Faster Pattern Matching under Edit Distance

Panagiotis Charalampopoulos ${ }^{1}$, Tomasz Kociumaka², Philip Wellnitz ${ }^{2}$
1. Birkbeck, University of London, UK
2. Max Planck Institute for Informatics, SaArland Informatics Campus, SaArbrücken, Germany

FOCS 2022

Denver, USA

The Problem

The Problem

Pattern Matching

Given a text T and a pattern P, compute the occurrences of P in T.

The Problem

Pattern Matching

Given a text T and a pattern P, compute the occurrences of P in T.

The Problem

Pattern Matching

Given a text T and a pattern P, compute the occurrences of P in T.

Pattern Matching under Edit Distance

Given a text T, a pattern P, and an integer threshold k, compute the (starting positions of) substrings of T that are at edit distance at most k from P.

The Problem

Pattern Matching

Given a text T and a pattern P, compute the occurrences of P in T.

Pattern Matching under Edit Distance

Given a text T, a pattern P, and an integer threshold k, compute the (starting positions of) substrings of T that are at edit distance at most k from P.

History and our Result

History and our Result

$\mathcal{O}\left(n^{2}\right) \quad$ [Sellers; J. Algorithms 1980]

History and our Result

$$
\begin{array}{cl}
\mathcal{O}\left(n^{2}\right) & \text { [Sellers; J. Algorithms 1980] } \\
\mathcal{O}\left(n k^{2}\right) & \text { [Landau, Vishkin; JCSS 1988] }
\end{array}
$$

History and our Result

$$
\begin{aligned}
\mathcal{O}\left(n^{2}\right) & \text { [Sellers; J. Algorithms 1980] } \\
\mathcal{O}\left(n k^{2}\right) & {[\text { Landau, Vishkin; JCSS 1988] }} \\
\mathcal{O}(n k) & {[\text { Landau, Vishkin; J. Algorithms 1989] }}
\end{aligned}
$$

History and our Result

$$
\begin{aligned}
\mathcal{O}\left(n^{2}\right) & {[\text { Sellers; J. Algorithms 1980] }} \\
\mathcal{O}\left(n k^{2}\right) & {[\text { Landau, Vishkin; JCSS 1988] }} \\
\mathcal{O}(n k) & {[\text { Landau, Vishkin; J. Algorithms 1989] }} \\
\tilde{\mathcal{O}}\left(n+k^{8+1 / 3} \cdot n / \mathrm{m}^{1 / 3}\right) & {[\text { Sahinalp, Vishkin; FOCS 1996] }}
\end{aligned}
$$

History and our Result

$$
\begin{aligned}
\mathcal{O}\left(n^{2}\right) & \text { [Sellers; J. Algorithms 1980] } \\
\mathcal{O}\left(n k^{2}\right) & \text { [Landau, Vishkin; JCSS 1988] } \\
\mathcal{O}(n k) & \text { [Landau, Vishkin; J. Algorithms 1989] } \\
\tilde{\mathcal{O}}\left(n+k^{8+1 / 3} \cdot n / m^{1 / 3}\right) & {[\text { Sahinalp, Vishkin; FOCS 1996] }} \\
\mathcal{O}\left(n+k^{4} \cdot n / m\right) & {[\text { Cole, Hariharan; SICOMP 2002] }}
\end{aligned}
$$

History and our Result

$$
\begin{aligned}
\mathcal{O}\left(n^{2}\right) & \text { [Sellers; J. Algorithms 1980] } \\
\mathcal{O}\left(n k^{2}\right) & {[\text { Landau, Vishkin; JCSS 1988] }} \\
\mathcal{O}(n k) & {[\text { Landau, Vishkin; J. Algorithms 1989] }} \\
\tilde{\mathcal{O}}\left(n+k^{8+1 / 3} \cdot n / m^{1 / 3}\right) & {[\text { Sahinalp, Vishkin; FOCS 1996] }} \\
\mathcal{O}\left(n+k^{4} \cdot n / m\right) & \text { [Cole, Hariharan; SICOMP 2002] } \\
\tilde{\mathcal{O}}\left(n+k^{3.5} \cdot n / m\right) & \text { This work }
\end{aligned}
$$

History and our Result

$$
\begin{aligned}
\mathcal{O}\left(n^{2}\right) & \text { [Sellers; J. Algorithms 1980] } \\
\mathcal{O}\left(n k^{2}\right) & {[\text { Landau, Vishkin; JCSS 1988] }} \\
\mathcal{O}(n k) & {[\text { Landau, Vishkin; J. Algorithms 1989] }} \\
\tilde{\mathcal{O}}\left(n+k^{8+1 / 3} \cdot n / m^{1 / 3}\right) & {[\text { Sahinalp, Vishkin; FOCS 1996] }} \\
\mathcal{O}\left(n+k^{4} \cdot n / m\right) & \text { [Cole, Hariharan; SICOMP 2002] } \\
\tilde{\mathcal{O}}\left(n+k^{3.5} \cdot n / m\right) & \text { This work }
\end{aligned}
$$

$\Omega\left(k^{2}\right) \quad$ [Backurs, Indyk; SICOMP 2018]

History and our Result

History and our Result

The Structure of Pattern Matching

The Structure of Pattern Matching

Fact [folklore] Given a pattern P of length m and a text T of length $n \leq 3 / 2 m$ at least one of the following holds:

The Structure of Pattern Matching

Fact [folklore] Given a pattern P of length m and a text T of length $n \leq 3 / 2 m$ at least one of the following holds:

- The pattern P has at most one occurrence in T.

The Structure of Pattern Matching

Fact [folklore] Given a pattern P of length m and a text T of length $n \leq 3 / 2 m$ at least one of the following holds:

- The pattern P has at most one occurrence in T.
- The pattern P is periodic.

The Structure of Pattern Matching

Fact [folklore] Given a pattern P of length m and a text T of length $n \leq 3 / 2 m$ at least one of the following holds:

- The pattern P has at most one occurrence in T.
- The pattern P is periodic.

The Structure of Pattern Matching

Fact [folklore] Given a pattern P of length m and a text T of length $n \leq 3 / 2 m$ at least one of the following holds:

- The pattern P has at most one occurrence in T.
- The pattern P is periodic.

The Structure of Pattern Matching

Fact [folklore] Given a pattern P of length m and a text T of length $n \leq 3 / 2 m$ at least one of the following holds:

- The pattern P has at most one occurrence in T.
- The pattern P is periodic.

The Structure of Pattern Matching

Fact [folklore] Given a pattern P of length m and a text T of length $n \leq 3 / 2 m$ at least one of the following holds:

- The pattern P has at most one occurrence in T.
- The pattern P is periodic.

The Structure of Pattern Matching

Fact [folklore] Given a pattern P of length m and a text T of length $n \leq 3 / 2 m$ at least one of the following holds:

- The pattern P has at most one occurrence in T.
- The pattern P is periodic.

The fragment of T spanned by P's occurrences is periodic as well.

The Structure of Pattern Matching under Edit Distance

The Structure of Pattern Matching under Edit Distance

Theorem [CKW; FOCS'20] Given a pattern P of length m and a text T of length $n \leq 3 / 2 m$, and a threshold $k \leq m$ at least one of the following holds:

The Structure of Pattern Matching under Edit Distance

Theorem [CKW; FOCS'20] Given a pattern P of length m and a text T of length $n \leq 3 / 2 m$, and a threshold $k \leq m$ at least one of the following holds:

- The pattern P has $\mathcal{O}\left(k^{2}\right) k$-error occurrences in T.

The Structure of Pattern Matching under Edit Distance

Theorem [CKWW; FOCS'20] Given a pattern P of length m and a text T of length $n \leq 3 / 2 m$, and a threshold $k \leq m$ at least one of the following holds:

- The pattern P has $\mathcal{O}\left(k^{2}\right) k$-error occurrences in T.
- The pattern is almost periodic: at edit distance $<2 k$ from a string with period $\mathcal{O}(m / k)$.

The Structure of Pattern Matching under Edit Distance

Theorem [CKW; FOCS'20] Given a pattern P of length m and a text T of length $n \leq 3 / 2 m$, and a threshold $k \leq m$ at least one of the following holds:

- The pattern P has $\mathcal{O}\left(k^{2}\right) k$-error occurrences in T.
- The pattern is almost periodic: at edit distance $<2 k$ from a string with period $\mathcal{O}(m / k)$. This is the bottleneck.

The Structure of Pattern Matching under Edit Distance

Theorem [CKW; FOCS'20] Given a pattern P of length m and a text T of length $n \leq 3 / 2 m$, and a threshold $k \leq m$ at least one of the following holds:

- The pattern P has $\mathcal{O}\left(k^{2}\right) k$-error occurrences in T.
- The pattern is almost periodic: at edit distance $<2 k$ from a string with period $\mathcal{O}(m / k)$. This is the bottleneck.

Q will denote a primitive string; it does not match any of its rotations.

The Structure of Pattern Matching under Edit Distance

Theorem [CKW; FOCS'20] Given a pattern P of length m and a text T of length $n \leq 3 / 2 m$, and a threshold $k \leq m$ at least one of the following holds:

- The pattern P has $\mathcal{O}\left(k^{2}\right) k$-error occurrences in T.
- The pattern is almost periodic: at edit distance $<2 k$ from a string with period $\mathcal{O}(m / k)$. This is the bottleneck.

Q will denote a primitive string; it does not match any of its rotations.

We call this a tile decomposition of P with respect to Q.

The PILLAR Model and the Reduction of [CKW'20]

The PILLAR Model and the Reduction of [CKW'20]

In the PILLAR model [CKW'20], algorithms rely on primitive operations.

The PILLAR Model and the Reduction of [CKW'20]

In the PILLAR model [CKW'20], algorithms rely on primitive operations.

For any setting, e.g., when the strings are given in compressed form, an efficient implementation of the primitive operations yields a fast algorithm.

The PILLAR Model and the Reduction of [CKW'20]

In the PILLAR model [CKW'20], algorithms rely on primitive operations.

For any setting, e.g., when the strings are given in compressed form, an efficient implementation of the primitive operations yields a fast algorithm.

Standard setting: The primitive operations take $\mathcal{O}(1)$ time after an $\mathcal{O}(n)$-time preprocessing.

The PILLAR Model and the Reduction of [CKW'20]

In the PILLAR model [CKW'20], algorithms rely on primitive operations.

For any setting, e.g., when the strings are given in compressed form, an efficient implementation of the primitive operations yields a fast algorithm.

Standard setting: The primitive operations take $\mathcal{O}(1)$ time after an $\mathcal{O}(n)$-time preprocessing.
$\mathcal{O}\left(k^{4} \cdot n / m\right)$ PILLAR-time algorithm [CKW'20] matches [Cole, Hariharan; SICOMP 2002] for the standard setting.

The PILLAR Model and the Reduction of [CKW'20]

In the PILLAR model [CKW'20], algorithms rely on primitive operations.

For any setting, e.g., when the strings are given in compressed form, an efficient implementation of the primitive operations yields a fast algorithm.

Standard setting: The primitive operations take $\mathcal{O}(1)$ time after an $\mathcal{O}(n)$-time preprocessing.
$\mathcal{O}\left(k^{4} \cdot n / m\right)$ PILLAR-time algorithm [CKW'20] matches [Cole, Hariharan; SICOMP 2002] for the standard setting.

Reduction [CKW'20]: An algorithm that solves the almost periodic case in $\tilde{\mathcal{O}}\left(k^{a} \cdot n / m\right)$ PILLAR-time, for $a \geq 3$, implies an algorithm that solves the general case in $\tilde{\mathcal{O}}\left(k^{a} \cdot n / m\right)$ PILLAR-time.

Dynamic Puzzle Matching

Dynamic Puzzle Matching

Input: An integer k and a family \mathcal{F} of strings containing a distinguished primitive string Q with $\sum_{F \in \mathcal{F}} \delta_{E}(F, Q)=\mathcal{O}(k)$.

Dynamic Puzzle Matching

Input: An integer k and a family \mathcal{F} of strings containing a distinguished primitive string Q with $\sum_{F \in \mathcal{F}} \delta_{E}(F, Q)=\mathcal{O}(k)$.

Maintain: A sequence $\mathcal{I}=\left(U_{1}, V_{1}\right) \cdots\left(U_{z}, V_{z}\right)$ of pairs from \mathcal{F}^{2}.

Dynamic Puzzle Matching

Input: An integer k and a family \mathcal{F} of strings containing a distinguished primitive string Q with $\sum_{F \in \mathcal{F}} \delta_{E}(F, Q)=\mathcal{O}(k)$.

Maintain: A sequence $\mathcal{I}=\left(U_{1}, V_{1}\right) \cdots\left(U_{z}, V_{z}\right)$ of pairs from \mathcal{F}^{2}.

Updates: Insertions and deletions of pairs in \mathcal{I}.

Dynamic Puzzle Matching

Input: An integer k and a family \mathcal{F} of strings containing a distinguished primitive string Q with $\sum_{F \in \mathcal{F}} \delta_{E}(F, Q)=\mathcal{O}(k)$.

Maintain: A sequence $\mathcal{I}=\left(U_{1}, V_{1}\right) \cdots\left(U_{z}, V_{z}\right)$ of pairs from \mathcal{F}^{2}.

Updates: Insertions and deletions of pairs in \mathcal{I}.

Queries: Compute the k-error occurrences of $U_{1} \cdots U_{z}$ in $V_{1} \cdots V_{z}$.

Dynamic Puzzle Matching

Input: An integer k and a family \mathcal{F} of strings containing a distinguished primitive string Q with $\sum_{F \in \mathcal{F}} \delta_{E}(F, Q)=\mathcal{O}(k)$.

Maintain: A sequence $\mathcal{I}=\left(U_{1}, V_{1}\right) \cdots\left(U_{z}, V_{z}\right)$ of pairs from \mathcal{F}^{2}.

Updates: Insertions and deletions of pairs in \mathcal{I}.

Queries: Compute the k-error occurrences of $U_{1} \cdots U_{z}$ in $V_{1} \cdots V_{z}$.

After $\tilde{\mathcal{O}}\left(k^{3}\right)$-time preprocessing, updates and queries take $\tilde{\mathcal{O}}(k)$ time.

Using Dynamic Puzzle Matching

Using Dynamic Puzzle Matching

Think of: $k=4$ and $|Q| \approx \sqrt{m}$.

Each string has $\mathcal{O}(k)$ special tiles.

Using Dynamic Puzzle Matching

Think of: $k=4$ and $|Q| \approx \sqrt{m}$.

Using Dynamic Puzzle Matching

Think of: $k=4$ and $|Q| \approx \sqrt{m}$.

$>k$ copies of Q in $P \Longrightarrow \geq 1$ must be matched exactly

Using Dynamic Puzzle Matching

Think of: $k=4$ and $|Q| \approx \sqrt{m}$.

$>k$ copies of Q in $P \Longrightarrow \geq 1$ must be matched exactly

Starting positions of k-error occs in T are within $\mathcal{O}(k)$ from endpoints of tiles.

Using Dynamic Puzzle Matching

Think of: $k=4$ and $|Q| \approx \sqrt{m}$.

Using Dynamic Puzzle Matching

Think of: $k=4$ and $|Q| \approx \sqrt{m}$.

$$
\left|T_{j}\right|=m+\mathcal{O}(k)
$$

Using Dynamic Puzzle Matching

Think of: $k=4$ and $|Q| \approx \sqrt{m}$.

Using Dynamic Puzzle Matching

Think of: $k=4$ and $|Q| \approx \sqrt{m}$.

Goal: Iterate over all \mathcal{I}_{j} 's in a DPM instance.

Using Dynamic Puzzle Matching

Think of: $k=4$ and $|Q| \approx \sqrt{m}$.

Goal: Iterate over all \mathcal{I}_{j} 's in a DPM instance.
(The leading and trailing pairs are treated separately.)

Using Dynamic Puzzle Matching

Think of: $k=4$ and $|Q| \approx \sqrt{m}$.

Using Dynamic Puzzle Matching

Think of: $k=4$ and $|Q| \approx \sqrt{m}$.

Using Dynamic Puzzle Matching

Think of: $k=4$ and $|Q| \approx \sqrt{m}$.

Using Dynamic Puzzle Matching

Think of: $k=4$ and $|Q| \approx \sqrt{m}$.

$\mathcal{I}_{1}\left\{\begin{array}{l}\square \\ \square\end{array}\right\}\left\{\begin{array}{l}\square \\ \}^{8}\end{array}\left\{\begin{array}{l}\square \\ \square\end{array}\left\{\begin{array}{l}\square \\ \square\end{array}\right\} \frac{\square}{\square}\right\}\left\{\begin{array}{l}\square \\ \square\end{array}\{\square\}\{\square\}\{\square \square\}\right.\right.$
$\left.\mathcal{I}_{2}\{\square\}\{\square\}^{8}\{\square\}\left\{\begin{array}{l}\square \\ \square\end{array}\right\}\left\{\begin{array}{l}\square \\ \square\end{array}\right\}, \square\right\}\{\square\}\{\square\}\{\square \square\}$

Using Dynamic Puzzle Matching

Think of: $k=4$ and $|Q| \approx \sqrt{m}$.

We only need to update $\mathcal{O}(k)$ pairs; there has to be a pair $\neq(Q, Q)$ involved!

Using Dynamic Puzzle Matching

Think of: $k=4$ and $|Q| \approx \sqrt{m}$.

We only need to update $\mathcal{O}(k)$ pairs; there has to be a pair $\neq(Q, Q)$ involved!
Over the $\Theta(\sqrt{m})$ shifts of P, we need $\mathcal{O}(\sqrt{m} \cdot k)$ DPM-updates.

Using Dynamic Puzzle Matching

Think of: $k=4$ and $|Q| \approx \sqrt{m}$.

We only need to update $\mathcal{O}(k)$ pairs; there has to be a pair $\neq(Q, Q)$ involved!
Over the $\Theta(\sqrt{m})$ shifts of P, we need $\mathcal{O}(\sqrt{m} \cdot k)$ DPM-updates.

$$
\text { Yields } \tilde{\mathcal{O}}\left(k^{3}+\sqrt{m} \cdot k^{2}\right)
$$

$\mathcal{O}\left(k^{3}\right)$ DPM-updates via Primitivity

$\mathcal{O}\left(k^{3}\right)$ DPM-updates via Primitivity

$$
k=2
$$

.

$\mathcal{I}_{52}\{\square\}\left\{\frac{\square}{\square}\right\}^{102}$

$\mathcal{O}\left(k^{3}\right)$ DPM-updates via Primitivity

$$
k=2
$$

For a plain run $(Q, Q)^{y}$, at least $y-k$ copies of Q will be matched exactly in a k-error occurrence.

$\mathcal{O}\left(k^{3}\right)$ DPM-updates via Primitivity

$$
k=2
$$

For a plain run $(Q, Q)^{y}$, at least $y-k$ copies of Q will be matched exactly in a k-error occurrence.

Cap exponents of plain runs at $k+1$.

$\mathcal{O}\left(k^{3}\right)$ DPM-updates via Primitivity

$$
k=2
$$

For a plain run $(Q, Q)^{y}$, at least $y-k$ copies of Q will be matched exactly in a k-error occurrence.

Cap exponents of plain runs at $k+1$.

We do not lose or gain any k-error occs.
$\mathcal{I}_{50}\left\{\frac{\square}{\square}\right\}\left\{\begin{array}{l}\square \\ \square\end{array}\right\}\left\{\begin{array}{l}\square \\ \square\end{array}\right\}\left\{\begin{array}{l}\square \\ \square\end{array}\right\}^{99}$
$\mathcal{I}_{51}\left\{\begin{array}{l}\square \\ \square\end{array}\right\}\left\{\begin{array}{l}\square \\ \square\end{array}\right\}\left\{\begin{array}{l}\square \\ \square\end{array}\right\}^{101}$
$\mathcal{I}_{52}\left\{\frac{\square}{\square}\right\}\left\{\frac{\square}{\square}\right\}^{102}$

$\mathcal{O}\left(k^{3}\right)$ DPM-updates via Primitivity

$$
\begin{aligned}
& k=2 \\
& \mathcal{I}_{1}\{\square\}\{\square\}^{50}\{\square\}\{\square\}^{50} \\
& \mathcal{I}_{2}\{\square\}\{\square\}^{49}\{\square\}\{\square\}^{51} \\
& \vdots \\
& \mathcal{I}_{48}\{\square\}\{\square\}^{3}\{\square\}\{\square\}^{97} \\
& \mathcal{I}_{49}\{\square\}\{\square\}^{2}\{\square\}\{\square\}^{98} \\
& \mathcal{I}_{50}\{\square\}\{\square\}\{\square\}\{\square\}^{99} \\
& \mathcal{I}_{51}\{\square\}\{\square\}\{\square\}^{\square} \\
& \mathcal{I}_{52}\{\square\}\{\square\}^{102}
\end{aligned}
$$

$\mathcal{O}\left(k^{3}\right)$ DPM-updates via Primitivity

$$
\begin{aligned}
& k=2 \\
& \mathcal{I}_{1}\{\square\}\{\square\}^{50}\{\square\}\{\square\}^{50} \\
& \mathcal{I}_{2}\{\square\}\{\square\}^{49}\{\square\}\{\square\}^{51} \\
& \vdots \\
& \mathcal{I}_{48}\{\square\}\{\square\}^{3}\{\square\}\{\square\}^{97} \\
& \mathcal{I}_{49}\{\square\}\{\square\}^{2}\{\square\}\{\square\}^{98} \\
& \mathcal{I}_{50}\{\square\}\{\square\}\{\square\}\{\square\}^{99} \\
& \mathcal{I}_{51}\{\square\}\{\square\}\{\square\}^{101} \\
& \mathcal{I}_{52}\{\square\}\{\square\}^{102}
\end{aligned}
$$

The shown pair of special tiles implies $\mathcal{O}(k)$ DPM-updates.

$\mathcal{O}\left(k^{3}\right)$ DPM-updates via Primitivity

$$
\begin{aligned}
& k=2 \\
& \mathcal{I}_{1}\{\square\}\{\square\}^{50}\{\square\}\{\square\}^{50} \\
& \mathcal{I}_{2}\{\square\}\{\square\}^{49}\{\square\}\{\square\}^{51} \\
& \vdots \\
& \mathcal{I}_{48}\{\square\}\{\square\}^{3}\{\square\}\{\square\}^{97} \\
& \mathcal{I}_{49}\{\square\}\{\square\}^{2}\{\square\}\{\square\}^{98} \\
& \mathcal{I}_{50}\{\square\}\{\square\}\{\square\}\{\square\}^{99} \\
& \mathcal{I}_{51}\{\square\}\{\square\}\{\square\}^{\square} \\
& \mathcal{I}_{52}\{\square\}\{\square\}^{102} \\
&
\end{aligned}
$$

The shown pair of special tiles implies $\mathcal{O}(k)$ DPM-updates.
We have $\mathcal{O}\left(k^{2}\right)$ pairs of special tiles!

$\mathcal{O}\left(k^{3}\right)$ DPM-updates via Primitivity

$$
\begin{aligned}
& k=2 \\
& \mathcal{I}_{1}\{\square\}\{\square\}^{50}\{\square\}\{\square\}^{50} \\
& \mathcal{I}_{2}\{\square\}\{\square\}^{49}\{\square\}\{\square\}^{51} \\
& \vdots \\
& \mathcal{I}_{48}\{\square\}\{\square\}^{3}\{\square\}\{\square\}^{97} \\
& \mathcal{I}_{49}\{\square\}\{\square\}^{2}\{\square\}\{\square\}^{98} \\
& \mathcal{I}_{50}\{\square\}\{\square\}\{\square\}\{\square\}^{99} \\
& \mathcal{I}_{51}\{\square\}\{\square\}\{\square\}^{101} \\
& \mathcal{I}_{52}\{\square\}\{\square\}^{102}
\end{aligned}
$$

Alternative $\tilde{\mathcal{O}}\left(k^{4}\right)$-time algorithm!

Overview for $\mathcal{O}\left(k^{2.5}\right)$ DPM-updates

Overview for $\mathcal{O}\left(k^{2.5}\right)$ DPM-updates

Cap exponents of plain runs at \sqrt{k}.

Overview for $\mathcal{O}\left(k^{2.5}\right)$ DPM-updates

Cap exponents of plain runs at \sqrt{k}.

We may get false positives when we have $\geq \sqrt{k}$ edits in a run of (Q, Q).

Overview for $\mathcal{O}\left(k^{2.5}\right)$ DPM-updates

Cap exponents of plain runs at \sqrt{k}.

We may get false positives when we have $\geq \sqrt{k}$ edits in a run of (Q, Q).

Overview for $\mathcal{O}\left(k^{2.5}\right)$ DPM-updates

Cap exponents of plain runs at \sqrt{k}.

We may get false positives when we have $\geq \sqrt{k}$ edits in a run of (Q, Q).

Overview for $\mathcal{O}\left(k^{2.5}\right)$ DPM-updates

Cap exponents of plain runs at \sqrt{k}.

We may get false positives when we have $\geq \sqrt{k}$ edits in a run of (Q, Q).

Overview for $\mathcal{O}\left(k^{2.5}\right)$ DPM-updates

Cap exponents of plain runs at \sqrt{k}.

We may get false positives when we have $\geq \sqrt{k}$ edits in a run of (Q, Q).

In this case, we must be saving $\geq \sqrt{k}$ by canceling out errors between P and Q^{∞} with errors between T and Q^{∞}.

Overview for $\mathcal{O}\left(k^{2.5}\right)$ DPM-updates

Cap exponents of plain runs at \sqrt{k}.

We may get false positives when we have $\geq \sqrt{k}$ edits in a run of (Q, Q).

In this case, we must be saving $\geq \sqrt{k}$ by canceling out errors between P and Q^{∞} with errors between T and Q^{∞}.

We quantify potential savings using a marking scheme based on overlaps of special tiles and verify $\mathcal{O}\left(k^{2.5}\right)$ positions with $\geq \sqrt{k}$ marks using known techniques.

Overview for $\mathcal{O}\left(k^{2.5}\right)$ DPM-updates

Cap exponents of plain runs at \sqrt{k}.

We may get false positives when we have $\geq \sqrt{k}$ edits in a run of (Q, Q).

In this case, we must be saving $\geq \sqrt{k}$ by canceling out errors between P and Q^{∞} with errors between T and Q^{∞}.

We quantify potential savings using a marking scheme based on overlaps of special tiles and verify $\mathcal{O}\left(k^{2.5}\right)$ positions with $\geq \sqrt{k}$ marks using known techniques.

This yields $\mathcal{O}\left(k^{2.5}\right)$ DPM-updates and hence $\tilde{\mathcal{O}}\left(k^{3.5}\right)$ time overall.

A Solution to DPM and a Grid View

A Solution to DPM and a Grid View

A Solution to DPM and a Grid View

Theorem [Tiskin; Algorithmica 2015] Matrix C can be computed from (small representations of) $n \times n$ matrices A and B in $\mathcal{O}(n \log n)$ time.

$$
A:=\underset{\text { distance matrix }}{\bullet \longrightarrow} \quad B:=\underset{\text { distance matrix }}{\bullet}
$$

A Solution to DPM and a Grid View

$$
P=10, T_{j}=12, k=2 .
$$

Only $\left|T_{j}\right|-|P|+2 k+1=\mathcal{O}(k)$ diagonals are relevant.

A Solution to DPM and a Grid View

Preprocessing: Build distance matrices for these small alignment grids.

A Solution to DPM and a Grid View

Preprocessing: Build distance matrices for these small alignment grids. Update: Maintain a balanced binary tree over them, stitching them together.

A Solution to DPM and a Grid View

Preprocessing: Build distance matrices for these small alignment grids. Update: Maintain a balanced binary tree over them, stitching them together.

Each stitching operation takes $\tilde{\mathcal{O}}(k)$ time.

Final Remarks and Open Problems

Final Remarks and Open Problems

What is the right exponent?
Cole and Hariharan's conjecture: $\mathcal{O}\left(n+k^{3} \cdot n / m\right)$ should be possible.

Final Remarks and Open Problems

What is the right exponent?
Cole and Hariharan's conjecture: $\mathcal{O}\left(n+k^{3} \cdot n / m\right)$ should be possible.

Is the decision version easier?

Final Remarks and Open Problems

What is the right exponent?
Cole and Hariharan's conjecture: $\mathcal{O}\left(n+k^{3} \cdot n / m\right)$ should be possible.

Is the decision version easier?

What if we allow for some approximation by also reporting an arbitrary subset of the positions in $\operatorname{Occ}_{(1+\epsilon) k}^{E}(P, T) \backslash \operatorname{Occ}_{k}^{E}(P, T)$ for a small $\epsilon>0$?

Final Remarks and Open Problems

What is the right exponent?
Cole and Hariharan's conjecture: $\mathcal{O}\left(n+k^{3} \cdot n / m\right)$ should be possible.

Is the decision version easier?

What if we allow for some approximation by also reporting an arbitrary subset of the positions in $\operatorname{Occ}_{(1+\epsilon) k}^{E}(P, T) \backslash \operatorname{Occ}_{k}^{E}(P, T)$ for a small $\epsilon>0$?

We report starting positions. How fast can we report substrings?

The End

Thank you for your attention!

