Faster Pattern Matching under Edit Distance

Panagiotis Charalampopoulos¹, Tomasz Kociumaka², Philip Wellnitz²

1. BIRKBECK, UNIVERSITY OF LONDON, UK

2. MAX PLANCK INSTITUTE FOR INFORMATICS,

SAARLAND INFORMATICS CAMPUS, SAARBRÜCKEN, GERMANY

FOCS 2022

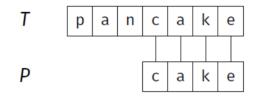
Denver, USA

Pattern Matching

Given a text T and a pattern P, compute the occurrences of P in T.

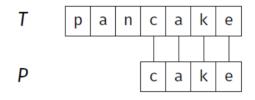
Pattern Matching

Given a text T and a pattern P, compute the occurrences of P in T.



Pattern Matching

Given a text T and a pattern P, compute the occurrences of P in T.

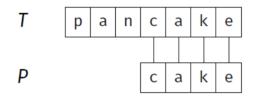


Pattern Matching under Edit Distance

Given a text *T*, a pattern *P*, and an integer threshold *k*, compute the (starting positions of) substrings of *T* that are at edit distance at most *k* from *P*.

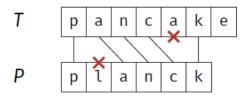
Pattern Matching

Given a text T and a pattern P, compute the occurrences of P in T.



Pattern Matching under Edit Distance

Given a text *T*, a pattern *P*, and an integer threshold *k*, compute the (starting positions of) substrings of *T* that are at edit distance at most *k* from *P*.



 $\mathcal{O}(n^2)$ [Sellers; J. Algorithms 1980]

 $\mathcal{O}(n^2)$ [Sellers; J. Algorithms 1980] $\mathcal{O}(nk^2)$ [Landau, Vishkin; JCSS 1988]

- $\mathcal{O}(n^2)$ [Sellers; J. Algorithms 1980]
- $\mathcal{O}(nk^2)$ [Landau, Vishkin; JCSS 1988]
 - $\mathcal{O}(nk)$ [Landau, Vishkin; J. Algorithms 1989]

 $\begin{array}{ll} \mathcal{O}(n^2) & [\text{Sellers; J. Algorithms 1980}] \\ \mathcal{O}(nk^2) & [\text{Landau, Vishkin; JCSS 1988}] \\ \mathcal{O}(nk) & [\text{Landau, Vishkin; J. Algorithms 1989}] \\ \tilde{\mathcal{O}}(n+k^{8+1/3}\cdot n/m^{1/3}) & [\text{Sahinalp, Vishkin; FOCS 1996}] \end{array}$

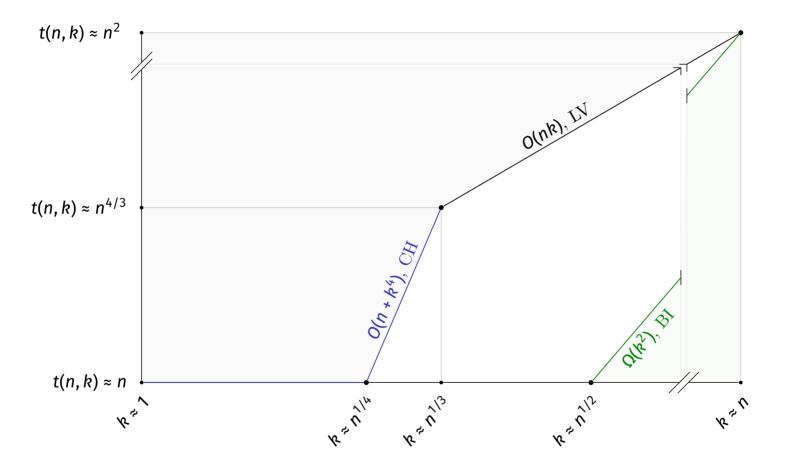
 $\begin{array}{ll} \mathcal{O}(n^2) & [\text{Sellers; J. Algorithms 1980}] \\ \mathcal{O}(nk^2) & [\text{Landau, Vishkin; JCSS 1988}] \\ \mathcal{O}(nk) & [\text{Landau, Vishkin; J. Algorithms 1989}] \\ \tilde{\mathcal{O}}(n+k^{8+1/3}\cdot n/m^{1/3}) & [\text{Sahinalp, Vishkin; FOCS 1996}] \\ \mathcal{O}(n+k^4\cdot n/m) & [\text{Cole, Hariharan; SICOMP 2002}] \end{array}$

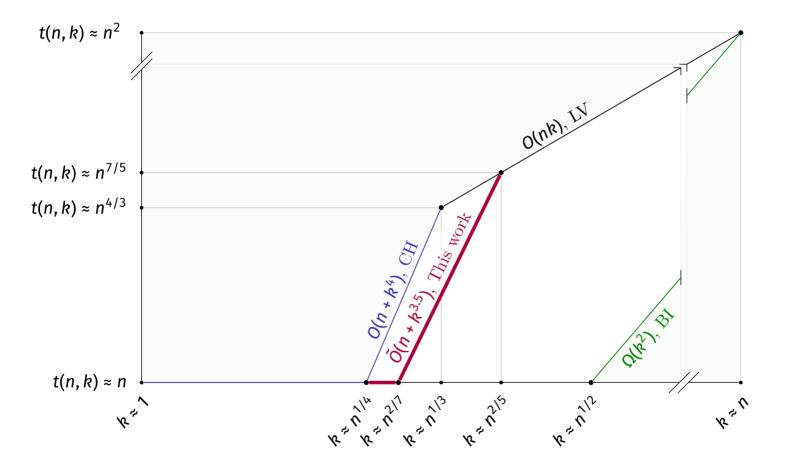
 $\mathcal{O}(n^2)$ $\mathcal{O}(nk^2)$ $\mathcal{O}(nk)$ $\tilde{\mathcal{O}}(n+k^{8+1/3}\cdot n/m^{1/3})$ $ilde{\mathcal{O}}(n+{\color{black}k^{3.5}}\cdot n/m)$

[Sellers; J. Algorithms 1980] [Landau, Vishkin; JCSS 1988] [Landau, Vishkin; J. Algorithms 1989] [Sahinalp, Vishkin; FOCS 1996] $\mathcal{O}(n + k^4 \cdot n/m)$ [Cole, Hariharan; SICOMP 2002] This work

 $\begin{array}{ll} \mathcal{O}(n^2) & [\text{Sellers; J. Algorithms 1980}] \\ \mathcal{O}(nk^2) & [\text{Landau, Vishkin; JCSS 1988}] \\ \mathcal{O}(nk) & [\text{Landau, Vishkin; J. Algorithms 1989}] \\ \tilde{\mathcal{O}}(n+k^{8+1/3}\cdot n/m^{1/3}) & [\text{Sahinalp, Vishkin; FOCS 1996}] \\ \mathcal{O}(n+k^4\cdot n/m) & [\text{Cole, Hariharan; SICOMP 2002}] \\ \tilde{\mathcal{O}}(n+k^{3.5}\cdot n/m) & \text{This work} \end{array}$

$\Omega(k^2)$ [Backurs, Indyk; SICOMP 2018]

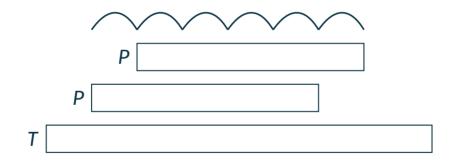




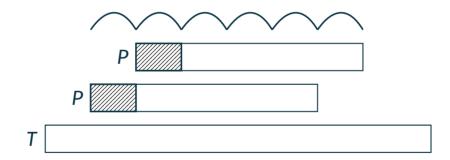
Fact [folklore] Given a pattern *P* of length *m* and a text *T* of length $n \leq \frac{3}{2}m$ at least one of the following holds:

• The pattern *P* has at most one occurrence in *T*.

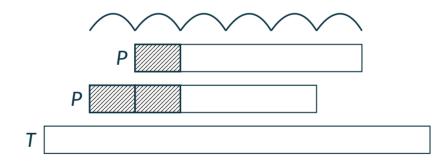
- The pattern P has at most one occurrence in T.
- The pattern *P* is periodic.



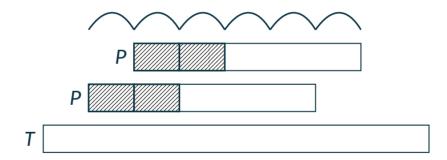
- The pattern P has at most one occurrence in T.
- The pattern *P* is periodic.



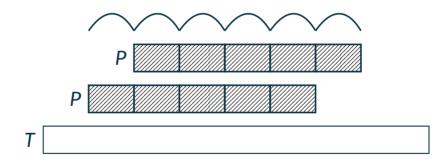
- The pattern P has at most one occurrence in T.
- The pattern *P* is periodic.



- The pattern P has at most one occurrence in T.
- The pattern *P* is periodic.

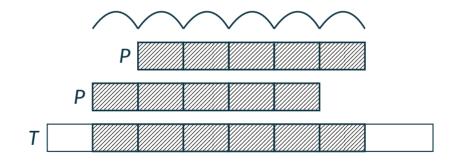


- The pattern P has at most one occurrence in T.
- The pattern *P* is periodic.



Fact [folklore] Given a pattern *P* of length *m* and a text *T* of length $n \leq \frac{3}{2}m$ at least one of the following holds:

- The pattern P has at most one occurrence in T.
- The pattern *P* is periodic.



The fragment of T spanned by P's occurrences is periodic as well.

Theorem [CKW; FOCS'20] Given a pattern *P* of length *m* and a text *T* of length $n \le \frac{3}{2}m$, and a threshold $k \le m$ at least one of the following holds:

Theorem [CKW; FOCS'20] Given a pattern *P* of length *m* and a text *T* of length

- $n \leq \frac{3}{2}m$, and a threshold $k \leq m$ at least one of the following holds:
 - The pattern P has $\mathcal{O}(k^2)$ k-error occurrences in T.

Theorem [CKW; FOCS'20] Given a pattern *P* of length *m* and a text *T* of length

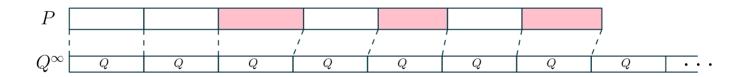
- $n \leq \frac{3}{2}m$, and a threshold $k \leq m$ at least one of the following holds:
 - The pattern P has $\mathcal{O}(k^2)$ k-error occurrences in T.
 - The pattern is almost periodic: at edit distance < 2k from a string with period $\mathcal{O}(m/k)$.

Theorem [CKW; FOCS'20] Given a pattern *P* of length *m* and a text *T* of length

- $n \leq \frac{3}{2}m$, and a threshold $k \leq m$ at least one of the following holds:
 - The pattern P has $\mathcal{O}(k^2)$ k-error occurrences in T.
 - The pattern is almost periodic: at edit distance < 2k from a string with period $\mathcal{O}(m/k)$. This is the bottleneck.

Theorem [CKW; FOCS'20] Given a pattern *P* of length *m* and a text *T* of length

- $n \leq \frac{3}{2}m$, and a threshold $k \leq m$ at least one of the following holds:
 - The pattern P has $\mathcal{O}(k^2)$ k-error occurrences in T.
 - The pattern is almost periodic: at edit distance < 2k from a string with period $\mathcal{O}(m/k)$. This is the bottleneck.



Q will denote a primitive string; it does not match any of its rotations.

Theorem [CKW; FOCS'20] Given a pattern *P* of length *m* and a text *T* of length

- $n \leq \frac{3}{2}m$, and a threshold $k \leq m$ at least one of the following holds:
 - The pattern P has $\mathcal{O}(k^2)$ k-error occurrences in T.
 - The pattern is almost periodic: at edit distance < 2k from a string with period $\mathcal{O}(m/k)$. This is the bottleneck.

Q will denote a primitive string; it does not match any of its rotations.

We call this a tile decomposition of *P* with respect to *Q*.

In the PILLAR model [CKW'20], algorithms rely on primitive operations.

In the PILLAR model [CKW'20], algorithms rely on primitive operations.

For any setting, e.g., when the strings are given in compressed form, an efficient implementation of the primitive operations yields a fast algorithm.

In the PILLAR model [CKW'20], algorithms rely on primitive operations.

For any setting, e.g., when the strings are given in compressed form, an efficient implementation of the primitive operations yields a fast algorithm.

Standard setting: The primitive operations take $\mathcal{O}(1)$ time after an $\mathcal{O}(n)$ -time preprocessing.

The PILLAR Model and the Reduction of [CKW'20]

In the PILLAR model [CKW'20], algorithms rely on primitive operations.

For any setting, e.g., when the strings are given in compressed form, an efficient implementation of the primitive operations yields a fast algorithm.

Standard setting: The primitive operations take $\mathcal{O}(1)$ time after an $\mathcal{O}(n)$ -time preprocessing.

 $\mathcal{O}(k^4 \cdot n/m)$ PILLAR-time algorithm [CKW'20] matches [Cole, Hariharan; SICOMP 2002] for the standard setting.

The PILLAR Model and the Reduction of [CKW'20]

In the PILLAR model [CKW'20], algorithms rely on primitive operations.

For any setting, e.g., when the strings are given in compressed form, an efficient implementation of the primitive operations yields a fast algorithm.

Standard setting: The primitive operations take $\mathcal{O}(1)$ time after an $\mathcal{O}(n)$ -time preprocessing.

 $\mathcal{O}(k^4 \cdot n/m)$ PILLAR-time algorithm [CKW'20] matches [Cole, Hariharan; SICOMP 2002] for the standard setting.

Reduction [CKW'20]: An algorithm that solves the almost periodic case in $\tilde{O}(k^a \cdot n/m)$ PILLAR-time, for $a \geq 3$, implies an algorithm that solves the general case in $\tilde{O}(k^a \cdot n/m)$ PILLAR-time.

Input: An integer k and a family \mathcal{F} of strings containing a distinguished primitive string Q with $\sum_{F \in \mathcal{F}} \delta_E(F, Q) = \mathcal{O}(k)$.

Input: An integer k and a family \mathcal{F} of strings containing a distinguished primitive string Q with $\sum_{F \in \mathcal{F}} \delta_E(F, Q) = \mathcal{O}(k)$.

Maintain: A sequence $\mathcal{I} = (U_1, V_1) \cdots (U_z, V_z)$ of pairs from \mathcal{F}^2 .

Input: An integer k and a family \mathcal{F} of strings containing a distinguished primitive string Q with $\sum_{F \in \mathcal{F}} \delta_E(F, Q) = \mathcal{O}(k)$.

Maintain: A sequence $\mathcal{I} = (U_1, V_1) \cdots (U_z, V_z)$ of pairs from \mathcal{F}^2 .

Updates: Insertions and deletions of pairs in \mathcal{I} .

Input: An integer k and a family \mathcal{F} of strings containing a distinguished primitive string Q with $\sum_{F \in \mathcal{F}} \delta_E(F, Q) = \mathcal{O}(k)$.

Maintain: A sequence $\mathcal{I} = (U_1, V_1) \cdots (U_z, V_z)$ of pairs from \mathcal{F}^2 .

Updates: Insertions and deletions of pairs in \mathcal{I} .

Queries: Compute the *k*-error occurrences of $U_1 \cdots U_z$ in $V_1 \cdots V_z$.

Input: An integer k and a family \mathcal{F} of strings containing a distinguished primitive string Q with $\sum_{F \in \mathcal{F}} \delta_E(F, Q) = \mathcal{O}(k)$.

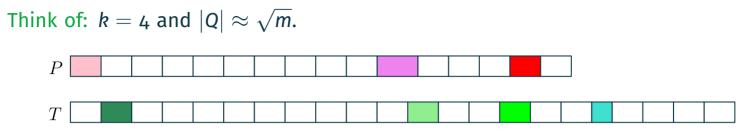
Maintain: A sequence $\mathcal{I} = (U_1, V_1) \cdots (U_z, V_z)$ of pairs from \mathcal{F}^2 .

Updates: Insertions and deletions of pairs in \mathcal{I} .

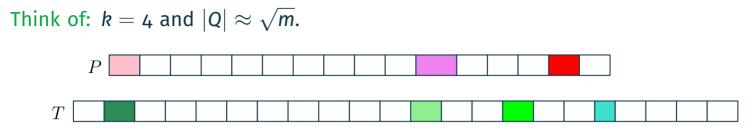
Queries: Compute the *k*-error occurrences of $U_1 \cdots U_z$ in $V_1 \cdots V_z$.

After $\tilde{\mathcal{O}}(k^3)$ -time preprocessing, updates and queries take $\tilde{\mathcal{O}}(k)$ time.

P. Charalampopoulos, T. Kociumaka, P. Wellnitz Faster Pattern Matching under Edit Distance

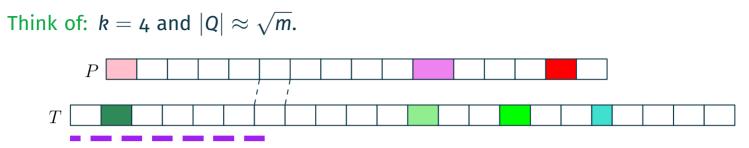


Each string has $\mathcal{O}(k)$ special tiles.



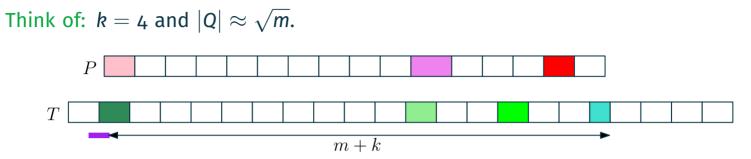
> k copies of Q in P \implies \geq 1 must be matched exactly

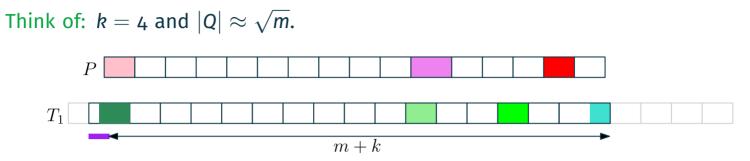
P. Charalampopoulos, T. Kociumaka, P. Wellnitz Faster Pattern Matching under Edit Distance



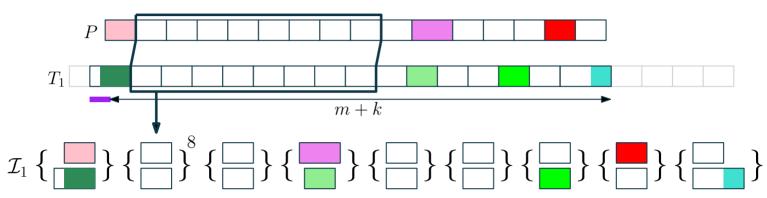
> k copies of Q in P $\implies \ge$ 1 must be matched exactly

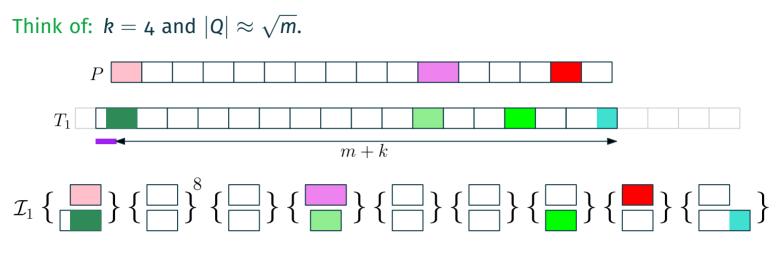
Starting positions of k-error occs in T are within $\mathcal{O}(k)$ from endpoints of tiles.



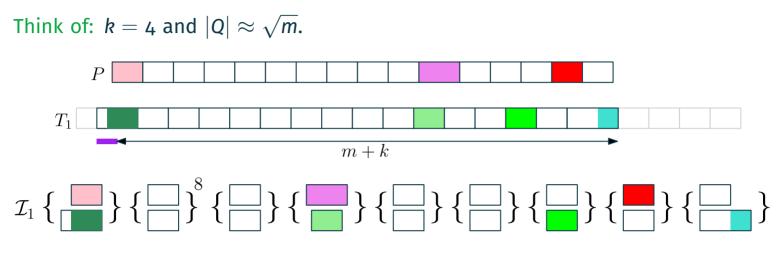


 $|T_j| = m + \mathcal{O}(k)$



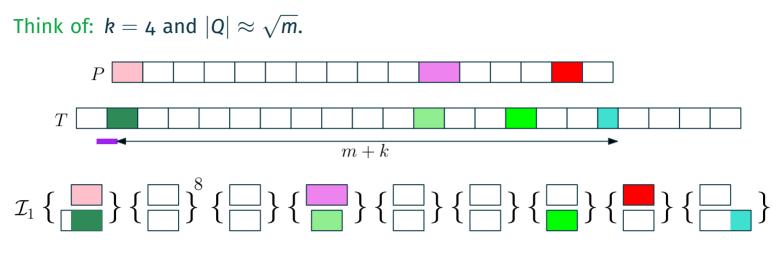


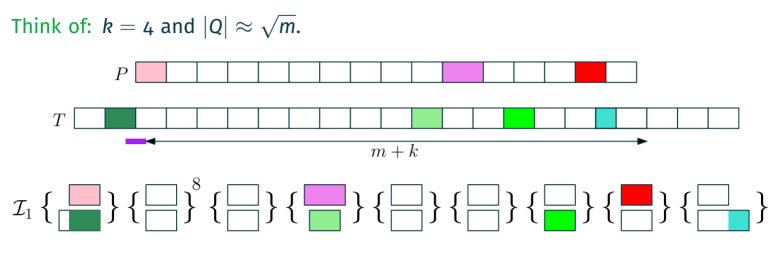
Goal: Iterate over all \mathcal{I}_j 's in a DPM instance.

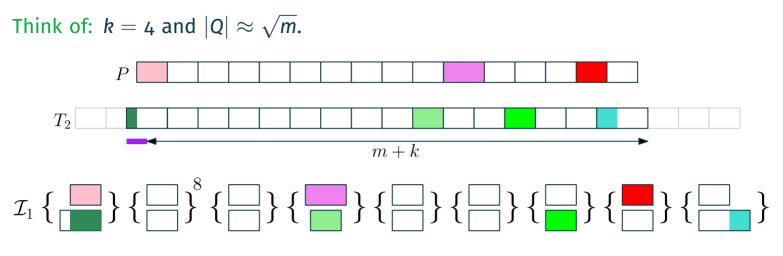


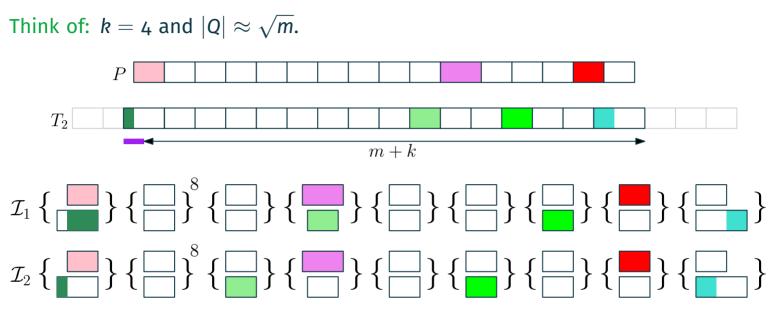
Goal: Iterate over all \mathcal{I}_i 's in a DPM instance.

(The leading and trailing pairs are treated separately.)

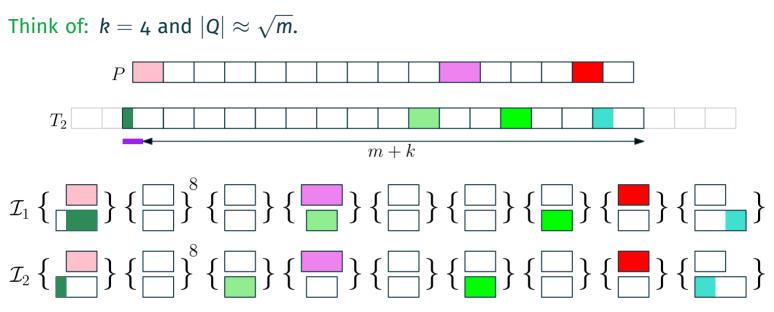




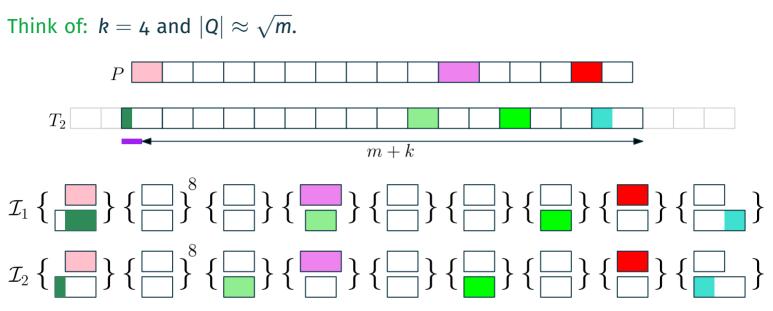




P. Charalampopoulos, T. Kociumaka, P. Wellnitz Faster Pattern Matching under Edit Distance

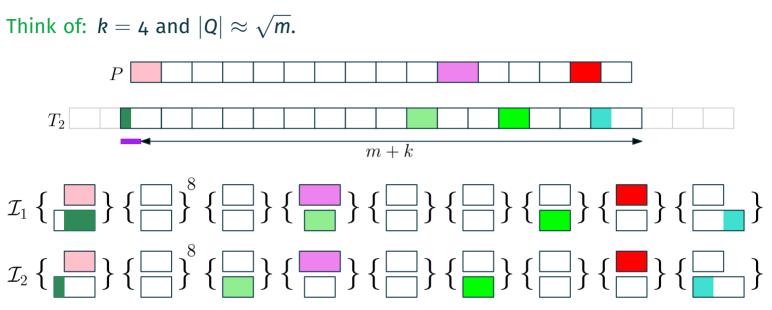


We only need to update $\mathcal{O}(k)$ pairs; there has to be a pair $\neq (Q, Q)$ involved!



We only need to update $\mathcal{O}(k)$ pairs; there has to be a pair $\neq (Q, Q)$ involved!

Over the $\Theta(\sqrt{m})$ shifts of *P*, we need $\mathcal{O}(\sqrt{m} \cdot k)$ DPM-updates.

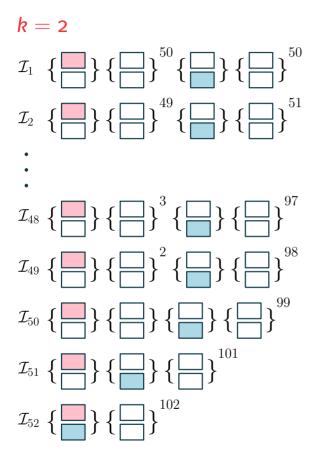


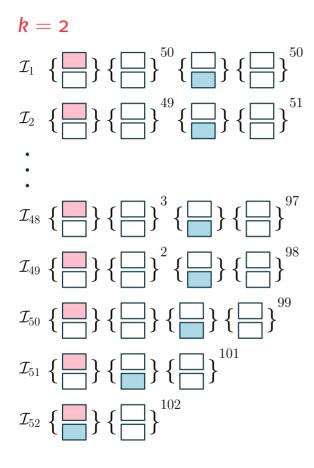
We only need to update $\mathcal{O}(k)$ pairs; there has to be a pair $\neq (Q, Q)$ involved!

Over the $\Theta(\sqrt{m})$ shifts of *P*, we need $\mathcal{O}(\sqrt{m} \cdot k)$ DPM-updates.

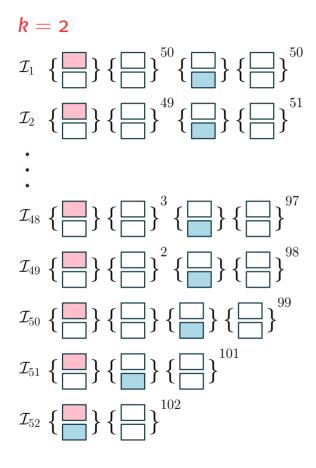
Yields
$$\tilde{\mathcal{O}}(k^3 + \sqrt{m} \cdot k^2)$$
.

Faster Pattern Matching under Edit Distance



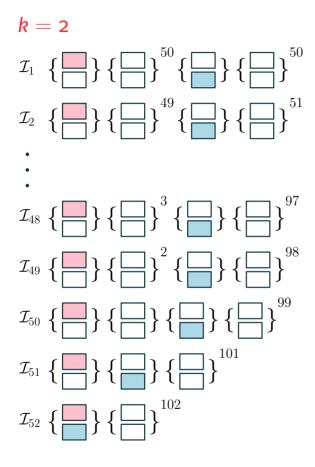


For a plain run $(Q, Q)^y$, at least y - kcopies of Q will be matched exactly in a k-error occurrence.



For a plain run $(Q, Q)^y$, at least y - kcopies of Q will be matched exactly in a k-error occurrence.

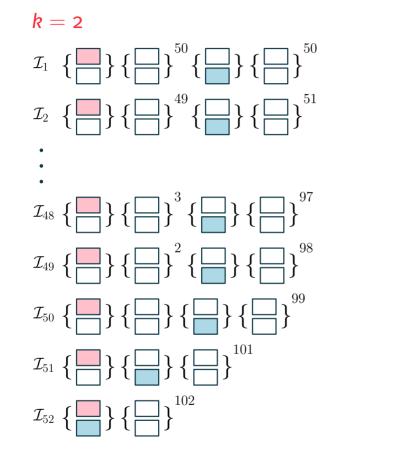
Cap exponents of plain runs at k + 1.

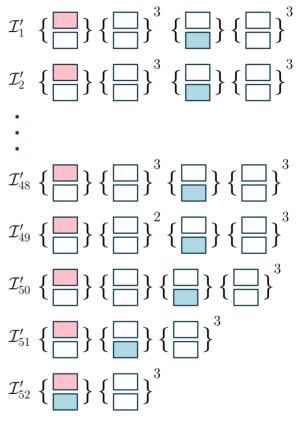


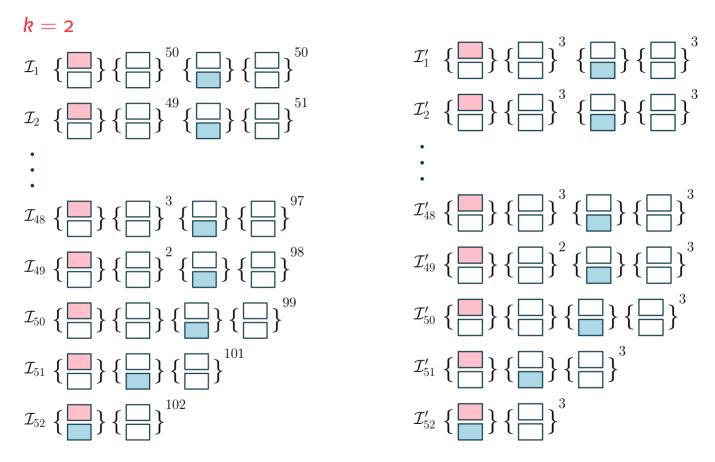
For a plain run $(Q, Q)^y$, at least y - kcopies of Q will be matched exactly in a k-error occurrence.

Cap exponents of plain runs at k + 1.

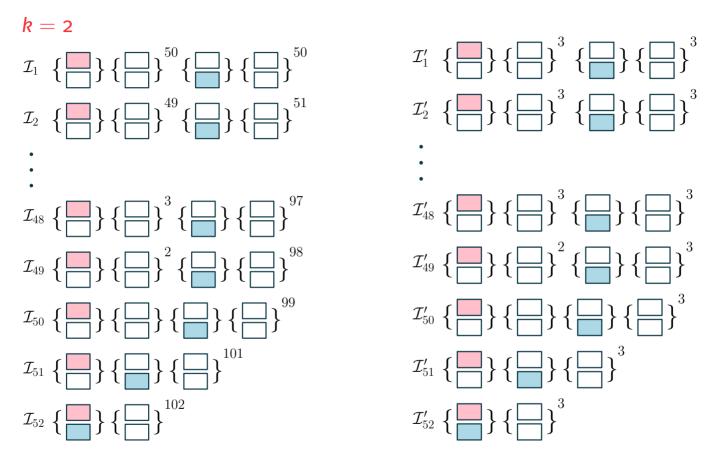
We do not lose or gain any k-error occs.







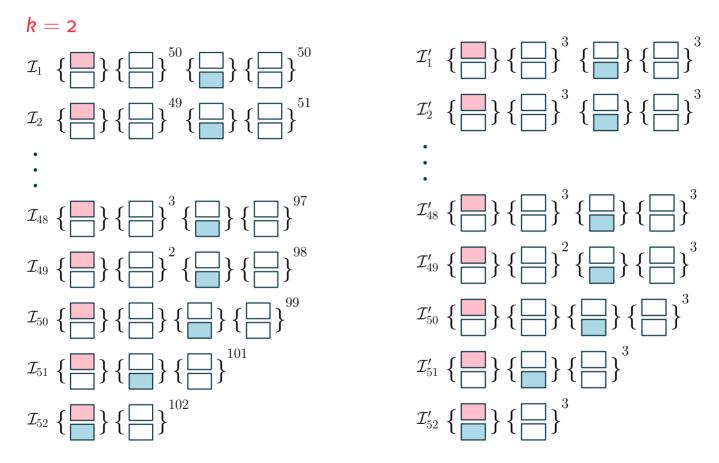
The shown pair of special tiles implies $\mathcal{O}(k)$ DPM-updates.



The shown pair of special tiles implies $\mathcal{O}(k)$ DPM-updates. We have $\mathcal{O}(k^2)$ pairs of special tiles!

P. Charalampopoulos, T. Kociumaka, P. Wellnitz

Faster Pattern Matching under Edit Distance



Alternative $\tilde{\mathcal{O}}(k^4)$ -time algorithm!

Faster Pattern Matching under Edit Distance

Overview for $\mathcal{O}(k^{2.5})$ DPM-updates

Overview for $\mathcal{O}(k^{2.5})$ DPM-updates

Cap exponents of plain runs at \sqrt{k} .

Cap exponents of plain runs at \sqrt{k} .

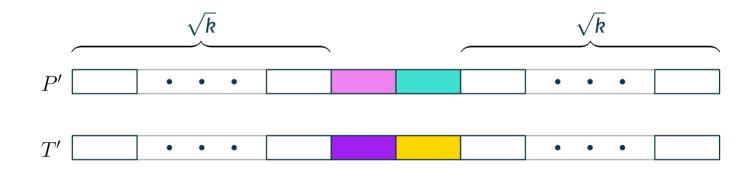
We may get false positives when we have $\geq \sqrt{k}$ edits in a run of (Q, Q).

Cap exponents of plain runs at \sqrt{k} .

We may get false positives when we have $\geq \sqrt{k}$ edits in a run of (Q, Q).

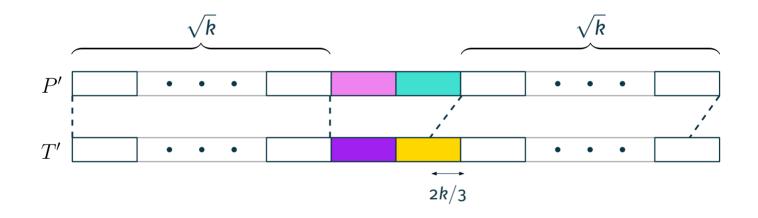
Cap exponents of plain runs at \sqrt{k} .

We may get false positives when we have $\geq \sqrt{k}$ edits in a run of (Q, Q).



Cap exponents of plain runs at \sqrt{k} .

We may get false positives when we have $\geq \sqrt{k}$ edits in a run of (Q, Q).



Cost:
$$O + O + \sqrt{k} \cdot \delta_E(Q, rot^{2k/3}(Q))$$
.

Faster Pattern Matching under Edit Distance

Cap exponents of plain runs at \sqrt{k} .

We may get false positives when we have $\geq \sqrt{k}$ edits in a run of (Q, Q).

In this case, we must be saving $\geq \sqrt{k}$ by canceling out errors between *P* and Q^{∞} with errors between *T* and Q^{∞} .

Cap exponents of plain runs at \sqrt{k} .

We may get false positives when we have $\geq \sqrt{k}$ edits in a run of (Q, Q).

In this case, we must be saving $\geq \sqrt{k}$ by canceling out errors between *P* and Q^{∞} with errors between *T* and Q^{∞} .

We quantify potential savings using a marking scheme based on overlaps of special tiles and verify $\mathcal{O}(k^{2.5})$ positions with $\geq \sqrt{k}$ marks using known techniques.

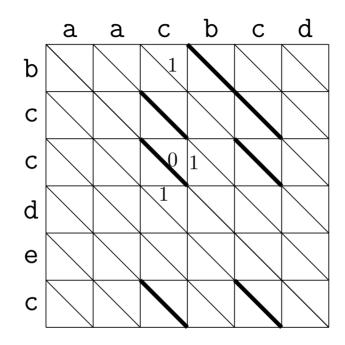
Cap exponents of plain runs at \sqrt{k} .

We may get false positives when we have $\geq \sqrt{k}$ edits in a run of (Q, Q).

In this case, we must be saving $\geq \sqrt{k}$ by canceling out errors between *P* and Q^{∞} with errors between *T* and Q^{∞} .

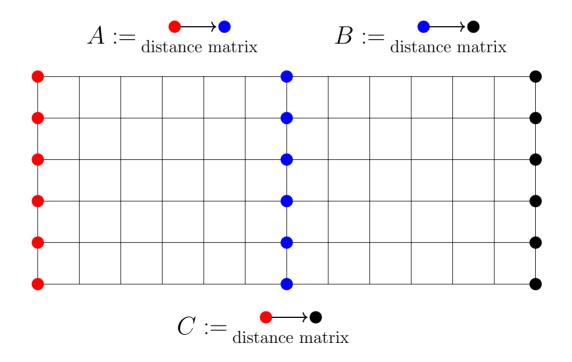
We quantify potential savings using a marking scheme based on overlaps of special tiles and verify $\mathcal{O}(k^{2.5})$ positions with $\geq \sqrt{k}$ marks using known techniques.

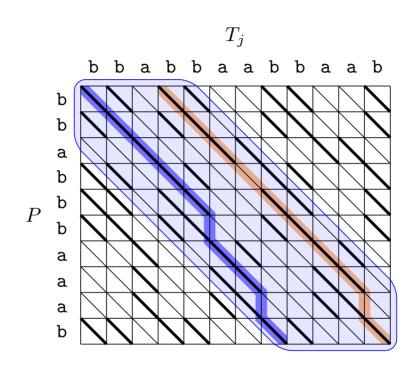
This yields $\mathcal{O}(k^{2.5})$ DPM-updates and hence $\tilde{\mathcal{O}}(k^{3.5})$ time overall.



Faster Pattern Matching under Edit Distance

Theorem [Tiskin; Algorithmica 2015] Matrix *C* can be computed from (small representations of) $n \times n$ matrices *A* and *B* in $\mathcal{O}(n \log n)$ time.



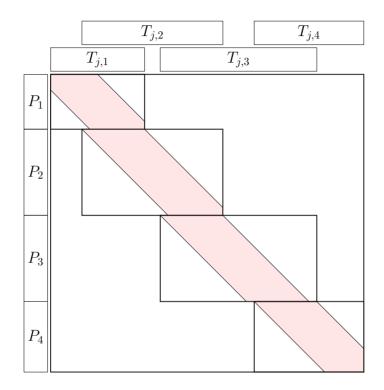


 $P = 10, T_j = 12, k = 2.$

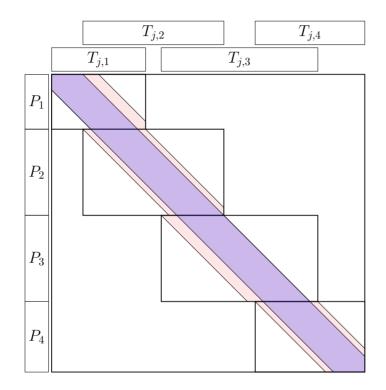
Only $|T_j| - |P| + 2k + 1 = O(k)$ diagonals are relevant.

P. Charalampopoulos, T. Kociumaka, P. Wellnitz

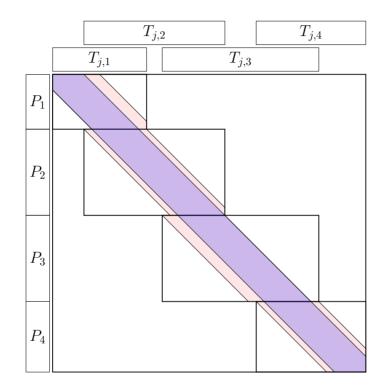
Faster Pattern Matching under Edit Distance



Preprocessing: Build distance matrices for these small alignment grids.



Preprocessing: Build distance matrices for these small alignment grids. Update: Maintain a balanced binary tree over them, stitching them together.



Preprocessing: Build distance matrices for these small alignment grids. Update: Maintain a balanced binary tree over them, stitching them together. Each stitching operation takes $\tilde{O}(k)$ time.

What is the right exponent?

Cole and Hariharan's conjecture: $O(n + k^3 \cdot n/m)$ should be possible.

What is the right exponent?

Cole and Hariharan's conjecture: $O(n + k^3 \cdot n/m)$ should be possible.

Is the decision version easier?

What is the right exponent?

Cole and Hariharan's conjecture: $O(n + k^3 \cdot n/m)$ should be possible.

Is the decision version easier?

What if we allow for some approximation by also reporting an arbitrary subset of the positions in $\operatorname{Occ}_{(1+\epsilon)k}^{E}(P,T) \setminus \operatorname{Occ}_{k}^{E}(P,T)$ for a small $\epsilon > 0$?

What is the right exponent?

Cole and Hariharan's conjecture: $O(n + k^3 \cdot n/m)$ should be possible.

Is the decision version easier?

What if we allow for some approximation by also reporting an arbitrary subset of the positions in $\operatorname{Occ}_{(1+\epsilon)k}^{E}(P,T) \setminus \operatorname{Occ}_{k}^{E}(P,T)$ for a small $\epsilon > 0$?

We report starting positions. How fast can we report substrings?

The End

Thank you for your attention!

12 / 12