees using runs and Lyndon roots.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

b a b c a b c a b c a b c a b b b a

run (S[2 . . 15], 3)

We ensure that each package represents factors with the same
period. Each package yields at most two pairs of paths.

P. Charalampopoulos et al. Efficient Enumeration of Distinct Factors Using Package Representations

The General Case: Periodicity

We replace F by two sets of packages:
Fp representing highly-periodic factors, and
Fa representing non-highly-periodic factors.

The solution using synchronisers works for Fa.

For highly-periodic factors, we reduce the problem to the same
problem on trees using runs and Lyndon roots.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

b a b c a b c a b c a b c a b b b a

run (S[2 . . 15], 3)

We ensure that each package represents factors with the same
period. Each package yields at most two pairs of paths.

P. Charalampopoulos et al. Efficient Enumeration of Distinct Factors Using Package Representations

The General Case: Periodicity

We replace F by two sets of packages:
Fp representing highly-periodic factors, and
Fa representing non-highly-periodic factors.

The solution using synchronisers works for Fa.

For highly-periodic factors, we reduce the problem to the same
problem on trees using runs and Lyndon roots.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

b a b c a b c a b c a b c a b b b a

run (S[2 . . 15], 3)

We ensure that each package represents factors with the same
period. Each package yields at most two pairs of paths.

P. Charalampopoulos et al. Efficient Enumeration of Distinct Factors Using Package Representations

The General Case: Periodicity

We replace F by two sets of packages:
Fp representing highly-periodic factors, and
Fa representing non-highly-periodic factors.

The solution using synchronisers works for Fa.

For highly-periodic factors, we reduce the problem to the same
problem on trees using runs and Lyndon roots.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

b a b c a b c a b c a b c a b b b a

run (S[2 . . 15], 3)

We ensure that each package represents factors with the same
period.

Each package yields at most two pairs of paths.

P. Charalampopoulos et al. Efficient Enumeration of Distinct Factors Using Package Representations

The General Case: Periodicity

We replace F by two sets of packages:
Fp representing highly-periodic factors, and
Fa representing non-highly-periodic factors.

The solution using synchronisers works for Fa.

For highly-periodic factors, we reduce the problem to the same
problem on trees using runs and Lyndon roots.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

b a b c a b c a b c a b c a b b b a

run (S[2 . . 15], 3)

We ensure that each package represents factors with the same
period.

Each package yields at most two pairs of paths.

P. Charalampopoulos et al. Efficient Enumeration of Distinct Factors Using Package Representations

The General Case: Periodicity

We replace F by two sets of packages:
Fp representing highly-periodic factors, and
Fa representing non-highly-periodic factors.

The solution using synchronisers works for Fa.

For highly-periodic factors, we reduce the problem to the same
problem on trees using runs and Lyndon roots.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

b a b c a b c a b c a b c a b b b a

run (S[2 . . 15], 3)

We ensure that each package represents factors with the same
period. Each package yields at most two pairs of paths.

P. Charalampopoulos et al. Efficient Enumeration of Distinct Factors Using Package Representations

Our Results

For a special package representation F consisting of m
packages and a string of length n we can compute:

Factors(F) in O(n + m + |output|) time,
|Factors(F)| in O(n + m) time.

For a general package representation F consisting of m
packages and a string of length n we can compute:

Factors(F) in O(n log2 n + m log n + |output|) time,
|Factors(F)| in O(n log2 n + m log n) time.

P. Charalampopoulos et al. Efficient Enumeration of Distinct Factors Using Package Representations

Our Results

For a special package representation F consisting of m
packages and a string of length n we can compute:

Factors(F) in O(n + m + |output|) time,
|Factors(F)| in O(n + m) time.

For a general package representation F consisting of m
packages and a string of length n we can compute:

Factors(F) in O(n log2 n + m log n + |output|) time,
|Factors(F)| in O(n log2 n + m log n) time.

P. Charalampopoulos et al. Efficient Enumeration of Distinct Factors Using Package Representations

Our Results

For a special package representation F consisting of m
packages and a string of length n we can compute:

Factors(F) in O(n + m + |output|) time,
|Factors(F)| in O(n + m) time.

For a general package representation F consisting of m
packages and a string of length n we can compute:

Factors(F) in O(n log2 n + m log n + |output|) time,
|Factors(F)| in O(n log2 n + m log n) time.

P. Charalampopoulos et al. Efficient Enumeration of Distinct Factors Using Package Representations

Our Results

For a special package representation F consisting of m
packages and a string of length n we can compute:

Factors(F) in O(n + m + |output|) time,
|Factors(F)| in O(n + m) time.

For a general package representation F consisting of m
packages and a string of length n we can compute:

Factors(F) in O(n log2 n + m log n + |output|) time,
|Factors(F)| in O(n log2 n + m log n) time.

P. Charalampopoulos et al. Efficient Enumeration of Distinct Factors Using Package Representations

The End

Thank you for your attention!

Questions?

P. Charalampopoulos et al. Efficient Enumeration of Distinct Factors Using Package Representations

