
Algorithmica manuscript No.
(will be inserted by the editor)

Internal Dictionary Matching

Panagiotis Charalampopoulos∗ · Tomasz
Kociumaka · Manal Mohamed · Jakub
Radoszewski · Wojciech Rytter · Tomasz Waleń

Received: date / Accepted: date

Abstract We introduce data structures answering queries concerning the occurrences
of patterns from a given dictionary D in fragments of a given string T of length n. The
dictionary is internal in the sense that each pattern in D is given as a fragment of T .
This way, D takes space proportional to the number of patterns d = |D| rather than
their total length, which could be Θ(n ·d).

A preliminary version of this paper was presented at the 30th International Symposium on Algorithms and
Computation (ISAAC 2019) [14].

Panagiotis Charalampopoulos
The Interdisciplinary Center Herzliya, Israel
E-mail: pcharalampo@gmail.com
https://orcid.org/0000-0002-6024-1557
∗Corresponding author

Tomasz Kociumaka
University of California, Berkeley, U.S.
E-mail: kociumaka@berkeley.edu
https://orcid.org/0000-0002-2477-1702

Manal Mohamed
London, UK
E-mail: manalabd@gmail.com
https://orcid.org/0000-0002-1435-5051

Jakub Radoszewski
University of Warsaw, Poland & Samsung R&D, Poland
E-mail: jrad@mimuw.edu.pl
https://orcid.org/0000-0002-0067-6401

Wojciech Rytter
University of Warsaw, Poland
E-mail: rytter@mimuw.edu.pl
https://orcid.org/0000-0002-9162-6724

Tomasz Waleń
University of Warsaw, Poland
E-mail: walen@mimuw.edu.pl
https://orcid.org/0000-0002-7369-3309

2 P. Charalampopoulos et. al

In particular, we consider the following types of queries: reporting and counting
all occurrences of patterns from D in a fragment T [i . . j] and reporting distinct patterns
from D that occur in T [i . . j]. We show how to construct, in O((n+d) logO(1) n) time,
a data structure that answers each of these queries in time O(logO(1) n+ |output|).

The case of counting patterns is much more involved and needs a combination of a
locally consistent parsing with orthogonal range searching. Reporting distinct patterns,
on the other hand, uses the structure of maximal repetitions in strings. Finally, we
provide tight—up to subpolynomial factors—upper and lower bounds for the case of
a dynamic dictionary.

Keywords Dictionary matching · Internal pattern matching · Range searching ·
Dynamic dictionary

1 Introduction

In the problem of dictionary matching, which has been studied for more than forty
years [1], we are given a dictionary D, consisting of d patterns, and the goal is to
preprocess D so that presented with a text T we are able to efficiently compute the
occurrences of the patterns from D in T . The Aho–Corasick automaton preprocesses
the dictionary in linear time with respect to its total length and then processes T in
time O(|T |+ |output|) [1]. Compressed indexes for dictionary matching [11], as well
as indexes for approximate dictionary matching [16] have been studied. Dynamic
dictionary matching in its more general version consists in the problem where a
dynamic dictionary is maintained, text strings are presented as input and for each
such text all the occurrences of patterns from the dictionary in the text have to be
reported [2,3].

Internal queries in texts have received much attention in recent years. Among
them, the Internal Pattern Matching (IPM) problem consists in preprocessing a text
T of length n so that we can efficiently compute the occurrences of a substring
of T in another substring of T . A nearly-linear sized data structure that allows for
sublogarithmic-time IPM queries was presented in [31], while a linear sized data
structure allowing for constant-time IPM queries in the case where the ratio between
the lengths of the two substrings is constant was presented in [34]. Other types of
internal queries include computing the longest common prefix of two substrings of T ,
computing the periods of a substring of T , etc. We refer the interested reader to [32],
which contains an overview of the literature.

We introduce the problem of Internal Dictionary Matching (IDM) that consists
in answering the following types of queries for an internal dictionary D consisting of
substrings of text T : given (i, j), report/count all occurrences of patterns from D in
T [i . . j] and report the distinct patterns from D that occur in T [i . . j].

Let us formally define the problem and the types of queries that we consider.

Internal Dictionary Matching 3

INTERNAL DICTIONARY MATCHING
Input: A text T of length n and a dictionary D consisting of d patterns, each given
as a substring T [a . .b] of T .
Queries:
EXISTS(i, j): Decide whether at least one pattern P ∈ D occurs in T [i . . j].
REPORT(i, j): Report all occurrences of all the patterns of D in T [i . . j].
REPORTDISTINCT(i, j): Report all patterns P ∈ D that occur in T [i . . j].
COUNT(i, j): Count the number of all occurrences of all the patterns of D in
T [i . . j].

Example 1.1 Consider a text T = adaaaabaabbaac and a dictionary D= {aa,aaaa,
abba,c}; see Fig. 1. We then have:

EXISTS(2,12) = true
REPORT(2,12) = {(aa,3),(aaaa,3),(aa,4),(aa,5),(aa,8),(abba,9)}
COUNT(2,12) = 6

REPORTDISTINCT(2,12) = {aa,aaaa,abba}
EXISTS(1,3) = false

T a

1

d

2

a

3

a

4

a

5

a

6

b

7

a

8

a

9

b

10

b

11

a

12

a

13

c

14

a a a a a a

a b b a c

D

Fig. 1 Occurrences of patterns from the dictionary D in the text T .

Let us consider REPORT(i, j) queries. One could answer them in O(j−i+|output|)
time by running T [i . . j] over the Aho–Corasick automaton of D [1] or in time
Õ(d + |output|)1 by performing internal pattern matching [34] for each element of D
individually. None of these approaches is satisfactory as they can require Ω(n) time
in the worst case.

The IDM problem in the special case of the dictionary D being the set of all
palindromes in T has already been studied in [41], where authors proposed a data
structure of size O(n logn) that returns the number of all distinct palindromes in
T [i . . j] in O(logn) time. Let us note that in this case the total length of patterns might
be quadratic, but the internal dictionary is of linear size and can be constructed in O(n)
time [23]. Our general solution can be applied, in particular, to other such dictionaries
that satisfy these requirements, say, for the dictionary of all squares in T [18,7].

Our results and techniques We focus on the case of a static dictionary, as it was
defined above. We propose an Õ(n+d)-sized data structure, which can be built in time

1 The Õ(·) notation suppresses logO(1) n factors.

4 P. Charalampopoulos et. al

Õ(n+d) and answers all IDM queries in time Õ(1+ |output|). The exact complexities,
shown in Table 1, are achieved using slightly different techniques for different query
types. The solutions for queries EXISTS(i, j) and REPORT(i, j), presented in Section 3,
are rather straightforward. The data structure for REPORTDISTINCT(i, j) queries,
described in Section 4, heavily relies on the periodic structure of the input text and
on tools that we borrow from computational geometry. An efficient solution for
COUNT(i, j) queries, provided in Section 5, is based on locally consistent parsing and
further computational geometry tools.

Table 1 Our results.

Query Preprocessing time Space Query time

EXISTS(i, j) O(n+d) O(n) O(1)

REPORT(i, j) O(n+d) O(n+d) O(1+ |output|)
REPORTDISTINCT(i, j) O(n logn+d) O(n+d) O(logn+ |output|)
COUNT(i, j) O(n logn

log logn +d log3/2 n) O(n+d logn) O(log2 n
log logn)

Furthermore, in Section 6, we consider a variant of the problem where the dic-
tionary D is dynamic, i.e. allowing for interleaved IDM queries and updates to D
(insertions/deletions of patterns). We first show a conditional lower bound for this
problem: Unless the Online Boolean Matrix-Vector Multiplication conjecture [26]
is false, the product of the time to process an update and the time to answer an
EXISTS(i, j) query cannot be O(n1−ε) for any constant ε > 0. By building upon our
solutions for static dictionaries, we also provide algorithms matching—up to sub-
polynomial factors—our conditional lower bound: For any 0 < α < 1, we show how
to process updates in Õ(nα) time and answer queries EXISTS(i, j), REPORT(i, j),
REPORTDISTINCT(i, j), and COUNT(i, j) in Õ(n1−α + |output|) time.

Follow-up results COUNTDISTINCT(i, j) is an equally interesting type of internal
dictionary matching query, in which the number of distinct patterns from D that occur
in T [i . . j] is to be returned. As has been already mentioned, a special case where D
consists of all palindromes in T was considered in [41]. In a very recent follow-up of
our work by a superset of the authors [13], another special case where D consists of
all squares in T was considered. For general dictionaries, the following results were
shown in [13].

– For any m ∈ [1 . .n], there exists an Õ(min(nd/m,n2/m2)+d)-size data structure
that answers COUNTDISTINCT(i, j) queries in Õ(m) time.

– We can construct in Õ(n + d) time a data structure that gives 2-approximate
answers to COUNTDISTINCT(i, j) queries in Õ(1) time.

In an earlier version of this work, we presented an Õ(n+d)-size data structure that
could answer COUNTDISTINCT(i, j) queries O(logn)-approximately in Õ(1) time,
by appropriately adapting our data structure for COUNT(i, j) queries. As this data
structure is now obsolete, we have not included its description in this version.

Internal Dictionary Matching 5

2 Preliminaries

We begin with basic definitions and notation generally following the conventions
of [17]. Let T = T [1]T [2] · · ·T [n] be a string of length |T |= n over a linearly sortable
alphabet Σ . The elements of Σ are called letters. By ε we denote an empty string.
For two positions i and j on T , we denote by T [i . . j] = T [i] · · ·T [j] the fragment
(sometimes called substring) of T that starts at position i and ends at position j (it
equals ε if j < i). It is called proper if i > 1 or j < n. A fragment of T is represented in
O(1) space by specifying the indices i and j. A prefix of T is a fragment that starts at
position 1 (T [1 . . j]) and a suffix is a fragment that ends at position n (T [i . .n], notation:
T(i)). We denote the reverse string of T by T R, i.e. T R = T [n]T [n−1] · · ·T [1].

Let U be a string of length m with 0<m≤ n. We say that there exists an occurrence
of U in T , or, more simply, that U occurs in T , when U is a fragment of T . We thus
say that U occurs at the starting position i in T when U = T [i . . i+m−1].

If a string U is both a proper prefix and a proper suffix of a string T of length n, then
U is called a border of T . A positive integer p is called a period of T if T [i] = T [i+ p]
for all i = 1, . . . ,n− p. A string T has a period p if and only if it has a border of length
n− p. We refer to the smallest period as the period of the string, and denote it as
per(T), and, analogously, to the longest border as the border of the string. A string is
called periodic if its period is no more than half of its length and aperiodic otherwise.

Consider a set of strings S. The trie of S is a rooted tree with edges labeled by
single letters so that edges going down from a node have distinct labels. For each node
v of the trie, the path-label of v is the concatenation of the edge labels on the path from
the root to v, and the string-depth of v, denoted δ (v), is the length of the path-label. In
the trie of S, the path-label of each node is a prefix of some string S ∈ S. Moreover,
each prefix of a string S ∈ S is the path-label of a unique node of the trie, called its
locus. In the compact trie of S, only branching nodes (with at least two children) and
terminal nodes (loci of strings S ∈ S) are stored explicitly. The remaining implicit
nodes of the trie (non-terminal nodes with exactly one child) are dissolved so that
each edge of the compact trie can be viewed as an upward maximal path of implicit
nodes starting with an explicit node. Subsequent nodes on this path are indexed by
consecutive integers so that the index of the starting explicit node is zero. Note that
each node belongs to a unique path of that kind. Thus, each node of the trie can be
represented in the compact trie by the edge it belongs to and an index within the
corresponding path.

The suffix tree T(T) of a string T of length n is the compact trie of {T(i)$: 1 ≤
i≤ n}, where $ 6∈ Σ is a sentinel character that is lexicographically smaller than all
the letters in Σ ; this ensures that all terminal nodes are leaves. The suffix tree of
a string of length n over an integer ordered alphabet can be computed in time and
space O(n) [19]. Once the suffix tree is constructed, it can be traversed in a depth-first
manner to compute the string-depth δ (v) for each explicit node v. For each 1≤ i≤ n,
the terminal node with path-label T(i)$ is additionally labelled with index i.

We say that a tree is a weighted tree if it is a rooted tree with an integer weight on
each node v, denoted by ω(v), such that the weight of the root is zero and ω(u)< ω(v)
if u is the parent of v. We say that a node v is a weighted ancestor at depth ` of a
node u if v is the highest ancestor of u with weight of at least `. After O(n)-time

6 P. Charalampopoulos et. al

preprocessing, weighted ancestor queries for nodes of a weighted tree T of size n
with integer weights from a universe [1 . .U] can be answered in O(log logU) time per
query [4]. Moreover, any batch of k weighted ancestor queries can be answered in
O(n+ k) time [33, Section 7]. If ω has a property that the difference of weights of a
child and its parent is always equal to 1, then the queries can be answered in O(1) time
after O(n)-time preprocessing [8]; in this special case the values ω are called levels
and the queries are called level ancestor queries. The suffix tree T(T) is a weighted
tree with ω(v) = δ (v) for all v. Hence, the locus of a fragment T [i . . j] in T(T) is the
weighted ancestor of the terminal node with path-label T(i)$ at string-depth j− i+1.

The elements of the dictionary D are called patterns. Henceforth we assume that
ε 6∈ D, i.e. the length of each P ∈ D is at least 1. If ε was in D, we could trivially treat
it individually. We further assume that each pattern of D is given by the starting and
ending positions of its occurrence in T . Thus, the size of the dictionary d = |D| refers
to the number of strings in D and not their total length.

3 EXISTS(i, j) and REPORT(i, j) queries

We first present a convenient modification to the suffix tree with respect to a dictio-
nary D; see Fig. 2.

Definition 3.1 A D-modified suffix tree of a string T is a tree with leaves correspond-
ing to non-empty suffixes of T $ and internal nodes corresponding to {ε}∪D. A node
corresponding to string U is an ancestor of a node corresponding to string V if and
only if U is a prefix of V . Each node stores its level as well as its string-depth δ .
Moreover, each leaf node stores its label (i.e., the leaf corresponding to T(i)$ stores the
label i).

Lemma 3.2 A D-modified suffix tree of T has size O(n+d) and can be constructed
in O(n+d) time.

Proof The D-modified suffix tree is obtained from the suffix tree T(T) in two steps. In
the first step, we mark all nodes of T(T) with path-label equal to a pattern P∈D∪{ε}:
if any of them are implicit, we also make them explicit; see the annotated nodes in
Fig. 2 (top). Note that we can find the loci of the patterns in T(T) in O(n+d) time
by answering a batch of weighted ancestor queries [33, Section 7]. We are left with
the task of making several implicit nodes explicit, possibly multiple nodes on some
edges of the tree. For this, the implicit nodes on each edge need to be sorted by their
string-depths. Sorting locally within each edge could add ω(n+d) to the overall time
complexity, so we use a global bucket sort instead, which costs O(n+d) time.

In the second step, we traverse the tree top-down and compute, for each marked
node or leaf u, its nearest marked ancestor v 6= u; the node v becomes the parent of the
node u in the D-modified suffix tree. The string-depths of nodes are retained from the
original suffix tree. ut

We state the following simple lemma.

Internal Dictionary Matching 7

14

2

13 1

12

3 4 5 8

6 9

10

7 11

a b
c

$

daaaabaabbaac$

a b
c$

daaaabaabbaac$

a b

c$

a
ba

ab
ba

ac
$

baabbaac$ aa
bb

aa
c$ baac$

aa
bb

aa
c$

ba

ac$

aa

baac$

bb
aa

c$ c$

6 13 1 7 11 10 2

abba

9

c

14

aa

4 5 8 12

aaaa

3

Fig. 2 Example of a D-modified suffix tree for dictionary D = {aa,aaaa,abba,c} and text T =
adaaaabaabbaac from Example 1.1. Top: the suffix tree T(T) with the nodes corresponding to elements of
D annotated in red; bottom: the D-modified suffix tree of T .

Lemma 3.3 With the D-modified suffix tree of T at hand and O(n+ d) additional
space, given positions a, j in T with a≤ j, we can compute all P ∈ D that occur as
prefixes of T [a . . j] in time O(1+ |output|).

Proof We start from the root of the D-modified suffix tree and go down towards the
leaf with label a. We report the path-labels of all encountered nodes v as long as
δ (v)≤ j−a+1 is satisfied. We stop when this inequality is not satisfied.

The path is traversed using level ancestor queries on the D-modified suffix tree
asked from the leaf [8]. ut

The D-modified suffix tree enables us to efficiently answer EXISTS(i, j) and
REPORT(i, j) queries. Let us introduce two auxiliary length-n arrays that can be
computed from the D-modified suffix tree; the first one will be used in the solution in
this section, whereas the other one in the following sections:

Shortest(D)[a] = min({b : T [a . .b] ∈ D}∪{∞})
Longest(D)[a] = max({b : T [a . .b] ∈ D}∪{0})

Example 3.4 Arrays Shortest, Longest for T and D= {aa,aaaa,abba,c} from Fig. 2.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14

T a d a a a a b a a b b a a c

Shortest(D)[i] ∞ ∞ 4 5 6 ∞ ∞ 9 12 ∞ ∞ 13 ∞ 14

Longest(D)[i] 0 0 6 5 6 0 0 9 12 0 0 13 0 14

8 P. Charalampopoulos et. al

Lemma 3.5 Given the D-modified suffix tree of a string T together with a data
structure supporting O(1)-time level ancestor queries, each element of the arrays
Shortest(D) and Longest(D) can be retrieved in O(1) time.

Proof For a leaf of the D-modified suffix tree with label a, we set Longest(D)[a] to
the string-depth of its parent. For a leaf with label a and level greater than 1, we set
Shortest(D)[a] to the string-depth of its ancestor at level 1, retrieved using a level
ancestor query. If the leaf is itself at level 1, then Shortest(D)[a] = ∞. ut

Theorem 3.6
(a) EXISTS(i, j) queries can be answered in O(1) time with a data structure of size

O(n) that can be constructed in O(n+d) time.
(b) REPORT(i, j) queries can be answered in O(1+ |output|) time with a data struc-

ture of size O(n+d) that can be constructed in O(n+d) time.

Proof (a) It can be readily verified that the answer to query EXISTS(i, j) is true if
and only if the minimum element in the subarray Shortest(D)[i . . j] is at most j. Thus,
in order to answer EXISTS(i, j) queries, it suffices to construct the array Shortest(D)
and a data structure that answers range minimum queries (RMQ) on Shortest(D). The
array Shortest(D) can be constructed in O(n+d) time using Lemmas 3.2 and 3.5, and
the data structure answering range minimum queries in O(1) time can be built in time
O(n) [24,9].

(b) We first identify all positions a∈ [i . . j] that are starting positions of occurrences
of some pattern P ∈ D in T [i . . j] using RMQs over array Shortest(D) as follows. The
first RMQ is over the range [i . . j] and identifies any such position a (if any such
position exists). The range is then split into two parts, [i . .a−1] and [a+1 . . j]. We
recursively use RMQs to identify the remaining positions in each part. Once we have
found all the positions where at least one pattern from D occurs, we report all the
patterns occurring at each of these positions and being contained in T [i . . j] using
Lemma 3.3. The complexities follow from Lemmas 3.2 and 3.3. ut

4 REPORTDISTINCT(i, j) queries

Below, we present an algorithm that reports patterns from D occurring in T [i . . j],
allowing for O(1) copies of each pattern on the output. We can then sort these patterns,
remove duplicates, and report distinct ones using an additional global array of counters,
one for each pattern.

Let us first partition D into D0, . . . ,Dblognc such that Dk = {P ∈ D : blog |P|c= k}.
We call Dk a k-dictionary. We now show how to process a single k-dictionary Dk; the
query procedure may clearly assume k ≤ log |T [i . . j]|.

We first build the Dk-modified suffix tree of T . Then, we compute the array
Lk := Longest(Dk), assign to all the patterns of Dk equal to some T [a . .Lk[a]] integer
identifiers id (or colors) in [1 . .n], and construct an array Ik[a] = id(P), where P =
T [a . .Lk[a]]. Technically, in order to compute the array Ik efficiently, for each index
a, in addition to Lk[a], we store the node of the Dk-modified suffix tree representing
T [a . .Lk[a]]; this node is obtained as in the proof of Lemma 3.5.

Internal Dictionary Matching 9

We then construct the data structure specified in the following theorem for Ik; this
data structure, due to Muthukrishnan [39], allows for efficient colored range reporting
queries.

Theorem 4.1 (Colored Range Reporting [39]) Given an array A[1 . .N] of elements
from [1 . .U], we can construct a data structure of size O(N) in O(N +U) time, so that
upon query [i . . j] all distinct elements in A[i . . j] can be reported in O(1+ |output|)
time.

Let t = max{i, j−2k+1 +1}. First, we perform a colored range reporting query
on the range [i . . t) of array Ik and obtain a set Ck of distinct patterns, employing
Theorem 4.1. (An illustration is provided in Fig. 3.) We observe the following.

T

Ik g b r . . b r . . b

Colored Range Reporting

i jt

2k+1

Fig. 3 An illustration of array Ik and the colored range reporting query that we perform. The k-dictionary
consists of the blue, green and red patterns, whereas Ck consists of the blue and red patterns. Note that
patterns that start in [i . . t) cannot end in a position to the right of j.

Observation 4.2 Any pattern of a k-dictionary Dk occurring in T at position p∈ [i . . t)
is a prefix of a pattern P ∈ Ck.

Based on this observation, we report the remaining patterns that start in [i . . t)
using the Dk-modified suffix tree, in O(1+ |output|) time, following parent pointers
and temporarily marking the loci of reported patterns to avoid double-reporting. We
have shown the following lemma.

Lemma 4.3 All distinct patterns from dictionary Dk that start in an interval [i . . t)
can be reported in O(1+ |output|) time with a data structure of size O(n+ |Dk|) that
can be constructed in O(n+ |Dk|) time.

We thus now only have to report the patterns from Dk that occur in T [t . . j]. To this
end, we further partition Dk to a periodic k-dictionary and an aperiodic k-dictionary:

Dper
k = {P ∈ Dk : per(P)≤ 2k/3} and Daper

k = {P ∈ Dk : per(P)> 2k/3}.

Note that we can partition Dk in O(|Dk|) time using the so-called 2-period queries
of [34,6,32]. Such a query decides whether a given fragment of the text is periodic

10 P. Charalampopoulos et. al

and, if so, also returns its period. These queries can be answered in O(1) time after an
O(n)-time preprocessing of the text.

Let us provide some intuition behind this partition of Dk. As shown next, each pat-
tern in Daper

k can occur only a constant number of times in T [t . . j]. (If two occurrences
of a pattern have a “large” overlap, then this pattern must have a “small” period.)
Patterns in Dper

k may have many occurrences; however, as we will show below, each
of them occurs in one of a constant number of runs (formally defined in Section 4.2).
Our algorithm processes each such run R, efficiently computing a single occurrence of
each P ∈ Dper

k that occurs in R.

4.1 Processing an aperiodic k-dictionary

We make use of the following sparsity property.

Fact 4.4 (Sparsity of occurrences) The occurrences of a pattern P of an aperiodic
k-dictionary Daper

k in T start more than 2k

3 positions apart.

Proof If two occurrences of P started d ≤ 2k

3 positions apart, then d would be a period
of P, contradicting P ∈ Daper

k . ut

Lemma 4.5 REPORTDISTINCT(t, j) queries for the aperiodic k-dictionary Daper
k and

j− t < 2k+1 can be answered in O(1+ |output|) time with a data structure of size
O(n+ |Daper

k |) that can be constructed in O(n+ |Daper
k |) time.

Proof Since the fragment T [t . . j] is of length at most 2k+1, by Fact 4.4, it may
contain at most three occurrences of each pattern in Daper

k . We can thus simply use a
REPORT(t, j) query for dictionary Daper

k and then remove duplicates. The complexities
follow from Theorem 3.6(b). ut

4.2 Processing a periodic k-dictionary

Our solution for periodic patterns relies on the well-studied theory of runs (maximal
repetitions) in strings. A run is a periodic fragment R = T [a . .b] which can be extended
neither to the left nor to the right without increasing the period p = per(R), that is,
T [a− 1] 6= T [a+ p− 1] and T [b− p+ 1] 6= T [b+ 1] provided that the respective
positions exist. The number of runs in a string of length n is O(n) and all the runs can
be computed in O(n) time [35,6]. The following property of runs is known [34,32].

Observation 4.6 Let P be a periodic pattern. Every occurrence of P in T is contained
within a unique run R in T with per(R) = per(P). We say that this run R extends the
occurrence.

Let R be the set of all runs in T . We construct for all k ∈ [0 . .blognc] the sets of
runs Rk = {R ∈ R : per(R)≤ 2k

3 , |R| ≥ 2k} in O(n) time overall. Note that these sets
might not be disjoint; however, |Rk|= O(n

2k) (cf. Lemma 4.8 below) and thus their
total size is O(n).

Internal Dictionary Matching 11

a
1

a
2

a
3

a
4

a
5

b
6

a
7

a
8

a
9

a
10

b
11

a
12

a
13

a
14

a
15

b
16

a
17

a
18

a
19

a
20

a
21

a
22

a
23

a
24

b
25

a
26

b
27

a
28

b
29

a
30

b
31

a
32

a
33

5,1 4,1 4,1 8,1 2,1

9,2
19,5

Fig. 4 All the runs in a sample string T , annotated with their lengths and periods.

Example 4.7 For the string T in Fig. 4, we have

R = {T [1 . .5],T [2 . .20],T [7 . .10],T [12 . .15],T [17 . .24],T [24 . .32],T [32 . .33]},
R2 = {T [1 . .5],T [7 . .10],T [12 . .15],T [17 . .24]},
R3 = {T [17 . .24],T [24 . .32]},
R4 = {T [2 . .20]}.

Note that R2∩R3 6= /0 and that the run T [32 . .33] does not belong to any set Rk.

If U is a fragment of T , by Rk(U)⊆ Rk we denote the set of all runs R ∈ Rk such
that |R∩U | ≥ 2k, that is, runs from Rk whose overlap with the fragment U contains at
least 2k positions. The following lemma is known, but we include a proof for the sake
of completeness and to help the reader to develop some intuition.

Lemma 4.8 ([32, Lemma 4.4.7]) |Rk(U)|= O
(1

2k |U |
)
.

Proof Since each of the runs in Rk is of length at least 2k, it suffices to prove that any
position i of T is contained in at most 3 runs from Rk.

Let m = b 2k

3 c. Let us suppose for the sake of contradiction that some position i is
contained in at least four runs from Rk. Observe that each of the runs must cover all
positions of at least one of the fragments T [i− 2m+ 1 . . i], T [i−m+ 1 . . i+m] and
T [i . . i+2m−1]. By the pigeonhole principle, two of these runs, say R1 and R2, have an
overlap of at least 2m positions. Further, we have |R1∩R2| ≥ 2m≥ per(R1)+per(R2).

This contradicts the following known fact, being a consequence of the periodicity
lemma [20]: If R1 and R2 are two different overlapping runs with periods per(R1) and
per(R2), then |R1∩R2| ≤ per(R1)+per(R2)−1. ut

Strategy Let us now provide a high-level description of our approach for processing
Dper

k . Given a fragment U = T [t . . j], we will first identify the set Rk(U) of runs in
Rk that have a sufficient overlap with U . There is a constant number of them by
Lemma 4.8. For an occurrence in U of a pattern P ∈ Dper

k , the unique run R extending
this occurrence of P must be in Rk(U). We will process each run R ∈ Rk(U) in order
to compute a unique (the leftmost) occurrence in R∩U of each such pattern P.

Let us now focus on the structure of the problem that allows us to only compute
such a unique occurrence. A string S is called primitive if it cannot be expressed as
Xk for a string X and an integer k > 1. The primitivity lemma states that a non-empty
string V is primitive if and only if it occurs only twice in VV : as a prefix and as a
suffix. Moreover, any length-|per(U)| fragment of a string U is primitive [17]. The

12 P. Charalampopoulos et. al

following consequence of these two standard facts will be used for P ∈ Dper
k and Q

being (a fragment of) a run that extends its occurrence.

Lemma 4.9 If a pattern P occurs in a text Q and satisfies |P| ≥ per(Q), then P has
exactly one occurrence starting within the first per(Q) positions of Q.

Proof First, let us prove that P has at least one occurrence starting within the first
q := per(Q) positions of Q. Suppose, for the sake of contradiction, that the leftmost
occurrence of P in Q is at some position j > q. Then, by periodicity, we have Q[j . .
j+ |P|−1] = Q[j−q . . j+ |P|−1−q] = P, a contradiction.

We now proceed to showing that P has exactly one occurrence starting within
the first q positions of Q. Towards a contradiction, suppose that this is not the case
and that P occurs at positions i, j ∈ [1 . .q], with i < j. Now, let us consider V :=
Q[i . . i+q−1] = Q[j . . j+q−1]. Then, V occurs in VV at position j− i+1, neither
as a prefix nor as a suffix. Hence, V is not primitive, a contradiction. ut

We next present our data structure.

Construction of the data structure As discussed above, we compute Rk in O(n) time.
We also build the Dper

k -modified suffix tree of T and the array `k := Shortest(Dper
k)

in O(n+ |Dper
k |) time (using Lemma 3.2 and Lemma 3.5, respectively). We then

preprocess the array `k for RMQ queries.

Answering a query Let us consider a query for U = T [t . . j]. We first compute all runs
in Rk(U) using the following lemma.

Lemma 4.10 Let U be a fragment of T of length at most 2k+1. Then Rk(U) can be
retrieved in O(1) time after an O(n)-time preprocessing.

Proof A periodic extension query [32, Section 5.1], given a fragment V of the text T
as input, checks if V is periodic and, if so, returns the run R extending V . Such queries
can be answered in O(1) time after O(n)-time preprocessing.

Let us cover all positions of U using O(1
2k |U |) = O(1) fragments of length b 2k+1

3 c
with overlaps of at least b 2k

3 c positions and ask a periodic extension query for each
fragment V in the cover. For each run R ∈ Rk(U), the overlap R∩U must contain a
fragment V in the cover. Due to |V | ≥ 2 · per(R), the periodic extension of V must
be R. ut

Finally, let us show how to process each of the O(1) runs returned by the procedure
underlying Lemma 4.10.

We do the following for each run R ∈ Rk(U). We use RMQs repeatedly, as in
the proof of Theorem 3.6(b), for the subarray of `k corresponding to the first per(R)
positions of R∩U . This way, due to Lemma 4.9, we compute precisely the positions
where a pattern P ∈Dper

k has its leftmost occurrence in R∩U . The number of positions
identified for a single run R ∈ Rk(U) is therefore upper bounded by the number of
distinct patterns occurring within R∩U . For each such starting position a, we employ
Lemma 3.3 to return all patterns in Dper

k that are prefixes of T [a . . j]. We thus report all

Internal Dictionary Matching 13

distinct patterns occurring within R∩U . By Lemma 4.9, there is no double-reporting
while processing a single run, and hence the time required to process this run is
O(1+ |output|), where |output| is the number of distinct patterns from Dper

k occurring
in the whole fragment U (rather than just R∩U). See Fig. 5.

a a b a a b a b a a b a b a a b a b a a b a b a a b a b a a b a b b a a

U

per(R)

`4 · · · 16 ∞ 18 19 ∞ · · ·

R ∈ R4(U)

Fig. 5 Distinct patterns in D
per
4 that are generated by R ∈ R4(U) and occur in R∩U are reported by their

occurrences in the first per(R) positions of R∩U . Dashed occurrences are not reported as the corresponding
patterns occur earlier.

Since |Rk(U)|= O(1), we report each pattern a constant number of times and the
overall time required is O(1+ |output|). We have thus proved the following lemma.

Lemma 4.11 REPORTDISTINCT(t, j) queries for the periodic k-dictionary Dper
k and

j− t < 2k+1 can be answered in O(1+ |output|) time with a data structure of size
O(n+ |Dper

k |) that can be constructed in O(n+ |Dper
k |) time.

Overall, by summing across all k ∈ [0 . .blognc], we obtain a data structure of
total size O(n logn+ d) that can be constructed in time O(n logn+ d) and answers
REPORTDISTINCT(i, j) queries in O(logn+ |output|) time. In the next subsection,
we carefully reduce the space occupied by our data structure.

4.3 Reducing the space usage

The space occupied by our data structure can be reduced to O(n+d). Let us notice that
the O(n logn) term in the space complexity comes from several data structures that
take O(n+d′) or O(n) space for a given dictionary D′ and are stored in our solution
for some or all of the dictionaries Dk, Daper

k , Dper
k for k ∈ [0 . .blognc]:

(a) the D′-modified suffix tree with a data structure for level ancestor queries [8],
which use O(n+d′) space,

(b) arrays Shortest(D′) and Longest(D′), which use O(n) space, and data structures
for answering RMQs on these arrays,

(c) the data structure for colored range reporting on an auxiliary array Ik, which uses
O(n) space.

14 P. Charalampopoulos et. al

The remaining data structures—for answering 2-period queries (in the construction
of Daper

k and Dper
k) and periodic extension queries (Lemma 4.10), and the sets of runs

Rk—take O(n) space in total. Let us now show how to modify the components (a)–(c)
to reduce the space usage to O(n+d) without losing the desired functionality.

Part (a) We store the D-modified suffix tree and, for all k ∈ [0 . .blognc] and i ∈
{aper,per}, we mark all nodes from each Di

k with a different color. For each dictionary
D′ ∈ {Dk,D

aper
k ,Dper

k }, we further store, using O(|D′|) space, the D′-modified suffix
tree with its leaves trimmed, augmented with the level ancestor data structure.

The only additional operation we now need to support is determining the parent of
a given leaf in the original D′-modified suffix tree (before the leaves were trimmed).
This can be done using the nearest colored ancestor data structure of [22] over the
D-modified suffix tree. In such queries, given a tree with colored nodes, we want to
be able to compute the nearest ancestor of a query node v that has a color c specified
in the query. For a tree of size N, the data structure of [22] achieves O(log logN)
time per query after O(N)-time preprocessing. We can, however, exploit the fact that
we only have palette= O(logn) colors to obtain O(1)-time queries within the same
construction time.

It is shown in [22] that, in order to answer nearest colored ancestor queries in a
tree with N nodes, it is enough to store some arrays of total size O(N) and predecessor
data structures for O(palette) subsets of [1 . .2N] whose total size is O(N). Here, a
predecessor query predS(i), for a set S and number i, returns the maximum element of
S that does not exceed i. The time needed to compute the sets for the predecessor data
structures and the arrays is O(N). The time complexity of the query is proportional
to the time required for answering a constant number of predecessor queries over the
aforementioned sets. We implement a predecessor data structure for a set S⊆ [1 . .2N]
using O(N) bits of space as follows. We store a bitmap that has the ith bit set if and
only if i ∈ S and augment it with a data structure that answers rank and select queries
in O(1) time and requires o(N) additional bits of space [28,15]. Such a component
can be constructed in O(N/ logN) time [5,38]. Note that predS(i) = select(rank(i)).
We thus use O((n+d) logn) bits, i.e., O(n+d) machine words, in total.

Part (b) The arrays Longest(D′) and Shortest(D′) do not need to be stored explicitly
since their elements can be retrieved using the parent pointers and O(1)-time level
ancestor queries in the D′-modified suffix tree (Lemma 3.5).

It was shown in [21] that an O(1)-query-time RMQ data structure for an array of
size N can be implemented using O(N) bits. This data structure only returns the index
of the minimum value in the given range. To construct the data structures, we build
the underlying arrays one by one and store the relevant RMQ data structures, which
require O(n logn) bits, i.e. O(n) words, in total.

Part (c) For colored range reporting over an array A, the main component of the data
structure underlying Theorem 4.1 from [39] is an RMQ data structure over an array
J[i] = max{ j : j < i, A[i] = A[j]}. We build an O(N)-bits RMQ data structure over J.
The query procedure however, needs access to A, i.e. the colors. Let us recall that our
array of colors Ik is defined by assigning to all the patterns of Dk equal to T [a . .Lk[a]]

Internal Dictionary Matching 15

for some a, where Lk := Longest(Dk), colors id in [1 . .n], and setting Ik[a] = id(P),
where P = T [a . .Lk[a]]. The array Lk can be retrieved from part (b). Let us recall that
each entry Lk[a] can be retrieved in O(1) time along with the corresponding internal
node of the Dk-modified suffix tree. All the internal nodes are stored explicitly, so
their colors can simply be kept with them.

With Lemmas 4.3, 4.5, 4.11 and the above modifications to the space usage, we
arrive at the main result of this section.

Theorem 4.12 REPORTDISTINCT(i, j) queries can be answered in time O(logn+
|output|) with a data structure of size O(n + d) that can be constructed in time
O(n logn+d).

5 COUNT(i, j) queries

We first solve an auxiliary BREAKPOINTS-ANCHOR IPM problem and apply it to
answer COUNT(i, j) queries in O(log2 n/ log logn) time with a data structure of size
O(nd). Then, we employ a locally consistent parsing to reduce the space usage to
O(n+d logn).

5.1 An auxiliary problem

For a string S, by inter-position i+1/2 we refer to a location between positions i and
i+1 in S. We also refer to inter-positions 1/2 and |S|+1/2.

We consider a variant of the Internal Pattern Matching (IPM) problem, in which
we are given a set of inter-positions (breakpoints) B of P and upon query we are
to compute all fragments of T [i . . j] that match P and align a specific inter-position
(anchor) β of the text with some inter-position in B.

BREAKPOINTS-ANCHOR IPM
Input: A length-n text T , a length-m substring P of T , and a set B of inter-positions
(breakpoints) of P.
Query: COUNTβ (i, j): for a given inter-position (anchor) β in T , the number
of fragments T [r+ 1 . .r+m] contained in T [i . . j] that satisfy T [r+ 1 . .bβc] =
P[1 . .bbc] and T [dβe . .r+m] = P[dbe . .m] for some b ∈ B. (Equivalently, T [r+
1 . .r+m] = P and β − r ∈ B.)

Before we proceed with the solution to the auxiliary problem, let us recall known
results on 2D counting problems. In the 2D orthogonal range counting problem,
one is to preprocess an n× n grid with O(n) marked points so that upon query
[x1,y1]× [x2,y2], the number of points in this rectangle can be computed efficiently. In
the (dual) 2D range stabbing counting problem, one is to preprocess the grid with O(n)
rectangles so that upon query (x,y) the number of (stabbed) rectangles that contain
(x,y) can be retrieved efficiently. The counting version of range stabbing queries in
2D reduces to two-sided range counting queries in 2D as follows (cf. [40]). For each
rectangle [x1,y1]× [x2,y2] in grid G , we add points (x1,y1) and (x2 +1,y2 +1) with

16 P. Charalampopoulos et. al

weight 1 and points (x1,y2 +1) and (x2,y1 +1) with weight −1 in a grid G ′. Then the
number of rectangles stabbed by point (a,b) in G is equal to the sum of weights of
points in (−∞,a]× (−∞,b] in G ′. We will use the following result in our solution to
BREAKPOINTS-ANCHOR IPM (Lemma 5.4).

Theorem 5.1 ([12]) Range counting queries for n points in 2D (rank space) can be
answered in time O(logn/ log logn) with a data structure of size O(n) that can be
constructed in time O(n

√
logn).

Data structure Let W1 = {P[dbe . .m] : b ∈ B}∪{ε} and consider the set W2 obtained
by adding U$ and U# for each element U of W1 to an initially empty set, where $ is a
letter smaller (resp. # is larger) than all the letters in Σ . Let W be the compact trie for
the set of strings W2; the trie W can be constructed efficiently using a rather standard
approach.

Lemma 5.2 W can be constructed in O(n+ |B|) time.

Proof First we sort all elements of W2 lexicographically. For this, (implicit or explicit)
nodes of T(T) that correspond to strings in W1 are marked using batch weighted
ancestor queries. Implicit nodes on each edge are sorted top-down, off-line for all
edges of T(T), using radix sort. Then we traverse T(T) using left-to-right depth first
search. When a node corresponding to a string U ∈W1 is visited for the first/last time,
we add U$/U# to the sorted list of W2, which we further denote by L.

We can compute longest common prefixes of fragments of T in O(1) time after
O(n)-time preprocessing. This lets us compute longest common prefixes of all pairs
of strings that are adjacent in L in O(n+ |B|) total time. Then the construction of W
mimics the algorithm for constructing the suffix tree of a string from its suffix and
LCP arrays; see e.g. [17]. ut

We also build the W1-modified suffix tree of T and preprocess it for weighted
ancestor queries. Moreover, for each string U ∈W1, we store pointers to the leaves of
W representing U$ and U#.

Similarly, let W R be the compact trie for set Z2 consisting of elements V $ and
V # for each V ∈ Z1 = {(P[1 . .bbc])R : b ∈ B}∪{ε}. We preprocess the pair (W R,Z1)
analogously to how we preprocess the pair (W,W1).

Note that both tries W , W R have O(|B|) leaves. Let us now consider a 2D grid
of size O(|B|)×O(|B|), whose x-coordinates (resp. y-coordinates) correspond to the
leaves of W (resp. W R). For each breakpoint b ∈ B we do the following. Let x1 and x2
be the leaves with path-label P[dbe . .m]$ and P[dbe . .m]# in W , respectively. Similarly,
let y1 and y2 be the leaves with path-label (P[1 . .bbc])R$ and (P[1 . .bbc])R# in W R,
respectively. We add the rectangle Rb = [x1,y1]× [x2,y2] in the grid. An illustration is
provided in Fig. 6. We then preprocess the grid for the counting version of 2D range
stabbing queries, employing Theorem 5.1.

Query Without loss of generality, we may assume i− 1
2 ≤ β ≤ j + 1

2 ; otherwise
COUNTβ (i, j) = 0. Let U be the longest string in W1 that is a prefix of T [dβe . . j];
this string can be determined in O(log logn) time using a weighted ancestor query in

Internal Dictionary Matching 17

P = abaabb

a b

abb b

aa
bb b

aa
bb b

$ #

$ # $ # $ # $ #

$ #

$ #

P
R
=

bb
aa

ba

a

b

aba

ba

a

ba
ab

a

aba

$

#

$

#

$

#

$

#

$

#

$

#

$

#

1
2

1 1
2

2 1
2

3 1
2

4 1
2

5 1
2

6 1
2

Fig. 6 Example of the construction of rectangles in the proof of Lemma 5.4 for P= abaabb and breakpoints
i+1/2 for i = 0,1,2,3,4,5,6. Each rectangle is annotated with its breakpoint.

the W1-modified suffix tree of T . Moreover, let u′ be the leaf of W representing U$
(accessed through a pointer stored at U). We execute a symmetric procedure to find
the longest string V ∈ Z1 that is a prefix of (T [i . .bβc])R and determine the leaf v′ of
W R representing V $.

Observation 5.3 The number of fragments T [r+1 . . t] =P satisfying i≤ r+1≤ t ≤ j
and β − r ∈ B is equal to the number of rectangles stabbed by the point of the grid
defined by u′ and v′.

The observation holds because this point is inside rectangle Rb for b ∈ B if and
only if P[dbe . .m] is a prefix of T [dβe . . j] and P[1 . .bbc] is a suffix of T [i . .bβc]. This
concludes the proof of the following result.

Lemma 5.4 BREAKPOINTS-ANCHOR IPM queries can be answered in O(logn
log logn)

time with a data structure of size O(n+ |B|) that can be constructed in time O(n+
|B|
√

log |B|).

18 P. Charalampopoulos et. al

Next, we define the analogous BREAKPOINTS-ANCHOR IDM problem, a variant
of the Internal Dictionary Matching (IDM) problem.

BREAKPOINTS-ANCHOR IDM
Input: A length-n text T , a dictionary D of patterns, and for each pattern P ∈ D,
a set BP of inter-positions (breakpoints) of P.
Query: COUNTβ (i, j): for a given inter-position (anchor) β in T , the num-
ber of fragments T [r + 1 . .r + |P|] contained in T [i . . j] that satisfy T [r + 1
. .bβc] =P[1 . .bbc] and T [dβe . .r+ |P|] =P[dbe . . |P|] for some P∈D and b∈BP.
(Equivalently, T [r+1 . .r+ |P|] = P and β − r ∈ BP.)

The following lemma is obtained by building a trie W for the union of the sets W2
defined in the above proof for each pattern (similarly for W R) and adding all rectangles
to a single grid.

Lemma 5.5 BREAKPOINTS-ANCHOR IDM queries can be answered in O(logn
log logn)

time with a data structure of size O(n+∑P∈D |BP|). The data structure can be con-
structed in time O(n+

√
logn∑P∈D |BP|).

A warm-up solution for COUNT(i, j) Naively, Lemma 5.5 can be applied as follows
to answer COUNT(i, j) queries. Let us set BP = {p+1/2 : p ∈ [1 . . |P|−1]} for each
pattern P ∈ D and construct the data structure of Lemma 5.5. We build a balanced
binary tree BT on top of the text and for each node v in BT define val(v) to be the
fragment consisting of the characters corresponding to the leaves in the subtree of v.
Note that if v is a leaf, then |val(v)| = 1; otherwise, val(v) = val(u`)val(ur), where
u` and ur are the children of v. For each node v in BT, we precompute and store the
count for val(v), defined as the number of occurrences of patterns from D in val(v).
If v is a leaf, this count equals |{P ∈ D : P = val(v)}| and can be determined easily
due to |val(v)|= 1. Otherwise, each occurrence is contained in val(u`), is contained in
val(ur), or spans both val(u`) and val(ur). Hence, we sum the answers for the children
u` and ur of v and add the result of a BREAKPOINTS-ANCHOR IDM query in val(v)
with the anchor between val(u`) and val(ur).

To answer a query concerning T [i . . j], we recursively count the occurrences in
the intersection of val(v) with T [i . . j], starting from the root r of BT as it satisfies
val(r) = T [1 . .n]. If the intersection is empty, the result is 0, and if val(v) is contained
in T [i . . j], we can use the precomputed count. Otherwise, we recurse on the children u`
and ur of v and sum the resulting counts. It remains to add the number of occurrences
spanning across both val(u`) and val(ur). This value is non-zero only if T [i . . j] spans
both these fragments, and it can be determined from a BREAKPOINTS-ANCHOR IDM
query in the intersection of val(v) and T [i . . j] with the anchor between val(u`) and
val(ur).

The query time is O(log2 n/ log logn) since non-trivial recursive calls are made
only for nodes on the paths from the root r to the leaves representing T [i] and T [j].
Nevertheless, the space required for this “solution” can be Ω(nd), which is unaccept-
able. Below, we refine this technique using a locally consistent parsing; our goal is to
decrease the size of each set BP from Θ(|P|) to O(logn).

Internal Dictionary Matching 19

5.2 Recompression

A run-length straight line program (RLSLP) is a context-free grammar which generates
exactly one string and contains two kinds of non-terminal symbols: concatenations
with production of the form A→ BC (for symbols B,C) and powers with production
of the form A→ Bk (for a symbol B and an integer k ≥ 2). Every symbol A generates
a unique non-empty string denoted g(A).

Each symbol A is also associated with its parse tree PT(A) consisting of a root
with a label A to which zero or more subtrees are attached: if A is a terminal, there
are no subtrees; if A→ BC is a concatenation symbol, then PT(B) and PT(C) are
attached; if A→ Bk is a power symbol, then k copies of PT(B) are attached. Note that
if we traverse the leaves of PT(A) from left to right, spelling out the corresponding
non-terminals, then we obtain g(A). The parse tree PT of the whole RLSLP generating
a string T is defined as PT(S) for the starting symbol S. We define the value val(v) of
a node v in PT to be the fragment T [a . .b] corresponding to the leaves T [a], . . . ,T [b]
in the subtree of v. Note that val(v) is an occurrence of g(A), where A is the label of v.
A sequence of nodes in PT is a chain if their values are consecutive fragments in T .

The recompression technique by Jeż [29,30] consists in the construction of a
particular RLSLP generating the input text T . The underlying parse tree PT is of
depth O(logn) and it can be constructed in O(n) time. As observed by I [27], this
parse tree PT is locally consistent in a certain sense. To formalize this property, he
introduced the popped sequence of every fragment T [a . .b], which is a sequence of
symbols labelling a certain chain of nodes whose values constitute T [a . .b].

Theorem 5.6 ([27]) If two fragments match, then their popped sequences are equal.
Moreover, each popped sequence consists of O(logn) runs (maximal powers of a
single symbol) and can be constructed in O(logn) time. The nodes corresponding to
symbols in a run share a single parent. Furthermore, the popped sequence consists of
a single symbol only for fragments of length 1.

Let us now provide some more intuition. For any occurrence T [a . .b] of a string
S in T , we have a chain of nodes whose labels can be represented compactly, whose
values constitute T [a . .b], and whose labels are independent of what precedes or
succeeds T [a . .b]. This yields a uniform handle for all such occurrences.

Let F p1
1 · · ·F

pt
t be the run-length encoding of the popped sequence of a substring S

of T . If |S|= 1, then we set L(S) = /0; otherwise, we define

L(S) =

{|g(F1)|, |g(F p1
1)|, |g(F p1

1 F p2
2)|, . . . , |g(F p1

1 · · ·F
pt−1

t−1)|, |g(F p1
1 · · ·F

pt−1
t−1 F pt−1

t)|}.

By Theorem 5.6, the set L(S) can be constructed in O(logn) time given an arbitrary
occurrence of S in T .

Lemma 5.7 Let v be a non-leaf node of PT and let T [a . .b] be an occurrence of S
contained in val(v), but not contained in val(u) for any child u of v. If T [a . .c] is the
longest prefix of T [a . .b] contained in val(u) for a child u of v, then |T [a . .c]| ∈ L(S).
Symmetrically, if T [c′+1 . .b] is the longest suffix of T [a . .b] contained in val(u) for a
child u of v, then |T [a . .c′]| ∈ L(S).

20 P. Charalampopoulos et. al

Proof Consider the chain v1, . . . ,vp of nodes in PT whose values constitute T [a . .b]
and whose labels form the popped sequence of S. These nodes are descendants of v
and, since |S|> 1 guarantees p > 1, they are proper descendants of v (i.e., descendants
of children of v). Consequently, T [a . .c] = val(v1) · · ·val(vq), where v1, . . . ,vq is the
longest prefix of v1, . . . ,vp consisting of descendants of the same child of v.

If the labels of vq and vq+1 are distinct, then their labels belong to distinct runs in
the popped sequence, and thus |T [a . .c]| ∈ L(U). (See Fig. 7 for an illustration of this
case.)

Otherwise, Theorem 5.6 guarantees that vq and vq+1 share the same parent. As
they are descendants of different children of v, their parent must be v. Due to this, and
since v1, . . . ,vq form a chain consisting of descendants of the same child of v, we have
q = 1. Hence, |T [a . .c]|= |val(v1)| ∈ L(S).

The proof of the second claim is symmetric. ut

v

u z

v1 v2

v3

v4

v5

v6

a bc

T · · · · · ·

Fig. 7 Node v has two children, u and z. We denote val(u) by a grey rectangle, and val(z) by a green
rectangle. T [a . .c] is the longest prefix of S = T [a . .b] that is contained in val(u). Note that the labels of v3
and v4 must be distinct as these nodes do not share a single parent—one is a proper descendant of u, while
the other is a proper descendant of z. Hence, |T [a . .c]| ∈ L(S).

Data structure We use recompression to build an RLSLP generating T and the
underlying parse tree PT. We also construct the data structure for BREAKPOINTS-
ANCHOR IDM queries of Lemma 5.5 with breakpoints BP = {i+ 1

2 : i∈ L(P)} for each
pattern P ∈ D. Moreover, for every symbol A we store the number of occurrences of
patterns from D in g(A). Additionally, if A→ Bk is a power, we also store the number
of occurrences in g(Bi) for i ∈ [1 . .k]. The space consumption is O(n+d logn) since
|BP|= O(logn) for each P ∈ D.

Efficient preprocessing The RLSLP and the parse tree are built in O(n) time, and the
sets BP are determined in O(d logn) time using Theorem 5.6. The data structure of
Lemma 5.5 is then constructed in O(n+d log3/2 n) time.

Next, we process the RLSLP in a bottom-up fashion. If A is a terminal, its count
is easily determined. If A→ BC is a concatenation, we sum the counts for B and

Internal Dictionary Matching 21

C and the number of occurrences spanning both g(B) and g(C). To determine the
latter value, we fix an arbitrary node v with label A and denote its children u`,ur.
By Lemma 5.7, any occurrence of P intersecting both val(u`) and val(ur) has a
breakpoint aligned to the inter-position between the two fragments. Hence, the third
summand is the result of a BREAKPOINTS-ANCHOR IDM query in val(v) with
the anchor between val(u`) and val(ur). Finally, if A→ Bk, then to determine the
count in g(Bi), we add the count for B, the count in g(Bi−1), and the number of
occurrences in Bi spanning both the prefix B and the suffix Bi−1. To find the latter
value, we fix an arbitrary node v with label A, denote its children u1, . . . ,uk, and
make a BREAKPOINTS-ANCHOR IDM query in val(u1) · · ·val(ui) with the anchor
between val(u1) and val(u2). The correctness of this step follows from Lemma 5.7.
The running time of this processing is O(n logn/ log logn), so the overall construction
time is O(n logn/ log logn+d log3/2 n).

Query Upon a query COUNT(i, j), we proceed essentially as in the warm-up solution:
we recursively count the occurrences contained in the intersection of T [i . . j] with
val(v) for nodes v in PT, starting from the root of PT. If the two fragments are disjoint,
the result is 0, and if val(v) is contained in T [i . . j], it is the count precomputed for
the label of v. Otherwise, the label of v is a non-terminal. If it is a concatenation
symbol, we recurse on both children u`,ur of v and sum the obtained counts. If
T [i . . j] spans both val(u`) and val(ur), we also add the result of a BREAKPOINTS-
ANCHOR IDM query in the intersection of T [i . . j] with val(v) and the anchor between
val(u`) and val(ur). If the label is a power symbol A→ Bk, we determine which
of the children u1, . . . ,uk of v are spanned by T [i . . j]. We denote these children by
u`, . . . ,ur and recurse on u` and on ur. If r > `, we also make a BREAKPOINTS-
ANCHOR IDM query in the intersection of T [i . . j] with val(u`) · · ·val(ur) and anchor
between val(u`) and val(u`+1). If r > `+ 1, we further add the precomputed value
for g(Br−`−1) to account for the occurrences contained in val(u`+1) · · ·val(ur−1) and
make a BREAKPOINTS-ANCHOR IDM query in the intersection of T [i . . j] with
val(u`+1) · · ·val(ur) and anchor between ur−1 and ur. By Lemma 5.7, the answer is the
sum of the up to five values computed. The overall query time is O(log2 n/ log logn)
since we make O(logn) non-trivial recursive calls and each of them is processed in
O(logn/ log logn) time.

We arrive at the main result of this section.

Theorem 5.8 COUNT(i, j) queries can be answered in O(log2 n/ log logn) time with
a data structure of size O(n+d logn) that can be constructed in O(n logn/ log logn+
d log3/2 n) time.

6 Dynamic dictionaries

In this section, we study the IDM problem in the case that insertions to and deletions
from the dictionary are allowed. First, we present a conditional lower bound for this
problem that is based on the conjectured hardness of a known problem in the online
setting. In the remainder, we focus on providing algorithms matching this conditional
lower bound.

22 P. Charalampopoulos et. al

6.1 Conditional lower bound

In the Online Boolean Matrix-Vector Multiplication (OMv) problem, we are given as
input an n×n boolean matrix M. Then, we are given in an online fashion a sequence
of n vectors r1, . . . ,rn, each of size n. For each such vector ri, we are required to output
Mri before receiving ri+1.

Conjecture 6.1 (OMv Conjecture [26]) For any constant ε > 0, there is no O(n3−ε)-
time algorithm that solves OMv correctly with probability at least 2/3.

We now present a restricted version of [26, Theorem 2.2] which is sufficient for
our purposes.

Theorem 6.2 ([26]) For all constants γ,ε > 0, the OMv conjecture implies that there
is no algorithm that, given as input an r1× r2 matrix M, with r1 = brγ

2c, preprocesses
M in time polynomial in r1+r2, and then, presented with a vector v of size r2, computes
Mv in time O(r1+γ−ε

2) with error probability at most 1/3.

We proceed to obtain an OMv-based conditional lower bound for IDM in the case
of a dynamic dictionary. Our lower bound is stated for EXISTS(i, j) queries, but it
clearly carries over to the remaining query types considered in this work.

Theorem 6.3 For all constants α,β > 0 with α +β < 1, the OMv conjecture implies
that there is no algorithm that preprocesses T and D in time polynomial in n, performs
insertions to D in time O(nα), and answers EXISTS(i, j) queries in time O(nβ) in an
online manner with error probability at most 1/3.

Proof Let us suppose that there is such an algorithm and set γ = (α +ε/2)/(β +ε/2),
where ε = 1−α−β . Given an r1× r2 matrix M satisfying r1 = brγ

2c, we construct
a text T of length n = r1r2 + r2 as follows. Let T ′ be a text created by concatenating
the rows of M in increasing order. Then, T is obtained by assigning to each non-zero
element of T ′ the column index of the matrix entry it originates from, and appending
one by one the integers in [1 . .r2] in increasing order. Formally, for i ∈ [1 . .r1r2],
let a[i] = di/r2e and b[i] = 1+(i− 1) mod r2, and set T [i] = b[i] ·M[a[i],b[i]]; for
i ∈ [r1r2+1 . .r1r2+r2], set T [i] = i−r1r2. (We append these letters in order to ensure
that the dictionary that we construct below is internal.)

We compute Mv as follows. We add the indices of v’s non-zero entries into an
initially empty dictionary. We then perform queries EXISTS(1+(t − 1)r2, tr2) for
t ∈ [1 . .r1]. The answer to the query EXISTS(1+(t−1)r2, tr2) is equal to the boolean
dot product of the tth row of M with v. We thus obtain Mv, with each entry correct with
probability at least 2/3. We can guarantee that the whole vector Mv is correct with
probability at least 1−n−Ω(1) ≥ 2/3 by maintaining Θ(logn) independent instances
of the algorithm and taking the dominant answer to each EXISTS query. In total, we
perform Õ(r2) insertions to D and Õ(r1) EXISTS queries. Thus, the total time required
is Õ(r2nα + r1nβ) = Õ(nβ+ε/2nα +nα+ε/2nβ) = Õ(n1−ε/2) = O(r1+γ−ε ′

2) for ε ′ > 0.
Conjecture 6.1 would be disproved due to Theorem 6.2. ut

Internal Dictionary Matching 23

Example 6.4 For the matrix

M =


1 0 1 0

0 0 1 0

0 1 0 0

 ,
we construct the text T = 1030003002001234. For the vector v =

[
1 1 0 1

]T
, the

dictionary is D= {1,2,4}. The answers to EXISTS(1,4), EXISTS(5,8), EXISTS(9,12)

queries are true, false, true, respectively, which corresponds to Mv =
[
1 0 1

]T
.

Remark 6.5 The proof of the above theorem requires a large alphabet. Let us describe
a straightforward modification to this proof that yields the same lower bound for
ternary alphabets. We add a $ between every pair of consecutive letters in T and then
replace each integer in T with its binary representation. Similarly, the patterns we add
to or remove from D are the same integers as above, but represented in binary.

6.2 Upper bound

Before we proceed solving the dynamic IDM problem, let us recall known results
for internal pattern matching queries. In this setting, each query specifies a fragment
T [i . . j] and a substring P of the text and asks questions analogous to those that we
have defined for internal dictionary matching. Note that we assume that the pattern P
is a substring of T and is given by one of its occurrences. We answer COUNT(P, i, j)
queries as follows, similar to [36]. We construct the suffix tree T(T) and preprocess
it so that each node stores the lexicographic range of suffixes of which its path-label
is a prefix. We also construct a 2D orthogonal range counting data structure over an
n× n grid G , in which, for each suffix T [a . .n], we insert a point (a,b), where b is
the lexicographic rank of this suffix among all suffixes. We answer COUNT(P, i, j) as
follows. We first locate the locus of P in T(T) using a weighted ancestor query in
Õ(1) time and retrieve the associated lexicographic range [` . .r]. Next, we perform a
counting query for the range [i . . j−|P|+1]× [` . .r] of G , which returns the desired
count; see also [37]. The same approach—with range reporting instead of range
counting—can be used for REPORT(P, i, j) queries.

Theorem 6.6 ([31,36]) Given a text T of length n, we can construct in Õ(n) time
an Õ(n)-size data structure that, given a pattern P specified as a fragment of T and
positions i, j, can answer queries of the form EXISTS(P, i, j), REPORT(P, i, j), and
COUNT(P, i, j) in time Õ(1+ |output|).

We are now ready to solve the dynamic IDM problem. Let us denote the initial
dictionary by D0. Further, let u1,u2, . . . be the sequence of dictionary updates and Dr

be the dictionary after update ur. Each update is an insertion or a deletion of a pattern
in D. We first discuss how to answer REPORTDISTINCT queries.

24 P. Charalampopoulos et. al

REPORTDISTINCT(i, j) We maintain the invariant that after update ut we have access
to the static data structure of Section 4 for answering REPORTDISTINCT queries in T
with respect to a dictionary Dr for r = t−O(m). This can be achieved by rebuilding
the data structure of Section 4 every m updates in Õ(n+ d) time, which amortizes
to Õ((n + d)/m) time per update. The time complexity can be made worst-case
by application of the standard time-slicing technique: We keep two copies of our
data structure, switching their roles after (roughly) every m/2 updates. One copy
is for handling at most m/2 updates and answering queries, while the other one is
reinitialized in chunks in the background. We also store updates ur+1, . . . ,ut (or the
differences between Dr and Dt).

To answer a REPORTDISTINCT query, we do the following:
1. use the static data structure to answer the REPORTDISTINCT query for Dr;
2. filter out the O(m) reported patterns that are in Dr \Dt ;
3. search for the O(m) patterns in Dt \Dr individually in Õ(1) time per pattern by

performing internal pattern matching queries, employing Theorem 6.6.
Each query thus requires time Õ(m+ |output|). We arrive at the following proposition.

Proposition 6.7 For every text T of length n and integer parameter m≥ 1, a dynamic
internal dictionary D can be maintained in O(n+ |D|) space, supporting Õ(n+ |D|)-
time initialization, Õ(1+(n+ |D|)/m)-time updates, and Õ(m+ |output|)-time queries
REPORTDISTINCT(i, j).

We next show how to improve the update time to O(1+ n/m) matching, up to
subpolynomial terms, the lower bound of Theorem 6.3.

We store D in an array D of size n, which consists in collections of total size d.
D[p] stores the elements of D whose leftmost occurrence in T is at position p in a min
heap with respect to their lengths. In fact, as all elements stored in D[p] are prefixes
of T [p . .n], it suffices to store the length of each element. We can find the desired
position p for a pattern P ∈ D in O(log logn) time by locating its locus in T(T) using
a weighted ancestor query; we can have precomputed the leftmost occurrence of the
path-label of each explicit node of T(T) in a DFS traversal. We can initialize D in
O(n+ |D0|) time by answering all weighted ancestor queries as a batch [33, Section 7].

The dictionary D′ = {minD[p] : 1≤ p≤ n}, where minD[p] is the shortest pattern
whose length is stored in D[p], is of size O(n). Let P be a pattern inserted to or deleted
from D, and let p be the position of the leftmost occurrence of P in T . For such an
update in D, we update D[p] and (possibly) update D′ as follows.

– Case I: P is inserted to D. If P is shorter than minD[p] or D[p] is an empty
collection, then P is inserted to D′ and minD[p] (if it exists) is deleted from D′.
Finally, P is also inserted to the collection D[p].

– Case II: P is deleted from D. If P = minD[p], then P is deleted from D′, P is
deleted from D[p], and the new minD[p] (if any) is inserted to D′. Otherwise (if
P 6= minD[p]), P is only deleted from D[p].

Observe that if P ∈ D[p] occurs in T [i . . j], then minD[p] also occurs in T [i . . j].
We thus maintain D′ using the solution of Proposition 6.7. In order to answer a
REPORTDISTINCT(i, j) query for D, we first answer an analogous query for D′. For

Internal Dictionary Matching 25

each reported pattern minD[p] ∈ D′, we iterate over patterns P ∈ D[p] in the order of
increasing lengths, as long as P occurs T [i . . j]; we check whether this is the case using
Theorem 6.6. Note that the relevant elements of each collection D[p] are retrieved
efficiently in the right order since D[p] is implemented as a min heap.

REPORT(i, j) We first perform a REPORTDISTINCT(i, j) query and then find all oc-
currences of each returned pattern in T [i . . j] in time Õ(1+ |output|) by Theorem 6.6.

EXISTS(i, j) We observe that the answer for D is the same as for D′. For the latter
dictionary, we use the static version of COUNT(i, j), presented in Section 5, and the
counting version of internal pattern matching (Theorem 6.6) for the removed/inserted
patterns, incrementing/decrementing the counter appropriately. We rebuild the data
structure every m updates.

COUNT(i, j) We first build the data structure of Section 5 for COUNT(i, j) queries
for dictionary D0. For the subsequent m updates, we use this data structure to an-
swer COUNT(i, j) queries, treating individually the inserted/removed patterns using
Theorem 6.6. These queries are thus answered in Õ(m) time.

After every m updates, we update our data structure as follows to reflect the current
dictionary. (We focus on D0 and Dm for notational simplicity.) We update the counts
of occurrences for all nodes of PT by computing the counts for the set of inserted
and the set of removed patterns in Õ(n) total time and updating the previously stored
counts accordingly.

As for BREAKPOINTS-ANCHOR IDM, we also have to do something smarter
than simply recompute the whole data structure from scratch, as we do not want
to spend Ω(d) time. At preprocessing, we set our grid G to be of size K×K for
K = O(n2) and identify x-coordinate i with the ith smallest element of the set W =
{Ux : U is a substring of T and x ∈ {$,#}}. (Similarly for y-coordinates and T R.)

In order to compute the rectangles in G and transform queries to points as in the
original solution, we need to be able to efficiently transform strings in W to their ranks.
Let us show how to preprocess the suffix tree T(T) in O(n) time so that the rank of a
given string T [a . .b]$ or T [a . .b]# in W can be computed in Õ(1) time. Let us assume
that T(T) has been built for T , without the $ appended to it. We make a DFS traversal
of T(T), maintaining a global counter cr, which is initialized to zero at the root. The
DFS visits the children of a node in the left-to-right order. When traversing an edge,
we increment cr by the length of the path-label of this edge. When an explicit node
v with path-label S is visited for the first time, we set the rank of S$ equal to cr, and
when v is visited for the last time, we set the rank of S# to cr+1. Let q be the locus
of T [a . .b] in T(T), which can be computed in O(log logn) time using a weighted
ancestor query. If q is an explicit node, the ranks of T [a . .b]$ and T [a . .b]# are already
stored at q. Otherwise, these ranks can be inferred from the ranks of S$ and S#, where
S is the path-label of the nearest explicit descendant v of q by, respectively, subtracting
and adding the distance between v and q.

Thus, rectangles and points from the proof of Lemma 5.4 are maintained in the K×
K grid G . After m updates, we remove (resp. add) the Õ(m) rectangles corresponding
to patterns in D0 \Dm (resp. Dm \D0). Finally, instead of using Theorem 5.1, we can

26 P. Charalampopoulos et. al

maintain a data structure of size O(r) for the counting version of range stabbing in
a 2D grid of size K×K with r rectangles with O(logK logr/(log logr)2) time per
update and query [25]. Since we are not optimizing Õ(1) factors in the complexity,
range trees (cf. [10]) can also be used for 2D range queries to avoid randomization.

To wrap up, updating the data structure every m updates to D requires Õ(1+n/m)
amortized time. We can deamortize the time complexities using the time-slicing
technique. This concludes the proof of the following theorem.

Theorem 6.8 For every text T of length n and parameter m ∈ [1 . .n], a dynamic inter-
nal dictionary D can be maintained in Õ(n+ |D|) space, supporting Õ(n+ |D|)-time
initialization, Õ(n/m)-time updates, and Õ(m+ |output|)-time queries EXISTS(i, j),
REPORT(i, j), REPORTDISTINCT(i, j), and COUNT(i, j).

Acknowledgements Panagiotis Charalampopoulos and Manal Mohamed thank Solon Pissis for prelimi-
nary discussions.

Funding

Panagiotis Charalampopoulos was partially supported by ERC grant TOTAL (no.
677651) under the EU’s Horizon 2020 Research and Innovation Programme. Tomasz
Kociumaka was supported by ISF grants no. 1278/16 and 1926/19, a BSF grant no.
2018364, and an ERC grant MPM (no. 683064) under the EU’s Horizon 2020 Research
and Innovation Programme. Jakub Radoszewski and Tomasz Waleń are supported by
the Polish National Science Center, grant no. 2018/31/D/ST6/03991.

Conflict of interest

Not applicable.

References

1. Alfred V. Aho and Margaret J. Corasick. Efficient string matching: An aid to bibliographic search.
Communications of the ACM, 18(6):333–340, 1975. doi:10.1145/360825.360855.

2. Amihood Amir, Martin Farach, Zvi Galil, Raffaele Giancarlo, and Kunsoo Park. Dynamic dictio-
nary matching. Journal of Computer and System Sciences, 49(2):208–222, 1994. doi:10.1016/

S0022-0000(05)80047-9.
3. Amihood Amir, Martin Farach, Ramana M. Idury, Johannes A. La Poutré, and Alejandro A. Schäffer.

Improved dynamic dictionary matching. Information and Computation, 119(2):258–282, 1995. doi:
10.1006/inco.1995.1090.

4. Amihood Amir, Gad M. Landau, Moshe Lewenstein, and Dina Sokol. Dynamic text and static pattern
matching. ACM Transactions on Algorithms, 3(2):19, 2007. doi:10.1145/1240233.1240242.

5. Maxim Babenko, Paweł Gawrychowski, Tomasz Kociumaka, and Tatiana Starikovskaya. Wavelet trees
meet suffix trees. In 26th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, pages
572–591. SIAM, 2015. doi:10.1137/1.9781611973730.39.

6. Hideo Bannai, Tomohiro I, Shunsuke Inenaga, Yuto Nakashima, Masayuki Takeda, and Kazuya
Tsuruta. The “runs” theorem. SIAM Journal on Computing, 46(5):1501–1514, 2017. doi:10.1137/
15M1011032.

http://dx.doi.org/10.1145/360825.360855
http://dx.doi.org/10.1016/S0022-0000(05)80047-9
http://dx.doi.org/10.1016/S0022-0000(05)80047-9
http://dx.doi.org/10.1006/inco.1995.1090
http://dx.doi.org/10.1006/inco.1995.1090
http://dx.doi.org/10.1145/1240233.1240242
http://dx.doi.org/10.1137/1.9781611973730.39
http://dx.doi.org/10.1137/15M1011032
http://dx.doi.org/10.1137/15M1011032

Internal Dictionary Matching 27

7. Hideo Bannai, Shunsuke Inenaga, and Dominik Köppl. Computing all distinct squares in linear time
for integer alphabets. In 28th Annual Symposium on Combinatorial Pattern Matching, CPM 2017,
volume 78 of LIPIcs, pages 22:1–22:18. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2017.
doi:10.4230/LIPIcs.CPM.2017.22.

8. Michael A. Bender and Martin Farach-Colton. The level ancestor problem simplified. Theoretical
Computer Science, 321(1):5–12, 2004. doi:10.1016/j.tcs.2003.05.002.

9. Michael A. Bender, Martin Farach-Colton, Giridhar Pemmasani, Steven Skiena, and Pavel Sumazin.
Lowest common ancestors in trees and directed acyclic graphs. Journal of Algorithms, 57(2):75–94,
2005. doi:10.1016/j.jalgor.2005.08.001.

10. Jon Louis Bentley. Multidimensional divide-and-conquer. Communications of the ACM, 23(4):214–229,
1980. doi:10.1145/358841.358850.

11. Ho-Leung Chan, Wing-Kai Hon, Tak Wah Lam, and Kunihiko Sadakane. Dynamic dictionary match-
ing and compressed suffix trees. In 16th Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2005, pages 13–22. SIAM, 2005. URL: http://dl.acm.org/citation.cfm?id=1070432.
1070436.

12. Timothy M. Chan and Mihai Pătraşcu. Counting inversions, offline orthogonal range counting, and
related problems. In 21st Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2010, pages
161–173, 2010. doi:10.1137/1.9781611973075.15.

13. Panagiotis Charalampopoulos, Tomasz Kociumaka, Manal Mohamed, Jakub Radoszewski, Wojciech
Rytter, Juliusz Straszyński, Tomasz Waleń, and Wiktor Zuba. Counting distinct patterns in internal
dictionary matching. In 31st Annual Symposium on Combinatorial Pattern Matching, CPM 2020,
volume 161 of LIPIcs, pages 8:1–8:15. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2020.
doi:10.4230/LIPIcs.CPM.2020.8.

14. Panagiotis Charalampopoulos, Tomasz Kociumaka, Manal Mohamed, Jakub Radoszewski, Wojciech
Rytter, and Tomasz Waleń. Internal Dictionary Matching. In 30th International Symposium on
Algorithms and Computation (ISAAC 2019), volume 149 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 22:1–22:17. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2019.
doi:10.4230/LIPIcs.ISAAC.2019.22.

15. David Clark. Compact Pat trees. PhD thesis, University of Waterloo, 1996. URL: http://hdl.
handle.net/10012/64.

16. Richard Cole, Lee-Ad Gottlieb, and Moshe Lewenstein. Dictionary matching and indexing with errors
and don’t cares. In 36th Annual ACM Symposium on Theory of Computing, STOC 2004, pages 91–100.
ACM, 2004. doi:10.1145/1007352.1007374.

17. Maxime Crochemore, Christophe Hancart, and Thierry Lecroq. Algorithms on Strings. Cambridge
University Press, 2007. doi:10.1017/cbo9780511546853.

18. Maxime Crochemore, Costas S. Iliopoulos, Marcin Kubica, Jakub Radoszewski, Wojciech Rytter, and
Tomasz Waleń. Extracting powers and periods in a word from its runs structure. Theoretical Computer
Science, 521:29–41, 2014. doi:10.1016/j.tcs.2013.11.018.

19. Martin Farach-Colton, Paolo Ferragina, and S. Muthukrishnan. On the sorting-complexity of suffix tree
construction. Journal of the ACM, 47(6):987–1011, November 2000. doi:10.1145/355541.355547.

20. N. J. Fine and H. S. Wilf. Uniqueness theorems for periodic functions. Proceedings of the American
Mathematical Society, 16:109–114, 1965.

21. Johannes Fischer and Volker Heun. Space-efficient preprocessing schemes for range minimum queries
on static arrays. SIAM Journal on Computing, 40(2):465–492, 2011. doi:10.1137/090779759.

22. Paweł Gawrychowski, Gad M. Landau, Shay Mozes, and Oren Weimann. The nearest colored node in
a tree. Theoretical Computer Science, 710:66–73, 2018. doi:10.1016/j.tcs.2017.08.021.

23. Richard Groult, Élise Prieur, and Gwénaël Richomme. Counting distinct palindromes in a word in linear
time. Information Processing Letters, 110(20):908–912, 2010. doi:10.1016/j.ipl.2010.07.018.

24. Dov Harel and Robert Endre Tarjan. Fast algorithms for finding nearest common ancestors. SIAM
Journal on Computing, 13(2):338–355, 1984. doi:10.1137/0213024.

25. Meng He and J. Ian Munro. Space efficient data structures for dynamic orthogonal range counting.
Computational Geometry, 47(2):268–281, 2014. doi:10.1016/j.comgeo.2013.08.007.

26. Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol Saranurak. Unifying
and strengthening hardness for dynamic problems via the online matrix-vector multiplication conjecture.
In 47th Annual ACM on Symposium on Theory of Computing, STOC 2015, pages 21–30. ACM, 2015.
doi:10.1145/2746539.2746609.

27. Tomohiro I. Longest common extensions with recompression. In 28th Annual Symposium on Com-
binatorial Pattern Matching, CPM 2017, volume 78 of LIPIcs, pages 18:1–18:15. Schloss Dagstuhl–
Leibniz-Zentrum für Informatik, 2017. doi:10.4230/LIPIcs.CPM.2017.18.

http://dx.doi.org/10.4230/LIPIcs.CPM.2017.22
http://dx.doi.org/10.1016/j.tcs.2003.05.002
http://dx.doi.org/10.1016/j.jalgor.2005.08.001
http://dx.doi.org/10.1145/358841.358850
http://dl.acm.org/citation.cfm?id=1070432.1070436
http://dl.acm.org/citation.cfm?id=1070432.1070436
http://dx.doi.org/10.1137/1.9781611973075.15
http://dx.doi.org/10.4230/LIPIcs.CPM.2020.8
http://dx.doi.org/10.4230/LIPIcs.ISAAC.2019.22
http://hdl.handle.net/10012/64
http://hdl.handle.net/10012/64
http://dx.doi.org/10.1145/1007352.1007374
http://dx.doi.org/10.1017/cbo9780511546853
http://dx.doi.org/10.1016/j.tcs.2013.11.018
http://dx.doi.org/10.1145/355541.355547
http://dx.doi.org/10.1137/090779759
http://dx.doi.org/10.1016/j.tcs.2017.08.021
http://dx.doi.org/10.1016/j.ipl.2010.07.018
http://dx.doi.org/10.1137/0213024
http://dx.doi.org/10.1016/j.comgeo.2013.08.007
http://dx.doi.org/10.1145/2746539.2746609
http://dx.doi.org/10.4230/LIPIcs.CPM.2017.18

28 P. Charalampopoulos et. al

28. Guy Jacobson. Space-efficient static trees and graphs. In 30th Annual Symposium on Foundations of
Computer Science, FOCS 1989, pages 549–554. IEEE Computer Society, 1989. doi:10.1109/SFCS.
1989.63533.

29. Artur Jeż. Faster fully compressed pattern matching by recompression. ACM Transactions on
Algorithms, 11(3):20:1–20:43, 2015. doi:10.1145/2631920.

30. Artur Jeż. Recompression: A simple and powerful technique for word equations. Journal of the ACM,
63(1):4:1–4:51, 2016. doi:10.1145/2743014.

31. Orgad Keller, Tsvi Kopelowitz, Shir Landau Feibish, and Moshe Lewenstein. Generalized substring
compression. Theoretical Computer Science, 525:42–54, 2014. doi:10.1016/j.tcs.2013.10.010.

32. Tomasz Kociumaka. Efficient Data Structures for Internal Queries in Texts. PhD thesis, University of
Warsaw, 2018. URL: https://mimuw.edu.pl/~kociumaka/files/phd.pdf.

33. Tomasz Kociumaka, Marcin Kubica, Jakub Radoszewski, Wojciech Rytter, and Tomasz Waleń. A
linear-time algorithm for seeds computation. ACM Transactions on Algorithms, 16(2):27:1–27:23,
2020. doi:10.1145/3386369.

34. Tomasz Kociumaka, Jakub Radoszewski, Wojciech Rytter, and Tomasz Waleń. Internal pattern
matching queries in a text and applications. In 26th Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2015, pages 532–551. SIAM, 2015. doi:10.1137/1.9781611973730.36.

35. Roman M. Kolpakov and Gregory Kucherov. Finding maximal repetitions in a word in linear time.
In 40th Annual Symposium on Foundations of Computer Science, FOCS 1999, pages 596–604. IEEE
Computer Society, 1999. doi:10.1109/SFFCS.1999.814634.

36. Tsvi Kopelowitz, Moshe Lewenstein, and Ely Porat. Persistency in suffix trees with applica-
tions to string interval problems. In 18th International Symposium on String Processing and
Information Retrieval, SPIRE 2011, volume 7024 of LNCS, pages 67–80. Springer, 2011. doi:

10.1007/978-3-642-24583-1_8.
37. Veli Mäkinen and Gonzalo Navarro. Rank and select revisited and extended. Theoretical Computer

Science, 387(3):332–347, 2007. doi:10.1016/j.tcs.2007.07.013.
38. J. Ian Munro, Yakov Nekrich, and Jeffrey Scott Vitter. Fast construction of wavelet trees. Theoretical

Computer Science, 638:91–97, 2016. doi:10.1016/j.tcs.2015.11.011.
39. S. Muthukrishnan. Efficient algorithms for document retrieval problems. In 13th Annual ACM-

SIAM Symposium on Discrete Algorithms, SODA 2002, pages 657–666. SIAM, 2002. URL: http:
//dl.acm.org/citation.cfm?id=545381.545469.

40. Mihai Pătraşcu. Unifying the landscape of cell-probe lower bounds. SIAM Journal on Computing,
40(3):827–847, 2011. doi:10.1137/09075336X.

41. Mikhail Rubinchik and Arseny M. Shur. Counting palindromes in substrings. In 24th International
Symposium on String Processing and Information Retrieval, SPIRE 2017, volume 10508 of LNCS,
pages 290–303. Springer, 2017. doi:10.1007/978-3-319-67428-5_25.

http://dx.doi.org/10.1109/SFCS.1989.63533
http://dx.doi.org/10.1109/SFCS.1989.63533
http://dx.doi.org/10.1145/2631920
http://dx.doi.org/10.1145/2743014
http://dx.doi.org/10.1016/j.tcs.2013.10.010
https://mimuw.edu.pl/~kociumaka/files/phd.pdf
http://dx.doi.org/10.1145/3386369
http://dx.doi.org/10.1137/1.9781611973730.36
http://dx.doi.org/10.1109/SFFCS.1999.814634
http://dx.doi.org/10.1007/978-3-642-24583-1_8
http://dx.doi.org/10.1007/978-3-642-24583-1_8
http://dx.doi.org/10.1016/j.tcs.2007.07.013
http://dx.doi.org/10.1016/j.tcs.2015.11.011
http://dl.acm.org/citation.cfm?id=545381.545469
http://dl.acm.org/citation.cfm?id=545381.545469
http://dx.doi.org/10.1137/09075336X
http://dx.doi.org/10.1007/978-3-319-67428-5_25

	Introduction
	Preliminaries
	Exists(i,j) and Report(i,j) queries
	ReportDistinct(i,j) queries
	Count(i,j) queries
	Dynamic dictionaries

