
Dynamic String Alignment

Panagiotis Charalampopoulos1,2, Tomasz Kociumaka3, and
Shay Mozes4

1King’s College London, United Kingdom

2University of Warsaw, Poland

3Bar-Ilan University, Israel

4The Interdisciplinary Center Herzliya, Israel

CPM 2020

June 17-19, 2020

P. Charalampopoulos, T. Kociumaka, S. Mozes Dynamic String Alignment

Problem Definition

String Alignment

Input: two strings of total length n and weights

wmatch – for aligning a pair of matching letters,

wmis – for aligning a pair of mismatching letters,

wgap – for letters that are not aligned.

Goal: compute an alignment with maximum weight.

Alignment’s weight: 6wmatch + wmis + 3wgap.

Generalizes the Longest Common Subsequence problem and the
Edit Distance problem.

P. Charalampopoulos, T. Kociumaka, S. Mozes Dynamic String Alignment

Problem Definition

String Alignment

Input: two strings of total length n and weights

wmatch – for aligning a pair of matching letters,

wmis – for aligning a pair of mismatching letters,

wgap – for letters that are not aligned.

Goal: compute an alignment with maximum weight.

Alignment’s weight: 6wmatch + wmis + 3wgap.

Generalizes the Longest Common Subsequence problem and the
Edit Distance problem.

P. Charalampopoulos, T. Kociumaka, S. Mozes Dynamic String Alignment

Problem Definition

String Alignment

Input: two strings of total length n and weights

wmatch – for aligning a pair of matching letters,

wmis – for aligning a pair of mismatching letters,

wgap – for letters that are not aligned.

Goal: compute an alignment with maximum weight.

Alignment’s weight: 6wmatch + wmis + 3wgap.

Generalizes the Longest Common Subsequence problem and the
Edit Distance problem.

P. Charalampopoulos, T. Kociumaka, S. Mozes Dynamic String Alignment

Problem Definition

String Alignment

Input: two strings of total length n and weights

wmatch – for aligning a pair of matching letters,

wmis – for aligning a pair of mismatching letters,

wgap – for letters that are not aligned.

Goal: compute an alignment with maximum weight.

Alignment’s weight: 6wmatch + wmis + 3wgap.

Generalizes the Longest Common Subsequence problem and the
Edit Distance problem.

P. Charalampopoulos, T. Kociumaka, S. Mozes Dynamic String Alignment

Problem Definition

String Alignment

Input: two strings of total length n and weights

wmatch – for aligning a pair of matching letters,

wmis – for aligning a pair of mismatching letters,

wgap – for letters that are not aligned.

Goal: compute an alignment with maximum weight.

Alignment’s weight: 6wmatch + wmis + 3wgap.

Generalizes the Longest Common Subsequence problem and the
Edit Distance problem.

P. Charalampopoulos, T. Kociumaka, S. Mozes Dynamic String Alignment

Problem Definition

String Alignment

Input: two strings of total length n and weights

wmatch – for aligning a pair of matching letters,

wmis – for aligning a pair of mismatching letters,

wgap – for letters that are not aligned.

Goal: compute an alignment with maximum weight.

1 2 3 4 5 6 7 8 9 10

S = a − b a a b a c b b
| | | | | · |

T = a c b a a − − c d b

Alignment’s weight: 6wmatch + wmis + 3wgap.

Generalizes the Longest Common Subsequence problem and the
Edit Distance problem.

P. Charalampopoulos, T. Kociumaka, S. Mozes Dynamic String Alignment

Problem Definition

String Alignment

Input: two strings of total length n and weights

wmatch – for aligning a pair of matching letters,

wmis – for aligning a pair of mismatching letters,

wgap – for letters that are not aligned.

Goal: compute an alignment with maximum weight.

1 2 3 4 5 6 7 8 9 10

S = a − b a a b a c b b
| | | | | · |

T = a c b a a − − c d b

Alignment’s weight: 6wmatch + wmis + 3wgap.

Generalizes the Longest Common Subsequence problem and the
Edit Distance problem.

P. Charalampopoulos, T. Kociumaka, S. Mozes Dynamic String Alignment

Problem Definition

String Alignment

Input: two strings of total length n and weights

wmatch – for aligning a pair of matching letters,

wmis – for aligning a pair of mismatching letters,

wgap – for letters that are not aligned.

Goal: compute an alignment with maximum weight.

1 2 3 4 5 6 7 8 9 10

S = a − b a a b a c b b
| | | | | · |

T = a c b a a − − c d b

Alignment’s weight: 6wmatch + wmis + 3wgap.

Generalizes the Longest Common Subsequence problem and the
Edit Distance problem.

P. Charalampopoulos, T. Kociumaka, S. Mozes Dynamic String Alignment

Problem Definition

String Alignment

Input: two strings of total length n and weights

wmatch – for aligning a pair of matching letters,

wmis – for aligning a pair of mismatching letters,

wgap – for letters that are not aligned.

Goal: compute an alignment with maximum weight.

S = a b a a b a c b b

T = a c b a a c d b

Alignment’s weight: 6wmatch + wmis + 3wgap.

Generalizes the Longest Common Subsequence problem and the
Edit Distance problem.

P. Charalampopoulos, T. Kociumaka, S. Mozes Dynamic String Alignment

Related Work

There is a textbook O(n2)-time dynamic programming algorithm.
[Vintsyuk; Cybernetics 1968]

[Needleman-Wunsch; Journal of Molecular Biology 1970]

[Wagner-Fischer; Journal of the ACM 1974]

Several works improved the complexity by polylogarithmic factors.
[Masek-Paterson; Journal of Computer and System Sciences 1980]

[Crochemore-Landau-Ziv-Ukelson; SIAM Journal on Computing 2003]

[Grabowski; Discrete Applied Mathematics 2016]

A strongly subquadratic-time algorithm would refute the Strong
Exponential Time Hypothesis (SETH).
[Backurs-Indyk; SIAM Journal on Computing 2018]

[Bringmann-Künnemann; FOCS 2015]

[Abboud-Hansen-Vassilevska Williams-Williams; STOC 2016]

P. Charalampopoulos, T. Kociumaka, S. Mozes Dynamic String Alignment

Related Work

There is a textbook O(n2)-time dynamic programming algorithm.
[Vintsyuk; Cybernetics 1968]

[Needleman-Wunsch; Journal of Molecular Biology 1970]

[Wagner-Fischer; Journal of the ACM 1974]

Several works improved the complexity by polylogarithmic factors.
[Masek-Paterson; Journal of Computer and System Sciences 1980]

[Crochemore-Landau-Ziv-Ukelson; SIAM Journal on Computing 2003]

[Grabowski; Discrete Applied Mathematics 2016]

A strongly subquadratic-time algorithm would refute the Strong
Exponential Time Hypothesis (SETH).
[Backurs-Indyk; SIAM Journal on Computing 2018]

[Bringmann-Künnemann; FOCS 2015]

[Abboud-Hansen-Vassilevska Williams-Williams; STOC 2016]

P. Charalampopoulos, T. Kociumaka, S. Mozes Dynamic String Alignment

Related Work

There is a textbook O(n2)-time dynamic programming algorithm.
[Vintsyuk; Cybernetics 1968]

[Needleman-Wunsch; Journal of Molecular Biology 1970]

[Wagner-Fischer; Journal of the ACM 1974]

Several works improved the complexity by polylogarithmic factors.
[Masek-Paterson; Journal of Computer and System Sciences 1980]

[Crochemore-Landau-Ziv-Ukelson; SIAM Journal on Computing 2003]

[Grabowski; Discrete Applied Mathematics 2016]

A strongly subquadratic-time algorithm would refute the Strong
Exponential Time Hypothesis (SETH).
[Backurs-Indyk; SIAM Journal on Computing 2018]

[Bringmann-Künnemann; FOCS 2015]

[Abboud-Hansen-Vassilevska Williams-Williams; STOC 2016]

P. Charalampopoulos, T. Kociumaka, S. Mozes Dynamic String Alignment

Related Work

The DP algorithm is online: it can handle appending a letter to
either of the strings in O(n) time. It can also handle deleting the
last letter of either of the strings.

Several works considered prepending letters or deleting the first
letter in either of the strings, culminating in an O(n)-time
algorithm.
[Landau-Myers-Schmidt; SIAM Journal on Computing 1998]

[Kim-Park; Journal of Discrete Algorithms 2004]

[Ishida-Inenaga-Shinohara-Takeda; FCT 2005]

[Tiskin; arxiv 2007]

[Hyyrö-Narisawa-Inenaga; JDA 2015]

P. Charalampopoulos, T. Kociumaka, S. Mozes Dynamic String Alignment

Related Work

The DP algorithm is online: it can handle appending a letter to
either of the strings in O(n) time. It can also handle deleting the
last letter of either of the strings.

Several works considered prepending letters or deleting the first
letter in either of the strings, culminating in an O(n)-time
algorithm.
[Landau-Myers-Schmidt; SIAM Journal on Computing 1998]

[Kim-Park; Journal of Discrete Algorithms 2004]

[Ishida-Inenaga-Shinohara-Takeda; FCT 2005]

[Tiskin; arxiv 2007]

[Hyyrö-Narisawa-Inenaga; JDA 2015]

P. Charalampopoulos, T. Kociumaka, S. Mozes Dynamic String Alignment

Our Results

We consider a dynamic setting, where letter updates (insertions,
deletions, substitutions) are allowed anywhere in the strings.

[Hyyrö-Narisawa-Inenaga; JDA 2015]: practical, O(n2) worst-case time.

The lower bound for the static version of the problem means that
we cannot hope for O(n1−ε) update time for any constant ε > 0.

Integer alignment weights ≤ w : update time Õ(nw).

Based on Tiskin’s algorithm for efficient distance
multiplication of simple unit-Monge matrices.

Alignment weights of size nO(1): update time Õ(n
√
n).

Based on black-boxes from planar graphs.

P. Charalampopoulos, T. Kociumaka, S. Mozes Dynamic String Alignment

Our Results

We consider a dynamic setting, where letter updates (insertions,
deletions, substitutions) are allowed anywhere in the strings.
[Hyyrö-Narisawa-Inenaga; JDA 2015]: practical, O(n2) worst-case time.

The lower bound for the static version of the problem means that
we cannot hope for O(n1−ε) update time for any constant ε > 0.

Integer alignment weights ≤ w : update time Õ(nw).

Based on Tiskin’s algorithm for efficient distance
multiplication of simple unit-Monge matrices.

Alignment weights of size nO(1): update time Õ(n
√
n).

Based on black-boxes from planar graphs.

P. Charalampopoulos, T. Kociumaka, S. Mozes Dynamic String Alignment

Our Results

We consider a dynamic setting, where letter updates (insertions,
deletions, substitutions) are allowed anywhere in the strings.
[Hyyrö-Narisawa-Inenaga; JDA 2015]: practical, O(n2) worst-case time.

The lower bound for the static version of the problem means that
we cannot hope for O(n1−ε) update time for any constant ε > 0.

Integer alignment weights ≤ w : update time Õ(nw).

Based on Tiskin’s algorithm for efficient distance
multiplication of simple unit-Monge matrices.

Alignment weights of size nO(1): update time Õ(n
√
n).

Based on black-boxes from planar graphs.

P. Charalampopoulos, T. Kociumaka, S. Mozes Dynamic String Alignment

Our Results

We consider a dynamic setting, where letter updates (insertions,
deletions, substitutions) are allowed anywhere in the strings.
[Hyyrö-Narisawa-Inenaga; JDA 2015]: practical, O(n2) worst-case time.

The lower bound for the static version of the problem means that
we cannot hope for O(n1−ε) update time for any constant ε > 0.

Integer alignment weights ≤ w : update time Õ(nw).

Based on Tiskin’s algorithm for efficient distance
multiplication of simple unit-Monge matrices.

Alignment weights of size nO(1): update time Õ(n
√
n).

Based on black-boxes from planar graphs.

P. Charalampopoulos, T. Kociumaka, S. Mozes Dynamic String Alignment

Our Results

We consider a dynamic setting, where letter updates (insertions,
deletions, substitutions) are allowed anywhere in the strings.
[Hyyrö-Narisawa-Inenaga; JDA 2015]: practical, O(n2) worst-case time.

The lower bound for the static version of the problem means that
we cannot hope for O(n1−ε) update time for any constant ε > 0.

Integer alignment weights ≤ w : update time Õ(nw).

Based on Tiskin’s algorithm for efficient distance
multiplication of simple unit-Monge matrices.

Alignment weights of size nO(1): update time Õ(n
√
n).

Based on black-boxes from planar graphs.

P. Charalampopoulos, T. Kociumaka, S. Mozes Dynamic String Alignment

Our Results

We consider a dynamic setting, where letter updates (insertions,
deletions, substitutions) are allowed anywhere in the strings.
[Hyyrö-Narisawa-Inenaga; JDA 2015]: practical, O(n2) worst-case time.

The lower bound for the static version of the problem means that
we cannot hope for O(n1−ε) update time for any constant ε > 0.

Integer alignment weights ≤ w : update time Õ(nw).

Based on Tiskin’s algorithm for efficient distance
multiplication of simple unit-Monge matrices.

Alignment weights of size nO(1): update time Õ(n
√
n).

Based on black-boxes from planar graphs.

P. Charalampopoulos, T. Kociumaka, S. Mozes Dynamic String Alignment

Our Results

We consider a dynamic setting, where letter updates (insertions,
deletions, substitutions) are allowed anywhere in the strings.
[Hyyrö-Narisawa-Inenaga; JDA 2015]: practical, O(n2) worst-case time.

The lower bound for the static version of the problem means that
we cannot hope for O(n1−ε) update time for any constant ε > 0.

Integer alignment weights ≤ w : update time Õ(nw).

Based on Tiskin’s algorithm for efficient distance
multiplication of simple unit-Monge matrices.

Alignment weights of size nO(1): update time Õ(n
√
n).

Based on black-boxes from planar graphs.

P. Charalampopoulos, T. Kociumaka, S. Mozes Dynamic String Alignment

Preliminaries

1

11

2

u

v

a a c b c d

c

e

d

c

c

b

distance matrix

a

db

c

wmatch = 1, wmis = 2, and wgap = 1.

LCS(S ,T) = |S |+ |T | − d(u, v).

A matrix M is Monge if M[i , j] + M[i ′, j ′] ≤ M[i ′, j] + M[i , j ′] for
all i < i ′ and j < j ′.
This distance matrix is Monge, and, in fact, unit-Monge.

P. Charalampopoulos, T. Kociumaka, S. Mozes Dynamic String Alignment

Preliminaries

1

11

2
u

v

a a c b c d

c

e

d

c

c

b

distance matrix

a

db

c

wmatch = 1, wmis = 2, and wgap = 1.

LCS(S ,T) = |S |+ |T | − d(u, v).

A matrix M is Monge if M[i , j] + M[i ′, j ′] ≤ M[i ′, j] + M[i , j ′] for
all i < i ′ and j < j ′.
This distance matrix is Monge, and, in fact, unit-Monge.

P. Charalampopoulos, T. Kociumaka, S. Mozes Dynamic String Alignment

Preliminaries

1

11

2
u

v

a a c b c d

c

e

d

c

c

b
distance matrix

a

db

c

wmatch = 1, wmis = 2, and wgap = 1.

LCS(S ,T) = |S |+ |T | − d(u, v).

A matrix M is Monge if M[i , j] + M[i ′, j ′] ≤ M[i ′, j] + M[i , j ′] for
all i < i ′ and j < j ′.
This distance matrix is Monge, and, in fact, unit-Monge.

P. Charalampopoulos, T. Kociumaka, S. Mozes Dynamic String Alignment

Preliminaries

1

11

2
u

v

a a c b c d

c

e

d

c

c

b
distance matrix

a

db

c

wmatch = 1, wmis = 2, and wgap = 1.

LCS(S ,T) = |S |+ |T | − d(u, v).

A matrix M is Monge if M[i , j] + M[i ′, j ′] ≤ M[i ′, j] + M[i , j ′] for
all i < i ′ and j < j ′.
This distance matrix is Monge, and, in fact, unit-Monge.

P. Charalampopoulos, T. Kociumaka, S. Mozes Dynamic String Alignment

Preliminaries

1

11

2
u

v

a a c b c d

c

e

d

c

c

b
distance matrix

a

db

c

wmatch = 1, wmis = 2, and wgap = 1.

LCS(S ,T) = |S |+ |T | − d(u, v).

A matrix M is Monge if M[i , j] + M[i ′, j ′] ≤ M[i ′, j] + M[i , j ′] for
all i < i ′ and j < j ′.

This distance matrix is Monge, and, in fact, unit-Monge.

P. Charalampopoulos, T. Kociumaka, S. Mozes Dynamic String Alignment

Preliminaries

1

11

2
u

v

a a c b c d

c

e

d

c

c

b
distance matrix

a

db

c

wmatch = 1, wmis = 2, and wgap = 1.

LCS(S ,T) = |S |+ |T | − d(u, v).

A matrix M is Monge if M[i , j] + M[i ′, j ′] ≤ M[i ′, j] + M[i , j ′] for
all i < i ′ and j < j ′.
This distance matrix is Monge, and, in fact, unit-Monge.

P. Charalampopoulos, T. Kociumaka, S. Mozes Dynamic String Alignment

Unit-Monge Matrices

M

M ′

P. Charalampopoulos, T. Kociumaka, S. Mozes Dynamic String Alignment

Unit-Monge Matrices

M M ′

P. Charalampopoulos, T. Kociumaka, S. Mozes Dynamic String Alignment

Unit-Monge Matrices

M M ′

d

a c

b

= b + c − a − d

P. Charalampopoulos, T. Kociumaka, S. Mozes Dynamic String Alignment

Unit-Monge Matrices

M M ′

M is unit-Monge if and only if M ′ is a permutation matrix.

P. Charalampopoulos, T. Kociumaka, S. Mozes Dynamic String Alignment

Unit-Monge Matrices

M M ′

M is unit-Monge if and only if M ′ is a permutation matrix.

We can represent an n × n unit-Monge matrix M in Õ(n) space so
that each entry can be retrieved in Õ(1) time.

P. Charalampopoulos, T. Kociumaka, S. Mozes Dynamic String Alignment

Distance Product of Unit-Monge Matrices

Distance Product

The (min,+) product or distance product of an m × k matrix A
and a k × n matrix B, denoted by A� B is an m × n matrix C ,
such that C [i , j] = min

1≤r≤k
{A[i , r] + B[r , j]}.

A := distance matrix

B := distance matrix

C := distance matrix

C = A� B

Efficient (min,+) multiplication [Tiskin; Algorithmica 2015]

The distance product of two n× n simple unit-Monge matrices can
be computed in time O(n log n).

P. Charalampopoulos, T. Kociumaka, S. Mozes Dynamic String Alignment

Distance Product of Unit-Monge Matrices

Distance Product

The (min,+) product or distance product of an m × k matrix A
and a k × n matrix B, denoted by A� B is an m × n matrix C ,
such that C [i , j] = min

1≤r≤k
{A[i , r] + B[r , j]}.

A := distance matrix

B := distance matrix

C := distance matrix

C = A� B

Efficient (min,+) multiplication [Tiskin; Algorithmica 2015]

The distance product of two n× n simple unit-Monge matrices can
be computed in time O(n log n).

P. Charalampopoulos, T. Kociumaka, S. Mozes Dynamic String Alignment

Distance Product of Unit-Monge Matrices

Distance Product

The (min,+) product or distance product of an m × k matrix A
and a k × n matrix B, denoted by A� B is an m × n matrix C ,
such that C [i , j] = min

1≤r≤k
{A[i , r] + B[r , j]}.

A := distance matrix

B := distance matrix

C := distance matrix

C = A� B

Efficient (min,+) multiplication [Tiskin; Algorithmica 2015]

The distance product of two n× n simple unit-Monge matrices can
be computed in time O(n log n).

P. Charalampopoulos, T. Kociumaka, S. Mozes Dynamic String Alignment

Distance Product of Unit-Monge Matrices

Distance Product

The (min,+) product or distance product of an m × k matrix A
and a k × n matrix B, denoted by A� B is an m × n matrix C ,
such that C [i , j] = min

1≤r≤k
{A[i , r] + B[r , j]}.

A := distance matrix

B := distance matrix

C := distance matrix

C = A� B

Efficient (min,+) multiplication [Tiskin; Algorithmica 2015]

The distance product of two n× n simple unit-Monge matrices can
be computed in time O(n log n).

P. Charalampopoulos, T. Kociumaka, S. Mozes Dynamic String Alignment

Algorithm for substitutions

Goal: Maintain the distance matrix of the alignment graph.

We maintain a hierarchy of decompositions of the alignment graph
into 2i × 2i blocks. For each block we maintain a distance matrix.

�

distance matrix

a

20

P. Charalampopoulos, T. Kociumaka, S. Mozes Dynamic String Alignment

Algorithm for substitutions

Goal: Maintain the distance matrix of the alignment graph.
We maintain a hierarchy of decompositions of the alignment graph
into 2i × 2i blocks. For each block we maintain a distance matrix.

�

distance matrix

a

20

P. Charalampopoulos, T. Kociumaka, S. Mozes Dynamic String Alignment

Algorithm for substitutions

Goal: Maintain the distance matrix of the alignment graph.
We maintain a hierarchy of decompositions of the alignment graph
into 2i × 2i blocks. For each block we maintain a distance matrix.

�

distance matrix

a

20

P. Charalampopoulos, T. Kociumaka, S. Mozes Dynamic String Alignment

Algorithm for substitutions

Goal: Maintain the distance matrix of the alignment graph.
We maintain a hierarchy of decompositions of the alignment graph
into 2i × 2i blocks. For each block we maintain a distance matrix.

�

distance matrix

a

b

20

P. Charalampopoulos, T. Kociumaka, S. Mozes Dynamic String Alignment

Algorithm for substitutions

Goal: Maintain the distance matrix of the alignment graph.
We maintain a hierarchy of decompositions of the alignment graph
into 2i × 2i blocks. For each block we maintain a distance matrix.

�

distance matrix

a

b

20

O(n/2i) distance matrices change at level i .

P. Charalampopoulos, T. Kociumaka, S. Mozes Dynamic String Alignment

Algorithm for substitutions

Goal: Maintain the distance matrix of the alignment graph.
We maintain a hierarchy of decompositions of the alignment graph
into 2i × 2i blocks. For each block we maintain a distance matrix.

�

distance matrix

a

b

20

21

O(n/2i) distance matrices change at level i .

P. Charalampopoulos, T. Kociumaka, S. Mozes Dynamic String Alignment

Algorithm for substitutions

Goal: Maintain the distance matrix of the alignment graph.
We maintain a hierarchy of decompositions of the alignment graph
into 2i × 2i blocks. For each block we maintain a distance matrix.

�

distance matrix

a

b

20

22

O(n/2i) distance matrices change at level i .

P. Charalampopoulos, T. Kociumaka, S. Mozes Dynamic String Alignment

Algorithm for substitutions

Goal: Maintain the distance matrix of the alignment graph.
We maintain a hierarchy of decompositions of the alignment graph
into 2i × 2i blocks. For each block we maintain a distance matrix.

�

distance matrix

a

b

20

23

O(n/2i) distance matrices change at level i .

P. Charalampopoulos, T. Kociumaka, S. Mozes Dynamic String Alignment

Algorithm for substitutions

Goal: Maintain the distance matrix of the alignment graph.
We maintain a hierarchy of decompositions of the alignment graph
into 2i × 2i blocks. For each block we maintain a distance matrix.

�

distance matrix

a

b

20

24

O(n/2i) distance matrices change at level i .

P. Charalampopoulos, T. Kociumaka, S. Mozes Dynamic String Alignment

Algorithm for substitutions

Goal: Maintain the distance matrix of the alignment graph.
We maintain a hierarchy of decompositions of the alignment graph
into 2i × 2i blocks. For each block we maintain a distance matrix.

�

distance matrix

a

20

O(n/2i) distance matrices change at level i .

Each of them is recomputed from four distance matrices of the
previous level in O(2i log(2i)) time using distance multiplication.

The total update time is thus O(n log2 n).

P. Charalampopoulos, T. Kociumaka, S. Mozes Dynamic String Alignment

Algorithm for substitutions

Goal: Maintain the distance matrix of the alignment graph.
We maintain a hierarchy of decompositions of the alignment graph
into 2i × 2i blocks. For each block we maintain a distance matrix.

�

distance matrix

a

20

O(n/2i) distance matrices change at level i .

Each of them is recomputed from four distance matrices of the
previous level in O(2i log(2i)) time using distance multiplication.

The total update time is thus O(n log2 n).

P. Charalampopoulos, T. Kociumaka, S. Mozes Dynamic String Alignment

Remarks

Insertions and deletions can be handled by carefully resizing
blocks.

The actual LCS can be retrieved within the same time
complexity by tracing back the computations.

Fragment-to-fragment LCS queries can be answered in time
O(n log2 n).

String alignment with integer weights ≤ w can be reduced to
LCS by replacing each letter by a string of size O(w), as
shown by Tiskin. Update time: Õ(nw).

Next: An Õ(n
√
n)-time algorithm for integer weights of size nO(1)

using techniques for computing shortest paths in planar graphs.

P. Charalampopoulos, T. Kociumaka, S. Mozes Dynamic String Alignment

Remarks

Insertions and deletions can be handled by carefully resizing
blocks.

The actual LCS can be retrieved within the same time
complexity by tracing back the computations.

Fragment-to-fragment LCS queries can be answered in time
O(n log2 n).

String alignment with integer weights ≤ w can be reduced to
LCS by replacing each letter by a string of size O(w), as
shown by Tiskin. Update time: Õ(nw).

Next: An Õ(n
√
n)-time algorithm for integer weights of size nO(1)

using techniques for computing shortest paths in planar graphs.

P. Charalampopoulos, T. Kociumaka, S. Mozes Dynamic String Alignment

Remarks

Insertions and deletions can be handled by carefully resizing
blocks.

The actual LCS can be retrieved within the same time
complexity by tracing back the computations.

Fragment-to-fragment LCS queries can be answered in time
O(n log2 n).

String alignment with integer weights ≤ w can be reduced to
LCS by replacing each letter by a string of size O(w), as
shown by Tiskin. Update time: Õ(nw).

Next: An Õ(n
√
n)-time algorithm for integer weights of size nO(1)

using techniques for computing shortest paths in planar graphs.

P. Charalampopoulos, T. Kociumaka, S. Mozes Dynamic String Alignment

Remarks

Insertions and deletions can be handled by carefully resizing
blocks.

The actual LCS can be retrieved within the same time
complexity by tracing back the computations.

Fragment-to-fragment LCS queries can be answered in time
O(n log2 n).

String alignment with integer weights ≤ w can be reduced to
LCS by replacing each letter by a string of size O(w), as
shown by Tiskin.

Update time: Õ(nw).

Next: An Õ(n
√
n)-time algorithm for integer weights of size nO(1)

using techniques for computing shortest paths in planar graphs.

P. Charalampopoulos, T. Kociumaka, S. Mozes Dynamic String Alignment

Remarks

Insertions and deletions can be handled by carefully resizing
blocks.

The actual LCS can be retrieved within the same time
complexity by tracing back the computations.

Fragment-to-fragment LCS queries can be answered in time
O(n log2 n).

String alignment with integer weights ≤ w can be reduced to
LCS by replacing each letter by a string of size O(w), as
shown by Tiskin. Update time: Õ(nw).

Next: An Õ(n
√
n)-time algorithm for integer weights of size nO(1)

using techniques for computing shortest paths in planar graphs.

P. Charalampopoulos, T. Kociumaka, S. Mozes Dynamic String Alignment

Remarks

Insertions and deletions can be handled by carefully resizing
blocks.

The actual LCS can be retrieved within the same time
complexity by tracing back the computations.

Fragment-to-fragment LCS queries can be answered in time
O(n log2 n).

String alignment with integer weights ≤ w can be reduced to
LCS by replacing each letter by a string of size O(w), as
shown by Tiskin. Update time: Õ(nw).

Next: An Õ(n
√
n)-time algorithm for integer weights of size nO(1)

using techniques for computing shortest paths in planar graphs.

P. Charalampopoulos, T. Kociumaka, S. Mozes Dynamic String Alignment

MSSP

Multiple Source Shortest Paths (MSSP) [Klein; SODA 2005]

We can construct in nearly-linear time (in the size of the graph) a
data structure that can report in logarithmic time the distance
between any node on the infinite face and any node in the graph.

P. Charalampopoulos, T. Kociumaka, S. Mozes Dynamic String Alignment

FR-Dijkstra

Dense Distance Graphs

The distance matrix capturing pairwise distances between the
vertices of a set ∂H of vertices of a planar graph H, lying on a
single face, can be computed in Õ(|H|+ |∂H|2) time using MSSP.

FR-Dijkstra [Fakcharoenphol-Rao; JCSS 2006]

We can compute shortest paths from a single-source in a collection
of DDGs with N vertices in total (with multiplicities) in Õ(N) time.

Before: distance product. Now: SSSP computations, many DDGs.

P. Charalampopoulos, T. Kociumaka, S. Mozes Dynamic String Alignment

FR-Dijkstra

Dense Distance Graphs

The distance matrix capturing pairwise distances between the
vertices of a set ∂H of vertices of a planar graph H, lying on a
single face, can be computed in Õ(|H|+ |∂H|2) time using MSSP.

FR-Dijkstra [Fakcharoenphol-Rao; JCSS 2006]

We can compute shortest paths from a single-source in a collection
of DDGs with N vertices in total (with multiplicities) in Õ(N) time.

Before: distance product. Now: SSSP computations, many DDGs.

P. Charalampopoulos, T. Kociumaka, S. Mozes Dynamic String Alignment

FR-Dijkstra

Dense Distance Graphs

The distance matrix capturing pairwise distances between the
vertices of a set ∂H of vertices of a planar graph H, lying on a
single face, can be computed in Õ(|H|+ |∂H|2) time using MSSP.

FR-Dijkstra [Fakcharoenphol-Rao; JCSS 2006]

We can compute shortest paths from a single-source in a collection
of DDGs with N vertices in total (with multiplicities) in Õ(N) time.

Before: distance product. Now: SSSP computations, many DDGs.

P. Charalampopoulos, T. Kociumaka, S. Mozes Dynamic String Alignment

FR-Dijkstra

Dense Distance Graphs

The distance matrix capturing pairwise distances between the
vertices of a set ∂H of vertices of a planar graph H, lying on a
single face, can be computed in Õ(|H|+ |∂H|2) time using MSSP.

FR-Dijkstra [Fakcharoenphol-Rao; JCSS 2006]

We can compute shortest paths from a single-source in a collection
of DDGs with N vertices in total (with multiplicities) in Õ(N) time.

u

v x

y

d(u, y) + d(v , x) ≤ d(u, x) + d(v , y)
Monge Property:

P. Charalampopoulos, T. Kociumaka, S. Mozes Dynamic String Alignment

FR-Dijkstra

Dense Distance Graphs

The distance matrix capturing pairwise distances between the
vertices of a set ∂H of vertices of a planar graph H, lying on a
single face, can be computed in Õ(|H|+ |∂H|2) time using MSSP.

FR-Dijkstra [Fakcharoenphol-Rao; JCSS 2006]

We can compute shortest paths from a single-source in a collection
of DDGs with N vertices in total (with multiplicities) in Õ(N) time.

u

v x

y

d(u, y) + d(v , x) ≤ d(u, x) + d(v , y)
Monge Property:

P. Charalampopoulos, T. Kociumaka, S. Mozes Dynamic String Alignment

FR-Dijkstra

Dense Distance Graphs

The distance matrix capturing pairwise distances between the
vertices of a set ∂H of vertices of a planar graph H, lying on a
single face, can be computed in Õ(|H|+ |∂H|2) time using MSSP.

FR-Dijkstra [Fakcharoenphol-Rao; JCSS 2006]

We can compute shortest paths from a single-source in a collection
of DDGs with N vertices in total (with multiplicities) in Õ(N) time.

u

v x

y

d(u, y) + d(v , x) ≤ d(u, x) + d(v , y)
Monge Property:

d(u, y) + d(v , x) ≤ d(u, x) + d(v , y)

P. Charalampopoulos, T. Kociumaka, S. Mozes Dynamic String Alignment

FR-Dijkstra

Dense Distance Graphs

The distance matrix capturing pairwise distances between the
vertices of a set ∂H of vertices of a planar graph H, lying on a
single face, can be computed in Õ(|H|+ |∂H|2) time using MSSP.

FR-Dijkstra [Fakcharoenphol-Rao; JCSS 2006]

We can compute shortest paths from a single-source in a collection
of DDGs with N vertices in total (with multiplicities) in Õ(N) time.

u

v x

y

d(u, y) + d(v , x) ≤ d(u, x) + d(v , y)
Monge Property:

d(u, y) + d(v , x) ≤ d(u, x) + d(v , y)
z

P. Charalampopoulos, T. Kociumaka, S. Mozes Dynamic String Alignment

FR-Dijkstra

Dense Distance Graphs

The distance matrix capturing pairwise distances between the
vertices of a set ∂H of vertices of a planar graph H, lying on a
single face, can be computed in Õ(|H|+ |∂H|2) time using MSSP.

FR-Dijkstra [Fakcharoenphol-Rao; JCSS 2006]

We can compute shortest paths from a single-source in a collection
of DDGs with N vertices in total (with multiplicities) in Õ(N) time.

u

v x

y

d(u, y) + d(v , x) ≤ d(u, x) + d(v , y)
Monge Property:

d(u, y) + d(v , x) ≤ d(u, x) + d(v , y)
z

P. Charalampopoulos, T. Kociumaka, S. Mozes Dynamic String Alignment

FR-Dijkstra

Dense Distance Graphs

The distance matrix capturing pairwise distances between the
vertices of a set ∂H of vertices of a planar graph H, lying on a
single face, can be computed in Õ(|H|+ |∂H|2) time using MSSP.

FR-Dijkstra [Fakcharoenphol-Rao; JCSS 2006]

We can compute shortest paths from a single-source in a collection
of DDGs with N vertices in total (with multiplicities) in Õ(N) time.

u

v x

y

d(u, y) + d(v , x) ≤ d(u, x) + d(v , y)
Monge Property:

d(u, y) + d(v , x) ≤ d(u, x) + d(v , y)
z

P. Charalampopoulos, T. Kociumaka, S. Mozes Dynamic String Alignment

FR-Dijkstra

Dense Distance Graphs

The distance matrix capturing pairwise distances between the
vertices of a set ∂H of vertices of a planar graph H, lying on a
single face, can be computed in Õ(|H|+ |∂H|2) time using MSSP.

FR-Dijkstra [Fakcharoenphol-Rao; JCSS 2006]

We can compute shortest paths from a single-source in a collection
of DDGs with N vertices in total (with multiplicities) in Õ(N) time.

u

v x

y

d(u, y) + d(v , x) ≤ d(u, x) + d(v , y)
Monge Property:

z

P. Charalampopoulos, T. Kociumaka, S. Mozes Dynamic String Alignment

Algorithm for Large Weights

a a c b c d d a a e a d

c

e

d

c

c

b

b

b

a

Θ(
√
n)

a b c d e

e

d

c

b

a

P. Charalampopoulos, T. Kociumaka, S. Mozes Dynamic String Alignment

Algorithm for Large Weights

a a c b c d d a a e a d

c

e

d

c

c

b

b

b

a

Θ(
√
n)

Θ(
√
n)

a b c d e

e

d

c

b

a

P. Charalampopoulos, T. Kociumaka, S. Mozes Dynamic String Alignment

Algorithm for Large Weights

a a c b c d d a a e a d

c

e

d

c

c

b

b

b

a

Θ(
√
n)

a b c d e

e

d

c

b

a

We maintain a DDG for each piece P with the set of “boundary”
vertices as ∂P. |P| = Θ(n), |∂P| = Θ(

√
n).

P. Charalampopoulos, T. Kociumaka, S. Mozes Dynamic String Alignment

Algorithm for Large Weights

a a c b c d d a a e a d

c

e

d

c

c

b

b

b

a
c

Θ(
√
n)

a b c d e

e

d

c

b

a

Each update in one of the strings affects O(
√
n) pieces. The DDG

information for each piece is recomputed in Õ(n) time using MSSP.

P. Charalampopoulos, T. Kociumaka, S. Mozes Dynamic String Alignment

Algorithm for Large Weights

a a c b c d d a a e a d

c

e

d

c

c

b

b

b

a

Θ(
√
n)

a b c d e

e

d

c

b

a

We run FR-Dijkstra on the union of O(
√
n ·
√
n) = O(n) DDGs.

The runtime is Õ(n
√
n), since each DDG has O(

√
n) vertices.

P. Charalampopoulos, T. Kociumaka, S. Mozes Dynamic String Alignment

Final Remarks

Extension:

We can in fact also handle copy-paste operations.

Open problems:

Can we do better than Õ(n
√
n) for large weights?

What if one string is given as a straight-line program (SLP)?
[Tiskin; arxiv 2007]: The LCS of a standard string of length n
and a string given by an SLP of size N can be computed in
Õ(n · N) time.

How about maintaining an approximation of the edit
distance/ LCS in the dynamic setting?
[Andoni-Nosatzki; arxiv 2020]: The edit distance can be
O(1)-approximated in O(n1+ε) time for any ε > 0.
[Mitzenmacher-Seddighin; STOC 2020]: Dynamic LIS and distance
to monotonicity.

P. Charalampopoulos, T. Kociumaka, S. Mozes Dynamic String Alignment

Final Remarks

Extension:

We can in fact also handle copy-paste operations.

Open problems:

Can we do better than Õ(n
√
n) for large weights?

What if one string is given as a straight-line program (SLP)?
[Tiskin; arxiv 2007]: The LCS of a standard string of length n
and a string given by an SLP of size N can be computed in
Õ(n · N) time.

How about maintaining an approximation of the edit
distance/ LCS in the dynamic setting?
[Andoni-Nosatzki; arxiv 2020]: The edit distance can be
O(1)-approximated in O(n1+ε) time for any ε > 0.
[Mitzenmacher-Seddighin; STOC 2020]: Dynamic LIS and distance
to monotonicity.

P. Charalampopoulos, T. Kociumaka, S. Mozes Dynamic String Alignment

Final Remarks

Extension:

We can in fact also handle copy-paste operations.

Open problems:

Can we do better than Õ(n
√
n) for large weights?

What if one string is given as a straight-line program (SLP)?
[Tiskin; arxiv 2007]: The LCS of a standard string of length n
and a string given by an SLP of size N can be computed in
Õ(n · N) time.

How about maintaining an approximation of the edit
distance/ LCS in the dynamic setting?
[Andoni-Nosatzki; arxiv 2020]: The edit distance can be
O(1)-approximated in O(n1+ε) time for any ε > 0.
[Mitzenmacher-Seddighin; STOC 2020]: Dynamic LIS and distance
to monotonicity.

P. Charalampopoulos, T. Kociumaka, S. Mozes Dynamic String Alignment

Final Remarks

Extension:

We can in fact also handle copy-paste operations.

Open problems:

Can we do better than Õ(n
√
n) for large weights?

What if one string is given as a straight-line program (SLP)?
[Tiskin; arxiv 2007]: The LCS of a standard string of length n
and a string given by an SLP of size N can be computed in
Õ(n · N) time.

How about maintaining an approximation of the edit
distance/ LCS in the dynamic setting?
[Andoni-Nosatzki; arxiv 2020]: The edit distance can be
O(1)-approximated in O(n1+ε) time for any ε > 0.
[Mitzenmacher-Seddighin; STOC 2020]: Dynamic LIS and distance
to monotonicity.

P. Charalampopoulos, T. Kociumaka, S. Mozes Dynamic String Alignment

Final Remarks

Extension:

We can in fact also handle copy-paste operations.

Open problems:

Can we do better than Õ(n
√
n) for large weights?

What if one string is given as a straight-line program (SLP)?
[Tiskin; arxiv 2007]: The LCS of a standard string of length n
and a string given by an SLP of size N can be computed in
Õ(n · N) time.

How about maintaining an approximation of the edit
distance/ LCS in the dynamic setting?

[Andoni-Nosatzki; arxiv 2020]: The edit distance can be
O(1)-approximated in O(n1+ε) time for any ε > 0.
[Mitzenmacher-Seddighin; STOC 2020]: Dynamic LIS and distance
to monotonicity.

P. Charalampopoulos, T. Kociumaka, S. Mozes Dynamic String Alignment

Final Remarks

Extension:

We can in fact also handle copy-paste operations.

Open problems:

Can we do better than Õ(n
√
n) for large weights?

What if one string is given as a straight-line program (SLP)?
[Tiskin; arxiv 2007]: The LCS of a standard string of length n
and a string given by an SLP of size N can be computed in
Õ(n · N) time.

How about maintaining an approximation of the edit
distance/ LCS in the dynamic setting?
[Andoni-Nosatzki; arxiv 2020]: The edit distance can be
O(1)-approximated in O(n1+ε) time for any ε > 0.

[Mitzenmacher-Seddighin; STOC 2020]: Dynamic LIS and distance
to monotonicity.

P. Charalampopoulos, T. Kociumaka, S. Mozes Dynamic String Alignment

Final Remarks

Extension:

We can in fact also handle copy-paste operations.

Open problems:

Can we do better than Õ(n
√
n) for large weights?

What if one string is given as a straight-line program (SLP)?
[Tiskin; arxiv 2007]: The LCS of a standard string of length n
and a string given by an SLP of size N can be computed in
Õ(n · N) time.

How about maintaining an approximation of the edit
distance/ LCS in the dynamic setting?
[Andoni-Nosatzki; arxiv 2020]: The edit distance can be
O(1)-approximated in O(n1+ε) time for any ε > 0.
[Mitzenmacher-Seddighin; STOC 2020]: Dynamic LIS and distance
to monotonicity.

P. Charalampopoulos, T. Kociumaka, S. Mozes Dynamic String Alignment

Thank You

Thank you for your attention!

P. Charalampopoulos, T. Kociumaka, S. Mozes Dynamic String Alignment

