## Dynamic String Alignment

# Panagiotis Charalampopoulos ${ }^{1,2}$, Tomasz Kociumaka ${ }^{3}$, and Shay Mozes ${ }^{4}$ 

${ }^{1}$ King's College London, United Kingdom<br>${ }^{2}$ University of Warsaw, Poland<br>${ }^{3}$ Bar-Ilan University, Israel<br>${ }^{4}$ The Interdisciplinary Center Herzliya, Israel

CPM 2020
June 17-19, 2020

## Problem Definition

## String Alignment

Input: two strings of total length $n$ and weights

## Problem Definition

## String Alignment

Input: two strings of total length $n$ and weights

- $w_{\text {match }}$ - for aligning a pair of matching letters,


## Problem Definition

## String Alignment

Input: two strings of total length $n$ and weights

- $w_{\text {match }}$ - for aligning a pair of matching letters,
- $w_{\text {mis }}$ - for aligning a pair of mismatching letters,


## Problem Definition

## String Alignment

Input: two strings of total length $n$ and weights

- $w_{\text {match }}$ - for aligning a pair of matching letters,
- $w_{\text {mis }}$ - for aligning a pair of mismatching letters,
- $w_{g a p}$ - for letters that are not aligned.


## Problem Definition

## String Alignment

Input: two strings of total length $n$ and weights

- $w_{\text {match }}$ - for aligning a pair of matching letters,
- $w_{\text {mis }}$ - for aligning a pair of mismatching letters,
- $w_{g a p}$ - for letters that are not aligned.

Goal: compute an alignment with maximum weight.

## Problem Definition

## String Alignment

Input: two strings of total length $n$ and weights

- $w_{\text {match }}$ - for aligning a pair of matching letters,
- $w_{\text {mis }}$ - for aligning a pair of mismatching letters,
- $w_{g a p}$ - for letters that are not aligned.

Goal: compute an alignment with maximum weight.

$$
\begin{array}{lllllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
S= & \mathrm{a} & - & \mathrm{b} & \mathrm{a} & \mathrm{a} & \mathrm{~b} & \mathrm{a} & \mathrm{c} & \mathrm{~b} & \mathrm{~b} \\
\mid & & \mid & \mid & \mid & & & \mid & \cdot & \mid \\
T= & \mathrm{a} & \mathrm{c} & \mathrm{~b} & \mathrm{a} & \mathrm{a} & - & - & \mathrm{c} & \mathrm{~d} & \mathrm{~b}
\end{array}
$$

## Problem Definition

## String Alignment

Input: two strings of total length $n$ and weights

- $w_{\text {match }}$ - for aligning a pair of matching letters,
- $w_{\text {mis }}$ - for aligning a pair of mismatching letters,
- $w_{g a p}$ - for letters that are not aligned.

Goal: compute an alignment with maximum weight.

$$
\begin{array}{lllllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
S= & \mathrm{a} & - & \mathrm{b} & \mathrm{a} & \mathrm{a} & \mathrm{~b} & \mathrm{a} & \mathrm{c} & \mathrm{~b} & \mathrm{~b} \\
\mid & & \mid & \mid & \mid & & & \mid & \cdot & \mid \\
T= & \mathrm{a} & \mathrm{c} & \mathrm{~b} & \mathrm{a} & \mathrm{a} & - & - & \mathrm{c} & \mathrm{~d} & \mathrm{~b}
\end{array}
$$

Alignment's weight: $6 w_{\text {match }}+w_{\text {mis }}+3 w_{\text {gap }}$.

## Problem Definition

## String Alignment

Input: two strings of total length $n$ and weights

- $w_{\text {match }}$ - for aligning a pair of matching letters,
- $w_{\text {mis }}$ - for aligning a pair of mismatching letters,
- $w_{g a p}$ - for letters that are not aligned.

Goal: compute an alignment with maximum weight.

$$
\begin{array}{lllllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
S= & \mathrm{a} & - & \mathrm{b} & \mathrm{a} & \mathrm{a} & \mathrm{~b} & \mathrm{a} & \mathrm{c} & \mathrm{~b} & \mathrm{~b} \\
\mid & & \mid & \mid & \mid & & & \mid & \cdot & \mid \\
T= & \mathrm{a} & \mathrm{c} & \mathrm{~b} & \mathrm{a} & \mathrm{a} & - & - & \mathrm{c} & \mathrm{~d} & \mathrm{~b}
\end{array}
$$

Alignment's weight: $6 w_{\text {match }}+w_{\text {mis }}+3 w_{\text {gap }}$.
Generalizes the Longest Common Subsequence problem and the Edit Distance problem.

## Problem Definition

## String Alignment

Input: two strings of total length $n$ and weights

- $w_{\text {match }}$ - for aligning a pair of matching letters,
- $w_{\text {mis }}$ - for aligning a pair of mismatching letters,
- $w_{g a p}$ - for letters that are not aligned.

Goal: compute an alignment with maximum weight.

$$
\begin{aligned}
& S=\mathrm{a} \quad \mathrm{~b} \quad \mathrm{a} \quad \mathrm{a} \quad \mathrm{~b} \quad \mathrm{a} \quad \mathrm{c} \quad \mathrm{~b} \quad \mathrm{~b} \\
& T=a \quad c \quad b \quad a \quad a \quad c \quad b
\end{aligned}
$$

Generalizes the Longest Common Subsequence problem and the Edit Distance problem.

## Related Work

There is a textbook $\mathcal{O}\left(n^{2}\right)$-time dynamic programming algorithm. [Vintsyuk; Cybernetics 1968]
[Needleman-Wunsch; Journal of Molecular Biology 1970]
[Wagner-Fischer; Journal of the ACM 1974]

## Related Work

There is a textbook $\mathcal{O}\left(n^{2}\right)$-time dynamic programming algorithm.
[Vintsyuk; Cybernetics 1968]
[Needleman-Wunsch; Journal of Molecular Biology 1970]
[Wagner-Fischer; Journal of the ACM 1974]

Several works improved the complexity by polylogarithmic factors.
[Masek-Paterson; Journal of Computer and System Sciences 1980] [Crochemore-Landau-Ziv-Ukelson; SIAM Journal on Computing 2003]
[Grabowski; Discrete Applied Mathematics 2016]

## Related Work

There is a textbook $\mathcal{O}\left(n^{2}\right)$-time dynamic programming algorithm.
[Vintsyuk; Cybernetics 1968]
[Needleman-Wunsch; Journal of Molecular Biology 1970]
[Wagner-Fischer; Journal of the ACM 1974]

Several works improved the complexity by polylogarithmic factors.
[Masek-Paterson; Journal of Computer and System Sciences 1980]
[Crochemore-Landau-Ziv-Ukelson; SIAM Journal on Computing 2003]
[Grabowski; Discrete Applied Mathematics 2016]

A strongly subquadratic-time algorithm would refute the Strong Exponential Time Hypothesis (SETH).
[Backurs-Indyk; SIAM Journal on Computing 2018]
[Bringmann-Künnemann; FOCS 2015]
[Abboud-Hansen-Vassilevska Williams-Williams; STOC 2016]

## Related Work

The DP algorithm is online: it can handle appending a letter to either of the strings in $\mathcal{O}(n)$ time. It can also handle deleting the last letter of either of the strings.

## Related Work

The DP algorithm is online: it can handle appending a letter to either of the strings in $\mathcal{O}(n)$ time. It can also handle deleting the last letter of either of the strings.

Several works considered prepending letters or deleting the first letter in either of the strings, culminating in an $\mathcal{O}(n)$-time algorithm.
[Landau-Myers-Schmidt; SIAM Journal on Computing 1998]
[Kim-Park; Journal of Discrete Algorithms 2004]
[Ishida-Inenaga-Shinohara-Takeda; FCT 2005]
[Tiskin; arxiv 2007]
[Hyyrö-Narisawa-Inenaga; JDA 2015]

## Our Results

We consider a dynamic setting, where letter updates (insertions, deletions, substitutions) are allowed anywhere in the strings.

## Our Results

We consider a dynamic setting, where letter updates (insertions, deletions, substitutions) are allowed anywhere in the strings. [Hyyrö-Narisawa-Inenaga; JDA 2015]: practical, $\mathcal{O}\left(n^{2}\right)$ worst-case time.

## Our Results

We consider a dynamic setting, where letter updates (insertions, deletions, substitutions) are allowed anywhere in the strings. [Hyyrö-Narisawa-Inenaga; JDA 2015]: practical, $\mathcal{O}\left(n^{2}\right)$ worst-case time.

The lower bound for the static version of the problem means that we cannot hope for $\mathcal{O}\left(n^{1-\epsilon}\right)$ update time for any constant $\epsilon>0$.

## Our Results

We consider a dynamic setting, where letter updates (insertions, deletions, substitutions) are allowed anywhere in the strings. [Hyyrö-Narisawa-Inenaga; JDA 2015]: practical, $\mathcal{O}\left(n^{2}\right)$ worst-case time.

The lower bound for the static version of the problem means that we cannot hope for $\mathcal{O}\left(n^{1-\epsilon}\right)$ update time for any constant $\epsilon>0$.

Integer alignment weights $\leq w$ : update time $\tilde{\mathcal{O}}(n w)$.

## Our Results

We consider a dynamic setting, where letter updates (insertions, deletions, substitutions) are allowed anywhere in the strings. [Hyyrö-Narisawa-Inenaga; JDA 2015]: practical, $\mathcal{O}\left(n^{2}\right)$ worst-case time.

The lower bound for the static version of the problem means that we cannot hope for $\mathcal{O}\left(n^{1-\epsilon}\right)$ update time for any constant $\epsilon>0$.

Integer alignment weights $\leq w$ : update time $\tilde{\mathcal{O}}(n w)$.

- Based on Tiskin's algorithm for efficient distance multiplication of simple unit-Monge matrices.


## Our Results

We consider a dynamic setting, where letter updates (insertions, deletions, substitutions) are allowed anywhere in the strings. [Hyyrö-Narisawa-Inenaga; JDA 2015]: practical, $\mathcal{O}\left(n^{2}\right)$ worst-case time.

The lower bound for the static version of the problem means that we cannot hope for $\mathcal{O}\left(n^{1-\epsilon}\right)$ update time for any constant $\epsilon>0$.

Integer alignment weights $\leq w$ : update time $\tilde{\mathcal{O}}(n w)$.

- Based on Tiskin's algorithm for efficient distance multiplication of simple unit-Monge matrices.

Alignment weights of size $n^{\mathcal{O}(1)}$ : update time $\tilde{\mathcal{O}}(n \sqrt{n})$.

## Our Results

We consider a dynamic setting, where letter updates (insertions, deletions, substitutions) are allowed anywhere in the strings. [Hyyrö-Narisawa-Inenaga; JDA 2015]: practical, $\mathcal{O}\left(n^{2}\right)$ worst-case time.

The lower bound for the static version of the problem means that we cannot hope for $\mathcal{O}\left(n^{1-\epsilon}\right)$ update time for any constant $\epsilon>0$.

Integer alignment weights $\leq w$ : update time $\tilde{\mathcal{O}}(n w)$.

- Based on Tiskin's algorithm for efficient distance multiplication of simple unit-Monge matrices.

Alignment weights of size $n^{\mathcal{O}(1)}$ : update time $\tilde{\mathcal{O}}(n \sqrt{n})$.

- Based on black-boxes from planar graphs.


## Preliminaries



$$
w_{\text {match }}=1, w_{\text {mis }}=2, \text { and } w_{g a p}=1 .
$$

## Preliminaries



$$
w_{m a t c h}=1, w_{m i s}=2, \text { and } w_{g a p}=1
$$

$$
\operatorname{LCS}(S, T)=|S|+|T|-d(u, v)
$$


distance matrix

$$
w_{\text {match }}=1, w_{\text {mis }}=2, \text { and } w_{g a p}=1 .
$$

$$
\operatorname{LCS}(S, T)=|S|+|T|-d(u, v)
$$




$$
w_{\text {match }}=1, w_{\text {mis }}=2, \text { and } w_{\text {gap }}=1 .
$$

$$
\operatorname{LCS}(S, T)=|S|+|T|-d(u, v)
$$

A matrix $M$ is Monge if $M[i, j]+M\left[i^{\prime}, j^{\prime}\right] \leq M\left[i^{\prime}, j\right]+M\left[i, j^{\prime}\right]$ for all $i<i^{\prime}$ and $j<j^{\prime}$.


$$
w_{\text {match }}=1, w_{\text {mis }}=2, \text { and } w_{\text {gap }}=1 .
$$

$$
\operatorname{LCS}(S, T)=|S|+|T|-d(u, v)
$$

A matrix $M$ is Monge if $M[i, j]+M\left[i^{\prime}, j^{\prime}\right] \leq M\left[i^{\prime}, j\right]+M\left[i, j^{\prime}\right]$ for all $i<i^{\prime}$ and $j<j^{\prime}$.
This distance matrix is Monge, and, in fact, unit-Monge.

## Unit-Monge Matrices



## Unit-Monge Matrices



## Unit-Monge Matrices



## Unit-Monge Matrices


$M$ is unit-Monge if and only if $M^{\prime}$ is a permutation matrix.

## Unit-Monge Matrices


$M$ is unit-Monge if and only if $M^{\prime}$ is a permutation matrix.
We can represent an $n \times n$ unit-Monge matrix $M$ in $\tilde{\mathcal{O}}(n)$ space so that each entry can be retrieved in $\tilde{\mathcal{O}}(1)$ time.

## Distance Product of Unit-Monge Matrices

## Distance Product

The ( $\min ,+$ ) product or distance product of an $m \times k$ matrix $A$ and a $k \times n$ matrix $B$, denoted by $A \odot B$ is an $m \times n$ matrix $C$, such that $C[i, j]=\min _{1 \leq r \leq k}\{A[i, r]+B[r, j]\}$.

## Distance Product of Unit-Monge Matrices

## Distance Product

The ( $\min ,+$ ) product or distance product of an $m \times k$ matrix $A$ and a $k \times n$ matrix $B$, denoted by $A \odot B$ is an $m \times n$ matrix $C$, such that $C[i, j]=\min _{1 \leq r \leq k}\{A[i, r]+B[r, j]\}$.


$$
\begin{aligned}
& A:=\underset{\text { distance matrix }}{\bullet \bullet} \\
& B:=\stackrel{\text { distance matrix }}{\bullet \bullet} \\
& C:=\underset{\text { distance matrix }}{\bullet} \\
& C=A \odot B
\end{aligned}
$$

## Distance Product of Unit-Monge Matrices

## Distance Product

The ( $\min ,+$ ) product or distance product of an $m \times k$ matrix $A$ and a $k \times n$ matrix $B$, denoted by $A \odot B$ is an $m \times n$ matrix $C$, such that $C[i, j]=\min _{1 \leq r \leq k}\{A[i, r]+B[r, j]\}$.


Efficient (min, +) multiplication [Tiskin; Algorithmica 2015]
The distance product of two $n \times n$ simple unit-Monge matrices can be computed in time $\mathcal{O}(n \log n)$.

## Distance Product of Unit-Monge Matrices

## Distance Product

The ( $\min ,+$ ) product or distance product of an $m \times k$ matrix $A$ and a $k \times n$ matrix $B$, denoted by $A \odot B$ is an $m \times n$ matrix $C$, such that $C[i, j]=\min _{1 \leq r \leq k}\{A[i, r]+B[r, j]\}$.


Efficient (min, +) multiplication [Tiskin; Algorithmica 2015]
The distance product of two $n \times n$ simple unit-Monge matrices can be computed in time $\mathcal{O}(n \log n)$.

## Algorithm for substitutions

Goal: Maintain the distance matrix of the alignment graph.


## Algorithm for substitutions

Goal: Maintain the distance matrix of the alignment graph. We maintain a hierarchy of decompositions of the alignment graph into $2^{i} \times 2^{i}$ blocks. For each block we maintain a distance matrix.


## Algorithm for substitutions

Goal: Maintain the distance matrix of the alignment graph. We maintain a hierarchy of decompositions of the alignment graph into $2^{i} \times 2^{i}$ blocks. For each block we maintain a distance matrix.



## Algorithm for substitutions

Goal: Maintain the distance matrix of the alignment graph. We maintain a hierarchy of decompositions of the alignment graph into $2^{i} \times 2^{i}$ blocks. For each block we maintain a distance matrix.



## Algorithm for substitutions

Goal: Maintain the distance matrix of the alignment graph. We maintain a hierarchy of decompositions of the alignment graph into $2^{i} \times 2^{i}$ blocks. For each block we maintain a distance matrix.

$\mathcal{O}\left(n / 2^{i}\right)$ distance matrices change at level $i$.

## Algorithm for substitutions

Goal: Maintain the distance matrix of the alignment graph. We maintain a hierarchy of decompositions of the alignment graph into $2^{i} \times 2^{i}$ blocks. For each block we maintain a distance matrix.

$\mathcal{O}\left(n / 2^{i}\right)$ distance matrices change at level $i$.

## Algorithm for substitutions

Goal: Maintain the distance matrix of the alignment graph. We maintain a hierarchy of decompositions of the alignment graph into $2^{i} \times 2^{i}$ blocks. For each block we maintain a distance matrix.

$\mathcal{O}\left(n / 2^{i}\right)$ distance matrices change at level $i$.

## Algorithm for substitutions

Goal: Maintain the distance matrix of the alignment graph.
We maintain a hierarchy of decompositions of the alignment graph into $2^{i} \times 2^{i}$ blocks. For each block we maintain a distance matrix.

$\mathcal{O}\left(n / 2^{i}\right)$ distance matrices change at level $i$.

## Algorithm for substitutions

Goal: Maintain the distance matrix of the alignment graph. We maintain a hierarchy of decompositions of the alignment graph into $2^{i} \times 2^{i}$ blocks. For each block we maintain a distance matrix.

$\mathcal{O}\left(n / 2^{i}\right)$ distance matrices change at level $i$.

## Algorithm for substitutions

Goal: Maintain the distance matrix of the alignment graph.
We maintain a hierarchy of decompositions of the alignment graph into $2^{i} \times 2^{i}$ blocks. For each block we maintain a distance matrix.

$\mathcal{O}\left(n / 2^{i}\right)$ distance matrices change at level $i$.
Each of them is recomputed from four distance matrices of the previous level in $\mathcal{O}\left(2^{i} \log \left(2^{i}\right)\right)$ time using distance multiplication.

## Algorithm for substitutions

Goal: Maintain the distance matrix of the alignment graph.
We maintain a hierarchy of decompositions of the alignment graph into $2^{i} \times 2^{i}$ blocks. For each block we maintain a distance matrix.

$\mathcal{O}\left(n / 2^{i}\right)$ distance matrices change at level $i$.
Each of them is recomputed from four distance matrices of the previous level in $\mathcal{O}\left(2^{i} \log \left(2^{i}\right)\right)$ time using distance multiplication.

The total update time is thus $\mathcal{O}\left(n \log ^{2} n\right)$.

## Remarks

- Insertions and deletions can be handled by carefully resizing blocks.


## Remarks

- Insertions and deletions can be handled by carefully resizing blocks.
- The actual LCS can be retrieved within the same time complexity by tracing back the computations.


## Remarks

- Insertions and deletions can be handled by carefully resizing blocks.
- The actual LCS can be retrieved within the same time complexity by tracing back the computations.
- Fragment-to-fragment LCS queries can be answered in time $\mathcal{O}\left(n \log ^{2} n\right)$.


## Remarks

- Insertions and deletions can be handled by carefully resizing blocks.
- The actual LCS can be retrieved within the same time complexity by tracing back the computations.
- Fragment-to-fragment LCS queries can be answered in time $\mathcal{O}\left(n \log ^{2} n\right)$.
- String alignment with integer weights $\leq w$ can be reduced to LCS by replacing each letter by a string of size $\mathcal{O}(w)$, as shown by Tiskin.


## Remarks

- Insertions and deletions can be handled by carefully resizing blocks.
- The actual LCS can be retrieved within the same time complexity by tracing back the computations.
- Fragment-to-fragment LCS queries can be answered in time $\mathcal{O}\left(n \log ^{2} n\right)$.
- String alignment with integer weights $\leq w$ can be reduced to LCS by replacing each letter by a string of size $\mathcal{O}(w)$, as shown by Tiskin. Update time: $\tilde{\mathcal{O}}(n w)$.


## Remarks

- Insertions and deletions can be handled by carefully resizing blocks.
- The actual LCS can be retrieved within the same time complexity by tracing back the computations.
- Fragment-to-fragment LCS queries can be answered in time $\mathcal{O}\left(n \log ^{2} n\right)$.
- String alignment with integer weights $\leq w$ can be reduced to LCS by replacing each letter by a string of size $\mathcal{O}(w)$, as shown by Tiskin. Update time: $\tilde{\mathcal{O}}(n w)$.

Next: An $\tilde{\mathcal{O}}(n \sqrt{n})$-time algorithm for integer weights of size $n^{\mathcal{O}(1)}$ using techniques for computing shortest paths in planar graphs.

## MSSP

## Multiple Source Shortest Paths (MSSP) [Klein; SODA 2005]

We can construct in nearly-linear time (in the size of the graph) a data structure that can report in logarithmic time the distance between any node on the infinite face and any node in the graph.


## FR-Dijkstra

## Dense Distance Graphs

The distance matrix capturing pairwise distances between the vertices of a set $\partial H$ of vertices of a planar graph $H$, lying on a single face, can be computed in $\tilde{\mathcal{O}}\left(|H|+|\partial H|^{2}\right)$ time using MSSP.

## FR-Dijkstra

## Dense Distance Graphs

The distance matrix capturing pairwise distances between the vertices of a set $\partial H$ of vertices of a planar graph $H$, lying on a single face, can be computed in $\tilde{\mathcal{O}}\left(|H|+|\partial H|^{2}\right)$ time using MSSP.

## FR-Dijkstra [Fakcharoenphol-Rao; JCSS 2006]

We can compute shortest paths from a single-source in a collection of DDGs with $N$ vertices in total (with multiplicities) in $\tilde{\mathcal{O}}(N)$ time.

## FR-Dijkstra

## Dense Distance Graphs

The distance matrix capturing pairwise distances between the vertices of a set $\partial H$ of vertices of a planar graph $H$, lying on a single face, can be computed in $\tilde{\mathcal{O}}\left(|H|+|\partial H|^{2}\right)$ time using MSSP.

## FR-Dijkstra [Fakcharoenphol-Rao; JCSS 2006]

We can compute shortest paths from a single-source in a collection of DDGs with $N$ vertices in total (with multiplicities) in $\tilde{\mathcal{O}}(N)$ time.


Before: distance product. Now: SSSP computations, many DDGs.

## FR-Dijkstra

## Dense Distance Graphs

The distance matrix capturing pairwise distances between the vertices of a set $\partial H$ of vertices of a planar graph $H$, lying on a single face, can be computed in $\tilde{\mathcal{O}}\left(|H|+|\partial H|^{2}\right)$ time using MSSP.

## FR-Dijkstra [Fakcharoenphol-Rao; JCSS 2006]

We can compute shortest paths from a single-source in a collection of DDGs with $N$ vertices in total (with multiplicities) in $\tilde{\mathcal{O}}(N)$ time.


## FR-Dijkstra

## Dense Distance Graphs

The distance matrix capturing pairwise distances between the vertices of a set $\partial H$ of vertices of a planar graph $H$, lying on a single face, can be computed in $\tilde{\mathcal{O}}\left(|H|+|\partial H|^{2}\right)$ time using MSSP.

## FR-Dijkstra [Fakcharoenphol-Rao; JCSS 2006]

We can compute shortest paths from a single-source in a collection of DDGs with $N$ vertices in total (with multiplicities) in $\tilde{\mathcal{O}}(N)$ time.


$$
\begin{aligned}
& \text { Monge Property: } \\
& d(u, y)+d(v, x) \leq d(u, x)+d(v, y)
\end{aligned}
$$

## FR-Dijkstra

## Dense Distance Graphs

The distance matrix capturing pairwise distances between the vertices of a set $\partial H$ of vertices of a planar graph $H$, lying on a single face, can be computed in $\tilde{\mathcal{O}}\left(|H|+|\partial H|^{2}\right)$ time using MSSP.

## FR-Dijkstra [Fakcharoenphol-Rao; JCSS 2006]

We can compute shortest paths from a single-source in a collection of DDGs with $N$ vertices in total (with multiplicities) in $\tilde{\mathcal{O}}(N)$ time.


$$
d(u, y)+d(v, x) \leq d(u, x)+d(v, y)
$$

## FR-Dijkstra

## Dense Distance Graphs

The distance matrix capturing pairwise distances between the vertices of a set $\partial H$ of vertices of a planar graph $H$, lying on a single face, can be computed in $\tilde{\mathcal{O}}\left(|H|+|\partial H|^{2}\right)$ time using MSSP.

## FR-Dijkstra [Fakcharoenphol-Rao; JCSS 2006]

We can compute shortest paths from a single-source in a collection of DDGs with $N$ vertices in total (with multiplicities) in $\tilde{\mathcal{O}}(N)$ time.


$$
d(u, y)+d(v, x) \leq d(u, x)+d(v, y)
$$

## FR-Dijkstra

## Dense Distance Graphs

The distance matrix capturing pairwise distances between the vertices of a set $\partial H$ of vertices of a planar graph $H$, lying on a single face, can be computed in $\tilde{\mathcal{O}}\left(|H|+|\partial H|^{2}\right)$ time using MSSP.

## FR-Dijkstra [Fakcharoenphol-Rao; JCSS 2006]

We can compute shortest paths from a single-source in a collection of DDGs with $N$ vertices in total (with multiplicities) in $\tilde{\mathcal{O}}(N)$ time.


$$
d(u, y)+d(v, x) \leq d(u, x)+d(v, y)
$$

## FR-Dijkstra

## Dense Distance Graphs

The distance matrix capturing pairwise distances between the vertices of a set $\partial H$ of vertices of a planar graph $H$, lying on a single face, can be computed in $\tilde{\mathcal{O}}\left(|H|+|\partial H|^{2}\right)$ time using MSSP.

## FR-Dijkstra [Fakcharoenphol-Rao; JCSS 2006]

We can compute shortest paths from a single-source in a collection of DDGs with $N$ vertices in total (with multiplicities) in $\tilde{\mathcal{O}}(N)$ time.


$$
d(u, y)+d(v, x) \leq d(u, x)+d(v, y)
$$

## FR-Dijkstra

## Dense Distance Graphs

The distance matrix capturing pairwise distances between the vertices of a set $\partial H$ of vertices of a planar graph $H$, lying on a single face, can be computed in $\tilde{\mathcal{O}}\left(|H|+|\partial H|^{2}\right)$ time using MSSP.

## FR-Dijkstra [Fakcharoenphol-Rao; JCSS 2006]

We can compute shortest paths from a single-source in a collection of DDGs with $N$ vertices in total (with multiplicities) in $\tilde{\mathcal{O}}(N)$ time.


$$
\begin{aligned}
& \text { Monge Property: } \\
& d(u, y)+d(v, x) \leq d(u, x)+d(v, y)
\end{aligned}
$$

## Algorithm for Large Weights



## Algorithm for Large Weights



## Algorithm for Large Weights

|  | a | a | C | b | c | d | d | a | a | e | a | d |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| a |  |  |  |  |  |  |  |  |  |  |  |  |
| b |  |  |  |  |  |  |  |  |  |  |  |  |
| b |  |  |  |  |  |  |  |  |  |  |  |  |
| b |  |  |  |  |  |  |  |  |  |  |  |  |
| C |  |  |  |  |  |  |  |  |  |  |  |  |
| C |  |  |  |  |  |  |  |  |  |  |  |  |
| d |  |  |  |  |  |  |  |  |  |  |  |  |
| e |  |  |  |  |  |  |  |  |  |  |  |  |
| C |  |  |  |  |  |  |  |  |  |  |  |  |

We maintain a DDG for each piece $P$ with the set of "boundary" vertices as $\partial P .|P|=\Theta(n),|\partial P|=\Theta(\sqrt{n})$.

## Algorithm for Large Weights

|  | a | a | C | b | C | d | d | a |  | a | e | a | d |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| a |  |  |  |  |  |  |  |  |  |  |  |  |  |
| b |  |  |  |  |  |  |  |  |  |  |  |  |  |
| b |  |  |  |  |  |  |  |  |  |  |  |  |  |
| b |  |  |  |  |  |  |  |  |  |  |  |  |  |
| C |  |  |  |  |  |  |  |  |  |  |  |  |  |
| C |  |  |  |  |  |  |  |  |  |  |  |  |  |
| d |  |  |  |  |  |  |  |  |  |  |  |  |  |
| e |  |  |  |  |  |  |  |  |  |  |  |  |  |
| C |  |  |  |  |  |  |  |  |  |  |  |  |  |

Each update in one of the strings affects $\mathcal{O}(\sqrt{n})$ pieces. The DDG information for each piece is recomputed in $\tilde{\mathcal{O}}(n)$ time using MSSP.

## Algorithm for Large Weights

|  | a | a | C | b | c | d | d | a | a | e | a | d |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| a |  |  |  |  |  |  |  |  |  |  |  |  |
| b |  |  |  |  |  |  |  |  |  |  |  |  |
| b |  |  |  |  |  |  |  |  |  |  |  |  |
| b |  |  |  |  |  |  |  |  |  |  |  |  |
| C |  |  |  |  |  |  |  |  |  |  |  |  |
| C |  |  |  |  |  |  |  |  |  |  |  |  |
| d |  |  |  |  |  |  |  |  |  |  |  |  |
| e |  |  |  |  |  |  |  |  |  |  |  |  |
| C |  |  |  |  |  |  |  |  |  |  |  |  |

We run FR-Dijkstra on the union of $\mathcal{O}(\sqrt{n} \cdot \sqrt{n})=\mathcal{O}(n)$ DDGs. The runtime is $\tilde{\mathcal{O}}(n \sqrt{n})$, since each DDG has $\mathcal{O}(\sqrt{n})$ vertices.

## Final Remarks

## Extension:

- We can in fact also handle copy-paste operations.


## Final Remarks

## Extension:

- We can in fact also handle copy-paste operations.

Open problems:

- Can we do better than $\tilde{\mathcal{O}}(n \sqrt{n})$ for large weights?


## Final Remarks

Extension:

- We can in fact also handle copy-paste operations.

Open problems:

- Can we do better than $\tilde{\mathcal{O}}(n \sqrt{n})$ for large weights?
- What if one string is given as a straight-line program (SLP)? [Tiskin; arxiv 2007]: The LCS of a standard string of length $n$ and a string given by an SLP of size $N$ can be computed in $\tilde{\mathcal{O}}(n \cdot N)$ time.


## Final Remarks

Extension:

- We can in fact also handle copy-paste operations.

Open problems:

- Can we do better than $\tilde{\mathcal{O}}(n \sqrt{n})$ for large weights?
- What if one string is given as a straight-line program (SLP)? [Tiskin; arxiv 2007]: The LCS of a standard string of length $n$ and a string given by an SLP of size $N$ can be computed in $\tilde{\mathcal{O}}(n \cdot N)$ time.


## Final Remarks

Extension:

- We can in fact also handle copy-paste operations.

Open problems:

- Can we do better than $\tilde{\mathcal{O}}(n \sqrt{n})$ for large weights?
- What if one string is given as a straight-line program (SLP)? [Tiskin; arxiv 2007]: The LCS of a standard string of length $n$ and a string given by an SLP of size $N$ can be computed in $\tilde{\mathcal{O}}(n \cdot N)$ time.
- How about maintaining an approximation of the edit distance/ LCS in the dynamic setting?


## Final Remarks

Extension:

- We can in fact also handle copy-paste operations.

Open problems:

- Can we do better than $\tilde{\mathcal{O}}(n \sqrt{n})$ for large weights?
- What if one string is given as a straight-line program (SLP)? [Tiskin; arxiv 2007]: The LCS of a standard string of length $n$ and a string given by an SLP of size $N$ can be computed in $\tilde{\mathcal{O}}(n \cdot N)$ time.
- How about maintaining an approximation of the edit distance/ LCS in the dynamic setting? [Andoni-Nosatzki; arxiv 2020]: The edit distance can be $\mathcal{O}(1)$-approximated in $\mathcal{O}\left(n^{1+\epsilon}\right)$ time for any $\epsilon>0$.


## Final Remarks

Extension:

- We can in fact also handle copy-paste operations.

Open problems:

- Can we do better than $\tilde{\mathcal{O}}(n \sqrt{n})$ for large weights?
- What if one string is given as a straight-line program (SLP)? [Tiskin; arxiv 2007]: The LCS of a standard string of length $n$ and a string given by an SLP of size $N$ can be computed in $\tilde{\mathcal{O}}(n \cdot N)$ time.
- How about maintaining an approximation of the edit distance/ LCS in the dynamic setting? [Andoni-Nosatzki; arxiv 2020]: The edit distance can be $\mathcal{O}(1)$-approximated in $\mathcal{O}\left(n^{1+\epsilon}\right)$ time for any $\epsilon>0$. [Mitzenmacher-Seddighin; STOC 2020]: Dynamic LIS and distance to monotonicity.


## Thank you for your attention!

