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The Problem

Pattern Matching

Given a text T and a pattern P, compute the occurrences of P in T.

Pattern Matching under Edit Distance

Given a text T, a pattern P, and an integer threshold k, compute the (start-

ing positions of) substrings of T that are at edit distance at most k from P.
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History and our Result

O(n2) [Sellers; J. Algorithms 1980]

O(nk2) [Landau, Vishkin; JCSS 1988]

O(nk) [Landau, Vishkin; J. Algorithms 1989]

Õ(n + k8+1/3 · n/m1/3) [Sahinalp, Vishkin; FOCS 1996]

O(n + k4 · n/m) [Cole, Hariharan; SICOMP 2002]

Õ(n + k3.5 · n/m) This work

Ω(k2) [Backurs, Indyk; SICOMP 2018]
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The Structure of Pattern Matching

T

P

Fact [folklore] Given a pattern P of length m and a text T of length n ≤ 3/2m at

least one of the following holds:

• The pattern P has at most one occurrence in T.

• The pattern P is periodic.
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The Structure of Pattern Matching

T

P

P

Fact [folklore] Given a pattern P of length m and a text T of length n ≤ 3/2m at

least one of the following holds:

• The pattern P has at most one occurrence in T.

• The pattern P is periodic.

The fragment of T spanned by P’s occurrences is periodic as well.
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The Structure of Pattern Matching under Edit Distance

Theorem [CKW; FOCS’20] Given a pattern P of length m and a text T of length

n ≤ 3/2m, and a threshold k ≤ m at least one of the following holds:

• The pattern P has O(k2) k-error occurrences in T.

• The pattern is almost periodic: at edit distance < 2k from a string with

period O(m/k).

P

Q∞ Q Q Q Q Q Q Q Q . . .

Q will denote a primitive string; it does not match any of its rotations.

We call this a tile decomposition of P with respect to Q.
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The PILLAR Model and the Reduction of [CKW’20]

In the PILLAR model [CKW’20], algorithms rely on primitive operations.

For any setting, e.g., when the strings are given in compressed form, an efficient

implementation of the primitive operations yields a fast algorithm.

Standard setting: The primitive operations take O(1) time after an O(n)-time

preprocessing.

O(k4 · n/m) PILLAR-time algorithm [CKW’20] matches [Cole, Hariharan; SICOMP

2002] for the standard setting.

Reduction [CKW’20]: An algorithm that solves the almost periodic case in

Õ(ka · n/m) PILLAR-time, for a ≥ 3, implies an algorithm that solves the

general case in Õ(ka · n/m) PILLAR-time.
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Dynamic Puzzle Matching

Input: An integer k and a family F of strings containing a distinguished primi-

tive string Q with
∑

F∈F δE(F,Q) = O(k).

Maintain: A sequence I = (U1, V1) · · · (Uz, Vz) of pairs from F2.

Updates: Insertions and deletions of pairs in I .

Queries: Compute the k-error occurrences of U1 · · ·Uz in V1 · · · Vz.

After Õ(k3)-time preprocessing, updates and queries take Õ(k) time.
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Using Dynamic Puzzle Matching

Think of: k = 4 and |Q| ≈
√
m.
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Using Dynamic Puzzle Matching

Think of: k = 4 and |Q| ≈
√
m.

P

T

Each string has O(k) special tiles.
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> k copies of Q in P =⇒ ≥ 1 must be matched exactly

P. Charalampopoulos, T. Kociumaka, P. Wellnitz Faster Pattern Matching under Edit Distance 7 / 12



Using Dynamic Puzzle Matching

Think of: k = 4 and |Q| ≈
√
m.

T

P

> k copies of Q in P =⇒ ≥ 1 must be matched exactly

Starting positions of k-error occs in T are within O(k) from endpoints of tiles.
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Using Dynamic Puzzle Matching

Think of: k = 4 and |Q| ≈
√
m.

P

T1

m+ k

|Tj| = m +O(k)
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Using Dynamic Puzzle Matching

Think of: k = 4 and |Q| ≈
√
m.
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I1

Goal: Iterate over all Ij’s in a DPM instance.
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Think of: k = 4 and |Q| ≈
√
m.

P

T1

{ {} }
8

{ }{ } { }{ }{ }{ } { }

m+ k

I1

Goal: Iterate over all Ij’s in a DPM instance.

(The leading and trailing pairs are treated separately.)
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Using Dynamic Puzzle Matching

Think of: k = 4 and |Q| ≈
√
m.

{ {} }
8

{ }{ } { }{ }{ }

P

T2

{ } { }

m+ k

I1

P. Charalampopoulos, T. Kociumaka, P. Wellnitz Faster Pattern Matching under Edit Distance 7 / 12



Using Dynamic Puzzle Matching

Think of: k = 4 and |Q| ≈
√
m.

{ {} }
8

{ }{ } { }{ }{ }

P

T2

{ {} }
8

{ }{ } { } { }{ }{ } { }

{ } { }

m+ k

I1

I2

P. Charalampopoulos, T. Kociumaka, P. Wellnitz Faster Pattern Matching under Edit Distance 7 / 12



Using Dynamic Puzzle Matching

Think of: k = 4 and |Q| ≈
√
m.

{ {} }
8

{ }{ } { }{ }{ }

P

T2

{ {} }
8

{ }{ } { } { }{ }{ } { }

{ } { }

m+ k

I1

I2

We only need to update O(k) pairs; there has to be a pair ̸= (Q,Q) involved!
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We only need to update O(k) pairs; there has to be a pair ̸= (Q,Q) involved!

Over the Θ(
√
m) shifts of P, we need O(

√
m · k) DPM-updates.
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We only need to update O(k) pairs; there has to be a pair ̸= (Q,Q) involved!

Over the Θ(
√
m) shifts of P, we need O(

√
m · k) DPM-updates.

Yields Õ(k3 +
√
m · k2).
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O(k3) DPM-updates via Primitivity
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For a plain run (Q,Q)y, at least y − k

copies of Q will be matched exactly

in a k-error occurrence.

Cap exponents of plain runs at k + 1.

We do not lose or gain any k-error occs.
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The shown pair of special tiles implies O(k) DPM-updates.

P. Charalampopoulos, T. Kociumaka, P. Wellnitz Faster Pattern Matching under Edit Distance 8 / 12



O(k3) DPM-updates via Primitivity

k = 2

{ {} }
50

{ {} }
49

{ }

{ }I1

I2

{ }
50

{ }
51

{ {} }{ }I50 { }
99

{ {} }I51 { }
101

{ }I52 { }
102

{ {} }
3

{ {} }
2

{ }

{ }I48

I49

{ }
97

{ }
98

{ {} }
3

{ {} }
3

{ }

{ }I ′
1

I ′
2

{ }
3

{ }
3

{ {} }{ }I ′
50 { }

3

{ {} }I ′
51 { }

3

{ }I ′
52 { }

3

{ {} }
3

{ {} }
2

{ }

{ }I ′
48

I ′
49

{ }
3

{ }
3

The shown pair of special tiles implies O(k) DPM-updates.

We have O(k2) pairs of special tiles!
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O(k3) DPM-updates via Primitivity
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Alternative Õ(k4)-time algorithm!
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Overview forO(k2.5) DPM-updates

Cap exponents of plain runs at
√
k.

We may get false positives when we have ≥
√
k edits in a run of (Q,Q).

In this case, we must be saving ≥
√
k by canceling out errors between P and

Q∞ with errors between T and Q∞.

We quantify potential savings using a marking scheme based on overlaps of spe-

cial tiles and verify O(k2.5) positions with ≥
√
k marks using known techniques.

This yields O(k2.5) DPM-updates and hence Õ(k3.5) time overall.
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P. Charalampopoulos, T. Kociumaka, P. Wellnitz Faster Pattern Matching under Edit Distance 9 / 12



Overview forO(k2.5) DPM-updates

Cap exponents of plain runs at
√
k.

We may get false positives when we have ≥
√
k edits in a run of (Q,Q).

In this case, we must be saving ≥
√
k by canceling out errors between P and

Q∞ with errors between T and Q∞.

We quantify potential savings using a marking scheme based on overlaps of spe-

cial tiles and verify O(k2.5) positions with ≥
√
k marks using known techniques.

This yields O(k2.5) DPM-updates and hence Õ(k3.5) time overall.
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A Solution to DPM and a Grid View
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A Solution to DPM and a Grid View

1

10

1

c

e

d

c

c

b

a a c b c d

P. Charalampopoulos, T. Kociumaka, P. Wellnitz Faster Pattern Matching under Edit Distance 10 / 12



A Solution to DPM and a Grid View

A := distance matrix B := distance matrix

C := distance matrix

Theorem [Tiskin; Algorithmica 2015] Matrix C can be computed from (small rep-

resentations of) n× n matrices A and B in O(n log n) time.

P. Charalampopoulos, T. Kociumaka, P. Wellnitz Faster Pattern Matching under Edit Distance 10 / 12



A Solution to DPM and a Grid View

a

a

a

a

b

b

b

b

b

b

a a a a ab b b b b b b

P

Tj

P = 10, Tj = 12, k = 2.

Only |Tj| − |P| + 2k + 1 = O(k) diagonals are relevant.
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A Solution to DPM and a Grid View

Tj,1

Tj,2

Tj,3

Tj,4

P1

P2

P3

P4

Preprocessing: Build distance matrices for these small alignment grids.
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A Solution to DPM and a Grid View

Preprocessing: Build distance matrices for these small alignment grids.

Tj,1

Tj,2

Tj,3

Tj,4

P1

P2

P3

P4

Update: Maintain a balanced binary tree over them, stitching them together.

P. Charalampopoulos, T. Kociumaka, P. Wellnitz Faster Pattern Matching under Edit Distance 10 / 12



A Solution to DPM and a Grid View

Preprocessing: Build distance matrices for these small alignment grids.

Tj,1

Tj,2

Tj,3

Tj,4

P1

P2

P3

P4

Update: Maintain a balanced binary tree over them, stitching them together.

Each stitching operation takes Õ(k) time.
P. Charalampopoulos, T. Kociumaka, P. Wellnitz Faster Pattern Matching under Edit Distance 10 / 12



Final Remarks and Open Problems

What is the right exponent?

Cole and Hariharan’s conjecture: O(n + k3 · n/m) should be possible.

Is the decision version easier?

What if we allow for some approximation by also reporting an arbitrary subset

of the positions in OccE(1+ϵ)k(P, T) \ OccEk(P, T) for a small ϵ > 0?

We report starting positions. How fast can we report substrings?
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The End

Thank you for your attention!
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