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Dynamic Shortest Paths

Problem

: Dynamic Distance Oracle

Maintain a data structure over a graph G that supports:
updates to the graph (e.g. edge insertions/deletions),
shortest paths/distance queries.

All-pairs: The source and target are specified by the query.

Single-source: The source is fixed and the target is specified by
the query.

Unless explicitly stated otherwise, we consider
directed weighted graphs.
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Related Work I: General Graphs

All-pairs [Johnson; J. ACM 1977, Demetrescu-Italiano; J. ACM 2004]

The all-pairs distance matrix can be computed in Õ(nm) =
Õ(n3) time and maintained in Õ(n2) amortized time.

Single-source [Roditty-Zwick; Algorithmica 2011]

O(n3−ε) initialization, O(n2−ε) amortized update, and O(n1−ε)
query times impossible conditional on the APSP conjecture.

For sparse graphs (i.e. m = O(n)), nothing better than
recomputing from scratch is known for either of the variants.

Workarounds: settle for approximate answers, study more
structured graph classes.
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Related Work II: Planar Graphs

All-pairs

Exact: Õ(n2/3) update and query time.
[Fakcharoenphol-Rao; JCSS 2006, Klein; SODA 2005]

Lower bound: tu × tq cannot be O(n1−ε) conditional on the
APSP conjecture. [Abboud-Dahlgaard; FOCS 2016]

(1 + ε)-approx: Õ(n1/2) update and query time for
undirected graphs. [Abraham et al.; STOC 2012]

Single-source

Exact: Õ(n2/3) update time and Õ(n1/3) query time.
(Using [Klein; SODA 2005].)
(1 + ε)-approx: Õ(n1/2) update time and O(1) query time
for decremental graphs. [Karczmarz; SODA 2018]
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(Using [Klein; SODA 2005].)
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Exact: Õ(n2/3) update time and Õ(n1/3) query time.
(Using [Klein; SODA 2005].)
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Our Results

Theorem
We can maintain an n-vertex planar graph G under:

edge insertions,
edge deletions, and
changes of the source s

in Õ(n4/5) worst-case time per update so that distG(s, v) for
any v ∈ V (G) can be computed in O(log2 n) time.

The first fully dynamic single-source shortest paths algorithm
for planar graphs breaking through the Õ(n) update-query time

product barrier, even in the approximate setting.

Our approach, combined with a few more ingredients, also yields
a fully dynamic strong connectivity data structure with the same
complexities.
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Cycle Separators

Miller [JCSS’86]

There always exists a Jordan curve separator of size O(
√

n)
such that there are at most 2

3n vertices on its inside/outside.
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r -divisions

For r ∈ [1,n], a decomposition of the graph into:

O(n/r) pieces;
each piece has O(r)
vertices;
each piece has O(

√
r)

boundary vertices (vertices
incident to edges in other
pieces).

We denote the boundary of a piece P by ∂P and assume that
all such vertices lie on a single face of P.

An r -division can be maintained in O(r) worst-case time per up-
date with O(1) pieces changing. [Klein & Subramanian; WADS 1993]
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Multiple Source Shortest Paths

MSSP [Klein; SODA 2005]

In nearly-linear time (in the size of the graph), we can construct
a data structure that can report in logarithmic time the distance
between any vertex u on the infinite face and any other vertex v
of the graph.
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FR-Dijkstra

Dense Distance Graph (DDG)
The distance matrix capturing pairwise distances between ver-
tices of a set ∂H of vertices lying on a single face of a plane
graph H can be computed in Õ(|H|+ |∂H|2) time using MSSP.
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FR-Dijkstra

FR-Dijkstra [Fakcharoenphol-Rao; JCSS 2006]

We can compute single-source shortest paths in a collection of
DDGs with N vertices in total (with multiplicities) in Õ(N) time.

Õ(n/
√

r) time for the DDGs of the pieces of an r -division.

s
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Warm-up: Õ(n2/3) update time, Õ(n1/3) query time

Update:
Maintain an r -division. O(r)
Maintain an MSSP data structure and the DDG for each
piece. Õ(r)
Run FR-Dijkstra from s in the union of DDGs. Õ(n/

√
r)

Query:
Retrieve a piece P containing v . O(1)

Compute min{distG(s,u) + distP(u, v) : u ∈ ∂P}.

O(
√

r log r)

Balance for update time: r = n2/3.
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√

r)

Query:
Retrieve a piece P containing v . O(1)

Compute min{distG(s,u) + distP(u, v) : u ∈ ∂P}.

O(
√

r log r)

Balance for update time: r = n2/3.

P. Charalampopoulos and A. Karczmarz Single-Source Shortest Paths and Strong Connectivity in Dynamic Planar Graphs
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Retrieve a piece P containing v . O(1)

Compute min{distG(s,u) + distP(u, v) : u ∈ ∂P}.

O(
√

r log r)

Balance for update time: r = n2/3.
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Point Location

v

s

u

Instead of trying all possible O(
√

r) candidate boundary ver-
tices, we want to compute the last boundary vertex u visited
by the shortest path in Õ(1) time.
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Point Location

The s → ∂P distances
define a set of additive
weights for ∂P.
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s

Point Location via Voronoi Diagrams

Given a set of additive weights for ∂P, there exists an Õ(
√

r)-
sized data structure that given access to an MSSP data struc-
ture for P with sources ∂P answers point location queries in
O(log2 n) time.

It can be constructed in Õ(r3/4) time.
[Gawrychowski et al.; SODA’18]
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Point Location via Voronoi Diagrams

Given a set of additive weights for ∂P, there exists an Õ(
√

r)-
sized data structure that given access to an MSSP data struc-
ture for P with sources ∂P answers point location queries in
O(log2 n) time. It can be constructed in Õ(r3/4) time.
[Gawrychowski et al.; SODA’18, Charalampopoulos et al.; STOC 2019]

P. Charalampopoulos and A. Karczmarz Single-Source Shortest Paths and Strong Connectivity in Dynamic Planar Graphs



Point Location via Voronoi Diagrams

The Voronoi cell of each site consists of all vertices closer to it
with respect to the additive distances.
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Point Location via Voronoi Diagrams

A point location query returns the Voronoi cell containing a
queried vertex v .

P. Charalampopoulos and A. Karczmarz Single-Source Shortest Paths and Strong Connectivity in Dynamic Planar Graphs



Point Location via Voronoi Diagrams

Because all sites are adjacent to one face, the diagram can be
described by a tree on O(|∂P|) = O(

√
r) vertices.
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Õ(n4/5) update time, O(log2 n) query time

Update:
Maintain an r -division. O(r) time.
Maintain an MSSP data structure and the DDG for each
piece. Õ(r)
Run FR-Dijkstra from s in the union of DDGs. Õ(n/

√
r)

Construct a point location data structure for each piece P
with s → ∂P distances as additive weights.
Õ(n/r · r3/4) = Õ(n/r1/4)

Query:
Retrieve a piece P containing v . O(1) time.
Compute min{distG(s,u) + distP(u, v) : u ∈ ∂P}.
O(
√

r log r)

Perform point location. O(log2 r)

Balance: r = n4/5.
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Query:
Retrieve a piece P containing v . O(1) time.
Compute min{distG(s,u) + distP(u, v) : u ∈ ∂P}.
O(
√

r log r)
Perform point location. O(log2 r)

Balance: r = n4/5.

P. Charalampopoulos and A. Karczmarz Single-Source Shortest Paths and Strong Connectivity in Dynamic Planar Graphs
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√
r)

Construct a point location data structure for each piece P
with s → ∂P distances as additive weights.
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Strong Connectivity

Task
Maintain G so that an identifier of the strongly connected
component of each vertex can be returned.

General Graphs

Both update and query time O(n1−ε) is not possible conditional
on SETH. [Abboud-Vassilevska Williams; FOCS 2014]

Plane Graphs
The dynamic plane transitive closure data structure of
[Diks-Sankowski; ESA 2007] yields Õ(n1/2) update and query time.

P. Charalampopoulos and A. Karczmarz Single-Source Shortest Paths and Strong Connectivity in Dynamic Planar Graphs



Strong Connectivity

Task
Maintain G so that an identifier of the strongly connected
component of each vertex can be returned.

General Graphs

Both update and query time O(n1−ε) is not possible conditional
on SETH. [Abboud-Vassilevska Williams; FOCS 2014]

Plane Graphs
The dynamic plane transitive closure data structure of
[Diks-Sankowski; ESA 2007] yields Õ(n1/2) update and query time.
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Reachability Certificates

Theorem [Subramanian; ESA 1993]

Let P be a piece of an r -division.

There exists a directed graph XP , where ∂P ⊆ V (XP), of size
O(
√

r log r) satisfying the following property:
for any u, v ∈ ∂P, u can reach v in P ⇔ u can reach v in XP .
The graph XP can be computed in O(r log r) time.
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Strong Connectivity

Maintain an r -division. O(r)

Maintain a reachability certificate for each piece of the
r -division. Õ(r)

Run a textbook SCC algorithm on graph X =
⋃

XP (i.e. the
union of reachability certificates). Õ(n/

√
r)

Sort the SCCs topologically. Õ(n/
√

r)
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Strong Connectivity

Observation
Let b1, . . . ,bk be some vertices of G lying in distinct strongly
connected components.

A vertex v is strongly connected to some bj if and only if
bj is in the topologically earliest SCC reachable from v , and
bj is in the topologically latest SCC that can reach v .

b1 b2 b3 b4 b5 b6

v

Impossible
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Construct per-piece point location data structures with
additive weights stemming from the topological order of the
SCCs of X . Õ(n/r1/4)

If the point location queries are inconclusive, v is in an
SCC fully contained in P.

(Maintain per-piece SCC identifiers. Õ(r))
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Final Remarks

Our results: Õ(n4/5) update time and O(log2 n) query time for:
single-source shortest paths, and
strong connectivity

in fully dynamic weighted directed planar graphs.

The initialization requires O(n log2 n) time and the space
occupied is O(n log n).
We also show a dynamic closest facility data structure.

This is the first work that utilizes additively weighted Voronoi
diagrams machinery in dynamic graph algorithms.

Can more problems benefit?
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The End

Thank you for your attention!

Questions?
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