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ABSTRACT
O. Simeone, Linear signal processing for single/multi-user MIMO communication systems
over frequency-selective channels

In recent years, with an ever increasing number of wireless services to be allocated within a limited
frequency resource, the focus of both the Information Theory and Signal Processing communities has
been the development of spectrally efficient transmission technologies at the physical layer. The most
promising of such technologies is that of the MIMO systems, that consist in a radio link with multiple
antennas at both ends. A crucial factor in determining the performance of a MIMO system.is the avail-
ability of some information about the propagation channel (Channel State Information, in short CSI) at
the receiver and possibly the transmitter. The CSI is acquired by the receiver by estimating the channel
through the observation of training symbols sent within each block. On the other hand, the transmitter
can obtain some CSI by a feedback channel from the receiver and use this information in order to opti-
mize the signal precoding. This thesis attempts to fill a gap in the present body of work on this subject
by considering both the CSI acquisition phase and the design of linear precoding and equalization. The
main contribution is the study of these aspects within a realistic frequency-selective channel model,
suitable for different propagation environment and antenna geometries, that accounts for a fundamental
property of multipath channel. In particular, the fact the time variability of the multipath channel is due
to two classes of parameters that have different rates of variation is exploited. In this way, one is able
to distinguish between long term channel features and the fast varying fading process. The treatment
encompasses both time-domain and multicarrier transmission. In the first part of the thesis, the impact
of this assumption is investigated for the CSI acquisition phase, at first from a theoretical standpoint, by
evaluating a lower bound on the channel estimation error through the computation of the hybrid Cramér-
Rao bound (HCRB). Then, linear channel estimators, based on the separate computation of long term
features of the channel (through subspace tracking) and tracking of the fading process, that are able to
attain the bound, are proposed. In the second part of the thesis, the study of linear precoding and equal-
ization is performed from both an information theoretic and signal processing persepective in order to
evaluate the system performance within the considered realistic propagation model. In particular, the
problem of designing linear precoding algorithms based on long term CSI at the transmitter is addressed
for a single user MIMO link, whereas the problem of joint precoding, equalization and scheduling is
tackled for the downlink of a multiuser MIMO system with instantaneous CSI at the transmitter.

Keywords: MIMO systems, channel estimation, imperfect CSI, long-term CSI, information rate,
precoding, channel aware scheduling.

Osvaldo Simeone, Dipartimento di Elettronica e Informazione, Politecnico di Milano, Piazza
L. da Vinci 32, I-20133 Milano, Italy. Email: simeone@elet.polimi.it.
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RIASSUNTO
O. Simeone, Linear signal processing for single/multi-user MIMO communication systems
over frequency-selective channels

Recentemente, dato il sempre crescente numero di servizi radio da allocare in un spettro limitato di
frequenze, l’interesse dei ricercatori sia nel campo della teoria dell’informazione che della teoria dei
segnali, si è concentrato sullo sviluppo di tecniche di trasmissione al livello fisico che garantiscano alta
efficienza spettrale. La più promettente tra queste tecnologie è quella dei sistemi MIMO, che prevede
l’uso di antenne multiple ad entrambi gli estremi di un collegamento radio.

Un fattore cruciale nel determinare le prestazioni di un sistema MIMO è la disponibilità di qualche
informazione sullo stato del canale (Channel State Information, CSI) al ricevitore ed eventualmente al
trasmettitore. La CSI è ottenuta al ricevitore effettuando una stima del canale a partire dalla conoscenza
dei simboli di training contenuti in ogni blocco trasmesso. Il trasmettitore, invece, può ottenere la
CSI attraverso un canale di feedback dal ricevitore ed utilizzare questa informazione per ottimizzare la
precodifica del segnale.

In questa tesi, si considera sia la fase di acquisizione della CSI che il progetto della precodifica
e dell’equalizzazione lineare. Il contributo più rilevante è lo sudio di questi aspetti all’interno di un
modello realistico di canale selettivo in frequenza, adatto a diversi scenari propagativi e geometrie delle
schiere di antenne, che tiene conto di una proprietà fondamentale del canale radio. La trattazione com-
prende sia la trasmissione nel dominio del tempo che della frequenza (trasmissione multiportante). In
particolare, si sfrutta il fatto che la variabilità temporale del canale multipercorso è dovuta a due classi
di parametri che variano con diverse dinamiche. In questo modo, si è in grado di distinguere tra carat-
teristiche del canale di lungo periodo e il processo di fading velocemente variabile.

Nella prima parte della tesi, l’impatto della proprietà di cui sopra sul canale di propagazione è
studiato per la fase di acquisizione della CSI, dapprima da un punto di vista teorico, valutando un
limite inferiore sull’errore di stima di canale attraverso il calcolo del CRB ibrido. In seguito vengono
proposti stimatori di canale lineari, basati sul calcolo separato delle caratteristiche di lungo periodo del
canale (attraverso tecniche di inseguimentoi di sottospazi) e sul tracking del processo di fading, che
sono in grado di raggiungere il limite inferiore. Nella seconda parte della tesi, si effettua lo studio
della precodifica lineare ed equalizzazione sia dal punto di vista della teoria della informazione che
dell’elaborazione dei segnali, in modo da valutare le prestazioni del sistema all’interno del modello di
canale considerato. In particolare, si affronta il problema di progettare algoritmi di precodifica lineare
basati sulla CSI di lungo periodo disponibile al trasmettitore per un collegamento MIMO singolo utente,
mentre si considera il problema del progetto congiunto di precodifica, equalizzazione e scheduling per
il downlink di un sistema MIMO multiutente con CSI istantanea al trasmettitore.
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Chapter 1
Introduction

WIRELESS systems are already ubiquitous in providing connection between people or
devices, irrespective on their location. In recent years, the worldwide spread of digi-

tal cellular systems has modified the way people communicate, making it possible to access
multimedia contents and to exchange information almost anywhere. The "anywhere, any-
time" paradigm finds application not only for business and personal communication, but is
also a promising means to build a telecommunication network in developing countries where
no legacy infrastructure is present.

For the near future, it is expected that different wireless networks and systems will co-
exist, furnishing the end user with the possibility to transparently connect to the service that
best serves his needs. Various access technologies range from satellite systems that provide low
bit rate but global coverage to hot spot access points with high bit rate and coverage limited to a
few hundred meters. In such a scenario, with an ever increasing number of wireless services to
be allocated within a limited frequency resource, it is of vital importance to develop spectrally
efficient transmission technologies at the physical layer. The main impediment to this task
is the nature of the propagation within the wireless medium, that is characterized by random
power and phase fluctuations (referred to as fading).

Since the advent of digital wireless communication, there has been much debate within
the standardization bodies on what is the best radio interface to be implemented for different
propagation environments and services. For instance, second generation cellular systems in
Europe have preferred the TDMA technology in order to grant access to the spectral resource
to multiple users, whereas in the United States the preferred choice has been CDMA. More re-
cently, most of the discussion has focused on whether time-domain or multicarrier transmission
has the most desirable properties within an adverse propagation environment such as indoor or
urban outdoor. Amidst these debates, in the mid 90’s, the seminal works of Telatar [1] and
Foschini [2] shed light on an novel technology that promised an increase of the bandwidth ef-
ficiency to a level that could not be achieved by any other known technique. According to this
technology, multiple antennas are deployed at both the transmitter and receiver side, forming a

1
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so called MIMO (that stands for Multiple Input Multiple Output) system.
From these early reports, MIMO systems have become a major research topic for both the

Information Theory and Signal Processing communities. Ten years later, many questions have
been answered but, as discussed below, there are still many important open issues. Addressing
these aspects in a successful way is of utmost importance in making the promise of MIMO
technology become reality.

1.1 State of the art and motivation

Before Telatar and Foschini, the best candidate technology in order to improve the performance
of wireless systems was that of the so called smart antennas. This technique prescribes the use
of an antenna array in order to communicate (either transmitting in downlink or receiving in
uplink) with multiple single antenna terminals. The scenario is clearly of great importance
in cellular systems where the base station can be quite easily provided with a more costly
equipment given by a multielement antenna. The remarkable amount of research dedicated to
this technology pointed out two main benefits to be gained from the deployment of an antenna
array at one end of the radio link. The first such benefit is that related to transmit or receive
beamforming techniques, the second to transmit or receive spatial diversity methods.

Beamforming techniques allow the antenna array to transmit (or receive) multiple data
streams to (or from) single antenna terminals with controlled interference. This result is ob-
tained by appropriate linear precoding of the data stream to be transmitted though the antenna
array (transmit beamforming), or by linear filtering of the received signal by the array (receive
beamforming). The interference rejection capability of a multiantenna system, and therefore
the number of users that can be simultaneously served, is related to the number of antenna
elements [3].

On the other hand, spatial diversity techniques are based on the reception and combination
of different copies of the same trasmitted signal, arrived to the receiver through independent
channels. These independent channels can be obtained either by transmitting the same signal
from different antennas (transmit diversity) or by receiving the signal over multiple antennas
(receive diversity). In this way, the probability of an outage event, i.e., of the received signal
power being below a given threshold, is drastically reduced, and the performance of the system
remarkably improved. The degree of improvement depends on the number of independent
channels (i.e., antennas), also referred to as degreee of diversity [4].

In hindsight, the idea behind MIMO systems is essentially that of combining the benefits of
beamforming and spatial diversity technologies at the receive and transmit side, by deploying
multiple antennas at both ends of the link. In this way, the radio link can enhance the diversity
degree up to the product of the number of transmit and receive antennas. Moreover, it can
build multiple parallel spatial channels between transmitter and receiver, up to the minimum
between the number of transmit and receive antennas [1]. In a recent work [5], Tse defined
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the first effect as diversity gain and the latter as multiplexing gain and found the achievable
trade-off between these two benefits.

Two factors are crucial in determining the performance of a MIMO system, i.e., its capabil-
ity to exploit the diversity and multiplexing gain. The first is the propagation environment: one
of the first widely recognized result in this regard showed that if the wireless channel does not
present sufficiently rich scattering, the performance of a MIMO system can degrade up to that
of a simple single antenna link. The other factor is the availability of some information about
the propagation channel (Channel State Information, in short CSI) at the receiver and possibly
the transmitter. Since the propagation environment is time-varying due to, e.g., the movement
of the two ends of the link, this information may be related either to the state of the channel
at a given time instant (instantaneous CSI) or to long-term features of the propagation, such as
channel statistics (see discussion below).

The first and most commonly studied situation is that of perfect CSI available at the re-
ceiver.(and possibly at the transmitter) over a simple frequency-flat channel model. References
[1] [2] [7] [9] investigated the MIMO link in this scenario from an information theoretic per-
spective, whereas linear precoding and equalization signal processing algorithms have been
studied in [18]. However, in real world, the propagation environment may be more challenging
than a simple frequency-flat scenario and the receiver and transmitter generally can not have a
perfect knowledge of the CSI.

In fact, in many propagation environments, given the high data rate of current systems, the
wireless channel has to modelled as frequency-selective and therefore inter-symbol interference
has to be accounted for1. Moreover, the two ends of the link have to estimate the propagation
channel based on the received signal. This estimate is inherently affected by an error that,
though it can be alleviated by increasing the observation interval devoted to the channel esti-
mation process or exploiting some prior information on the propagation, can not be eliminated.
Information theoretical analyses of MIMO system with imperfect CSI at the receiver have been
proposed in [10] [11].

The transmitter can either directly measure the CSI by exploiting the channel reciprocity in
a Time Division Duplex (TDD) link or else obtain some CSI through a feedback channel by the
receiver. Therefore, in this latter case, the CSI available at the transmitter is not only affected by
an estimation error, but can also be outdated, as compared to the actual state of the propagation,
because of the feedback delay. Information theoretic results related to this scenario have been
presented in [12]. Moreover, toward the goal of reducing the spectral resources to be employed
in order to guarantee the availability of CSI to the transmitter, signal processing algorithms
at the transmit side based only on long-term CSI have been recently studied [14]-[17]. An
extensive coverage of information theoretic results related to different CSI condition can be

1Or, for multicarrier transmission, the additional degree of freedom related to the frequency domain has to be
taken into account.
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found in [19].
The body of research illustrated above has the major limitation of constraining the analysis

to simplified models for the propagation channel and consequently for the CSI available at
the two ends of the link. The use of realistic channel models in information theoretic and
signal processing investigations is exactly one of the most important issues that remain to be
addressed in order to make the MIMO technology feasible. This effort has been attempted
by a few authors. In particular, Shiu et al [7] introduced spatial correlation in frequency-flat
channels while Raleigh and Cioffi [8] and Bolckei et al. [20] considered frequency-selective
channels. What is still missing is a comprehensive and analytically tractable channel model,
able to describe different environments. Based on this model, it would then possible to clearly
define different degrees of (long-term or instantaneous) CSI and therefore develop of more
realistic analyses from information theoretic and signal processing standpoints.

1.2 Overview of the work

This thesis is concerned with the investigation of single and multiuser MIMO systems from
both an information theoretic and signal processing perspective by making use of a realistic
and analytically tractable algebraic channel model. In particular, the treatment builds on a fun-
damental property of the fading channels, that is illustrated below. A general MIMO link is
depicted in fig. 1.1. NT antennas at the transmitter side communicate over a time-varying and
frequency selective channel H(t, τ) with NR antennas at the receiver side. The transmitting
antennas, and the same goes for the receiving antennas, may either belong to a single terminal
or be partitioned among multiple terminals. In the first case, all the transmitting (or receiving)
antennas cooperate when processing the signal to be transmitted (or the received signal). On
the other hand, in the latter case, only the antennas belonging to the same terminal perform a
cooperative signal processing. This thesis will be concerned with the single user case, and the
multiuser case limited to the downlink and uplink scenarios. The author recalls that the down-
link corresponds to the situation where multiple users are present at the receiving end, while
the uplink accounts for the dual case (multiple users at the transmitting end).The time-varying
and frequency-selective channel is described by a NR × NT matrix H(t, τ), that depends on
both the time-instant t and on the delay τ [6]. Accordingly, the signal received over the NR

receiving antenna y(t) is the convolution between the channel H(t, τ) and the NT × 1 signal
x(t) transmitted by the NT × 1 transmitting antennas:

y(t) =

Z
H(t, τ)x(t− τ)dτ + n(t), (1.1)

where n(t) is the additive gaussian noise accounting for both thermal noise and spatially dis-
tributed interferers.

In wireless systems, the channel H(t, τ) accounts for scattering, reflection and diffraction
of the radiated wave that propagates from the transmitter to the receiver. These propagation
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Figure 1.1: Illustration of a general MIMO system.

effects cause the signal to be received through multiple paths, collectively referred to as multi-
path. The characteristics of the multipath channel depend on both the propagation environment
and the geometry of the antenna arrays at the ends of the link. For instance, in a given environ-
ment, it is expected that placing two antennas at a larger distance would entail a smaller degree
of correlation between the channel gains relative to the two antennas.

1.2.1 Long-term channel features and fast varying fading process

The work presented in this thesis is mainly based on a fundamental property of the multipath
channel, that holds for a wide range of assumptions regarding the propagation environment
and the array geometries. In particular, the multipath channel can be conveniently studied by
considering that the time-variability of the propagation is due to two classes of parameters with
different rates of variations. To be specific, consider for instance the propagation delay for a
given path. This parameter is related to large scale geometrical features of the environment,
i.e., on the order of many wavelengths. On the other hand, the fading process, due to the
constructive and destructive combination of multiple paths, is expected to vary for movements
on the order of a fraction of a wavelength. Therefore, the propagation delay can be considered
to have temporal variations much slower (at least one-two orders of magnitude) than the fading
process. Other multipath parameters share this property with the propagation delays, such as
for instance the power-delay profile, that is related to path loss and shadowing phenomena. The
distinction between long-term (i.e., slow varying) features of the multipath channel and the fast
varying fading process is depicted for illustration purposes in fig. 1.2.

1.2.2 Block fading assumption and algebraic structure of the channel

In this thesis, it is assumed that the transmission from each antenna is synchronized and orga-
nized into blocks, as shown in fig. 1.3. Each block can be either transmitted directly in the
time-domain or else, for multicarrier transmission (MIMO-OFDM), in the frequency-domain.
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Figure 1.2: Illustration of the time variability of the long term features of the multipath channel
and the fast varying fading process.

Moreover, each block contains both data symbols, that carry useful information, and training
symbols, that are known to the receiver and used for channel estimation. Through the obser-
vation of the training part of the block, the receiver is able to acquire the CSI by estimating
the propagation channel. This CSI is then used for detecting the data symbols and possibly
fedback to the transmitter, as discussed below (see also fig. 1.4).

Accoding to fig. 1.2, the blocks are generally transmitted in a discontinuous way (i.e.,
packet transmission). Moreover, according to the block-fading assumption, the time variations
of the channel, and specifically of the fading process, within each block are neglected. In other
words, the channel matrix H(t, τ) is modelled as constant within each block, i.e., for the cth
block we have

H(t, τ ) = Hc(τ) t ∈ cth block.

Furthermore, since this thesis is concerned with symbol (T )-spaced receivers, the propagation
channel is completely described by the W matrices of size NR ×NT

Hc[m] = Hc(mT ),

with m = 0, ...,W − 1, where we have assumed that the (causal) channel Hc(τ) is supported
within 0 ≤ τ ≤WT.

Most of the work in this thesis builds on a fundamental result that capitalizes on the dis-
tinction between long-term channel features and fast varying fading process. In fact, the author
proves that the channel vector hc, appropriately defined from the channel matricesHc[m], has
an algebraic structure that allows a simple decoupling of these two classes of parameters. No-
tice that hc describes the the channel characteristics both in the spatial and in the time (delay)
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Figure 1.3: Block transmission either in time and frequency domain with training and data
symbols.

domain. To be more specific, it is shown that, under wide assumptions about the propagation
environment and the array geometries, the long-term features of the channel only determine
the space-time channel correlation matrixRH = E[hch

H
c ]. Moreover, this matrix is generally

rank-deficient, due to the limited spatial and temporal resolution of the receiver. Therefore, it
is completely defined by long-term space-time modes of the channel, that are identified by the
principal eigenvectors of the channel correlation matrix RH . The fading process then only ac-
counts for the fast-varying amplitudes to be assigned to each channel mode within each block.
In other words, while the space-time modes (or equivalently the space-time correlation matrix)
are slowly varying over the transmitted blocks since they depend only on the long-term chan-
nel features, the corresponding amplitudes vary from block to block according to the fading
process.

1.2.3 System overview

The implications of the result discussed above are investigated throughout the thesis for both
the CSI acquisition phase, carried out by processing of the training part of the block, and the
detection phase, corresponding to the processing of the data part of the block. Notice that
in this thesis the author does not consider joint processing of data and training symbols, that
has been recently advocated within the context of iterative receivers (see, e.g., [21]). A block
diagram of the transmitter and receiver is shown in fig. 1.4. Therein, for simplicity, a single
user MIMO link (i.e., fully cooperative on both sides) is depicted. The extension to a multiuser
scenario will be discussed later on.

This thesis is mainly concerned with linear signal processing. Therefore, except in a few
cases, all the processing blocks that are considered consist in linear operators. As shown in
fig. 1.4, training and data symbols are multiplexed to form a the NT blocks (see fig. 1.3) that
are mapped onto the NT transmitting antennas2. Notice that the arrangement of training and

2If multicarrier transmission is employed, the mapping operation includes the IDFT operation needed to convert
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Figure 1.4: Block diagram of transmitter and receiver for a single user MIMO link.

data symbols in fig. 1.3 is only for illustration purposes since the training data could be placed
according to different criteria in the (time or frequency-domain) block [22]. At the receiver
side, after demultiplexing, the training symbols are used in order to obtain an estimate of the
propagation channel ĥc. Morever, they can be possibly exploited in order to compute the long-
term features of the channel, i.e., according to the discussion above, the space-time channel
modes. In other words, the channel estimation block perform the acquisition the instantaneous
CSI ĥc and, possibly, of the long-term CSI RH (or equivalently of the space-time modes).
Notice that the CSI is inherently imperfect beacuse it is the result of an estimation process.

The instantaneous (imperfect) CSI is provided for the design of the linear equalizer that
processes the data symbols. On the other hand, the long-term CSI can be possibly fedback
to the transmitter, on a low rate feedback channel, in order to allow the design of a linear
precoder. The latter can greatly improve the overall performance of the system by capitalizing
on the side information at the transmitter. In principle, the receiver could direcly feedback the
estimate ĥc, but this would require to access the feedback channel on each block. On the other
hand, by feeding back the long-term CSI, the feedback channel has to be accessed only when
this information has significantly changed, which is expected to occur after a large number of
blocks.

1.2.4 CSI acquisition based on modal analysis

This thesis is divided in two parts. The first part of the thesis is dedicated to the problem
of CSI acquisition from the observation of the training part of received blocks. Building on
the results obtained in the first part, the second is devoted to the analysis of precoding and
equalization, i.e., to the processing of the data symbols within each block. In both parts, the
focus is the investigation of the system performance when the realistic channel model discussed
above, that assumes the distinction between long-term channel features and fast varying fading
process, is considered.

the transmitted block from frequency to time domain.
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Channel estimation for MIMO links is an active field of research. Most of the current
literature relies on simple unconstrained ML estimate [10] [23]. Design of efficient channel
estimators based on the exploitation of the the different varying rates of the channel features
has been attempted by a few authors. In particular, such techniques have been developed for
SIMO systems in [24] [25] [26]. These methods are based on a non-linear estimation of the
long-term parameters and therefore suffer from typical impairments of these type of estimators
(threshold effects). Moreover, they are quite sensitive to modelling mismatches, such as poor
antenna calibration or residual timing offsets.

Here, the author starts by tackling this problem from a theoretical point of view. In par-
ticular, the impact of the assumption about the different varying rates on channel estimation is
investigated by deriving a lower bound on the performance of any unbiased channel estimator.
This goal is achieved through the computation of the hybrid CRB, a modification of the con-
ventional CRB that is appropriate for the problem at hand [27]. In this way, a theoretical limit
on the accuracy of the instantaneous CSI given channel and system parameters is determined.

The analysis suggests an asymptotically optimal strategy to perform channel estimation,
that consists in a separate estimation of long-term channel features and fast varying fading
amplitudes. In this thesis, a linear channel estimation algorithm that is able to attains the
theoretical perfomance bound and that overcomes the limitations of the non-linear estimators
discussed above is proposed. It is based on the direct estimation of the space-time modes
(referred to as modal analysis) through a subspace tracking algorithm and the estimation of the
fading amplitudes through least squares techniques.

1.2.5 Linear precoding and equalization

The second part of the thesis is devoted to the analysis of precoding and equalization, i.e., to
the processing of the data symbols within each block. At first, the impact of imperfect CSI
available at the trasmitter and receiver is studied from an information theoretic perspective
within both single and multi-user systems with linear precoding. This part owes to the work
of Medard [28] that derived a lower bound on the information rate for a SISO system with
imperfect CSI.

Then, linear (and possibly non-linear) precoding and equalization based on long-term CSI
at the transmitter is studied for a single user MIMO link. Similar works that did not consider
the possibility to include non-linear blocks have been proposed in [15] [16]. Finally, linear pre-
coding and equalization for multi-user MIMO systems is considered. Since for this scenario,
precoding based on long-term CSI is still an open problem, the thesis concentrates on linear
precoding based on instantaneous CSI and investigate the possibility to perform the joint de-
sign of precoding, decoding and scheduling algorithms for the downlink of a multiuser MIMO
system. This study leverages on the work from Haardt et al. [29] that first tackled this problem
by proposing a disjoint design of the quantities of interest.
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1.3 Thesis contributions

The orignal contributions of this thesis can be listed as follows. Notice that the organization of
this material in different Chapters and the related publications are discussed in the next Section.

• Definition of an analytically tractable channel model suitable for indoor and outdoor
environments. The model is expressed in compact matrix notation and accounts for mul-
tipath with non-integer delays, space-time fading correlation, angles of departure/arrival
and arbitrary power-delay profile. The analysis shows that the multipath channel can be
parametrized as the combination of two matricial terms: the first contains the space-time
modes of the channel and depends on long-terms parameters (delay, angles, correlation
fuctions) whereas the second gathers the corresponding time-varying amplitudes and de-
pends on the fading process. This model is used in order to account for both time-domain
and multicarrier transmission so that all the results reported below hold for both scenar-
ios.

• Computation of a lower bound on the channel (or CSI) estimation error for single and
multiuser MIMO systems over frequency-selective channels through evaluation of the
hybrid CRB. This analysis allows to determine from a theoretical point of view the im-
pact of channel and system parameters on the perfomance of the CSI acquisition step,
given the realistic channel model discussed above.

• Design of linear channel (or CSI) estimators based on the exploitation of the different
varying rates of the channel features, for single and multiuser MIMO systems. The
proposed estimators perform a separate computation of long-term characteristics and fast
varying fading amplitudes. In particular, the long-term estimation is obtained by a direct
evaluation of the space-time modes of the channel through subspace tracking (modal
analysis) and the fading process is tracked by computing the corresponding amplitudes
by least squares techniques. The performance of the proposed estimators is validated
both analytically and through simulations for practical systems showing their ability to
attain the perfomance bound discussed above.

• Information theoretic analysis of the performance of a single and multiuser MIMO sys-
tems with imperfect CSI at the transmitter and the receiver. The single user case is
approached by assuming a frequency-selective channel and capitalizing on the results
discussed above. For the multiuser case, downlink with linear precoding is considered
over a frequency-flat channel in order to simplify the analysis. In this latter situation the
impact of both channel estimation errors and feedback delay is investigated.

• Linear/non linear precoding and equalization based on long-term CSI at the transmitter
for a single user MIMO system over a frequency-flat channel. This study generalizes well
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studied transceivers, such as V-BLAST [30] and Tomlinson-Harashima Precoding [17],
and evaluates the impact of the assumption of long-terms CSI available at the transmitter.

• Joint design of linear precoding, equalization and scheduling for the downlink of a mul-
tiuser MIMO system over a frequency-flat channel. The design is aimed at either maxi-
mizing the sum rate or ensuring some fairness constraints among the users. Herein, it is
assumed that instantaneous CSI is available at both receiver and transmitter.

• Design of the adaptive placement of training symbols within each transmitter block based
on long-term CSI at the transmitter. This study is presented for a single user multicarrier
system.

1.4 Outline of the thesis and related publications

The organization of the thesis and the original publications where the contents of each Chapter
have been presented are disclosed below.

Chapter 2: the basic result on the algebraic structure of the channel vector, decoupling
long-term features and fast varying fading process, is presented. For the corresponding refer-
ences, the reader is refer to Chapter 4.

Chapter 3: presents a review of the signal model for both time domain and multicarrier
transmission. The treatment is aimed at showing the duality of the two approaches, that will be
treated throughout the thesis with a unified notation. Both the single user and multi user cases
are considered.

Part I: CSI acquisition
Chapter 4: derives the lower bound on the channel estimation error for a MIMO system

over a frequency-selective channel. The performance limit is obtained by computing the hy-
brid CRB and taking into account the distinction between long-term channel features and the
fast-varying fading process. This analysis allows to determine, from a theoretical standpoint,
the effects of system and channel parameters on the accuracy of the CSI available for system
optimization. Moreover, it provides, as a by-product, useful indication concerning the opti-
mal channel estimation strategy. This result is capitalized upon in the next Chapter. Original
references for the material presented in this Chapter are:

• O. Simeone and U. Spagnolini, “Lower bound on training-based channel estimation error
for frequency-selective block-fading Rayleigh MIMO channels”, IEEE Trans. on Signal
Processing, vol. 52, no. 11, pp. 3265-3277, Nov. 2004.

• O. Simeone and U. Spagnolini, “Lower bounds on the channel estimation error for fast-
varying frequency-selective Rayleigh MIMO channels”, Proc. IEEE International Con-
ference on Acoustics, Speech, and Signal Processing (ICASSP ’03), vol. 5, pp. 69-72,
April 6-10, 2003.
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• O. Simeone and U. Spagnolini, “Channel estimation for block-fading frequency-selective
Rayleigh MIMO channels: performance limits”, Proc. IEEE Vehicular Technology Con-
ference, May 17-19, Milan, 2004.

• O. Simeone and U. Spagnolini, “Hybrid CRB in linear regression for random parameters
with unknown and rank deficient correlation matrix," submitted.

Chapter 5: discusses linear channel estimation algorithms that are based on a separate
computation of long-term channel features and the fast-varying fading process. The long-term
features are estimated by directly computing the space-time modes of the channel through
subspace tracking (modal analysis) whereas the fading process is evaluated by tracking the
fading amplitudes relative to different channel modes. The treatment encompasses single and
multiuser systems. Performance of channel estimation based on modal analysis is studied
both analytically and by simulations for practical systems, showing that, under appropriate
conditions, it attains the theoretical bound derived in the previous Chapter. This material was
originally disclosed in the following references:

• M. Nicoli, O. Simeone and U. Spagnolini, “Multi-slot estimation of fast-varying space-
time channels in TD-CDMA systems”, IEEE Comm. Letters, vol. 6, no. 9, pp. 376-378,
Sept. 2002.

• M. Nicoli, O. Simeone and U. Spagnolini, “Multi-slot estimation of fast-varying space-
time communication channels”, IEEE Trans. Signal Processing, vol. 51, no. 5, pp.
1184-1195, May 2003.

• M. Nicoli, O. Simeone and U. Spagnolini, “Multi-slot estimation of fast-varying frequency-
selective channels”, IEEE Trans. on Communications, vol. 51, no. 8, pp. 1337-1347,
Aug. 2003.

• O. Simeone, Y. Bar-Ness and U. Spagnolini, “Pilot-based channel estimation for OFDM
systems by tracking the delay subspace”, IEEE Trans. Wireless Commun., vol. 3, no. 1,
pp. 315-325, Jan. 2004.

• O. Simeone and U. Spagnolini, “Multi-slot estimation of space-time channels”, Proc.
IEEE International Conference on Communications (ICC 2002), New York City, April
28-May 2, 2002.

• M. Nicoli, O. Simeone and U. Spagnolini, “A multi-slot method to estimate the fast-
varying channels in TD-CDMA systems”, Proc. XI European Signal Processing Con-
ference (EUSIPCO 2002), Toulouse, September 3-6, 2002.

• M. Aldrovrandi, M. Nicoli, O. Simeone and U. Spagnolini, “Subspace tracking meth-
ods for channel estimation in TD-SCDMA systems”, Proc. European Conference on
Wireless Technology (ECWT 2002), Milan, September 26-27, 2002.
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• O. Simeone, Y. Bar-Ness and U. Spagnolini, “Subspace based methods for channel esti-
mation in OFDM systems”, Proc. European Conference on Wireless Technology (ECWT
2002), Milan, September 26-27, 2002.

• M. Cicerone , O. Simeone, N. Geng and U. Spagnolini, “Modal analysis/filtering to es-
timate time-varying MIMO-OFDM channels, Proc. ITG Workshop on Smart Antennas
(WSA), March 18-19, Munich, 2004.

• M. Aldrovrandi, M. B. Nicoli, O. Simeone and U. Spagnolini, “Method and device for
channel estimation in digital radio communications”, pending patent, no. EP 02425260.3,
April 23, 2002.

• L. Moretti, M. Nicoli, O. Simeone and U. Spagnolini. “Method for the estimation and
tracking of channel modes in multicarrier communication systems”, pending patent, no.
EP 03425721.2, November 5, 2003.

• M. Cicerone, O. Simeone and U. Spagnolini, "Channel estimation for MIMO-OFDM
systems by modal analysis/filtering," submitted.

Part II: Precoding and equalization
Chapter 6: discloses a lower bound on the information rate for single and multiuser sys-

tems with imperfect CSI at the transmitter and the receiver. The single user case is approached
by assuming a frequency-selective channel and capitalizing on the results discussed in Chapter
4. For the multiuser case, downlink with linear precoding is considered over a frequency-flat
channel in order to simplify the analysis. In this latter situation the impact of both channel
estimation errors and feedback delay is investigated. The single user case was originally pre-
sented in the first references listed above for Chapter 4, whereas the analysis of the downlink
is discussed in:

• G. Primolevo, O. Simeone and U. Spagnolini, “Effects of imperfect channel state in-
formation on the capacity of broadcast OSDMA-MIMO systems”, Proc. IEEE Signal
Processing Advances on wireless communications, July 11-14, Lisbon, 2004.

Chapter 7: linear/non linear precoding and equalization are designed based on long-term
CSI at the transmitter for a single user MIMO system over a frequency-flat channel. This study
generalizes well studied transceivers, such as V-BLAST and Tomlinson-Harashima Precoding,
and evaluates the benefits that can be gained by exploiting the side information provided by the
long-term CSI at the transmitter. This material has been originally presented in the following
references:

• O. Simeone and U. Spagnolini, “Combined linear pre-equalization and BLAST equaliza-
tion with channel correlation feedback”, IEEE Communications Letters, vol. 7, no. 10,
pp. 487-489, Oct. 2003.



14 Introduction

• O. Simeone, Y. Bar-Ness and U. Spagnolini, “Linear and non-linear precoding/decoding
for MIMO systems with long-term channel state information at the transmitter”, IEEE
Trans. on Wireless Communications, vol. 3, no. 2, pp. 373-378, March 2004.

• O. Simeone, U. Spagnolini and Y. Bar-Ness, “Linear and non-linear precoding/decoding
for MIMO systems using the fading correlation at the transmitter”, Proc. IEEE Signal
Processing Advances on Wireless Communications (IEEE SPAWC 2003), Rome, June
15-18, 2003.

Chapter 8: discusses the joint design of linear precoding, equalization and scheduling
for the downlink of a multiuser MIMO system over a frequency-flat channel. The design is
aimed at either maximizing the sum rate or ensuring some fairness constraints among the users.
Herein, it is assumed that instantaneous CSI is available at both receiver and transmitter. This
work has been presented in the reference:

• G. Primolevo, O. Simeone and U.Spagnolini, "Channel aware scheduling for broadcast
MIMO systems with orthogonal linear precoding and fairness constraints," Proc. IEEE
ICC 2005, Seoul, May 16-19, 2005.

Chapter 9- Appendix: the appendix investigates a degree of freedom that was not consid-
ered throughout the thesis, i.e., the possibility to select a different number of training symbols
in each transmitting block. This adaptive, block-by-block, selection is made possible since
long-term CSI is assumed to be available at the transmitter. The latter, based on this side in-
formation, is able to predic the perfomance of channel estimation at the receiver and therefore
adjust the number of training symbols according to the desired CSI accuracy at the receiver.
This study is presented for a single user multicarrier system. This material was disclosed in:

• O. Simeone and U. Spagnolini, “Adaptive pilot pattern for OFDM systems”, Proc. IEEE
International Conference on Communications, June 20-24, Paris, 2004.

All the papers can be downloaded at: www.elet.polimi.it/upload/simeone.
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Chapter 2
Algebraic structure of time-varying
frequency-selective MIMO channels

2.1 Introduction

IN wireless systems, the signal propagating from the transmitter to the receiver arrives at the
destination through different paths, collectively referred to as multipath. The multiple paths

are produced by scattering, reflection and diffraction of the radiated wave by the objects present
in the environment. Each path is characterized by a set of parameters, such as propagation de-
lay, mean power (caused by path loss and shadowing) and fast fading amplitude [1]. Moreover,
in a multiantenna setting, the spatial features of each path need to be specified, such as angle of
arrival (AOA) and departure (AOD) or spatial correlation of the fading amplitudes according
to the propagation environment (see below). The reader is referred to the textbooks [1] [2] for
details.

In a time-varying environment, the multipath parameters experience different rates of varia-
tions. In fact, while the fast fading amplitudes depend on small scale features of the propagation
environment, on the order of a fraction of a wavelength, other parameters, such as delays, an-
gles and spatial correlation, vary across distances of many wavelengths [3] [4]. The temporal
variation of a typical outdoor channel for a SIMO system is shown in fig. 2.1 in terms of its
power delay-angle diagram (received power versus propagation delay and AOA). As it can be
seen, delays and angles relative to different paths vary much slowly than the power fluctuations
caused by fast fading.

Characterization of multipath parameters in different frequency bands and scenarios has
been the object of investigation of many measurement campaigns (see, e.g., [5] [6]). As an
outcome of these efforts, several standardization groups have defined channel models to be
used for performance evaluation through computer simulation [7] [8].

In this chapter, an analytical framework for the definition of MIMO channel models that
encompasses multipath propagation with non-integer delays, space-time fading correlation,

19
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Figure 2.1: Temporal variation of the power delay-angle diagram of a typical outdoor channel
for a SIMO system.

angles of departure/arrival and arbitrary power-delay profile is proposed. In particular, two
scenarios are considered (see fig. 2.2):

1. Beamforming scenario [9]: the elements of both transmitting and receiving antenna ar-
rays are co-located and the scatterers can be considered as point sources. Each path of
the multipath channel is then characterized by a AOD and AOA that “steer” the array
response at the transmitter and receiver respectively, a delay and a complex amplitude
(fading). The latter is in turn modelled as a temporally correlated Gaussian stationary
process. As a general rule, this model appears to be well suited for outdoor channels [5]
and has been used in a SIMO context in, e.g., [3], [10].

2. Diversity scenario [11]: the elements of both the transmitting and receiving antenna ar-
rays are not co-located and/or the different scatterers have to be modelled as distributed
sources (see e.g., [12]). These assumptions are generally appropriate for an indoor en-
vironment [6]. For each delay of the multipath, the channel gains between different
transmitting and receiving antennas can then be modeled as spatially and temporally
correlated jointly Gaussian random variable with zero mean (Rayleigh fading). This
model has been used (with some simplifications) by [13], and [14] in the context of
MIMO-OFDM transmission.

The analysis of the algebraic properties of the channel vector h, gathering the MIMO chan-
nel gains as rigorously defined below, shows that the contribution long-term parameters, such
as delay, angles and correlation functions, and fast-varying fading amplitudes can be analyti-
cally decoupled. The main result will be that the channel vector can be written as the product
of a slowly varying matrixT, depending on the long-term parameters, and a vector β gathering
the fading amplitudes:

h = Tβ. (2.1)
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Figure 2.2: Beamforming and diversity channel scenarios.

This factorization not only yields insight on the structure of time-varying propagation but also
sets the ground for the analysis and design of the channel estimation process, to be discussed
in Chapters 4 and 5.

2.2 Multipath model of a MIMO frequency-selective channel

For the sake of illustration, herein we consider a single user MIMO link with NT antennas
at the transmitter and NR at the receiver side (see fig. 2.2). In a multipath environment,
communication over the link between the nT th transmitting antenna and and the nRth receiving
antenna (nT = 1, ..., NT and nR = 1, ...,NR) is impaired by the linear convolution of the
transmitted signal with the channel impulse response h(nT ,nR)c (τ). As explained in the previous
Chapter, the channel coherence time is assumed to be larger than the time slot duration so that
the temporal variation of h(nT ,nR)c (τ) is accounted for by the subscript c that runs over the
blocks.

According to the convention adopted in most of the existing literature, the channel h(nT ,nR)c (τ)

is defined as the convolution of the physical propagation channel with the cascade of the trans-
mitted baseband pulse and the receiving filter, denoted as g(τ). Therefore, the channel impulse
response over the (nT , nR)th link within the cth block is described by the combination of d
paths, each corresponding to a delayed replica of the waveform g(τ)

h
(nT ,nR)
c (τ) =

dX
i=1

p
Ωi,c · a(nT ,nR)i,c · g(τ − τ i,c). (2.2)
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Figure 2.3: Example of the channel impulse h(nT ,nR)c (τ) for d = 2 paths and a Nyquist wave-
form g(τ) with roll-off 0.2.

Each path is characterized by delay τ i,c, mean power Ωi,c (caused by path loss and shadow-
ing) and fast fading amplitude a

(nT ,nR)
i,c . Fig. 2.3 shows an example of the channel impulse

h
(nT ,nR)
c (τ) for d = 2 and a Nyquist waveform g(τ) with roll-off 0.2.

In this thesis, detection after sampling at symbol rate 1/T is considered. Therefore, the
characterization of the discrete-time channel impulse response

h
(nT ,nR)
c [m] = h

(nT ,nR)
c (mT ) (2.3)

is required. Assuming that h(nT ,nR)c [m] is negligible for m ≥ W (and causal), the MIMO
channel within the cth block is completely characterized by the NTNRW samples

h
(nT ,nR)
c [m] m = 0, ...,W − 1; nT = 1, ..., NT ; nR = 1, ..., NR. (2.4)

For analysis, the channel coefficients (2.4) will be conveniently rearranged in different ma-
trices in order to investigate different aspects of the channel structure or to relate transmitted
and received signal in a compact form (see next Chapter). The reordering of the channel coef-
ficient and the corresponding notation will be clarified within the context of interest whenever
necessary.

Here the MIMO channel impulse response obtained by arranging the channel coefficients
(2.4) versus the delay index m is considered, obtaining the NR × NT MIMO channel taps
(recall (2.2))

Hc[m] =
dX

i=1

p
Ωi,c · g(mT − τ i,c)Ai,c m = 0, ...,W − 1 (2.5)

where [Ai,c]nT ,nR = a
(nT ,nR)
i,c . Appropriate definitions of the matrices Ai,c specialize the

MIMO channel structure (2.5) to beamforming and diversity scenarios as described below.
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In order to ease the analysis of the interaction between long-term channel parameters and
the fast fading amplitudes (to be discussed in Sections 2.3 and 2.4), the MIMO channel taps
{Hc[m]}W−1m=0 in (2.5) can be rearranged by stacking their columns into the NRNT ×W matrix
Hc

Hc = [vec{Hc[0]} · · · vec{Hc[W − 1]}] (2.6)

obtaining from (2.5)

Hc =
dX

i=1

p
Ωi,c vec{Ai,c}g(τ i,c)T =Ac ·Ω1/2c ·G(τ c)T (2.7)

where g(τ) is the W × 1 vector that gathers the T -spaced samples of the delayed waveform

g(τ) = [g(−τ) g(T − τ) · · · g((W − 1)T − τ)]T , (2.8)

the NRNT × d matrixAc is

Ac = [vec{A1,c}, vec{A2,c}, · · · , vec{Ad,c}], (2.9)

the d× d diagonal matrix containing the mean powers reads

Ωc = diag{Ω1,c Ω2,c, ...Ωd,c} (2.10)

and the W × d matrix G(τ c) = [g(τ1,c), ...,g(τd,c)] collects all the delayed waveforms.
Moreover, the d× 1 vector of delays τ c = [τ1,c...τd,c]T is defined.

In Sections 2.3 and 2.4 the analytical model (2.7) will be specialized to the beamforming
and diversity scenarios respectivelythrough specification of matrixAi,c i = 1, ..., d.

2.3 Beamforming scenario

In the beamforming scenario (see fig. 2.2), the antennas are closely spaced apart (on the order
of λ/2) and the angular spread of each path at both the transmitter and receiver side is smaller
than the array resolutions [27]. Accordingly, the it path (i = 1, .., d) is spatially characterized
by a AOD α

(T )
i,c and a AOA α

(R)
i,c . Notice that each path, say the ith, is actually made of multiple

micropaths (see for instance the standard model [7]), where all micropaths have AOD’s and
AOA’s bounded within the array resolutions about the values α(T )i,c and α

(R)
i,c respectively. The

constructive and destructive combination of different micropaths gives rise to the fast fading
fluctuactions accounted for by the complex random amplitude βi,c. Therefore, the matrix of
array gains for the ith pathAi,c (2.5) reads

Ai,c = βi,caR(α
(R)
i,c )aT (α

(T )
i,c )

T (2.11)

where aT (α) (or aR(α)) is the NT × 1 (or NR × 1) vector containing the array response to a
plane wave transmitted (or received) with the angle α. The array response depends on the array
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geometry, e.g., if the transmitter side is a uniform linear array with antenna spacing ∆, we get
(λ is the wavelength of the radiated wave)

aT (α) = [1 exp(−j
2π

λ
sinα) · · · exp(−j 2π

λ
(NT − 1) sinα)]T .

Notice that the two arrays can generally have different geometries and number of elements.

2.3.1 Long-term channel parameters

So far, the time-variability of all the channel parameters has been denoted by using the sub-
script c that runs over the blocks. However, the quantities in parametrization (2.5), (2.11) vary
over different time-scales (recall fig. 1.2). In fact, the geometry and the characteristics of the
scatterers are known to vary slowly as compared to the coherence time of the fading processes.
As a consequence, delays τ c, AOAs α(R)c = [α

(R)
1,c · · ·α

(R)
d,c ]

T , AODs α(T )c = [α
(T )
1,c · · ·α

(T )
d,c ]

T ,
powers Ωc can be considered as long-term channel parameters with respect to the fast fading
fluctuations. For the sake of the analysis, parameters τ c, α

(R)
c , α

(T )
c ,Ωc can be assumed to be

constant over some interval of stationarity spanning multiple blocks. That is, it can be written:

α
(T )
c = α(T ), α

(R)
c = α(R), τ c = τ ,Ωc = Ω (2.12)

c ∈ {interval of stationarity of long-terms parameters}.

The quasi-stationary model of temporal variations for the long-term parameters (2.12) is a first
order approximation of the actual continuous (but slow) fluctuations over successive blocks.
This assumption is only made so as to ease the presentation and will not be considered for
design or performance evaluations throughout the thesis.

2.3.2 Fast-varying fading amplitudes

The d× 1 fading amplitudes
βc = [β1,c · · ·βd,c]T (2.13)

in (2.11) model the fast fading fluctuations for the d paths. The main result presented in Sec.
2.3.3 does not depend on the specific statistic of the fading vector. However, this Section is
devoted to the discussion of the main assumption that will be used in this regard throughout the
following Chapters. For future reference, the number of fading amplitude is denoted by NF ,
that for the beamforming scenario equals the number of paths: NF = d.

Throughout the thesis, a Rayleigh probability density function for the envelope and a uni-
form phase distribution is assumed for each amplitude βi,c (Rayleigh fading [1]). Moreover,
amplitudes corresponding to different paths are assumed to be statistically independent (un-
correlated scattering [15]). The temporal fluctuations of each amplitude βi,c are characterized
statistically by means of the temporal correlation (over the blocks)

ϕi(c,m) = E
£
βd,cβ

H
d,c−m

¤
. (2.14)
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From (2.14),in case of packet (or discontinuous) transmission, where the time interval between
transmission of successive blocks is random, the non-uniform sampling makes the sampled
fading process non-stationary. However, in case of continuous transmission, the assumption of
wide-sense sense stationarity [15] can be assumed to hold leading to

ϕi(m) = E
£
βi,cβ

H
i,c−m

¤
. (2.15)

The Fourier transform of the correlation (2.15) defines the Doppler spectrum

Sϕ,i(ω) = F {ϕi(m)} . (2.16)

To simplify, the width of the Doppler spectrum (i.e., the Doppler spread) accounts for the
amount of scattering each path goes through. Notice that different paths may have different
Doppler spectra. For instance, in a typical outdoor scenario, a path with a larger delay corre-
sponds to a larger Doppler spread since it is likely to have experienced more relevant scattering
[16].

Example 1 (Clarke’s model): A model that has been widely employed for analysis and system
simulation is the Clarke’s model [2], that reads

ϕi(m) = J0(2πfD,imTS), (2.17)

fD,i being the Doppler spread [Hz] for the ith path and TS the time interval between trans-
mission of two successive blocks. The corresponding Doppler spectrum is

Sϕ,i(ω) =
1

fD,i

p
1− (ω/(2πfD,i))2

. (2.18)

The assumptions made above can be summarized as follows. The fading amplitude vector
βc is a zero-mean circularly symmetric Gaussian process with correlation matrix

Φ(c,m) = E
£
βcβ

H
c−m

¤
= diag ([ϕ1(c,m) · · ·ϕd(c,m)]) , (2.19)

that in case of continuous transmission becomes

Φ(m) = E
£
βcβ

H
c−m

¤
= diag ([ϕ1(m) · · ·ϕd(m)]) . (2.20)

2.3.3 Decoupling the long-term parameters from the fast fading amplitudes

In this Section, the author evaluates the algebraic structure of the channel model (2.7) as it
results from the assumption about the different rates of variation for the channel parameters
reviewed in the previous Sections. Recalling the definition (2.11) and the properties of the
Kronecker product1, the matrixAc (2.9) can be factorized into the product of the NRNT ×W

stationary termA0(α(T ),α(R)), that depends on the angles α(T ) and α(R)

A0(α(T ),α(R)) = [aT (α
(T )
1 )⊗ aR(α(R)1 ), ..., aT (α

(T )
d )⊗ aR(α(R)d )] (2.21)

1Here the following relationship (A,B,C are matrices with appropriate dimensions) is employed:
vec(ABC)= (CT ⊗A) vec(B) .
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and the d× 1 time-varying random vector βc as in

Ac =A0(α(T ),α(R)) · diag{βc}. (2.22)

Notice that the stationary matrix (2.21) gathers by column the spatial signatures of the d paths
sS,i = aT (α

(T )
i ) ⊗ aR(α(R)i ), i = 1, ..., d. As explained in Sec. 2.3.1 equation (2.21) holds

(as a first order approximation) within the interval of stationarity of the long-term channel
parameters.

The analytical channel model (2.7) now reads

Hc =A0(α(T ),α(R)) · diag{βc} ·Ω1/2·G(τ )T . (2.23)

In order to clearly decouple the long-term parameters from the fast fading, equation (2.23) is
further rearranged into the NRNTW × 1 channel vector

hc = vec{Hc} (2.24)

obtaining the key result2

hc = Tβc,

where the stationary NRNTW × d matrix T contains by column the space-time signatures of
each path sST,i = Ω

1/2
i g(τ i)⊗ sS,i:

T = (G(τ ) ¦A0(α(T ),α(R))) ·Ω1/2 =

= [Ω
1/2
1 g(τ1)⊗ aT (α(T )1 )⊗ aR(α(R)1 )· · ·Ω1/2d g(τd)⊗ aT (α(T )d )⊗ aR(α(R)d )].(2.25)

2.4 Diversity scenario

In case the elements of the antenna arrays are sufficiently far apart and/or the propagation
occurs in a rich scattering environment with large angular spread, the model (2.11) is not ap-
propriate. To simplify and referring to fig. 2.2, let p paths be grouped into d subsets (or clusters)
of p1, p2, ..., pd paths each such that p =

Pd
i=1 pi. Each path within the ith cluster is character-

ized by the same delay τ i,c but different amplitudes with overall power Ωi,c. Hence the matrix
of array gains for the ith path Ai,c (2.5) is Ai,c =

Ppi
c=1 ai,c[c]b

T
i,c[c], where ai,c[c] and bi,c[c]

contain the fading gains between different receiving and transmitting antennas, respectively.
Here, we consider pi very large (pi → ∞) and assume that scattering from different paths is
uncorrelated so that, according to the central limit theorem,

vec{Ai,c} ∼ CN (0,Ri,c) (2.26)

where the NTNR × NTNR matrix Ri,c accounts for the spatial correlation of fading among
the transmitting and receiving antennas. This is normalized so that along its main diagonal

2The following propertiy of the Khatri-Rao product (or columnwise Kronecker product) is used:
vec{Adiag(b)CT } = (C ¦A)b.
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[Ri,c]mm = 1. The latter assumption implies that on average all the channels between each
transmitting and receiving antenna are characterized by the same power gain. This exludes
from our analysis macrodiversity systems in which different spatial channels may experience
different shadowing and path loss [18].

In order to simplify the analysis (see, e.g., [11]) or to have a simple model to match the
measurements [17], the spatial fading correlationRi,c has been often assumed in the literature
to be separable into a NT ×NT spatial correlation at the transmitter sideR(T )i,c and a NR×NR

spatial correlation at the receiver sideR(R)i,c as Ri,c = R
(T )
i,c ⊗R

(R)
i,c . For a detailed discussion

on the limits of the separable model for the spatial correlation see [19].

2.4.1 Long-term channel parameters

Similarly to Sec. 2.3.1, to which we refer for details, delays τ c, powers Ωc and spatial corre-
lation matricesRi,c (that depend on the geometry of the propagation environment [19]) can be
considered as long-term channel parameters with respect to the fast fading fluctuations. Hence,
for the sake of the analysis, parameters τ c, Ωc and Ri,c can be assumed to be constant over
some interval of stationarity spanning multiple blocks. That is, we can write

τ c = τ ,Ωc = Ω, Ri,c = Ri (2.27)

c ∈ {interval of stationarity of long-term parameters}.

2.4.2 Fast-varying fading amplitudes

In the diversity scenario, each path is spatially characterized by NTNR random fading am-
plitudes, modelling the gains between each transmitting and receiving antenna (see (2.26)).
Therefore for each path, we define the NTNR × 1 vector fading vector

βi,c = vec{Ai,c} (2.28)

and the overall NF × 1 fading vector (the number of fading amplitudes is NF = NRNTd)

βc = [β1,c · · ·βd,c]T . (2.29)

As previously stated, the results presented in Sec. 2.4.3 does not depend on the specific statis-
tics of the fading vector. However, the rest of this Section is devoted to the discussion of the
main assumption that will be used in this regards throughout the thesis. Similarly to Sec. 2.3.2,
Rayleigh fading with uncorrelated scattering is considered. Moreover, a space-time fading
correlation that is separable in a spatial and a temporal term is assumed (see, e.g., [13])

E[βi,cβ
H
i,c−m] = Riϕi(c,m). (2.30)
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Therefore, according to Sec. 2.3.2, the fading amplitude vector βc is a zero-mean circularly
symmetric Gaussian process with correlation matrix

Φ(c,m) = E
£
βcβ

H
c−m

¤
=

⎡⎢⎢⎢⎢⎣
R1ϕ1(c,m) 0 · · · 0

0 R2ϕ2(c,m)
...

... . . . 0
0 · · · 0 Rdϕd(c,m)

⎤⎥⎥⎥⎥⎦ , (2.31)

that in case of continuous transmission becomes

Φ(m) = E
£
βcβ

H
c−m

¤
=

⎡⎢⎢⎢⎢⎣
R1ϕ1(m) 0 · · · 0

0 R2ϕ2(m)
...

... . . . 0
0 · · · 0 Rdϕd(m)

⎤⎥⎥⎥⎥⎦ . (2.32)

2.4.3 Decoupling the long-term parameters from the fast fading amplitudes

In this Section, the author evaluates the algebraic structure of the channel model (2.7) as it
results from the assumption about the different rate of variations of channel parameters for the
diversity scenario. Recalling (2.26) and the definition (2.29), we have that matrix (2.9) satisfies

vec{Ac} = βc.

Similarly to Sec. 2.3.3, long-term parameters and fast fading amplitudes can be analytically
decoupled by rearranging (2.7) into the NRNTW × 1 vector hc = vec{Hc} obtaining again
the key result

hc = Tβc, (2.33)

where

T = G(τ )Ω1/2 ⊗ INTNR
. (2.34)

The columns of matrix G(τ )Ω1/2 in (2.34) are referred to as the temporal signatures of
the d paths, sT,i = Ω

1/2
i g(τ i) i = 1, ..., d.

2.5 Channel vector normalization

Throughout the thesis, for a single user link (see next Chapter for generalization to the multiuser
case), the power delay profileΩ is scaled so that the average (over the fading process) channel
norm for each transmitting and receiving antenna is normalized to one:

E

⎡⎣¯̄̄̄¯
W−1X
m=0

h
(nT ,nR)
c [m]

¯̄̄̄
¯
2
⎤⎦ = 1. (2.35)
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This implies that the channel vector norm reads (see next Chapter for a discussion on the
definition of signal to noise ratio):

E[||hc||2] = NTNR. (2.36)

Notice that for symbol-spaced multipath delays, i.e., τ i/T integer for i = 1, ..., d, we have
from the assumption of uncorrelated scattering

E

⎡⎣¯̄̄̄¯
W−1X
m=0

h
(nT ,nR)
c [m]

¯̄̄̄
¯
2
⎤⎦ = W−1X

m=0

E[|h(nT ,nR)c [m]|2] = 1, (2.37)

that is satisfied if and only if
Pd

i=1Ωi = 1.

Table 2.1: Summary of long-term features and number of fast varying fading amplitudes NF

for the beamforming and diversity scenarios.
Scenario Long-terms parameters NF

Beamforming (outdoor)
AOA α

(R)
i , AOD α

(T )
i , delay τ i,

power-delay profile Ωi,
temporal fading correlation ϕi(m)

d

Diversity (indoor) delay τ i, power-delay profile Ωi,
space-time fading correlationRiϕi(m)

NRNTd

2.6 Conclusion

In this chapter, an analytical framework for the definition of MIMO channel models that en-
compasses multipath propagation with non-integer delays, space-time fading correlation, an-
gles of departure/arrival and arbitrary power-delay profile has been proposed. In particular, two
scenarios have been considered: the beamforming and diversity scenarios, suited for outdoor
and indoor applications respectively.

The study of the algebraic properties of the time-varying channel model showed that the
contribution of long-term parameters, summarized in Table 2.1, and the fast-varying fading
amplitudes can be analytically decoupled according to the matrix product hc= Tβc, where
matrix T accounts for the long-term parameters and the NF × 1 vector βc collects the fading
amplitudes.

Remark 1 Mixed beamforming/diversity scenarios for MIMO links that present asymmetric
geometry of arrays and/or scatters at their ends (see, e.g., [21]) can be derived by generalizing
the discussion above. This aspect will not be covered in this thesis.
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Chapter 3
Signal model for MIMO systems over
frequency-selective channels

3.1 Introduction

THIS Chapter is devoted to a brief review of the signal model used for the analysis of
time and frequency (i.e., multicarrier) domain transmission and reception over single and

multiuser MIMO links. As explained in 1, this thesis is concerned with systems that perform
CSI acquisition through transmission of training sequences within each radiated block. This
block can be obtained either according to time-domain or multicarrier transmission, as detailed
in the following. In either case, it contains both training (or pilot) symbols, i.e., symbols known
to the receiver, that are designed for channel estimation, and data symbols, that carry the useful
information. Throughout the thesis, the number of training/pilot symbols and the number of
data symbols are held fixed for the whole duration of the communication, i.e., for all blocks.
However, the transmitter could adapt these parameters on a block-by-block basis according
to the CSI available and the quality of service requirements coming from higher layers. This
approach is proposed and investigated in Chapter 10.

The discrete-time signal received by the nRth receiving antenna at time instant m is the
superposition of the signal radiated by the NT transmitting antennas {x(nT )c [m]}NT

nT=1
after

convolution with the channel impulse response h(nR,nT )c [m]

y
(nR)
c [m] =

NTX
nT=1

x
(nT )
c [m] ∗ h(nR,nT )c [m] + n

(nR)
c [m], (3.1)

where n(nR)c [m] is the additive Gaussian noise, to be specified below. It is recall that subscript c
runs over the transmitted blocks. In this Chapter, it is shown that by rearranging the transmitted,
received signal and the channel gains into appropriately defined matrices, the signal model (3.1)
can be conveniently stated as anticipated below.

For the signal received over the training part of the block, it is useful to make explicit the

33
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dependence on the channel vector hc (2.24). Therefore, after the manipulations described in
Sec. 3.2.1, the received signal yc can be written as

yc = Xchc + nc, (training or pilot phase) (3.2)

whereXc is a block-convolution matrix built from the training sequences. As shown in Sec.
3.3.1, this model holds also for multicarrier transmission (yc herein is to be intended as the
signal received over different pilot subcarriers) but in this case Xc is a block-diagonal matrix,
accounting for the absence of interference among the subcarriers.

On the other hand, it is convenient to write the signal received over the data part of the
block so as to emphasize the dependence on the data vector xc. In particular, according to the
discussion in Sec. 3.2.2, the received signal can be stated as

yc=Hcxc+nc, (data phase) (3.3)

where Hc is a block-convolution matrix obtained from the channel gains. As proved in Sec.
3.3.2, this signal model holds for multicarrier transmission as well (yc herein is to be intended
as the signal received over different data subcarriers) but in this caseHc is block-diagonal.

Notice that in (3.2)-(3.3) we are using the same notation for both time and multicarrier
transmission in order to clarify the duality of the two approaches. Correct definition of the
quantities involved is provided in the rest of this Chapter. Moreover, in Sec. 3.4 it will be
shown how to extend the signal model to a multiuser system.

Remark 2 (joint training and data processing) In this thesis we coinsider a separate pro-
cessing of the training and data symbols. However, joint processing through, e.g., iterative
techniques, has been recently advocated (see, e.g., [1]). This solution, though it complicates
the structure of transmitter and receiver, holds the promise of achieving better spectral effi-
ciency.

3.2 Time-domain transmission/reception

In case of transmission in the time domain, the signal radiated by each antenna is organized in
blocks containing a training sequence time-multiplexed with a data burst as in fig. 3.1. Notice
that the arrangement shown in the figure is only for illustration purposes since in principle
data field(s) and training sequence could be ordered in different ways, e.g., in the TDD-UMTS
standard the training sequence is placed between two data bursts (midamble [2]). The shaded
regions in fig. 3.1 correspond to the redundancy (e.g., zero padding or cyclic prefix [3]) needed
at the beginning of each block in order to cancel the inter-block interference due to the temporal
spread of the channel (W samples, see previous Chapter).

Within the training (or data) part of the cth block, the nT th transmitting antenna sends a
training (or data) sequence x

(nT )
c [m] at symbol-rate 1/T. For convenience, the same symbol
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training seq. data field

PL DL1−W 1−W

Figure 3.1: Time-slot for time-domain transmission.

denotes either the training and data sequences, the use will be made clear by the context.
Training sequences are selected so as to ease the channel estimation process, as explained in
Chapter 4. On the other hand, the data sequences are output by a MIMO encoder/modulator,
designed with the general goal of minimizing the probability of error for detection of the input
binary data bm. The block diagram of the system for training and data transmission phases is
shown in fig. 3.2.

Let LP denote the length of the training (also referred to as pilot) sequences and LD the
number of samples corresponding to the data field. From fig. 3.1, the amount of redundancy
needed in order to estimate the channel and ensure inter-block interference free transmission
is LO = LP + 2(W − 1). For efficient use of spectral resources, it is thus desirable that
LD >> LO under the condition that the fading coherence time is larger (at least equal) than
the block duration (LD + LO)T. Notice that the the guard period right after the training block
could be avoided by cancelling the estimated interference from the training symbols toward the
data block using the estimated channel.

The discrete-time signal received by the nRth receiving antenna can be written as in (3.1).
By rearranging the signal received over theNR receiving antennas in theNR×1 vector yc[m] =
[y
(1)
c [m] · · · y(Nr)

c [m]]T we easily get

yc[m] =
W−1X
i=0

Hc[i]xc[m− i] + nc[m], (3.4)

where xc[i] = [x
(1)
c [i] · · ·x

(NT )
c [i]]T is NT × 1 and Hc[m] is the mth NR ×NT MIMO tap of

the channel impulse response defined in the previous Chapter ([Hk[m]]nR,nT = h
(nR,nT )
k [m]

with m = 0, ...,W − 1). The discrete-time AGN nk[c] is assumed temporally uncorrelated but
spatially correlated with covariance matrixRn:

E[nc[m]nc[m− i]H ] = Rnδ[i]. (3.5)

In general, Rn is modelled as the sum of a diagonal matrix accounting for the thermal noise,
that is always present in the receiving equipment, and a (positive definite) non-diagonal matrix
that accounts for spatially distributed interfering signals [5]. For instance, in a cellular system,
the latter term can model out-of-cell interferers. The gaussian assumption made in this regard
can be justified, under appropriate conditions, according to the central limit theorem [6].
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Figure 3.2: Block diagram for the training and data phase of a time-domain transmission sys-
tem.
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Discarding the preamble of W − 1 samples, the Lα (Lα stands for LP for the pilot and LD

for the data sequence respectively) received samples can be arranged into the NRLα×1 vector
yc = [yc[0]

T ...yc[Lα − 1]T ]T . In this thesis, according to the principle of synchronized detec-
tion [4], training and data sequences are processed separately. For analysis, it is convenient to
write the received vector yc in different forms for the training and data phases.

3.2.1 Training phase

When studying the signal received over the training part of the block for the purposes of de-
signing or analyzing the channel estimation process, it is convenient to write the received signal
so as to make explicit the dependence on the channel vector hc (2.24). Toward this goal, it is
useful to first define the NR × LP matrix Yc = [yc[0] · · ·yc[LP − 1]], that can be written as
follows

Yc= H̆cX T
c +Nc, (3.6)

where
H̆c = [Hc[0],Hc[1], ...,Hc[W − 1]] (3.7)

is the NR ×NTW MIMO-FIR channel matrix that gathers the MIMO channel taps; X c is the
LP ×NTW convolution matrix obtained from the NT training sequences

X c =

⎡⎢⎢⎢⎣
xTc [0]
xTc [1]

...
xTc [LP ]

xTc [−1]
xTc [0]

. . .
xTc [LP − 1]

· · ·

xTc [−W + 1]
xTc [−W + 2]

...
xTc [LP −W + 1]

⎤⎥⎥⎥⎦ ; (3.8)

Nc has the same structure as Yc and from (3.5) 1/LP · E[NcN
H
c ] = Rn. Notice that in

(3.8), the training symbols xc[−m] with m > 0 correspond to the W − 1 samples transmitted
from each antenna in the guard period (see fig. 3.1). In case a cyclic prefix is employed,
xc[−m] = xc[LP − m] (m > 0) whereas for zero padding it is xc[−m] = 0. We remark
that, as it will be clarified in the next Chapter, since each receiving antenna has to estimate
NTW channel coefficients (i.e., the nRth receiving antenna needs to acquire h(nR,nT )k [m] with
nT = 1, ...,NT and m = 0, ...,W − 1), the length of the training sequences LP is required to
satisfy LP ≥ NTW.

Then, by stacking the LP columns of the matrix Yc into the NRLP × 1 vector yc =
vec{Yk} we get

yc = (X c ⊗ INR
)hc + nc = Xchc + nc, (3.9)

that shows the desired dependence on the channel vector hc. The spatial covariance matrix for
the AGN nc = vec{Nc} is E[ncnHc ] = ILP ⊗Rn.

As studied in Chapters 4 and 5, the performance of channel estimation depends on the
correlation properties of the training sequences. On the one hand, it is clear that if the training
sequences sent by two antennas are highly correlated, the channel estimator at the receiver is
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not be able to clearly separate the contribution of the two sequences. Therefore, when sensing
the channel relative to one antenna, its task is impaired by the interference due to the signal
corresponding to the other antenna. This problem is solved if the training sequences assigned to
different antennas are orthogonal (or approximate this optimal condition). On the other hand,
in order to guarantee a channel estimate with a good temporal resolution, the training sequence
sent by each antenna has to present an narrow temporal correlation [7]. Both the spatial (i.e.,
among transmitting antennas) and temporal correlation of the training sequences are accounted
for by the NTW ×NTW correlation matrix

Rx = XH
c X c. (3.10)

According to the discussion above, it is expected that channel estimation attains optimal per-
formanceRx is diagonal (to be discussed in the following Chapters).

A useful model to investigate the correlation properties of the training sequences is to
decouple the effect of spatial and temporal correlation by assuming for Rx the following sep-
arable model

Rx = Rx,T ⊗Rx,S , (3.11)

where the correlation matrix Rx,S is NT × NT and accounts for spatial correlation while
the W ×W matrix Rx,T models the temporal correlation (assumed to be the same for each
sequence).

3.2.2 Data phase

The signal received over the data part of the block can be conveniently expressed as a function
of the NTLD × 1 vector of transmitted data xc = [xc[0]T · · ·xc[LD − 1]T ]T so as to simplify
the analysis and design of the equalization/detection process. The received signal yc can be
easily written in terms of xc as follows

yc=Hcxc+nc (3.12)

whereHc denotes the NRLD ×NTLD convolution matrix of the MIMO channel

Hc =

⎡⎢⎢⎢⎢⎢⎢⎣
Hc[0] 0 0

... Hc[0] 0

Hc[W − 1]
. . . . . .

0 Hc[W − 1] · · ·
0 0

· · ·

0
0
...
· · ·
Hc[0]

⎤⎥⎥⎥⎥⎥⎥⎦ . (3.13)

3.2.3 Signal to noise ratio definition

Throughout the thesis the signal to noise ratio SNR (averaged over the fading, noise and
data/training sequence distributions) is defined per receiving antenna, i.e., from (3.1) and re-
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calling the channel normalization (2.35)

SNR =
P

σ2n
, (3.14)

where P is the total power radiated by the transmitting array, P =
XNT

nT=1
E[|x(nT )c [m]|2],

and E[|n(nR)c [m]|2] = σ2n. Notice that in general the transmitted power over the training and
data part of the block can be different in order to optimize the system performance (see Chapter
6 and [8] [9]).

3.3 Multicarrier transmission/reception (MIMO-OFDM)

In multicarrier systems, as exemplified in figures 3.3 and 3.4, the transmitters collect a block
of L (data and/or training) symbols and performs an IDFT on the resulting vector before trans-
mission. This operation transforms the original (data and/or training) signal from the frequency
domain (i.e., each symbol is transmitted on a given subcarrier) to the temporal domain. More-
over, a cyclic prefix of W −1 (see also discussion in Sec. 3.2.1) is appended to the transformed
block in the temporal domain. This contains the last W − 1 samples of the block and not
only allows interference-free reception of successive blocks but also avoids inter-carrier in-
terference. In fact, as shown in Appendix, after the cyclic prefix has been removed from the
the received block, the receivers perform a DFT on the remaining L samples. This operation
transforms the received signal from the temporal domain to the frequency domain (i.e., each
symbol of the transformed block correspond to a given subcarrier). If the temporal support of
the channel is smaller (or equal to) the length of the cyclic prefix, the signal received over each
subcarrier do not interfere with each other.

As shown in fig. 3.3, each OFDM symbol contains L subcarriers (recall that L is also the
length of the block in the time-domain). Out of the available L subcarriers, LP subcarriers
contain pilot (or training) symbols used for channel estimation, LD contains data and the re-
maining LG are allocated as guard bands so as to simplify the system implementation (e.g., of
analog shaping filters) [10]. Notice that the arrangement shown in fig. 3.3 is only for illustration
purposes since in principle data subcarriers and training sequence can be ordered in different
ways, see, e.g., the multicarrier standards for wireless LAN [10] or digital video broadcasting
[11] or the theoretical analysis [13] [14]. Moreover, the fraction of pilot and data symbols
could be different for different blocks. From fig. 3.3, the amount of redundancy needed in
order to estimate the channel, ensure inter-block and intercarrier interference free transmission
and ease the implementation of the analog shaping filters is LO = LP + LG +W − 1. For
efficient use of spectral resources, it is thus desirable that LD >> LO under the condition that
the fading coherence time is larger (at least equal) than the block duration (LD + LO)T.

Remark 3 (intercarrier interference and Doppler spread): In the previous discussion refer-
ring to the results in Appendix, we have proved that in an ideal system the introduction of a
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Figure 3.3: OFDM symbol in time and frequency domain.
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Figure 3.4: Block diagram of a frequency-domain transmission (MIMO-OFDM) system.
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cyclic prefix nulls the interference among different subcarriers. However, intercarrier interfer-
ence may arise because of possible residual frequency offset [15], phase noise [16] or large
Doppler spread [12]. In practice, it is enough that the signal-to-intercarrier interference ratio
is sufficiently larger than the operational signal to noise ratio. This condition can be tested for
instance using the results in [12] and will be assumed throughout the thesis.

For the sake of simplicity, the same notation will be used in the following for dual variables
in time and frequency domain (such as the received signal or the additive noise) whenever the
use is clear from the context. In this way, the duality between the two approaches should be
apparent by comparing dual equations.

As discussed in Appendix, the signal received by the nRth receiving antenna over the kth
subcarrier is the superposition of the signal radiated by the NT transmitting antennas after
multiplication with the corresponding channel impulse coefficient in the frequency domain
f
(nR,nT )
c [k]

y
(nR)
c [k] =

NTX
nT=1

x
(nT )
c [k]f

(nR,nT )
c [k] + n

(nR)
c [k], (3.15)

where n
(nR)
c [m] is the additive Gaussian noise for the kth subcarrier, to be specified in the

following. The channel coefficients in the frequency domain are obtained as the DFT of the
channel in time domain:

f
(nR,nT )
c [k] =

1√
L

W−1X
m=0

h
(nR,nT )
c [m] exp(−j 2π

L
km), (3.16)

or equivalently lettingΘ be the L×W DFT matrix

Θ =
1√
L

⎡⎢⎢⎢⎣
1 1 · · · 1
1 exp(−j 2πL · 2) · · · exp(−j 2πL · (W − 1))
...

...
...

1 exp(−j 2πL · (L− 1)) · · · exp(−j 2πL · (L− 1)(W − 1))

⎤⎥⎥⎥⎦ , (3.17)

as

f
(nR,nT )
c = Θ · h(nR,nT )c (3.18)

with definitions f (nR,nT )c = [f
(nR,nT )
c [0] · · · f (nR,nT )c [L − 1]]T and h(nR,nT )c = h

(nR,nT )
c [0]

· · ·h(nR,nT )c [W − 1]]T .
By rearranging the signal received over the NR receiving antennas in the NR × 1 vector

yc[k] = [y
(1)
c [k] · · · y(NT )

c [k]]T we easily get

yc[k] = Fc[k]xc[k] + nc[k], (3.19)
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where xc[k] = [x
(1)
c [k] · · ·x

(NT )
c [k]]T is NT×1 andFc[m] is the mth NR×NT MIMO channel

impulse response for the kth frequency:

[Fc[k]]nR,nT = f
(nR,nT )
c [k]. (3.20)

The discrete-time AGN nc[k] is assumed temporally uncorrelated but spatially correlated with
covariance matrixRn:

E[nc[m]nc[m− i]H ] = Rnδ[i]. (3.21)

Notice that the spatial correlation of the noise in the frequency domain equals the same quantity
in the time domain. Similarly to the time-domain case, in the following Sections, we cast the
received vector yc = [yc[0] · · ·yc[Lα−1]]T (Lα stands for LP for the pilot and LD for the data
sequence respectively) in algebraic forms suitable for analysis of the channel estimation phase
(over the pilot subcarriers) and the equalization/detection phase (over the data subcarriers).

3.3.1 Pilot subcarriers

When studying the signal received over the pilot subcarriers for the purposes of designing or
analyzing the channel estimation process, it is convenient to write the received signal so as to
make explicit the dependence on the channel vector hc (2.24). Here, to simplify the notation,
index k in (3.19) is considered to run only over the pilot subcarriers, i.e., k = 0, ..., LP − 1
indexes the kth pilot subcarrier. Now, toward the stated goal, it is useful to first define the
NR × LP matrixYc = [yc[0] · · ·yc[LP − 1]], that can be written as follows

Yc= F̆cX T
c +Nc, (3.22)

where
F̆c = [Fc[0] Fc[1]...Fc[LP − 1]] (3.23)

is NR × NTLP ; X c is the LP × NTW block-diagonal matrix obtained from the NT pilot
sequences

X c =

⎡⎢⎢⎢⎣
xTc [0] 0 · · · 0
0 xTc [1] 0
... . . . ...
0 0 · · · xTc [LP ]

⎤⎥⎥⎥⎦ , (3.24)

Nc has the same structure asYc and 1/LP ·E[NcN
H
c ] = Rn.

Then, by stacking the LP columns of the matrix Yc into the NRLP × 1 vector yc =
vec{Yk} we get

yc = (X c ⊗ INR)fc + nc, (3.25)

where fc = vec{F̆c}. But from (3.18), it easy to show that

fc = (ΘP⊗INRNT
)hc,
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withΘP denoting the LP ×W DFT matrix obtained fromΘ by selecting the columns related
to the pilot subcarriers. Finally, we get the desired result (compared with (3.9) for the time-
domain):

yc = Xchc + nc (3.26)

with

Xc = (XH
c ⊗ INR)(ΘP⊗INRNT ) = [XH

c (ΘP⊗INT )]⊗ INR . (3.27)

The spatial covariance matrix for the AGN nc = vec{Nc} is E[ncnHc ] = ILP ⊗Rn.
As it will be clarified in the next Chapter, since each receiving antenna has to estimate

NTW channel coefficients (i.e., the nRth receiving antenna needs to acquire h(nR,nT )k [m] with
nT = 1, ..., NT and m = 0, ...,W − 1), the number of the pilot subcarriers LP is required to
satisfy LP ≥ NTW.

In the next Chapters, it will be shown that the performance of channel estimation depends
on the correlation properties (either in time and space domain see discussion in Sec. 3.2.1)
of the training sequences sent by different antennas and in particular on the NTW × NTW

correlation matrix

Rx = (Θ
H
P ⊗INT )XH

c X c(ΘP⊗INT ). (3.28)

Recalling the discussion in Sec. 3.2.1, we can conclude that optimum channel estimation
performance can be attained if the pilot sequences are orthogonal, i.e., if the correlation matrix
(3.28) is diagonal. Moreover, following the lines of Sec. 3.2.1, it is convenient to parametrize
the correlation (3.28) by the separable model (3.11).

3.3.2 Data phase

The signal received over the data subcarriers of the block can be conveniently expressed as a
function of the NTLD × 1 vector of transmitted data xc = [xc[0]T · · ·xc[LD − 1]T ]T so as to
simplify the analysis and design of the equalization/detection process. Notice that, similarly
to the previous Section, here we are considering the index k to run over the data subcarriers,
i.e., k = 0, ..., LD − 1 indexes the kth data subcarrier. The received signal yc over the pilot
subcarriers can be easily written as

yc=Hcxc+nc (3.29)

whereHc denotes the NRLD ×NTLD block-diagonal matrix

Hc =

⎡⎢⎢⎢⎣
Fc[0] 0 · · ·
0 Fc[1] 0
...

... . . .
0 0 · · ·

0
0
. . .

Fc[LD − 1]

⎤⎥⎥⎥⎦ . (3.30)
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3.3.3 Signal to noise ratio definition

The signal to noise ratio SNR (averaged over the fading, noise and data/training sequence dis-
tributions) defined in (3.14) for time-domain transmission corresponds for multicarrier trans-
mission to the SNR per receiving antenna and subcarrier as it can be easily shown by using the
channel normalization (2.35) and the relationship (3.46). Notice that in general the transmitted
power over the pilot and data subcarrier of the OFDM symbol could be different (see Chapter
6). Moreover, as a final remark, power loading could be employed over the data subcarriers in
order to maximize the spectral efficiency of the system or minimize the bit error rate [17].

3.4 Extension to multiuser system

So far the signal model has been discussed for a multiantenna link where all the antennas at
both the transmitter and receiver side cooperate when processing the transmitted/received sig-
nal. This is usually referred to as single user MIMO link. Here, the signal model is extended
to a multiuser system, and in particular to the uplink and downlink of a multiantenna system.
The extension is straightforward since, as compared to the single user setting, it is enough to
partition the antenna array at the transmitter (for uplink) or receiver (for downlink) into smaller
non-cooperative arrays corresponding to different users. In other words the multiple arrays,
or users, transmit (for uplink) or receive (for downlink) without performing a cooperative pro-
cessing on the transmitted/received signal as it was the case for a single user MIMO system.

3.4.1 Uplink of a MIMO system (multiaccess channel)

In the uplink of a MIMO system, the NT transmitting antennas are partitioned among K (non-
cooperating) users, each having n

(k)
T antennas (k = 1, ...,K),

PK
k=1 n

(k)
T = NT . The receiver,

modelling the base station or access point of the multiaccess channel, is equipped with NR

receiving antennas.

Training phase (or pilot subcarriers)

For time-domain transmission, the signal received over the NR antennas of the base station
within the training block (3.6) becomes

Yc=
KX
k=1

H̆
(k)
c X (k)

c +Nc, (3.31)

where H̆(k)
c is the channel matrix built from the columns of H̆c corresponding to the kth user

and X (k)
c is the convolution matrix (3.8) that contains the signal radiated by the n(k)T antennas

of the kth user. Similarly the received vector (3.9) reads with congruent definitions

yc =
KX
k=1

X
(k)
c h

(k)
c + nc, (3.32)
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in particular, h(k)c is the n(k)T NRW × 1 channel vector of the n(k)T user.

For multicarrier transmission, according to the definitions of Sec. 3.3.1, the signal received
over the pilot subcarriers can be written as (3.32).

Data phase (or data subcarriers)

According to the discussion above, the signal received over the data part of the block is for
both time-domain and multicarrier transmission:

yc=
KX
k=1

H(k)
c x

(k)
c +nc. (3.33)

3.4.2 Downlink of a MIMO system (broadcast channel)

In a broadcast channel, the base station (transmitter) is equipped with NT cooperating antennas
whereas the receiving array is partitioned into K (non-cooperating) users, each having n

(k)
R

antennas such that
PK

k=1 n
(k)
R = NR.

Training phase (or pilot subcarriers)

For time-domain transmission, the signal received by the n(k)R antennas of the kth user within
the training part of the block can be written as

Y
(k)
c = H̆

(k)
c X c+N

(k)
c , (3.34)

where H̆(k)
c is obtained by selecting the rows of H̆c corresponding to the receiving antennas of

the kth user and X c is the convolution matrix built from the training symbols transmitted in
broadcast to all users. The received vector (3.9) reads with congruent definitions

y
(k)
c = (X c ⊗ In(k)R

)h
(k)
c + nc, (3.35)

vector h(k)c is the NTn
(k)
R W × 1 channel vector of the n(k)T user.

For MIMO-OFDM, as explained above,the signal model is still (3.35).

Data phase (or data subcarriers)

The signal received by the kth user over the data part of the block (time-domain or multicarrier
transmission) is

y
(k)
c =H(k)

c

KX
i=1

x
(i)
c +nc. (3.36)
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3.4.3 Signal to noise ratio definition

In a multiuser setting, the fading channel of each user may have different average power in
order to account for different propagation conditions (path loss, shadowing). Let the users
be ordered for decreasing average power. Accordingly, the channel norm of the kth user will
be scaled as compared to the first user by an attenuation α(k) ≤ 1 (i.e., users are order for
decreasing power, α(1) = 1). Moreover, the power P (k) radiated by each user in uplink or
the power destined to each user in downlink can be different (due to power control policies).
However, we define for simplicity a SNR that accounts for the total power radiated P (by the
base station in downlink or by all the user in uplink) as

SNR =
P

σ2n
, (3.37)

where σ2n is the noise power either at each user (downlink) or by the base station (uplink).

3.5 Conclusion

In this Chapter, a review of the signal model used for the analysis of time and frequency (i.e.,
multicarrier) domain transmission and reception over a single and multiuser MIMO link has
been presented. The presentation was aimed at showing the duality of the two approaches. In
particular, it was proved that for a single user MIMO link, the signal received over the LP

samples/subcarriers of the training part of the block can be written as the NRLP × 1 vector yc
as

yc = Xchc + nc, (3.38)

whereXc is the block convolution matrix defined in (3.9) for time-domain transmission and the
block diagonal matrix defined in (3.27) for multicarrier transmission. It contains the training
sequences sent by different antennas. On the other hand, the signal received over the LD

samples/subcarriers of the data part of the block can be arranged into the NRLD × 1 vector yc
as

yc=Hcxc+nc, (3.39)

where Hc is the block convolution matrix defined in (3.13) for time-domain transmission and
the block diagonal matrix in (3.30) for multicarrier transmission. We remark that the ability of
the multicarrier approach to turn the block convolution matricesXc andHc into block diagonal
matrix is due to the transmission of the cyclic prefix and is commonly referred to by stating
that frequency-domain transmission is able to turn a frequency-selective channel into a set of
parallel frequency-flat channels.
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3.6 Appendix: derivation of the signal model in the frequency do-
main (3.15)

The received signal (in the temporal domain) within the cth OFDM symbol can be written as
in (3.9), here recalled for reference

yc = (X c ⊗ INR)hc + nc = Xchc + nc, (3.40)

where yc is NRL× 1 and the channel vector hc is redefined here as a NRNTL× 1 vector by
zero padding the channel vector, i.e., with a slight abuse of notation hc = [hTc 0

T ]T . In this
way, matrix X c in (3.8) is L × NTL and is block circulant because of the cyclic prefix. In
particular, matrix X c is obtained by interlacing circulant L × L square convolution matrices
X (nT )

c , nT = 1, ..., NT , corresponding to the blocks radiated by each transmitting antenna as
in [X c]nT+NT (i−1),j = [X (nT )

c ]i,j . But since matrices X (nT )
c are circulant, their eigenvectors

correspond to the complex exponential vectors in matrix (3.17), here redefined as full L × L

DFT matrices, as
X (nT )

c =ΘH eX (nT )

c Θ, (3.41)

where eX (nT )

c is a L × L diagonal matrix containing the eigenvalues of X (nT )
c , x̃

(nT )
c [k] k =

0, ..., L− 1:

eX (nT )

c =

⎡⎢⎣ x̃
(nT )
c [0] 0 0

0
. . . 0

0 0 x̃
(nT )
c [L− 1]

⎤⎥⎦ (3.42)

It is then straightforward to show that

X c = Θ
H eX c(Θ⊗ INT ), (3.43)

where eX c defined as the L×NTL matrix (see (3.24))

eX c =

⎡⎢⎣ x̃c[0]
T 0 0

0
. . . 0

0 0 x̃c[L− 1]T

⎤⎥⎦ (3.44)

with x̃c[k] = [x̃
(nT )
c [0] · · · x̃(nT )c [L− 1]]T .

Therefore, by applying the DFT transformΘ on the signal received by each antenna (i..e.,
transforming the signal from the time to the frequency domain), we easily get the NRL × 1
signal in the frequency domain:

ỹc = (Θ⊗ INR)yc = (
eX c ⊗ INTNR)fc + ñc, (3.45)

with fc defined as in (3.18) and ñc = (Θ⊗ INR
)nc that has the same statistics as nc (Θ is a

unitary matrix). Equation (3.45) implies the signal model (3.15), where the signal transmitted
on each subcarrier x̃c[k̄] is received with no interference from other sucarriers k 6= k̄. Notice
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that outside this Section, as anticipated in the remark in Sec. 3.3, the tilde decoration has been
dropped in defining the quantities in the signal domain for simplicity of notation.

As a final step, it is interesting to investigate the relationship between the signal transmitted
on each subcarrier by the nT th transmitting antenna and the corresponding signal in the time
domain, i.e., to expand (3.41)-(3.42), obtaining

x
(nT )
c [m] =

1

L

L−1X
k=0

x̃
(nT )
c [k] exp(j

2π

L
mk), (3.46)

that is, the signal in the temporal domain is computed as in fig. 3.4 through the IDFT transform
with an appropriate scaling factor.



Bibliography

[1] A. Kocian and B. H. Fleury, "EM-based joint data detection and channel estimation of
DS-CDMA signals," IEEE Trans. Commun., vol. 51, no. 10, pp. 1709-1720, Oct. 2003.

[2] H. Holma and A. Toskala, WCDMA for UMTS, John Wiley & Sons, 2000.

[3] B. Muquet, Z. Wang, G. B. Giannakis, M. de Courville, P. Duhamel, "Cyclic prefixing or
zero padding for wireless multicarrier transmissions?," IEEE Trans. Commun., vol. 50,
no. 12, pp. 2136-2148, Dec. 2002.

[4] H. Meyr, M. Moeneclaey and S. A. Fechtel, Digital communication receivers, John Wiley
& Sons Inc., 1998.

[5] M. C. Bromberg, "Optimizing MIMO multipoint wireless networks assuming Gaussian
other-user interference," IEEE Inform. Theory, vol. 49, no. 10, pp. 2352-2362, Oct. 2003.

[6] S. Verdu, Multiuser detection, Cambridge University Press, 1998.

[7] S. M. Kay, Fundamentals of Statistical Signal Processing, Volume I: Estimation Theory,
Prentice Hall, 1993.

[8] B. Hassibi, B. M. Hochwald, "How much training is needed in multiple-antenna wireless
links?," IEEE Trans. Inform. Theory, vol. 49, no. 4, pp. 951-963, April 2003.

[9] H. Vikalo, B. Hassibi, B. Hochwald and T. Kailath, "On the capacity o frequency-selective
channels in training-based transmission schemes," IEEE Trans. Signal Processing, vol.
52, no. 9, pp. 2572-2583, Sept. 2004.

[10] IEEE Std 802.11a-1999, “Part11: Wireless LAN Medium Access Control (MAC) and
Physical Layer (PHY) specifications: High-speed Physical Layer in the 5Ghz Band”.

[11] H. Sari, G. Karam and I. Jeanclaude, “Transmission techniques for digital terrestrial TV
broadcasting,” IEEE Commun. Mag., vol. 33, no. 7, pp. 100-109, Feb. 1995.

49



50 Signal model

[12] Y. Li, and L. J. Cimini, “Bounds on the interchannel interference of OFDM in time-
varying impairments,” IEEE Trans. Comm., vol. 49, no. 3, pp. 401-404, March 2001.

[13] R. Negi and J. Cioffi, “Pilot tone selection for channel estimation in a mobile OFDM
system,” IEEE Trans. Consumer Electronics, vol. 44, pp. 1122-1128, Aug. 1998.

[14] S. Adireddy, L. Tong and H. Viswanathan, “Optimal placement of training for frequency-
selective block-fading channels,” IEEE Trans. Inform. Theory, vol. 48, no. 8, pp. 2338-
2353, Aug. 2002.

[15] J. Armstrong, "Analysis of new and existing methods of reducing intercarrier interference
due to carrier frequency offset in OFDM," IEEE Trans. Commun., vol. 47, no. 3, pp. 365-
369, March 1999.

[16] Songping Wu and Y. Bar-Ness, "Performance analysis on the effect of phase noise in
OFDM systems," in Proc. IEEE Seventh International Symposium on Spread Spectrum
Techniques and Applications 2002, vol 1, pp. 133-138, 2002.

[17] L. Goldfeld, V. Lyandres and D. Wulich, "Minimum BER power loading for OFDM in
fading channel," IEEE Trans. Commun., vol. 50, no. 11, pp. 1729-1733, Nov. 2002.



Chapter 4
Lower bound on the channel estimation
error for frequency-selective MIMO
channels

4.1 Introduction and problem formulation

IN the context of training-based transmission, as a preliminary operation before data detec-
tion, CSI acquisition is carried out. This is performed by processing the training part of the

block (be it in time or frequency domain, see Chapter 3) is processed so as to yield an estimate
of the channel vector hc. The performance of the data detector strongly depends on the quality
of the channel estimate available [1]. Therefore, it is of interest to investigate theoretical limits
on the accuracy of channel estimation for the propagation scenarios described in Chapter 2.

In this Chapter, a lower bound on the channel estimation error for any unbiased estimator is
derived by means of the hybrid CRB (HCRB), a modification of the classical CRB for the case
where the unknown parameter vector depends on both deterministic variables and random vari-
ables. This analytical tool is well suited for our application since, according to the discussion
in Chapter 2, the channel vector can be parametrized by decoupling long term (deterministic)
parameters and fast varying (random) fading amplitudes.

To formulate the problem within an analytical framework, we can proceed by recalling for
reference the main relationships derived in the previous Chapters. The LP samples received by
the NR receiving antennas within the training block are gathered in the LPNR × 1 vector yc:

yc= Xhc+nc, (4.1)

where definition of the training matrix X depends on the transmission strategy (see (3.8) for
time-domain transmission and (3.24) for multicarrier transmission). In order to simplify the
analysis, in (4.1) we made the reasonable assumption, that is met in many communication
standards, see, e.g., [2], that the training matrix X is the same for each block1. The situation

1However, it can be shown that the results presented in the following hold whenever the correlation properties
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where the training sequences are selected adaptively on a block-by-block basis is studied in
Appendix 10. Moreover, we have E[ncn

H
c ] = ILP ⊗ Rn with Rn denoting the NR × NR

spatial correlation of AGN. The NRNTW × 1 channel vector hc can be parametrized as

hc = Tβc, (4.2)

where the NRNTW ×NF long term matrixT is defined according to (2.25) for the beamform-
ing and (2.34) for the diversity scenario, whereas the NF × 1 fast fading vector βc is a zero
mean circular Gaussian random variable with correlation E[βcβ

H
c−m] = Φ(c,m), specified in

(2.19) and (2.31) for the beamforming and diversity scenario respectively.
Toward the goal of simplifying the analysis and obtaining a lower bound on the channel

estimation error, the quasi-static model of temporal variations of the long term features of the
channel is assumed, as exemplified by (4.2). In particular, we will consider model (4.2) to hold
for c = 1, ...,NB blocks with NB denoting the interval of stationarity of the long term channel
parameters. In the next Chapter, when discussing practical channel estimator this condition
will be dropped.

Let h̃c be an estimate of the MIMO channel. The purpose is to evaluate a lower bound
Qĥcon the error correlation matrix

Qh̃c = E[(h̃c − hc)(h̃c − hc)H ] ≥ Qĥc (4.3)

where expectation in (4.3) is with respect to noise and fading. The corresponding bound on the
mean square error (MSE) is

MSEh̃c = tr{Qh̃c} ≥MSEĥc = tr{Qĥc}. (4.4)

4.2 Uncostrained ML channel estimation (UML)

Before going into the details of the derivation of a lower bound (4.3) on the performance of a
channel estimator based on the parametrization (4.2), it is convenient to review the conventional
ML channel estimator [4] [5] [6] . The latter performs an unconstrained estimate of the channel
vector starting from the received signal model (4.1). In other words, it does not assume any
prior information on the structure of the channel vector. It can be easily shown (see, e.g., [6]
[4]) that the Uncostrained ML (UML) channel estimator reads

hUML,c = (R
−1
x ⊗ INR)X

Hyc (4.5)

where we used the fact that XHX = Rx ⊗ INR
. Notice that the estimator requires that the

training sequence length LP to satisfiy the condition LP ≥ NTW (see also Sec. 3.2.1 and

of Xc, i.e, matrix Rx, are unchanged over the blocks.
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Sec. 3.3.1). Moreover, it is straightforward to prove that the estimator is unbiased and the error
correlation matrix

QUML = E[(hUML,c − hc)(hUML,c − hc)H ] =

= R−1x ⊗Rn (4.6)

depends on the spatial correlation of AGNRn and on the correlation properties of the training
sequences (see also Sec. 4.7.1).

4.3 Overview of this Chapter

As stated above, this Chapter is concerned with the derivation of a lower bound on the channel
estimation error (4.3)-(4.4) by taking into account the algebraic structure of the channel pre-
sented in the previous Chapter and reviewed in Sec. 4.4. As a consequence of this analysis, we
will:

• derive an optimal channel estimation strategy (see Sec. 4.6), which is proved to promise
remarkable performance improvement as compared to conventional unstructured estima-
tors, such as UML (see also fig. 4.3). Practical implementation of this optimal strategy
will be discussed in the next Chapter;

• quantify the impact of system and channel parameters on the channel estimation error
(see Sec. 4.7.2);

• address a trade-off between computational complexity of channel estimation and perfor-
mance as a function of the channel characteristics (see Sec. 4.10).

4.4 Algebraic structure of the MIMO channel revisited

As recalled above, Chapter 2 showed that the channel vector hc has an algebraic structure that
allows a simple decoupling of the long term and short term features of the channel, see (4.2). A
channel estimator designed so as to be able to exploit this property is expected to achieve large
perfomance gains as compared to unconstrained channel estimator (such as UML). However,
in designing such an estimator, further insight on the properties of identifiability of model (4.2)
is needed.

To elaborate on this point and in order to simplify the analysis, where not stated otherwise,
we will assume continuous transmission and the same Doppler spectrum for each path (see
Chapter 2) so that, denoting by ϕ(m) the corresponding temporal correlation of all paths, for
both scenarios the NF ×NF fading correlation reads

Φ(m) = Φ(0)ϕ(m), (4.7)
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where from (2.20) and (2.32)

Φ(0) = Id (beamforming scenario) (4.8a)

Φ(0) =

⎡⎢⎢⎢⎢⎣
R1 0 · · · 0

0 R2
...

... . . . 0
0 · · · 0 Rd

⎤⎥⎥⎥⎥⎦ (diversity scenario) (4.8b)

According to this assumption, the channel model (4.2) can be equivalently stated by saying
that hc is a complex circular Gaussian vector with correlation matrix

E[hch
H
c−m] = Rhϕ(m), (4.9)

where for reference the correlation matrix Rh = TΦ(0)TH is defined. It follows that the
unknown vector hc can be written as

hc = TΦ(0)
1/2bc, (4.10)

where Φ(0)1/2 is a NF ×NF full rank square-root matrix of Φ(0), and the NF × 1 vector bc
is a stationary Gaussian process with

E[bcbc−m] = INF
ϕ(m). (4.11)

4.4.1 Beamforming scenario: space-time modes

For the beamforming scenario, the long term matrix T depends on the space-time signatures
of different paths, sST,i = Ω

1/2
i g(τ i)⊗ aT (α(T )i )⊗ aR(α(R)i ), i = 1, ..., d as (recall (2.25))

T = SST= [sST,1 · · · sST,d] (4.12)

where we have defined the NRNTW × d matrix SST collecting the path signatures. Differ-
ent paths having similar propagation parameters (τ i, α

(T )
i , α

(R)
i ) may yield linearly dependent

space-time signatures (see [26] for a discussion in the context of SIMO systems). In partic-
ular, when the separation between delays (and/or angles) is below the temporal (and spatial)
resolution of the receiver, the number of resolvable space-time signatures reads

rST = rank{SST} ≤ d. (4.13)

As a consequence, matrix T is rank-deficient:

r = rank{T} = rST ≤ min{NRNTW,NF }, (4.14)

where NF = d is the number of fading amplitudes for the beamforming scenario. Therefore,
model (4.2) (or equivalently (4.10)) is not a minimal parametrization for the channel vector [8].
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The inequality (4.14) is generally strictly satisfied, i.e., rST ¿ min{NRNTW,NF}, see, e.g.,
[7] for an analysis in the context of standardized channel model.

Based on the discussion above, the study of the channel estimation process requires con-
sideration of an alternative minimal channel parametrization. Since T = SST is generally
rank-deficient, it can be conveniently parametrized as the product of two full rank matrices U
(NRNTW × r) andC (NF × r): T = UCH [9]. Therefore, the model (4.10) becomes (recall
(4.8a))

hc = UC
Hbc (4.15)

The r columns of matrixUwill be referred to as space-time modes of the channel since they
span the subspace described by the space-time signatures of different paths, i.e., span{SST} =span{U}.
Without limiting the generality, each NRNTW × 1 space-time mode is assumed to have unit
norm. The definition of modes is justified by the fact that the subspace span{U} is a stationary
feature of the channel according to model (4.2).

The parametrization (4.15) is not unique since decomposition of T into its factors U and
C can be calculated in different ways [9]. For instance, orthonormal space-time modes can
be easily defined by performing a singular value decomposition of the modal matrix SST =
UΛVH and then settingC = VΛH

Remark 4 (on the minimal parametrization): one could object that a minimal parametriza-
tion of the channel vector should imply the exploitation of the functional dependence of matrix
T on the path parameters (τ i, α

(T )
i , α

(R)
i ). However, following the lines of [10] it could be

shown that the asymptotic result derived in the following hold even for this kind of parametriza-
tion. Moreover, the approach proposed here has the advantage of disclosing useful guidelines
for the implementation of channel estimators that are i) able to avoid the impairments of non-
linear estimation related to the direct computation of (τ i, α

(T )
i , α

(R)
i ); ii) able to cope with

channels with non-resolved paths (see discussion above).

4.4.2 Diversity scenario: temporal modes

In the context of a diversity scenario, the long term matrix T depends on the temporal signa-
tures of different paths sT,i = Ω

1/2
i g(τ i), i = 1, ..., d through theW×dmatrixST= [sST,1 · · · sST,d]

as (recall (2.34))

T = ST ⊗ INRNT
. (4.16)

According to the discussion above, different paths having delays τ i separated by less than the
temporal resolution of the receiver do not contribute to matrix ST with linearly independent
signatures, so that the number of resolvable paths in the time domain is

rT = rank{ST} ≤ d (4.17)
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and the rank of matrixT is

r = rank{T} = NRNT rT ≤ min{NRNTW,NF}, (4.18)

where NF = NRNTd is the number of fading amplitudes for the diversity scenario. Therefore,
model (4.2) (or equivalently (4.10)) is not a minimal parametrization for the channel vector,
even though the attainable reduction in model complexity is generally less relevant than in a
beamforming scenario (compare (4.18) with (4.14)).

Since matrix ST is reduced-rank, we can use the following parametrization: ST = UTLT ,

where the two full rank matrices UT and LT are W × rT and NF × rT . Similarly to the
beamforming scenario, the colums of UT will be referred to as temporal modes of the chan-
nel since they span the subspace described by the temporal signatures of different paths, i.e.,
span{ST } =span{UT}. Again, the definition of modes is justified by the fact that the sub-
space span{UT} is a stationary feature of the channel according to model (4.2). Without
limiting the generality of our approach, each W × 1 temporal mode is assumed to have unit
norm. Therefore, model (4.10) becomes hc = (UT⊗INRNT )(LT⊗INRNT )Φ(0)

1/2bc and
defining the NF × r matrixC = Φ(0)H/2(LHT ⊗INRNT

) we get

hc = UC
Hbc (4.19)

with
U = UT⊗INRNT

. (4.20)

Comparing (4.19) with (4.15), we can conclude that with appropriate definitions the minimal
parametrization for the beamforming and diversity scenarios coincide. Recall that parametriza-
tion (4.19) is not unique as explained in the previous Section. For instance, orthonormal tempo-
ral modes can be easily defined by computing the singular value decomposition of the temporal
modal matrix ST = UTΛTV

H
T and then setting LT = VTΛ

H
T .

4.5 Hybrid CRB (HCRB)

As stated in the Introduction, the channel vector hc depends on both deterministic (i.e., long
term) and random (i.e., fading amplitudes) quantities. Therefore, a lower bound on the cor-

relation matrix of the estimation error for any unbiased estimator
n
h̃c

oNB

c=1
can be obtained

by means of the HCRB [11]. Recall that NB is the interval of stationarity (in blocks) of the
long term channel features. To elaborate, according to the minimal parametrization (4.15) the
long term parameters are accounted for by the full rank matrices U and C whereas the fading
amplitudes are represented by vectors {bc}NB

c=1.
Gathering the channel vectors within the interval of stationarityNB into the vectorh = [hT1 · · ·hTNB

]T

and the corresponding estimates into h̃ = [h̃T1 · · · h̃TNB
]T , the HCRB provides the desired bound

Qĥ
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Qh̃ = E[(h̃− h)(h̃− h)H ] ≥ Qĥ. (4.21)

Computation of the HCRB requires at first the evaluation of the Fisher Information Matrix JB
relative to the unknown parametersU, C and B = [b1· · ·bNB ] averaged over the distribution
of B. Then, the lower bound (4.21) is computed as [11]

Qĥ = Eb

∙
∂h

∂[uTcTbT ]

¸
· J†B ·Eb

∙
∂h

∂[uTcTbT ]

¸H
, (4.22)

where we definedu =vec(U), c =vec(CH) andb =vec(B).A proof of (4.21)-(4.22) adapted
from [12], can be found in Appendix-A. Computing (4.22) we get (see Appendix-B)

Qĥ = Rt ⊗Rh − (Rt ⊗Rh)(Rt ⊗Rh + INB
⊗QUML)

−1(Rt ⊗Rh), (4.23)

with definition

Rt =

⎡⎢⎢⎢⎣
ϕ(0) ϕ(1) · · · ϕ(NB − 1)
ϕ(−1) ϕ(0)

... . . .
ϕ(−NB + 1) ϕ(0)

⎤⎥⎥⎥⎦ , (4.24)

andQUML is the error correlation matrix of the UML estimator (4.6). Notice that if the fading
amplitudes are temporally uncorrelated, i.e., ϕ(m) = δ(m), Rt = INB and the error correla-
tion matrix (4.23) becomes block diagonal, yielding the bound on each block (4.3):

Qĥc = Rh −Rh(Rh +QUML)
−1Rh. (4.25)

Moroever, as expected from the discussion in Sec. 4.4, the HCRB (4.23) depends only on Rh

(and not on the specific choice of the factorsU andC).

4.6 Asymptotically optimal channel estimation strategy

Inspection of the HCRB (4.23) provides insight into the (asymptotically) optimal strategy for
designing a channel estimator. In fact, let us consider a channel estimator based on a separate
estimation of the long term and short term channel parameters. More specifically, let the
estimator perform:

1. a consistent estimate of the long term features of the channel, i.e., the channel correla-
tion matrix Rh (or any two factors {U,C} up to their ambiguity) is estimated with an
arbitrarily small error as NB increases;

2. MMSE filtering of the channel vectors based on the estimate of Rh previously obtained
(the temporal correlation ϕ(m) is assumed to be known).

It can be easily shown from standard results [13] that the asymptotic (NB → ∞) error
correlation matrix of this class of estimators coincides with the HCRB (4.23). We can conclude
that the estimation strategy is optimal when the interval of stationarity of the long term features
NB is large enough.
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4.7 Asymptotic HCRB

The result of the previous Section not only yields useful indications on the channel estimation
design (as discussed in the next Chapter) but can also be used in order to evaluate the asymptotic
(NB →∞) expression of the HCRB (4.23).

Toward this goal and in order to ease the presentation of practical channel estimators in the
next Chapter, it is convenient to define from (4.15) an equivalent parametrization featuring a
reduced set of r × 1 random amplitudes dc

hc = Udc, (4.26)

with dc = CHbc. Accordingly, vector dc is zero mean random circular Gaussian with correla-
tion

E[dcd
H
c−m] = C

HCϕ(m) = Rdϕ(m). (4.27)

The asymptotic bound is now evaluated in a constructive way by computing the asymptotic
performance of the (asymptotically) optimal channel estimation strategy presented in the pre-
vious Section. Accordingly, for NB → ∞ the long term features of the channel, accounted
for in (4.26)-(4.27) by matrices U and Rd, are assumed to be reliably estimated. Notice that
similar assumptions have been exploited to evaluate the performance of a multichannel MLSE
with channel estimation in [14]. The signal model (4.1) can now be restated in terms of the
(asymptotically) known matrix F = XU as

yc = Fdc + nc. (4.28)

The optimum channel estimation strategy presented in the previous Section for NB → ∞
reduces to the MMSE estimation of the amplitudes dc. This can be obtained within the infinite
temporal horizon of our framework, by a Wiener filter that estimates the amplitudes in the
frequency domain:

F{d̂c} = Sdy(ω)Syy(ω)−1F{yc} (4.29)

where Sdy(ω) = F{E[dcyHc−m]} denotes the discrete-time Fourier transform of the crosscor-
relation matrix between {dc} and {zc}, Syy(ω) is similarly defined. Since the spatio-temporal
correlation of the fading is separable (4.27), the MMSE estimate (4.29) depends on the power
spectral density of the fading variations Sϕ(ω) = F{ϕ(m)} as

Sdy(ω)Syy(ω)
−1 = Sϕ(ω)RdF

H
¡
Sϕ(ω)FRdF

H + (INB
⊗Rn)

¢−1
, (4.30)

where we used the following equalities: Sdy(ω) = Sdd(ω)F
H , Syy(ω) = FSdd(ω)F

H +

(ILP⊗Rn) and Sdd(ω) = RdSϕ(ω). The error correlation matrix depends on the estimate
of the amplitudes dc as Qĥc = UQd̂cU

H , where Qd̂c = E[(d̂c − dc)(d̂c − dc)H ]. In the
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frequency domain, the error correlation matrix of the amplitudes reads

See(ω) = F{E[(d̂c − dc)(d̂c−n − dc−m)H ]} =

= Sdd(ω)− Sdy(ω)Syy(ω)−1Syd(ω) =

= Sϕ(ω)(R
−1
d + Sϕ(ω)F

H(INB
⊗Rn)F)=

= Sϕ(ω)(R
−1
d + Sϕ(ω)Rw)

−1, (4.31)

where for the second equality we used the matrix inversion lemma2 and defined

Rw = U
H(Rx ⊗R−1n )U. (4.32)

Notice that Rw can be written in terms of the error correlation matrix of the UML estimate
(4.6) asRw = U

HQ−1UMLU if LP ≥ NTW . By using the Parseval theorem, we have

Qĥc = U

Z π

−π
See(ω)

dω

2π
UH =

= U

Z π

−π
Sϕ(ω)(R

−1
d + Sϕ(ω)Rw)

−1dω

2π
UH . (4.33)

Computation of the bound (4.33) requires integration over the Doppler spectrum Sϕ(ω). In
order to ease the analysis and allow to gain insight into the bound (4.33) in the Sec. 4.7.2 we
consider a uniform Doppler spectrum.

4.7.1 Selection of training sequences: a review

As it is clear from (4.32)-(4.33), the channel estimation error depends on the correlation func-
tion of the training sequences Rx. This is defined in (3.10) for time-domain transmission and
in (3.28) for MIMO-OFDM and accounts for both the temporal correlation of the training se-
quences transmitted by each antenna and the mutual correlation of the training sequences of
different antennas. As it is well known, the error is minimized if the training sequences are
orthogonal both in time and across antennas, i.e.,

Rx = PLP INTW (4.34)

where P is the power radiated by the NT antennas for each training symbol [5] [15].
For time-domain transmission, this result can be closely approximated by careful design of

the training sequences, see, e.g., the UMTS standard [2]. On the other hand, for MIMO-OFDM
if no guard band is allocated optimal training sequences can be easily designed either

• by selecting LP equispaced (in the frequency domain), equipowered pilot subcarriers
(comb pilot pattern) and letting all the transmitting antennas use all the LP pilot subcar-
riers with phase shift orthogonal sequences [5] [15], or

2(A−1 +VC−1VH)−1 = A−AV(C+VHAV)−1VHAH
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• by letting each antenna transmit over different (shifted) comb pilot patterns with equipow-
ered symbols, arbitrarily selected [16].

However, in MIMO-OFDM systems, implementation issues call for the allocation of guard
subcarriers. As a consequence, in practice, the optimality condition (4.34) can only be approx-
imated.

4.7.2 Asymptotic HCRB for a uniform Doppler spectrum

The error correlation matrix bound Qĥ can be easily evaluated in closed form for a uniform
Doppler spectrum Sϕ(ω) = 1/(2fDTS) over the support ω ∈ [−2πfDTs,+2πfDTs] (0 ≤
fDTs ≤ 1/2) with fDTs denoting the normalized Doppler spread (see Chapter 2). In this case,
the bound (4.33) simplifies as

Qĥc = 2fDTs ·U(2fDTsR
−1
d +Rw)

−1UH (4.35)

and the corresponding MSE (4.4)

MSEĥc = 2fDTs · tr{(2fDTsR−1d +Rw)
−1} =

= 2fDTs ·
rX

i=1

1

µi[2fDTsR
−1
d +Rw]

(4.36)

depends on the r eigenvalues of the r × r matrix 2fDTsR−1d +Rw.
The bound (4.35)-(4.36) generalizes some known results on the performance of MMSE or

ML channel estimation and some of these connections are discussed below under appropriate
settings.

Static channel

In a static channel, fading is not varying across blocks so that fD = 0 and from (4.35) it is
Qĥ = 0. Indeed, in this case the channel vector is constant and can be consistently estimated
with covariance O(1/NB).

Optimal training sequences and uncorrelated noise

Let us consider spatially white noise (Rn=σ
2
nINR

) and ideal training sequences (i.e., or-
thogonal between any two transmitting antennas and temporally uncorrelated), in this case
Rw = PLP/σ

2
nIr and the MSE (4.36) can be evaluated for the two scenarios from the eigen-

values 2fDTsµi[R−1d ] + PLP/σ
2
n. In order to ease the analysis and without limiting the gen-

erality of our results, we consider orthonormal channel (either space-time or temporal) modes
as discussed in Sections 4.4.1 and 4.4.2.
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As a reference, consider that under the stated assumptions the MSE of the UML estimator
reads (easily proved from (4.6)):

MSEUML = tr{QUML} =
σ2n
LPP

NRNTW. (4.37)

Beamforming scenario For a beamforming scenario we have Rd = Λ
2, hence µi[R−1d ] =

1/[Λ]2ii and the asymptotic HCRB (4.36) is

MSEĥc = 2fDTs ·
rX

i=1

[Λ]2ii
2fD + [Λ]2ii

LPP
P

. (4.38)

For low SNR (or LPP/σ
2
n ¿ 2fDTs/[Λ]

2
ii ≤ 1/[Λ]2ii) the MSE (4.38) is

MSEĥc '
rX

i=1

[Λ]2ii = E[||hc||2], (4.39)

according to the standard behavior of the MMSE estimation [13], whereas for high SNR or
small Doppler frequency (i.e., LPP/σ

2
n À 2fDTs/[Λ]

2
ii) the MSE

MSEĥc ' 2fDTs
σ2n
LPP

r (4.40)

is proportional to r = rank{T}. Comparing (4.40) with (4.37), it is clear that the (asymp-
totic) gain to be expected from the design of a channel estimator based on the knowledge of
the channel model as compared to an uncostrained estimator can be quantified by the ratio
NRNTW/(2fDTsr). Therefore, the gain decreases for increasing Doppler spread fDTs and
for increasingly dense multipath (i.e., larger r). This result can be easily interpreted by con-
sidering that the advantages in exploiting the channel model when designing an estimator are
related to the possibility to: i) reduce the number of parameters to be estimated (which is only
possible for r < NRNTW ) and ii) use the prior information on the channel statistics to smooth
the channel estimates (which is possible if fDTs < 1/2). See Sec. 4.8 for further analysis on
this point.

Diversity scenario Let us consider at first a frequency-flat channel in a diversity scenario,
which constitutes the most investigated setting for MIMO systems in the open literature. Frequency-
flatness occurs if the delays are not temporally resolvable (compared to the system bandwidth)
so that d = 1 and W = 1. In this caseU = INRNT

and the MSE bounds (4.35)-(4.36) depend
on the spatial properties of fading, i.e., on the spatial correlation R as

Qĥc = 2fDTs ·
µ
2fDTsR

−1 +
LPP

σ2n
INRNT

¶−1
(4.41a)

MSEĥc = 2fDTS

NRNTX
i=1

µi[R]

2fDTS +
LPP
σ2n

µi[R]
. (4.41b)
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For spatially uncorrelated fading at both ends of the link (R = INRNT ) the bounds (4.41a-
4.41b) reduce to the results in [17]:

Qĥc =
2fDTS

2fDTS +
LPP
σ2n

INRNT (4.42a)

MSEĥc =
2fDTSNRNT

2fDTS +
LPP
σ2n

. (4.42b)

Moreover, if the faded amplitudes are uncorrelated across bursts (fDTS = 1/2) and for large
SNR (LPP/σ

2
n À 1) the MSE (4.42b) becomes

MSEĥc =
σ2nNRNT

LPP
, (4.43)

which coincides with the (conventional) CRB computed in [6] and with the MSE of the UML
estimator (4.37). Therefore, similarly to discussion above, we can conclude that for a frequency-
flat channel with spatially and temporally uncorrelated fading amplitudes the UML estimator
attains the performance bound.

Let us now turn to the analysis of a frequency-selective channel. As a further simplifying
assumption we consider here that all the paths have the same spatial correlation, i.e.,Ri = R.

Moreover, we assume that the spatial correlation channel is separable (see Chapter 2)

R = R(T ) ⊗R(R). (4.44)

Therefore, it is easy to show that Rd = Λ
2
T ⊗ R(T ) ⊗ R(R), hence µi[R

−1
d ] = 1/[ΛT ]

2
ii ·

µi[R
−1
T ] · µi[R

−1
R ]. It follows that the MSE bound (4.36) becomes:

MSEĥc = 2fD

rTX
i=1

NTX
n=1

NRX
m=1

[ΛT ]
2
iiµn[RT ]µm[RR]

2fDTs +
LPP
σ2 [ΛT ]2iiµn[RT ]µm[RR]

. (4.45)

In spite of its complexity, bound (4.45) can be simplified in some useful cases. For low SNR
(i.e., LPP/σ

2
n ¿ 2fDTs/([ΛT ]

2
iiµn[RT ]µm[RR])) the MSE (4.45) coincides with (4.39) de-

rived for the beamforming scenario. Similarly, for high SNR, we have (4.40). Therefore, we
can conclude that the gain to be expected from the design of a channel estimator based on the
knowledge of the channel model as compared to an uncostrained estimator can be quantified
by the ratio NRNTW/(2fDTsr), where for a diversity scenario r = NTNRrT so that the gain
reads W/(2fDTsrT ). The gain is thus reduced as compared to a beamforming scenario since
the model complexity reduction that was therein accounted for by the ratio (NTNRW/r) is
here described by W/r. For further details we refer to the discussion above in the context of a
beamforming scenario and to Sec. 4.8.

4.7.3 Asymptotic HCRB with different Doppler spectra for different paths

The asymptotic HCRB derived in Sec. 4.7 can be easily generalized to the case where differ-
ent paths have different Doppler spectra Sϕ,i(ω), gathered for convenience in the NF × NF
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diagonal matrices

SΦ(ω) = diag [Sϕ,1(ω) · · ·Sϕ,d(ω)] (beamforming scenario)

SΦ(ω) = diag [Sϕ,1(ω) · · ·Sϕ,d(ω)]⊗ INRNT
(diversity scenario)

The computation follows the steps of Sec. 4.7 and will not be reported here (see [7]). The
HCRB for this case reads

Qĥc = U

πZ
−π

³
Sdd(ω)− Sdd(ω)FH

¡
FSdd(ω)F

H +Rn ⊗ ILP
¢−1

FSdd(ω)
H
´ dω

2π
UH ,

(4.46)
with

Sdd(ω) = C
HSΦ(ω)C. (4.47)

Analytical simplifications of the bound (4.46)

The bound (4.46) needs to be evaluated numerically given the Doppler spectra of different
paths. However, further analytical insight of (4.46) can be obtained by dividing the integration
range into J non-overlapping subbands of support −π < ∆ωj ≤ π so that dj out of d paths
have the related spectrum Sϕ,i(ω) non zero for ω ranging over the jth subband (see fig. 4.1 for
an example with J = 6). This operation allows the application of the matrix inversion lemma.
Accordingly, the bound (4.46) can be written as

Qĥc =
JX

j=1

Uj

πZ
−π

¡
Sdd,j(ω)

−1 +Rw,j

¢−1 dω
2π
UH

j , (4.48)

with

Rw,j = UH
j (Rx ⊗R−1n )Uj (4.49a)

Sdd,j(ω) = CH
j SΦ,j(ω)Cj (4.49b)

where the NRNTW × rj matrix Uj is defined according to the reduced rank parametriza-
tion: TjΦj(0)

1/2 = UjC
H
j with the NRNTW × dj matrix Tj containing the colums of T

corresponding to the dj paths of the jth subband. Similarly, matrices SΦ,j(ω) and Φj(0) con-
tain respectively the spectra and the temporal correlation of the dj paths of the jth subband.
Comparing (4.48)-(4.49) with (4.32)-(4.33), it is clear that the analytical simplifications carried
out in Sec. 4.7.2 for uniform Doppler spectrum can be applied to (4.48) as well, within each
subband.

4.8 Numerical results: impact of channel and system parameters
on the HCRB

Here we consider a MIMO system with time or frequency-domain transmission within a beam-
forming scenario. The NT = 4 transmitting antennas and NR = 4 receiving antennas belong to
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Figure 4.1: Illustration of the procedure employed in order to compute the asymptotic hybric
CRB for paths having different Doppler spectra.

half-wavelength spaced linear antenna arrays. The training sequences are optimally designed
and the noise is spatially white. The time-varying channel has temporal support W = 8 and
is characterized by d = 4 paths with delays τ = [1 3 4 6]T, DODs and DOAs equally-spaced
in the angular support (−60, 60) deg . With these choices, all the paths are resolvable, i.e., the
space-time signatures of different paths are linearly independent so that r = rST = d = 4. The
length of the training sequences (i.e., size of the training burst in time domain or number of pi-
lot subcarrier in MIMO-OFDM) is LP = NTW = 32, condition that guarantees the feasibility
of UML estimation.

The asymptotic HCRB MSEĥc (4.46) is evaluated numerically in order to show the im-
pact of Doppler spectra and power delay profiles on the channel estimation perfomance. The
asymptotic HCRB is shown in fig. 4.2 versus the Doppler spread fDTS in case the spectra and
powers of the four paths are identical (uniform power-delay profile). Uniform (a), Clarke (b)
and truncated Gaussian (c) spectrum profiles have been considered (in the latter case fDTS is
the 3dB cut-off frequency) as shown in the box. We notice that uniform and Clarke spectra
lead approximately to the same performance, while the truncated Gaussian spectrum yields a
larger channel estimation error, as it is defined over a larger support. For increasing Doppler
spread fDTS , the channel estimator performance degrades as expected from (4.40). Moreover,
as expected for fD = 0, the lower bound is zero, showing that in case the channel is static (no
Doppler variations), it can be asymptotically estimated with any accuracy.

In order to investigate the effect of different Doppler spectra and powers for different paths,
fig. 4.3 shows the asymptotic HCRB versus SNR for four cases: uniform Doppler spectra
equal for all paths with fDTS = 0.5 and uniform/non-uniform power delay profile (see boxes
(a)-(b)); uniform Doppler spectra with different shapes for different paths (see box (c)) and
uniform/non-uniform power delay profile. The solid curves represent results for uniform power
delay profile for the four paths (as in box (a)), while dashed curves are derived when 80% of
the power is associated with the path with the smallest Doppler bandwidth (as in box (b)). For
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Figure 4.2: Asymptotic hybrid CRB MSEĥ versus Doppler spread fDTS for different Doppler
profiles and SNR.

reference, the perfomance of the UML estimator (4.6) is plotted. Introducing the topic of the
next Chapter, we can conclude that the bound promises large perfomance improvements over
the conventional UML estimator through careful design of the channel estimator. Moreover, as
predicted by the analysis in the previous Section, for low SNR the MSE bound tends to the
channel norm E[||hc||2] = NRNT = 16 = 12dB (see (4.39)) whereas for sufficiently large
signal to noise ratios the MSE bound is linear in the SNR (see (4.40)). Finally, we remark
that smaller a Doppler spread, as for the situation depicted in boc (c), leads to better channel
estimation performance.

4.9 Relationship with the conventional CRB

In this Section, the relationship between the HCRB and the conventional CRB is discussed.
The conventional CRB applies to the case where the vector to be estimated (in this case the
channel vector) depends on deterministic parameters only. Starting from the minimum channel
parametrization (4.26), if the amplitudes dc are modelled as deterministic parameters, a lower
bound on the MSE of any unbiased estimator can be obtained by means of the CRB. This reads
[12] (compare with (4.22))

Qĥ =
∂h

∂[uTdT ]
· J† ·Eb

∙
∂h

∂[uTdT ]

¸H
, (4.50)
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Figure 4.3: Asymptotic hybrid CRB versus SNR for paths with same/different Doppler spectra
and uniform/non uniform power delay profile. As a reference, the MSE of the LS channel
estimate is shown.

where J is the Fisher information matrix of the parameters u and d =vec{D} with D = [d1

· · ·dNB ]. The computation of this bound is carried out in Appendix-C and results in

Qĥ =
³
INB ⊗Q

H/2
UML

´³
Π⊥DT ⊗Π eU +ΠDT ⊗ INRNTW

´³
INB ⊗Q

1/2
UML

´
, (4.51)

where Ũ = Q
−H/2
UMLU. Recall that ΠA for any tall matrix A is the projection matrix onto the

subspace spanned by the columns ofA, span(A), i.e.,ΠA = AA†.
Let us now investigate the relationship between the CRB (4.51) and the asymptotic HCRB

for uniform Doppler spectra (4.35) by letting NB → ∞ in (4.51). In this case, Π⊥
DT →

INB andΠDT → 0 since the ratio r/NB → 0. Accordingly, the CRB becomes

Qĥ = INB ⊗Q
H/2
UMLΠ eUQ1/2UML. (4.52)

Now, consider the asymptotic HCRB (4.35) and let the signal to noise ratio be high enough (or
the spatial correlation of the fading amplitudes small enough for a diversity scenario) so that
2fDTsR

−1
d +Rw ' Rw and the fading amplitudes be temporally uncorrelated, fDTS = 1/2.

It can be easily shown that the asymptotic HCRB under these assumptions coincides with the
CRB (4.52).

From the discussion above, we can conclude that the CRB coincides with the HCRB when
the following conditions are met: i) NB → ∞, ii) high SNR, iii) temporally (and spatially
for a diversity scenario) uncorrelated fading. This result can be easily explained as follows.
The conventional CRB deals with the performance of estimators that do not attempt to track
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the fading amplitudes since they model the latter as a deterministic parameters. In general, this
approach is suboptimal. However, it approaches optimality whenever the statistical information
on the fading amplitudes can not be exploited to perform an effective tracking, i.e., when
condition ii) and iii) are met. These considerations will be useful when designing channel
estimators, as we will see in the next Chapter.

4.10 SISO/SIMO/MISO vs. MIMO approach to channel estima-
tion

As we will thoroughly discuss in the next Chapter, the analysis of the asymptotic HCRB gives
relevant directions on how to design an effective channel estimator. In this Section, we address
from a theoretical standpoint the issue of complexity versus channel estimation performance.
In particular, we compare three suboptimal and reduced complexity channel estimation strate-
gies to the optimal MIMO approach (see Sec. 4.6). In fact, instead of performing channel
estimation in a MIMO system by jointly considering all the (frequency-selective) SISO chan-
nels corresponding to each pair transmitting-receiving antenna, one could use sub-optimum
approaches that estimates separately the SISO or the MISO/SIMO links. These suboptimal
approaches are detailed below:

• SISO approach: separate estimation of the NRNT SISO channels corresponding to each
pair transmitting-receiving antennas;

• MISO approach: joint estimate of all the NT SISO channels relative to the links between
all the transmitting antennas and one receiving antenna (NR separate channel estimates)

• SIMO approach: joint estimate of all the NR SISO channels relative to the links between
one transmitting antennas and all the receiving antenna (NT separate channel estimates).

Example 2 The UML estimator falls within the class of MISO channel estimation since it can
be implemented as NR separate channel estimates, one for each receiving antenna. Moreover,
if the training sequences are designed so as to make the signal radiated by each transmitting
antenna orthogonal, the UML reduces to a SISO channel estimator since it performs a separate
estimate for each pair transmitting/receiving antenna.

The asymptotic HCRB on the performance of the SISO approach can be easily obtained by
evaluating the MSE (4.36) forNR = NT = 1 for each of theNRNT SISO channelsh(nR,nT )c =

STβ
(nR,nT )
k = USISOd

(nR,nT )
c composing the MIMO link. The modesUSISO, coincide with

the temporal modes, USISO = UT , defined within a diversity scenario in Sec. 4.4.2, as
span{USISO} = span{ST}. Moreover, rSISO = rank{ST} = rT ≤ W coincides with the
number of temporally resolvable paths. If all the SISO channels share the same characteristics
(as for transmitting and receiving antennas not too far apart), the MSE bound for the SISO
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approach can be derived by specializing the asymptotic HCRB (4.36) for NR = NT = 1 (with
obvious notation):

MSESISO = NRNT ·MSEMIMO|NR=1,NT=1. (4.53)

According to the Sec. 4.7.2, for high SNR and spatially white noise the MSE (4.53) becomes

MSESISO = NRNT · 2fDTS
σ2n
LPP

rT (4.54)

for both beamforming or diversity scenarios. For high SNR the comparison between (4.54) and
(4.40) shows that for beamforming scenario the joint MIMO approach outperforms the SISO
approach by

MSESISO

MSEMIMO
=

NRNT rT
rMIMO

(4.55)

which is greater than one since in general rMIMO ¿ NRNTW. On the other hand, for the
diversity scenario the SISO approach shows no degradation compared to the MIMO approach
(recall (4.18)).

The asymptotic HCRB on the performance of the SIMO (or dually MISO) approach can
be similarly obtained by evaluating the MSE (4.36) for NT = 1 for each of the NT SIMO
channels h(nT )c = USIMOd

(nT )
c composing the MIMO link:

MSESIMO = NT ·MSEMIMO|NT=1. (4.56)

Since the space-time modes are now collected by columns in matrix USIMO with rSIMO =

rank{USIMO} ≤ NRW , the performance comparison reads

MSESIMO

MSEMIMO
=

NT · rSIMO

rMIMO
(4.57)

that is larger than one for a beamforming scenario (MISO approach yields a similar conclusion).
Under the said assumptions, the degree of improvement of MIMO approach to channel estima-
tion compared to SISO or SIMO (or MISO) approaches depends on the number of temporal
or space-time modes, closely related to the specific model. The number of modes (rSISO or
rSIMO), i.e., the number of resolvable paths, increases when the multipath environment is
dense in time and/or space. For a number of (well resolved in space and/or time) paths d large
enough, we have rMIMO ' NRNTW, rSISO ' W and rSIMO ' NRW so that there is no
practical advantage in estimating jointly the MIMO channel. These conclusions are validated
numerically in the following Subsection.

4.10.1 Numerical examples: SISO/ MISO/ SIMO vs. MIMO channel estimation

To compare the suboptimal channel estimation strategies described in the previous Section,
we study in fig. 4.4 the MSE degradation MSEdegradation = (MSE −MSEĥ)/MSEĥ of
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Figure 4.4: MSE degradation of the SIMO, MISO and SISO approaches compared to the
MIMO estimation versus the number of paths d for the beamforming model.

SISO, MISO or SIMO channel estimation approaches compared to the more general MIMO
approach, for the beamforming scenario and varying number of paths d. The channel and
system parameters are selected according to the example in Sec. 4.8. In particular, the Doppler
spectra of all paths and power delay profile are assumed to be uniform. The normalized Doppler
shift is set to fDTS = 0.1 and SNR = 10dB.

As previously stated, the benefits of using a MIMO channel estimator compared to SISO,
MISO or SIMO become smaller for increasing number of paths d when d ≥ W = 8 for the
SISO approach, d ≥ NTW = 32 for the MISO and d ≥ NRW = 32 for the SIMO approach.
In addition, for d ≥ max(NRW,NTW ) = 32 the SISO, MISO and SIMO approaches have the
same performance. These results can be easily justified by recalling the discussion above. For
instance, from (4.55) we have that MSESISO/MSEĥ ' NRNT ·min(d,W )/d, where the last
(approximate) equality stems from the direct proportionality of the rank of T (or U) and the
number of paths d, as long as the space-time signatures of the d paths are linearly independent.
It follows that for d ≥ W = 8 the degradation of the SISO approach decreases as 1/d, as
confirmed by fig. 4.4. Similar considerations can be used to prove analogous conclusions for
SIMO and MISO approaches.

4.11 Extension to multiuser systems

The extension of the HCRB to a multiuser setting, according to Sec. 3.4, is straightfor-
ward. In fact, let us at first consider the uplink. Recalling that the signal model (3.32),
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it is enough to define a compound training matrix X = [X(1)· · ·X(K)] and channel vector
hc = [h

(1)T
c · · ·h(K)Tc ]T in order to be able to apply all the results derived above for this set-

ting. On the other hand, for the downlink, the training sequences are sent in broadcast to all
users and according to the signal model (3.35), the analysis above can be applied separately for
each user.

4.12 Conclusion

The HCRB for the estimation of frequency-selective MIMO channels for both a beamforming
and a diversity scenario has been derived. As a by-product, this analysis led to the definition
of an (asymptotically) optimal channel estimation strategy, based on the separate computation
of long term and fast-varying channel features. In particular, the optimal strategy, to be inves-
tigated in the following Chapter, prescribes the consistent estimate of the long term features of
the channel and the MMSE tracking of the fading amplitudes.

The properties of the HCRB have been thoroughly investigated in the asymptotic regime
(i.e., for a large interval of stationarity of the long term features of the channel) from both
an analytical standpoint and through numerical simulations. This study provided insight into
the effects of system and channel parameters on the channel estimation error. Finally, the
relationship with the conventional CRB has been discussed.

4.13 Appendix-A: proof of HCRB (4.22)

Let the unknown parameter vector to be estimated h = h(θ) depend on a vector of parameters
θ =

£
θT1 θT2

¤T that has a deterministic part (θ1) and a random part (θ2) with probability
density function (pdf) p(θ2). The observation vector z (i.e., any sufficient statistics for the esti-
mation of [13] has pdf (conditioned on θ) p(z|θ). Under appropriate assumptions of regularity
of the pdf involved [12], the following equality holds

ZZ
p(z|θ)p(θ2)dzdθ2 = 1, (4.58)

can be differentiated, obtaining

0 =

ZZ
∂p(z|θ)
∂θ

p(θ2)dzdθ2 +

ZZ
p(z|θ)∂p(θ2)

∂θ
dzdθ2 =

=

ZZ
∂ ln p(z|θ)

∂θ
p(z|θ)p(θ2)dzdθ2 +

ZZ
∂ ln p(θ2)

∂θ
p(z|θ)p(θ2)dzdθ2

= E[∆D] +E[∆P ], (4.59)
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where the expectation operatorE[·] is defined with respect to the pdf p(z|θ)p(θ2) = p(z,θ2|θ1)
and

∆D =
∂ ln p(z|θ)

∂θ
(4.60a)

∆P =
∂ ln p(θ2)

∂θ
=

"
0

∂ ln p(θ2)
∂θ2

#
. (4.60b)

We also define∆ =∆D +∆P .

By differentiating the equality
R
p(z|θ)dz = 1, we can similarly obtain

0 =E[∆D|θ] =E[∆D], (4.61)

that because of (4.59) implies

E[∆P ] = 0. (4.62)

Now, recalling that we are considering an unbiased estimate h̃ of h, we get

∂h

∂θH
=

∂E[h̃|θ]
∂θH

=
∂

∂θH

Z
h̃p(z|θ)dz =

Z
h̃
∂ ln p(z|θ)

∂θH
p(z|θ)dz =E[h̃∆H

D |θ]. (4.63)

Then, defining P =Eθ2

h
∂h
∂θH

i
, we obtain

P = E[ĥ∆
H
D ] =E[(h̃− h)∆H

D ] = E[(h̃− h)∆H ], (4.64)

where we used (4.61) and the fact that E[(h̃− h)∆H

P ] = 0, easily proved as follows

E[(h̃− h)∆H

P |θ] =E[h̃− h|θ]∆
H

P = 0. (4.65)

We define the following matrix

E

∙∙
h̃− h
∆

¸ h
(h̃− h)H ∆H

i¸
=

∙
Qh̃ D
DH JB

¸
(4.66)

with

JB=E[∆∆
H ] = E[∆D∆

H
D ] +E[∆P∆

H
P ] = JD + JP , (4.67)

for the second equality the relationship E[∆D∆
H
P ] = 0 has been used (proof is straightfor-

ward). The semi-positiveness of matrix (4.66) implies that [12]

Qh̃ ≥ PJ
†
BP

H , (4.68)

proving the HCRB (4.21)-(4.22)
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4.14 Appendix-B: computation of the HCRB (4.23)

From (4.1) and (4.15), the likelihood function for the estimation of parameters U, C and B is
(neglecting uninteresting constants)

L(U,C,B) =

NBX
c=1

°°yc −XUCHbc
°°2
R−1n

=

=
°°HUML −UCHB

°°2
Q−1UML

, (4.69)

where the second equality can be easily proved by using the definition of the NRNTW ×NB

matrix that gathers the UML estimates (4.5) as HUML = [hUML,1 · · ·hUML,NB ]. In other
words, according to (4.69) the NB UML estimates {hUML,c}NB

c=1 are sufficient statistics for the
estimation of {hc}NB

c=1 [13]. Moreover, by introducing for the ensemble of NB UML estimates
the vector hUML = vec(HUML), the likelihood function (4.69) becomes

L(U,C,B)=||hUML − (INB
⊗UCH)b||2

INB⊗Q
−1
UML

. (4.70)

The HCRB for the estimation of h reads (4.22), where JB is the (Bayesian) Fisher In-
formation Matrix. According to [11] (see also Appendix-B), matrix JB can be written as the
sum of a term accounting for the information due to data JD and a term accounting for prior
knowledge JP

JB = JD+JP . (4.71)

Notice that in our framework, the prior knowledge consists in the statistical properties of the
randomly varying parameters b. Since the observation model is Gaussian, we have [11]

JD = Eb

"µ
∂E[hUML|b]
∂[uTcTbT ]

¶H

(INB
⊗Q−1UML)

µ
∂E[hUML|b]
∂[uT cTbT ]

¶#
, (4.72)

where Eb[·] denotes the ensemble average with respect to the distribution of b. The UML
estimate is unbiased, E[hUML|b] = h, and

∂h

∂uT
= BTC∗ ⊗ INR

(4.73a)

∂h

∂cT
= BT ⊗U (4.73b)

∂h

∂bT
= INB

⊗UCH (4.73c)

∂h

∂[uT cTbT ]
=

£
BTC∗ ⊗ INR BT ⊗U INB ⊗UCH

¤
. (4.73d)

It follows that

JD = Eb

⎡⎣ CTB∗BTC∗⊗Q−1UML CTB∗BT ⊗Q−1UMLU CTB∗ ⊗Q−1UMLUC
H

B∗BTC∗ ⊗UHQ−1UML B∗BT ⊗UHQ−1UMLU B∗⊗UHQ−1UMLUC
H

BTC∗ ⊗CUHQ−1UML BT ⊗CUHQ−1UMLU INB
⊗CUHQ−1UMLUC

H

⎤⎦ =
=

⎡⎣ NBC
TC∗⊗Q−1UML NBC

T ⊗Q−1UMLU 0

NBC
∗ ⊗UHQ−1UML NBINR

⊗UHQ−1UMLU 0

0 0 INB⊗CUHQ−1UMLUC
H

⎤⎦ . (4.74)



Hybrid CRB 73

Since from (4.11) b v CN (0,Rt ⊗ INR),the information matrix related to prior information
becomes [11]

JP =

⎡⎣ 0 0 0
0 0 0

0 0 R−1t ⊗ INR

⎤⎦ . (4.75)

Non-singularity ofRt is assumed. Finally, the (Bayesian) Fisher Information Matrix is

JB =

⎡⎣ Ja Jac 0
Jca Jc 0
0 0 Jb

⎤⎦ = (4.76)

⎡⎣ NBC
TC∗⊗Q−1UML NBC

T ⊗Q−1UMLU 0

NBC
∗ ⊗UHQ−1UML NBINR ⊗UHQ−1UMLU 0

0 0 INB
⊗CUHQ−1UMLUC

H +R−1t ⊗ INR

⎤⎦ .
The non-uniqueness of the factorization (4.15) is accounted for by the rank-deficiency of the
corresponding Fisher Information Matrix [12]:

rank

½∙
Ja Jac
Jca Jc

¸¾
= rank(Ja) + rank(Jc − JcaJ−1a Jac) =

= rNT + rank((INR−C∗(CTC)−1CT )⊗UHQ−1UMLU) =

= r(NT +NR − r). (4.77)

Averaging over the distribution of the amplitudes, we have

Eb

∙
∂h

∂[uTcTbT ]

¸
=
£
0 0 INB ⊗UCH

¤
(4.78)

and using (4.76) in (4.22) the CRB (4.21) becomes

Qĥ ≥ (INB
⊗UCH)J−1b (INB

⊗CUH) (4.79a)

that coincides with (4.23) as it can be easily shown by applying the matrix inversion lemma.

4.15 Appendix-C: computation of the CRB (4.51)

From (4.1) and (4.26), the negative log-likelihood function can be written as

L (U,D) = kHUML −UDk2Q−1UML
, (4.80)

The derivative of the channel vector h in (4.50) can be calculated as

∂h

∂[uTdT ]
=
£
DT ⊗ INRNTW INB

⊗U
¤
. (4.81)

The r(NRNTW + NB) × r(NRNTW + NB) Fisher Information Matrix of the parameters
{u,d} [11]

J =

∙
∂h

∂[uTdT ]

¸H ¡
INB ⊗Q−1UML

¢ ∙ ∂h

∂[uTdT ]

¸
(4.82)
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and can be partitioned as

J =

∙
Juu Jud
JHud Jdd

¸
(4.83)

where the NRNTWr × NRNTWr block Juu and the NBr × NBr block Jdd depend on the
space-time modes and the amplitudes, respectively. The diagonal blocks are obtained from
(4.82):

Juu = DTD∗ ⊗Q−1UML (4.84a)

Jdd = INB
⊗UHQ−1UMLU. (4.84b)

Note that the matrix INB ⊗Q−1UML in (4.82) is positive definite so that, by using the standard
result on the rank of a partitioned matrix [18], it can be shown that rank{J} = rank{D} =
r(NRNTW +NB)− r2. The rank order of J can be also derived as the number of degrees of
freedom in the channel model. Indeed, recalling that in NB bursts the channel parametrization
can be rewritten asH = UDwithU andD full rank matrices, it follows the number of degrees
of freedom from the singular value decomposition of matrixH: [rNRNTW −r(r+1)/2] (left
eigenvectors) + [rNB − r(r + 1)/2] (right eigenvectors) + [r] (eigenvalues) = rank{J}.

As rank{J} < r(NRNTW + NB) the Fisher Information Matrix is singular. Next, by
defining the matrices P1 = DT ⊗ INRNTW , P2 = INB ⊗ U, and P = [P1 P2], the CRB
(4.50) can be written as

Qĥ = P
³ePH eP´†PH

=
³
INB ⊗Q

H/2
UML

´
ΠeP

³
INB ⊗Q

1/2
UML

´
, (4.85)

eP = (INB ⊗ Q
−H/2
UML )P and ΠeP = eP(ePH eP)†ePH is the corresponding projector. Since

span{eP} = span{eP1}∪ span{eP2}, this can be equivalently decomposed into the orthogonal
subspaces span{eP} = span{Π⊥eP1 eP2}∪ span{eP1} such that span{Π⊥eP1 eP2}∩ span{eP1} =
0. The the projection matrix reduces to

ΠeP = ΠΠ⊥eP1 eP2 +ΠeP1 (4.86)

whereΠeP1 ,Π⊥eP1 andΠ
Π⊥eP1 eP2 denote the orthogonal projections onto, respectively, span{eP1},

the orthogonal complement span{eP⊥1 } and span{Π⊥eP1 eP2}. According to the model exploited
here, the projectors in (4.86) can be easily calculated as it follows:

ΠeP1 =ΠDT ⊗ INRNTW , (4.87)

Π⊥eP1 eP2 = ³Π⊥DT ⊗ INRNTW

´³
INB
⊗ eU´ = Π⊥DT ⊗ eU, (4.88)

Π
Π⊥eP1 eP2 =Π⊥DT ⊗ΠeU. (4.89)

The CRB (4.85) can be now evaluated as (4.51).
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Chapter 5
Channel estimation by modal
analysis/filtering

5.1 Introduction

IN the previous Chapter, investigation of the HCRB led to the derivation of an (asymptot-
ically) optimal channel estimation strategy (see Sec. 4.6), which was proved to promise

remarkable performance improvement as compared to conventional unstructured estimators,
such as UML (see fig. 4.3). The optimal channel estimation strategy can be described by the
following guidelines: a) long and short term channel parameters have to be estimated sep-
arately, b) long term parameters have to be estimated consistently, c) short term parameters
(i.e., fast-varying amplitudes) have to be tracked according to the MMSE criterion. Notice
that many known estimators proposed in the literature under simplified settings have (at least
one of) the aforementioned properties. For instance, in a diversity scenario, Kalman filtering
has been recently proposed for MMSE tracking of the fading amplitudes by assuming known
sample-spaced delays (or equivalently T is diagonal and known) [1]. Additional references to
existing work are discussed in the following.

In this Chapter, a novel class of channel estimators based on the optimal strategy described
above is proposed. Our approach considers the parametrization of the channel vector hc (see
Sec. 4.4) in terms of the space-time modes U (for the beamforming scenario) or temporal
modesUT (for the diversity scenario):

hc = Udc, (5.1)

where for the diversity scenario, we haveU = UT ⊗INRNT . For reference, it is useful to recall
that the space-time modes (i.e., the columns of matrixU) are defined as the NRNTW ×1 vec-
tors that span the long term subspace range{T} = range{SST} (see Sec. 4.4.1). Similarly,
the temporal modes (i.e., the columns of matrixUT ) are defined as the W ×1 vectors spanning
the long term subspace range{ST} (see Sec. 4.4.2).

77



78 Channel estimation by modal analysis/filtering

Algebraic channel model: ll Udh =

Channel estimation strategy

Space-time modal analysis
(estimate of U)

• batch
• subspace tracking

(Sec. 5.2.1)
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• modal filtering      (Sec. 5.3.1)
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Figure 5.1: Taxonomy of channel estimators based on space-time modal analysis and tracking
of the fast-fading amplitudes.

An illustration of the taxonomy of the proposed channel estimators is shown in fig. 5.1.
The estimation of the long term features of the channel, i.e., of the stationary matrix U, is
disclosed in Sec. 5.2, where it is proposed both a batch approach and an adaptive approach
based on subspace tracking. The latter method allows to alleviate the assumption of quasi-
static variations of the long term features of the channel, allowing continuous (but still slow)
fluctuations. The estimation of matrixU will be referred to as space-time modal analysis.

On the other hand, estimation of the fading amplitudes dc is discussed in Sec. 5.3. At first,
in Sec. 5.3.1 a block-by-block estimation that allows to set the channel estimation problem in
a mathematically convenient ML framework is discussed. This first approach is referred to as
modal filtering, since the corresponding channel estimator turns out to consist essentially in the
projection of a preliminary UML estimate (recall Sec. 4.2) into the subspace spanned by the
space-time modes of the channel. Then, tracking of the fading amplitudes based on the LMS
algorithm is proposed in Sec. 5.3.2.

Moreover, in Sec. 5.2, it is also shown that, for a beamforming scenario, direct estimation
(or tracking) of matrixUmay have poor performance due to the large number of parameters to
be estimated. In this case, an asymptotically suboptimum parameterization of the space-time
modes into decoupled spatial and temporal modes is proposed. In particular, the parametriza-
tionU = U∗T ⊗US , where the matrixUS spans the long term subspace spanned by the spatial
signatures of multipaths, is advocated in Sec. 5.2.2. Accordingly, therein, an estimation algo-
rithm based on the decoupled spatial and temporal that works in both batch and adaptive mode
through subspace tracking is proposed (decoupled spatial and temporal modal analysis). The
corresponding taxonomy of estimators based on this reduced-complexity approach is shown in
fig. 5.2.

An analytical study of the performance of the proposed channel estimators is carried out
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Figure 5.2: Taxonomy of channel estimators based on decoupled spatial and temporal modal
analysis and tracking of the fast-fading amplitudes.

in Sec. 5.5. This analysis is corroborated by an extensive numerical investigation for different
propagation environment in Sec. 5.6. Finally, the extension of the proposed techniques to
multiuser systems is discussed and two specific applications, namely MIMO-OFDM with an
iterative receiver and the uplink of the third generation cellular standard TD-SCDMA, are
considered.

Remark 5 For simplicity of presentation, in the following, the noise spatial correlation Rn

(recall the signal model (4.1)) will be considered as known. However, its estimation could be
easily included in the algorithms presented below as discussed in Appendix-A.

5.2 Estimation of the long-term features of the channel

The long-term parameters of the MIMO channel can be estimated by following either a struc-
tured or an unstructured approach. The structured approaches are parametric methods that
estimate angles and delays according to the models in Chapter 2. Such techniques have been
developed for SIMO systems in order to exploit the stationarity of angles/delays in matrix T
for TDMA [2] [3] [4] or TD-CDMA systems [5]. The extension to MIMO system is concep-
tually trivial and it is just a matter of increased complexity when compared to SIMO systems.
Basically, the angle and delay estimation methods are based on the minimization of non-linear
objective functions in order to compute the d triplets AOD/AOA/delay (for the beamforming
model) or the d delays (for the diversity model) according to the knowledge of the waveform
g(t) and the spatial manifolds. Even if these parametric methods can closely reach the perfor-
mance limits derived in Chapter 4 (see [5] for the analytic derivation of the MSE for SIMO
systems), there are several drawbacks that prevent their practical use. First, the need of regular
spatial and temporal manifolds imposes strict constraints on array calibration errors and mod-
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Figure 5.3: General block diagram of (a) batch or (b) subspace tracking-based modal analysis
with rank estimation.

elling mismatches. Furthermore, angle and delay estimation suffers from threshold effects at
low SNR’s, typical of non-linear estimators.

5.2.1 Space-time modal analysis

Instead of estimating angles and delays inT, it is possible to evaluate the space-time modesU
(unstructured approach [6] [7]) directly. This choice not only poses less stringent requirements
on array calibration and modelling accuracy (the relationship between T and angles/delays is
not of concern) but also avoids the impairments of non-linear estimation since it reduces to a
quadratic optimization problem. The estimation of modes will be referred to as modal analysis.

As it will be shown below, modal analysis amounts to the computation of the eigenvectors
of a sample correlation matrix obtained from the UML estimates on different blocks. Fig.
5.3-(a) shows the corresponding block diagram of modal analysis (the need for whitening and
dewhitening block will be clarified in the following). To have a glimpse of the main results, the
reader is referred to equations (5.3) for the beamforming scenario and (5.7) for the diversity
scenario. In order to reduce the computational complexity of the eigenvalue decomposition
and accommodate more general models for the temporal variations of the channel, an adaptive
computation of the eigenvectors is then proposed by means of subspace tracking. Fig. 5.3-(b)
illustrates the block diagram of the modal analysis based on subspace tracking.
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Batch estimation

Beamforming scenario This Section considers the beamforming scenario since it is the most
critical from the point of view of estimating the long term features of the channel. The diversity
scenario will be addressed below. The aim is to show how the space-time modes can be esti-
mated from the sample second-order statistics of the preliminary UML estimates. Toward this
goal, in order to simplify the presentation, spatially uncorrelated noise and optimally designed
training sequences are assumed at first (see previous Chapter) so that the error correlation ma-
trix of UML estimation is diagonal, QUML = σ2n/(LPP )INRNTW . It follows that the sample
correlation matrix 1/NB

PNB
c=1 hUML,ch

H
UML,c, computed from the set of NB UML estimates

hUML,c, reads for ergodicity

1

NB

NBX
c=1

hUML,ch
H
UML,c →

NB→∞
E[hUML,ch

H
UML,c] = Rh +

σ2n
LPP

I. (5.2)

Notice that in (5.2), it is assumed that the fading is asymptotically uncorrelated (i.e., ϕi(m)→
0 for m→∞).

Therefore, from (5.2) the space-time modes can be consistently (up to their ambiguity)
estimated according to Method of Moments (MOM) principle [13] by considering the r leading
eigenvectors of the sample correlation matrix of the UML estimates

1

NB

NBX
c=1

hUML,ch
H
UML,c = ÛΛ̂Û

H
. (5.3)

In case noise is not spatially white and/or the training sequences are not optimally de-
signed, the UML estimates should be at first whitened through their error correlation matrix
QUML, i.e., h̃UML,c = Q

−H/2
UMLhUML,c, then the sample correlation 1

NB

PNB
c=1 h̃UML,ch̃

H
UML,c

computed. The r leading eigenvectors b̃U of the latter provide a consistent estimate of the
space-time modes after de-whitening as

Û = Q
H/2
UML

b̃U. (5.4)

The MOM estimator just presented can be justified from a ML standpoint as discussed in Sec.
5.3.1.

Diversity scenario Similarly to the discussion above, for the diversity scenario, the tempo-
ral modes UT can be estimated according to the MOM principle from the sample correlation
matrix of the UML estimates. Again, at first spatially uncorrelated noise and optimally de-
signed training sequences are assumed. Here, it is convenient to work with the NRNT ×W

channel matrixHc defined in (2.7), from which we recall that the NRNTW ×1 channel vector
is obtained as hc = vec{Hc}. According to the previously discussed relationships (2.26) and
(4.16), it is easy to obtain that

E[HH
c Hc] = NRNT · STSHT , (5.5)
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where we used the relationship E[AH
c Ac] =

Pd
i=1 tr{Ri} · Id. Now, denoting asHUML,c the

UML estimate of the channel matrix Hc (hUML,c = vec{HUML,c}), the sample correlation
matrix 1/NB

PNB
c=1H

H
UML,cHUML,c satisfies

1

NB

NBX
c=1

HH
UML,cHUML,c →

NB→∞
E[HH

UML,cHUML,c] = NRNT ·STSHT +
σ2n
LPP

I, NB →∞.

(5.6)
Therefore, a consistent estimate of the temporal modes UT can be obtained by taking the rT
leading eigenvectors of the sample correlation matrix (5.6), i.e.,

1

NB

NBX
c=1

HH
UML,cHUML,c = ÛT Λ̂T Û

H
T . (5.7)

Similarly to the previous Section, in case noise is not spatially white and/or the training se-
quences are not optimally designed, the UML estimates should be at first whitened through the
error correlation matrix of the UML estimateQUML. Recalling that (see (4.6) and (3.11))

QUML = R
−1
x,T ⊗R

−1
x,S ⊗Rn, (5.8)

whereRS,x andRT,x account for the spatial and temporal correlation of the training sequences,
the whitening operation can be equivalently performed on the channel matrixHUML,c as

H̃UML,c = (R
1/2
x,S ⊗R

−H/2
n )HUML,c(R

T/2
x,T ). (5.9)

Once computed the sample covariance (5.7) and the corresponding rT leading eigenvectorsb̃
UT , a consistent (up to its ambiguity) estimate of the temporal modesUT can be obtained as

ÛT = R
−∗/2
x,T ŨT , (5.10)

and therefore an estimate of the space-time modesU as

Û = ÛT ⊗ INRNT

Remark 6 (rank estimation): The number of modes r or rT (i.e., the number of resolvable
space-time or temporal signatures) is generally not known and hence should be estimated.
This problem falls within the scope of the theory on model order selection. Recent advances of
this field have moved the state of the art from hypothesis testing approaches, that require the
definition of a somewhat arbitrary threshold, to information theoretic criteria such as Minimum
Description Length (MDL) or Akaike Information Criterion [9]. The reader is referred to the
cited references for further details.
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Subspace tracking adaptive estimation

So far, the quasi-static model of variations for the long term channel features in (4.2) has been
taken into account. An adaptive (i.e., on a block-by-block basis) computation of the space-time
modes U or temporal modes UT that alleviates the computational burden of the eigenvalue
decomposition and allow for a continuos (but still slow) variations of the channel space-time
modes can be obtained through a subspace tracking algorithm [10].

Subspace tracking refers to a class of algorithms that manage to update the signal subspace
(or alternatively the noise subspace) of a given sample correlation matrix whenever a novel
measurement is available, with a lower computational complexity than an eigenvalue decom-
position. If the sample correlation matrix has dimension M ×M and signal subspace is of size
s the order of complexity of an eigenvalue decomposition is O(M3), whereas subspace track-
ers (with different properties of convergence and accuracy) have been proposed that reduce the
computational burden up to O(Ms) [11]. Moreover, adaptive rank estimation can be included
in subspace tracking procedures [10].

For the application proposed here, the subspace tracker proposed by [12] was proved to pro-
vide a good trade-off between complexity (O(Ms2)) and accuracy. Table 5.1 summarizes the
subspace tracking algorithm with adaptive rank estimation: for this application, vc = h̃UML,c,
M = NTNRW and s = r for beamforming scenario while vc = H̃H

UML,c, M = W and
s = rT for the diversity scenario. Notice that an upper bound smax on the number of the space-
time modes r or temporal modes rT has to be predetermined, which may be derived from a
priori knowledge about the channel. The coefficient γ rules the memory of the algorithm and
can be adjusted to accommodate temporal variations of the channel modes. Moreover, the
coefficient β is a threshold used for rank estimation purposes. Its value can be adjusted as
a function of system parameters and SNR, as thoroughly explained in [13]. The estimate of
the modal matrix for the cth block Êc (that equals Ûc for the beamforming and ÛT,c for the
diversity scenario) is obtained by taking the first ŝc columns of Ec. As a final remark, it is
noticed that, according to [12] the subspace tracker could be implemented in a more computa-
tionally efficient way than the one illustrated in the table, still retaining the order of complexity
O(Ms2).

5.2.2 Decoupled spatial and temporal modal analysis

For the beamforming scenario, the estimation of the NRNTW × r long-term modes of the
channel U as detailed above may suffer from high computational complexity and slow con-
vergence due to the large size of the space-time modal matrix U whenever the number of
transmitting/receiving antennas (NT and NR) and/or the temporal support of the channel W
is large enough. Notice that in a diversity scenario, this problem does not hold since the tem-
poral modes to be estimated are collected in a smaller size W × r matrix UT . Therefore, in
the above mentioned cases, a suboptimal approach that retains the desired properties of com-
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putational complexity and convergence should be preferred. Here the author proposes such an
approach that considers separately the stationarity of angles and delays. The idea is the fol-
lowing: decouple the space-time modes (U) into spatial (US) and temporal (UT ) modes, to be
estimated separately. The advantage is that the corresponding modal matrices (US and UT )

have reduced dimensions as compared to the space-time modal U. Notice that the temporal
modes have already been defined within the diversity scenario context.

The key is again to work with the NRNT × W channel matrix Hc (2.7). According to
(2.23):

Hc = SS · diag{βc} · SHT . (5.11)

where the NRNT × d matrix SS that collects by columns the spatial signatures of the d paths,
SS = A0(α(T ),α(R)). Following the lines of reasoning of Sec. 4.4, it can be concluded that
the matrices that contain the spatial and temporal signatures, SS and ST respectively, are rank-
deficient, rS = rank{SS} ≤ min{NRNT,NF} and rT = rank{ST} ≤ {W,NF}. Therefore,
they can be parametrized as follows: SS = USL

H
S , where the full rank matrices US and LS

are NRNT × r and d× r respectively; ST = UTL
H
T (see Sec. 4.4) with full rank matricesUT

W × rT and LT d × rT . The rS columns of the long term matrix US are defined as spatial
modes of the channel whereas we recall that the rT columns of the long term matrix UT are
defined as temporal modes. Notice that, without limiting the generality of the approach, the
spatial and temporal modes are assumed to have unit norm. Therefore, the channel matrix can
be restated in terms of spatial and temporal modes as

Hc = USDcU
H
T , (5.12)

with definitionDc = L
H
S diag{βc}LT .

Batch estimation

A decoupled spatial and modal analysis estimates the spatial and temporal modesUS and UT

according to the MOM principle from the correlation matrices of the UML estimates as done
in the context of space-time modal analysis in Sec. 5.2.1. Such estimators are consistent (up to
their ambiguities) and can be derived following the lines of Sec. 5.2.1. For instance, consider
the estimation of spatial modes US. The computation of UT then follows a dual approach.
From (5.11), it is

E[HcH
H
c ] = SSΓSS

H
S (5.13)

where ΓS = Id ¯ (SHT ST ) = Id ¯ Ω (assuming the approximate relationship1 ||g(τ)||2 =
1). Assuming spatially white noise and optimal training sequences, for ergodicity the sample
correlation matrix of the UML estimates 1/NB

PNB
c=1HUML,cH

H
UML,c satisfies

1

NB

NBX
c=1

HUML,cH
H
UML,c →

NB→∞
E[HH

UML,cHUML,c] = SSΓSS
H
S +

σ2n
LPP

I, . (5.14)

1The relationship holds exactly only for sample spaced (T ) delays.
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Therefore, a consistent estimate of the spatial modes US can be obtained by taking the rS

leading eigenvectors of the sample correlation matrix (5.14), i.e.,

1

NB

NBX
c=1

HUML,cH
H
UML,c = ÛSΛ̂SÛ

H
S . (5.15)

Moreover, in case noise is not spatially white and/or the training sequences are not optimally
designed, the UML estimates should be at first whitened through the error correlation matrix
of the UML estimate QUML according to (5.9). Then, once computed the sample covariance
(5.14) and the corresponding rS leading eigenvectors b̃US , a consistent (up to its ambiguity)
estimate of the temporal modesUS can be obtained as

ÛS = (R
−1/2
x,S ⊗RH/2

n )
b̃
US. (5.16)

A consistent estimator for the temporal modes can be defined as in Sec. 5.2.1 from the sam-
ple correlation matrix of the whitened UML estimates 1/NB

PNB
c=1H

H
UML,cHUML,c (5.10).

Both the temporal and spatial analysis presented above can be justified from a ML standpoint,
as it is shown in Sec. 5.3.1.

Example 3 (rank estimation): In this example, the effect of the Doppler spread on the es-
timation of the spatial and temporal modes and in particular on their number rS and rT is
studied through a numerical example. Let us consider a beamforming scenario and a space-
time channel with either one transmit antenna (NT = 1, SIMO channel) or one receiving
antenna (NR = 1, MISO channel), two resolvable angles (rS = 2) and rT = 8 resolvable
delays. Other parameters are: NR = 8 (or NT = 8), W = 15 and LP = 40. Moreover,
the power delay profile is uniform and the Doppler spectrum is the same for all paths and is
modelled according to the Clarke’s model ϕ(m) = J0(2πfDmTS). Fig. 5.4 shows the average
values of r̂S and r̂T , carried out according to the MDL principle, obtained from 104 indepen-
dent runs of fading versus the fading decorrelation within NB = 10 blocks at large signal
to noise ratios (SNR = 20dB). The choice of NB = 10 is irrelevant as the result depends
only on the product fDNBTS for NB large enough. For a static channel (fD = 0), fig. 5.4
shows that r̂S = r̂T = min(rS, rT ) = 2, that corresponds with the rank of the channel matrix
rank{Hc} [14]. Moreover, for fDNBTS large enough to guarantee uncorrelated fading within
NB blocks, as expected the estimates are consistent: r̂S → rS = 2 and r̂T → rT = 8.

Subspace tracking adaptive estimation

As explained in Sec. 5.2.1, an adaptive and low-complexity alternative to the computation of
the eigenvalue decomposition required for spatial and temporal modal analysis is the imple-
mentation of a subspace tracking algorithm. This solution alleviates the assumption of quasi
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Table 5.1: Subspace tracking algorithm with adaptive rank estimation.

Initialize: smax;E0 =
∙
Ismax
0

¸
;Θ0 = Ismax ;C0 = 0; p0 = 0; 0 ≤ γ ≤ 1

For each symbol n:
input: vc,M
1. Subspace tracking:
Zc = E

H
c−1vc

Cc = γCc−1Θc−1 + vcZHc
Cc = EcRc (QR factorization)
Θc = E

H
c−1Ec

2. Adaptive rank estimation:
λ̂i = [Rc]ii i = 1, 2, .., smax
pc = γpc−1 +

1
M tr{vcvHc }

σ̂2 = M
M−smax pc −

1
M−smax tr{Rc}bsc = card{λ̂i : λ̂i > β · σ̂2}

updated basis: Êc = [Ec]:,1: ŝc
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Figure 5.4: Estimated number of spatial and temporal modes {r̂S , r̂T} versus the fading decor-
relation fDNBTS (rS = 2, rT = 8).
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Figure 5.5: Path geometry in the angle/delay domain that guarantees the optimality of the
separate spatial and temporal modal analysis.

static variations of the long term features of the channel, allowing continuos (but still slow)
variations.

With reference to the subspace tracker in Table 5.1 (see Sec. 5.2.1 for further details),
the input of the algorithm to track the spatial (or temporal) modes are vc = H̃UML,c (or
vc = H̃

H
UML,c) and M = NRNT (or M = W ), whereas the output is ÛS,c, equal to the first

r̂S,c = ŝc columns of Ec (and similarly for ÛT,c).

Space-time versus decoupled spatial and temporal modal analysis

It is interesting to investigate the reasons why parametrization (5.12) will eventually lead to a
(asymptotically with respect to NB) suboptimum estimator. By stacking (5.12), we get

hc = vec{Hc} = (U∗T ⊗US)dc, (5.17)

with the redefinition dc = vec{Dc}. Recalling the channel vector parametrization (5.1), it is
clear that the space-time modesU are here parametrized as the Kronecker product of the spatial
modal matrix US and the temporal modal matrix UT (apart from the inessential conjugate
operation). In other terms, the space-time modes are assumed to be separable into spatial
and temporal modes or equivalently that the number of space-time modes r can be written
as r = rSrT . This condition only arises in very special situations such as in the example
sketched in fig. 5.5. In this particular case (tailored for simplicity of representation on systems
with NR = 1 or NT = 1, so that there is only one angle to be concerned with), there is
a well resolved path for each couple angle/delay. In other words, the geometry of the paths
in the angle/delay domain is separable over the two dimensions (and r = 4 = rSrT where
rS = rT = 2). In any other case, it is r < rSrT and this condition implies a degraded
performance of the estimator based on (5.12) for NB →∞ as explained in Sec. 5.5.
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5.3 Estimation of the fast-varying fading amplitudes

Once the modes U of the channel have been estimated, either through space-time modal anal-
ysis or decoupled spatial and temporal modal analysis (i.e., U = U∗T ⊗US), the fading am-
plitudes, modelled by vector dc, have to be evaluated. From the guidelines recalled at the
beginning of this Chapter, the fading amplitude should be tracked according to the MMSE
criterion, i.e., by Kalman filtering [15].

This thesis considers two suboptimal approaches: i) modal filtering: the amplitudes are
modelled as deterministic parameters, therefore no tracking is performed; ii) LMS tracking of
the fading amplitudes. In the first case, presented in Sec. 5.3.1 the structured channel estimation
problem can be restated in a ML framework. The author will take the time necessary to present
this aspect since as a by product it will be possible to justify the MOM estimators of the long
term features of the channel presented above through the ML principle. On the other hand, the
second case will be studied in Sec. 5.3.2.

5.3.1 Modal filtering

As a first solution to the problem of estimating the fading amplitudes, the simplest case where
this estimation is performed separately on each block is addressed. More specifically, the am-
plitudes are modelled as deterministic parameters to be estimated anew on each block. This
approach is apparently suboptimal but, as discussed in the previous Chapter (see Sec. 4.9),
it approaches the optimal performance for spatially and temporally uncorrelated fading am-
plitudes and large signal to noise ratios. Under this framework since both the channel modes
and the fading amplitudes are modelled as deterministic parameters, the channel estimation
problem can be defined as a structured (or constrained) ML estimate. In Sec. 4.9 the cor-
responding CRB has been derived. Here, this analytical approach will be pursued and, as a
by-product, it will be possible to justify the MOM estimators of the long term features of the
channel presented above from a ML standpoint. For simplicity of presentation, in the following
the treatment is focused on the beamforming scenario since the results concerning the diversity
scenario can be easily derived following the same reasoning.

Space-time modal filtering

The ML estimation of the channel vector parametrized as (5.1) is obtained by minimizing the
negative log-likelihood function (recall the signal model (4.1))

L (U,D) =

NBX
c=1

kyc −XUdck2ILP⊗R−1n (5.18)

with respect to the parameters {U,D}, where D = [d1 · · ·dNB ]. The number of space-time
modes r is assumed to be known within this section (see remark in Sec. 5.2.1). It can be
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easily shown that the likelihood function (4.69) can be restated in terms of the whitened UML
estimates h̃UML,c (5.9) as

L (U,D) =

NBX
c=1

°°°h̃UML,c − Ũdc
°°°2 , (5.19)

where Ũ = Q
−H/2
UMLU. The UML estimates are thus sufficient statistics for the estimation of

the parameters {U,D} [8]. The optimization of L (U,D) in (5.19) can be carried out at first
with respect to the amplitudesD. The result is the estimate

d̂c = argmin
dc
L (U,D) = Ũ†h̃UML,c. (5.20)

Substitution of (5.20) into (5.19) yields:

L
³
U, D̂

´
=

NBX
c=1

°°°h̃UML,c −ΠŨh̃UML,c

°°°2 , (5.21)

whereΠŨ= ŨŨ
†
, i.e.,ΠŨ is the projection matrix onto the subspace spanned by the columns

of Ũ, range{Ũ}. It follows that the ML estimation of the space-time modes reads

Û = argmin
U
L
³
U, D̂

´
=

= argmax
U

tr{ΠŨ
1

NB

NBX
c=1

h̃UML,ch̃
H
UML,c}. (5.22)

Therefore, the ML estimation of the space-time modes coincides (up to its ambiguity) with the
MOM estimator for the space-time modal analysis described in Sec. 5.2.1.

To sum up, once the estimate of the long term features of the channel has been obtained
according to Sec. 5.2.1 (see (5.4)), the fading amplitudes are computed as (5.20), leading to
the channel estimate ĥc = Ûd̂c, that can also be stated as

ĥc = Q
H/2
UMLΠ̂Ũh̃UML,c. (5.23)

From (5.23), this channel estimation approach is referred to as modal filtering since, apart
from the whitening and dewhitening operations, it consists of a projection (filtering) of the
preliminary UML estimate onto the estimated modal subspace. An example that illustrates the
effects of modal filtering is proposed in the next Section.

As it will be proved analytically in Sec. 5.5, modal filtering leverages on the reduced
rank properties of the space-time signatures matrix SST = T. In particular, the asymptotic
(NB → ∞) gain in terms of MSE on the channel estimate as compared to UML estimation
can be quantified in the ratio r/(NRNTW ). This behavior was already observed by studying
the properties of the asymptotic HCRB (that under appropriate assumptions coincides with the
CRB) for high SNR in Sec. 4.7.2.
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Decoupled spatial and temporal modal filtering

The decoupled spatial and temporal modal analysis (for the beamforming scenario) is based
on the parametrization of the channel matrix (5.12). Accordingly, in this context the channel
estimation problem translates into the estimation of the spatial and temporal modes {US,UT}
and the r× r weighting amplitudesDc. Here, following the idea of modal filtering, matrixDc

is considered as deterministic. Similarly to the previous Section, it can be shown that the UML
estimates of the channel are sufficient statistics for the estimation of {US ,UT ,D} defining for
convenience D = [d1 · · ·dNB ]) and their ML estimation can be evaluated by minimizing the
negative log-likelihood function

L (US,UT ,D) =

NBX
c=1

°°°H̃UML,c − ŨSDcŨ
T
T

°°°2 (5.24)

with the definition of the whitened quantities ŨS = (R
1/2
x,S⊗R

−H/2
n )US and ŨT = R

∗/2
x,TUT .

The number of modes rS and rT are assumed to be known within this section (see remark in
Sec. 5.2.1). The optimization of L(US ,UT ,D) in (5.24) can be carried out at first with respect
to D. This result is in

D̂c = argmin
D̂c

L (US,UT ,D) = Ũ
†
SH̃UML,c(c)Ũ

†H
T . (5.25)

The substitution of (5.25) into (5.24) yields:

L
³
US ,UT , D̂

´
=

NBX
c=1

°°°H̃UML,c −ΠŨS
H̃UML,cΠŨT

°°°2 , (5.26)

The estimation of ŨS and ŨT is turned into the minimization of (5.26) with respect toΠŨS
and

ΠŨT
, constrained to be projection matrices of rank order rS and rT , respectively. By making

use of the trace operator properties [16], the minimization of (5.26) can be equivalently stated
as

n
Π̂ŨS

, Π̂ŨT

o
= arg max

{ΠS ,ΠT }
tr

(
ΠŨS

NBX
c=1

H̃UML,cΠŨT
H̃H

UML,c

)
(5.27)

= arg max
{ΠS ,ΠT }

tr

(
ΠŨT

NBX
c=1

H̃H
UML,cΠŨS

H̃UML,c

)
. (5.28)

The optimization (5.27) or (5.28) is non-linear. The separable characteristics of the objective
function suggests that the minimization can be carried out iteratively by alternating the search
for ΠŨS

(given ΠŨT
) and ΠŨT

(given ΠŨS
). For NB = 1 (or equivalently for a static

channel) the minimization (5.27) or (5.28) yields the reduced-rank estimate [17] [14], while for
NB →∞ the closed form solution can be based on a privileged choice of the initialization for
the alternate search. Let us consider the optimization (5.27) with respect toΠŨS

for any given



Channel estimation by modal analysis/filtering 91

initializationΠŨT
= Π

(0)

ŨT
(the same reasoning applies dually for the optimization of (5.28)).

Any choice Π(0)
ŨT

such that range{Π(0)
ŨT
H̃H

UML,c} ⊂ range{H̃H
UML,c} affects the estimate

of ΠŨS
since it reduces the set of solutions to those that are compatible to the initial choice

Π
(0)

ŨT
. In order not to bias the final solution, here it is preferred to decouple the optimizations

by relaxing the constraint on the temporal structure and choosingΠ(0)
ŨT

= IW . With this choice
the estimate Π̂ŨS

can be obtained very easily from the leading rS eigenvectors of the spatial
correlation matrix 1

NB

PNB
c=1 H̃UML,cH̃

H
UML,c. Therefore, the estimate of the spatial modes

ÛS coincides with the MOM estimator for spatial modal analysis (5.16). Similarly, it can be
easily shown that the estimate of the spatial modes ÛT coincides with the MOM estimator for
temporal modal analysis (5.16). Notice that the procedure could be iterated by alternating the
search once initialized as explained above but in practice there is no relevant improvement to
justify the additional costs [17]. Moreover, these choices can be shown to coincide with the
exact ML estimation for NB →∞ (see Appendix-B).

To sum up, once the estimate of the spatial and temporal modes have been obtained accord-
ing to (5.16) and (5.10), the fading amplitudes are computed as (5.25), leading to the channel
estimate Ĥc = ÛSD̂cÛ

H
T , that can also be stated as

Ĥc = (R
−1/2
x,S ⊗RH/2

n )Π̂ŨS
H̃UML,cΠ̂ŨT

R
−T/2
x,T , for c = 1, 2, ..., NB. (5.29)

From (5.29), this channel estimation approach is referred to again as modal filtering since,
apart from the whitening and dewhitening operations, it consists of a projection (filtering) of
the preliminary UML estimate onto the estimated spatial and temporal modal subspaces.

Remark 7 (spatial or temporal modal filtering): As it will be proved analytically in Sec.
5.5, spatial and temporal modal filtering leverages on the reduced rank properties of the path
signatures matrices SS and ST respectively. In particular it can be proved that the asymptotic
gain in terms of MSE on the channel estimate as compared to UML estimation can be quantified
in the product rS/(NRNT ) · rT/W, where the first term accounts for the spatial gain and the
second for the temporal gain. It is then clear that whenever the channel has a dense spatial
scattering, i.e., rS ' NRNT there might be little to be gained from spatial modal filtering.
Therefore, a good way to trade complexity for a slight decrease, if any, in performance would
be the implementation of temporal modal filtering only. Similarly, if the channel has a dense
temporal scattering, i.e., rS ' W, it might be convenient to implement spatial modal analysis
only. In [19] an estimator that performs spatial modal analysis for a frequency-flat MIMO is
proposed whereas [18] presents an analogous technique based on temporal modal analysis. As
a final remark, notice that the space-time analysis defined within a diversity scenario in Sec.
5.2.1 coincides with the temporal modal analysis discussed above.

Example 4 The effect of spatial and temporal modal filtering is illustrated by an example
in fig. 5.6. The multipath channel is composed of d = 5 paths having power delay profile
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Ω = Ω0 diag{[0 −1.2057 −2.3976 −3.7239 −5.9944][dB]}, where Ω0 is selected so as to
guarantee channel normalization (2.35). For simplicity, we consider a SIMO system (NT = 1),
spatially white noise and optimal training sequences. Moreover, the number of blocks NB is
selected to be large enough to guarantee convergence of the estimates of the long term features
of the channel. The geometry of the paths between the transmitter (TX) and the receiver (RX) is
shown in fig. 5.6-a. The UML estimateHUML,c is plotted in fig. 5.6-b through its power-delay-
angle diagram P(i, α). This diagram can be obtained as P(i, α) = |[a(α)HHUML,c]1,i|2,
where i runs over the discrete-time delay axis i = 1, ..,W and α ∈ [−π/3, π/3] span the DOA
axis. Since α

(R)
1 = α

(R)
2 , α(R)3 = α

(R)
4 and τ4 = τ5, the spatial and temporal modes are,

respectively, rS = 3 and rT = 4. The projector Π̂ŨS
is calculated by using different values

of the estimate r̂S = 1 ÷ 3. The same holds for Π̂ŨT
with r̂T = 1 ÷ 4. As shown in fig.

5.6-c, d and e, by projecting the space-time matrix HUML,c the background noise is reduced.
Notice that in fig. 5.6-c the temporal projector Π̂ŨT

with r̂T = 1 selects the path of the
channel that has the largest mean power Ω1, even though this is not the temporal component
with the largest local power. The residual noise after the projection is that component that
can no longer be eliminated as it belongs to the same subspace of the channel. By comparing
the power-delay-angle diagram for the initial space-time matrixHUML,c in fig. 5.6-a with the
projected matrix Π̂ŨS

HUML,cΠ̂ŨT
in fig. 5.6-e, the visual inspection shows that the artifacts

due to noise are reduced. This noise reduction depends on the ratio rSrT/NRW . Indeed, it
can be observed in Fig. 5.6-e that the double projection selects rSrT = 12 “intersections”
in the space-time domain, i.e. the multipath components that have angles in {α1, α3, α5} and
delays in {τ1, τ2, τ3, τ4}. Since the initial UML in fig. 5.6-a contains all the NRW channel
samples, the noise-reduction after the double projection is rSrT/NRW .

Modal filtering through subspace tracking

In order to get an adaptive implementation of modal filtering, it is enough to perform modal
analysis according to Sec. 5.2.1 followed by the block-by-block estimation of the amplitudes
(5.20) (space-time) or (5.25) (decoupled spatial and temporal modal filtering).

5.3.2 LMS tracking of the fading amplitudes

Based on the knowledge of the fading statistics and the estimate of the channel modes Û,
the optimal channel estimation approach described in the previous Chapter prescribes MMSE
tracking of the fading amplitudes, e.g., by means of the classical Kalman filter. Alternatively,
the suboptimal techniques proposed in [20] reduce the computational complexity of the Kalman
filter with minor performance losses. Here, to get a computationally simpler estimator we
investigate tracking of the fading process through the LMS algorithm. In [21] this solution was
studied for the case NT = 1 and spatial or temporal modal analysis.
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Figure 5.6: Example of space and/or time modal filtering for a channel with d = 5 paths and
different estimated number of modes r̂S and r̂T : a) multipath model; b) power-delay-angle
diagram P(i, α) from the UML estimate; temporal (c) and spatial (d) filtering ofHUML,c with
increasing dimensions; e) spatial and modal filtering.
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Recalling that the estimate of the channel vector is

ĥc = Ûd̂c (5.30)

(where for decoupled spatial and temporal modal analysis we have Û =(Û∗T,c ⊗ ÛS,c)), it is
straightforward to show that LMS tracking of the vector dc can be obtained as follows [15]
(0 6 µ 6 2 in order to guarantee stability; b0 can be initialized as b0 = 0):

²c = hUML,c − Ûcd̂c−1 (5.31a)

d̂c = d̂c−1 + µÛH
c ²c. (5.31b)

Notice that, in case modal analysis through subspace tracking is implemented, the esti-
mated number of space time modes r̂c (for decoupled spatial and temporal modal analysis
r̂c = r̂S,cr̂T,c) may vary as a function of the blocks c . Accordingly, the number of amplitudes
to be tracked, i.e., the size of r̂c × 1 vector d̂c, varies. Therefore, LMS tracking (5.31) should
be performed on the space-time modes of size r̂max (for decoupled spatial and temporal modal
analysis r̂max = r̂S,maxr̂T,max) defined in Table 5.1, thus updating a vector d̂c of size r̂max× 1
of which the first r̂c entries correspond to the useful part.

5.4 Modal channel estimation: a summary

The proposed channel estimators can be summarized by means of the block diagrams in fig.
5.7 and 5.8. Notice that modal analysis can be implemented either following approach or
through subspace tracking accordin to fig. 5.3. However, subspace tracking should be gen-
erally preferred since, as discussed in Sec. 5.2.1, it reduces the computational complexity of
the batch approach with negligible performance degradation (see also Sec. 5.6 for numerical
investigation).

• Modal analysis/modal filtering (fig. 5.7): apart from the necessary whitening and de-
whitening operations, these estimators perform modal analysis, either by space-time
(Sec. 5.2.1) or decoupled spatial and temporal modal analysis (Sec. 5.2.2), followed
by modal filtering (Sec. 5.3.1). This approach is expected to be asymptotically optimum
for spatially and temporally uncorrelated fading amplitudes and large SNR. According
to table 5.2 the estimator based on space-time modal analysis/filtering will be referred to
as MA-F whereas the estimator based on the decoupled computation of spatial and tem-
poral modes will be referred to with the acronym S/T MA-F. The S/T MA-F algorithm
is known to be suboptimum as compared to MA-F as explained in Sec. 5.2.2. Moreover,
according to the remark Sec. 5.3.1, we define S MA-F and T MA-F the estimators based
respectively on spatial or temporal modal analysis only.

• Modal analysis with LMS tracking (fig. 5.8): these estimators differ from the previous
ones in that after modal analysis they perform LMS tracking of the fading amplitudes
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lĥl,UMLh

Figure 5.7: Block diagram of modal analysis/modal filtering channel estimation.
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Figure 5.8: Block diagram of modal analysis with LMS tracking channel estimation.

(Sec. 5.3.2). This structure is an approximation of the (asymptotically) optimal ap-
proach that prescribes MMSE tracking. Therefore, it is expected to bring some perfor-
mance improvement as compared to the computationally simpler modal analysis/filtering
channel estimation. According to table 5.2, the estimator based on space-time modal
analysis/filtering will be referred to as MA-LMS whereas the estimator based on the de-
coupled computation of spatial and temporal modes will be referred to with the acronym
S/T MA-LMS.

The two approaches above can be described by the same block diagram in fig. 5.9 if the
noise is spatially white and the training sequences are optimally designed, i.e., if there is no
need to introduce the whitening and dewhitening operations.

Table 5.2 classifies the channel estimators described above in terms of the propagation sce-
narios, either beamforming (bf) and or diversity (div), in which they can be applied. Notice that
the decoupled spatial and temporal modal analysis S/T MA-F and the alternative approaches S
MA-F and T MA-F have been defined for a beamforming scenario. However, from the discus-
sion in Sec. 5.2.1 and 5.2.2, it is clear that, within a diversity scenario, the T MA-F algorithm
coincides with the MA-F estimator.

5.5 Asymptotic MSE performance analysis

In this Section, the asymptotic MSE of the channel estimators in table 5.2 is computed and
compared with the MSE of the conventional UML estimate and with the asymptotic HCRB
derived in the previous Chapter. To simplify the analysis and according to the model used for
derivation of the HCRB, the long term features of the channel are assumed to be constant over
an infinite temporal horizon (NB →∞). Moreover, it is assumed that the number of modes r
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Table 5.2: Channel estimators based on modal analysis.
Acronym Modal analysis Fast fading amplitudes Scenario
MA-F space-time modal filtering bf, div
S/T MA-F decoupled spatial and temporal modal filtering bf
S MA-F spatial modal filtering bf
T MA-F temporal modal filtering bf, div
MA-LMS space-time LMS bf, div
S/T MA-LMS decoupled spatial and temporal LMS bf

Modal Analysis
and rank

estimation

Modal
Filtering

Amplitudes
tracking

}ˆ,ˆ{ ll rUl,UMLh

ld̂

lll dUh ˆˆˆ =

llll ,
ˆˆˆ

UML
HhUUh =

Figure 5.9: Block diagram of modal analysis channel estimation with modal filtering or LMS
tracking under the assumption of spatially white noise and optimal training sequences.
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Figure 5.10: Scaling law (versus SNR) of the asymptotic MSE of different modal analysis/
filtering schemes for spatially white noise and optimally designed training sequences. For
comparison between S MA-F and T MA-F, the realistic condition rSW < rTNRNT is consid-
ered.

(or rS and rT ) is accurately estimated, which is only possible for sufficiently high SNR, as it
will be shown by simulations in Sec. 5.6. The definition "asymptotic" in this section has thus
to be interpreted both as a function of the number of training OFDM symbols (NB →∞) and
of SNR (SNR→∞).

To get a preview of the results proved below, the reader is referred to fig. 5.10, where
the scaling law (versus SNR) of the MSE’s for different estimators is depicted for the case of
spatially white noise and optimally designed training sequence. As it is expected, the MA-F
estimator is able to reach the conventional CRB, that in turn coincides with the HCRB for
fDTs = 1/2. Suboptimal techniques have degraded performance depending on the character-
istics of the propagation environment. The performance analysis of modal analysis with LMS
tracking could be pursued as shown in [22]. Here, the author points to this reference for further
details.

To start with, the main results of interest previously derived are recalled. From (4.6), the
MSE for the UML channel estimate reads (see also [23])

MSEUML = E[||hUML,c − hc||2] = tr{QUML} = tr{R−1x }tr{Rn}, (5.32)

that for spatially white noise and optimally designed training sequences becomes:

MSEUML =
NTNRW

LP

σ2n
P
. (5.33)

For reference, recall that under the same assumptions, for high SNR and uniform Doppler
spectrum for all paths, the asymptotic HCRB derived in the previous Chapter is (see Sec. 4.7.2)

MSEĥc '
2fDTsr

LP

σ2n
P
. (5.34)
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Also recall that the asymptotic HCRB (5.34) coincides with the CRB for maximum normalized
Doppler spread, fDTs = 1/2 (see Sec. 4.9).

In the following, the performance of modal analysis/filtering is investigated. Using the
consistency of the estimation of the long term features of the channel (i.e., Ûc → U and
ÛS,c → US , ÛT,c → UT for NB → ∞), it is easy to show that the MSE of the MA-F
estimator is

MSEMA−F (NB →∞) = tr{QH/2
UMLΠŨQ

1/2
UML}, (5.35)

where the projection matrixΠ isΠ= ŨŨ†
. Moreover, using the relationship Ũ = Ũ∗T ⊗ ŨS

valid for the S/T MA-F, that impliesΠ=Π∗T ⊗ΠS , the MSE for S/T MA-F is easily obtained:

MSES/T MA−F (NB → ∞) = tr{R−1/2x,T ΠŨ∗T
R
−H/2
x,T } (5.36)

·tr{(R−1/2x,S ⊗RH/2
n )ΠŨS

(R
−H/2
x,S ⊗R1/2n )}.

These results simplify for spatially white noise and optimally designed training sequences as

MSEMA−F (NB →∞) =
r

LP

σ2n
P

(5.37)

and
MSES/T MA−F (NB →∞) =

rSrT
LP

σ2n
P
. (5.38)

Comparing (5.37) with (4.40), we can conclude that modal analysis/filtering allows to
achieve the asymptotic HCRB for high SNR when the amplitudes are uncorrelated from block
to block (fDTs = 1/2). In this case, as explained in Sec. 4.9, it attains the conventional CRB
as well. Moreover, comparing with (5.33) we see that MA-F allows a reduction in the MSE
with respect to the UML method equal to the ratio NRNTW/r.

On the other hand, inspection of (5.38) confirms that the suboptimality of the S/T MA-F
approach can be quantified as discussed in Sec. 5.2.2 as r/(rSrT ). Moreover, its gain with
respect to UML is given by the product of the spatial gain NRNT/rS and a temporal gain
W/rT . These gains quantify the reduction in the number of parameters to be estimated due to
the exploitation of the structure of the channel vector.

The performance of modal filtering with spatial (S MA-F) or temporal (T MA-F) modal
filtering only can be similarly computed, yielding

MSES MA−F (NB → ∞) = tr{(R−1/2x,S ⊗RH/2
n )ΠŨS

(5.39)

·(R−H/2
x,S ⊗R1/2n )}tr{R−1x,T}

MSET MA−F (NB → ∞) = tr{R−1/2x,T ΠŨ∗T
R
−H/2
x,T }tr{R−1x,S}tr{R

H
n }, (5.40)

that for spatially white noise and optimally designed training sequences become:

MSES MA−F (NB → ∞) = rSW

LP

σ2n
P

(5.41)

MSET MA−F (NB → ∞) = NRNT rT
LP

σ2n
P
. (5.42)
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The consideration made in the remark of Sec. 5.3.1 are confirmed by the analytical results
(5.41)-(5.42). In particular, the gain of spatial modal filtering as compared to UML is quantified
by the ratio rS/(NRNT ) and the gain of temporal filtering by rT/W.

5.6 Numerical results

5.6.1 Example 1: SISO channel

In this first example, a SISO channel (NT = 1, NR = 1) is simulated. Under this simple
setting, it is easy to investigate the relationship between the proposed linear estimation of the
long term features of the channel (modal analysis) and the structured techniques that are based
on the non-linear computation of the multipath parameters (here, the delays) (recall Sec. 5.2,
see fig. 5.11). Moreover, since the channel estimators under study are based on the invariance
of the spatial and temporal channel manifolds [2], it is interesting to evaluate the effects of
system stability over successive blocks. Here this investigation is carried out by modelling the
stability of oscillators at the transmit and receive side by considering residual timing offsets
(fig. 5.12). Notice that in a spatial (i.e., SIMO, MISO or MIMO) channel, stability of the
calibration of the antenna arrays [24] could be taken into account in a similar way. As a final
remark, the author recalls that in a SISO channel, there is no distinction between beamforming
and diversity scenario, since this taxonomy is related to the spatial features of the channel.
Moreover, the MA-F estimator coincides with S/T MA-F.

Simulation setting

The simulation setting is as follows: the channel length is W = 15 samples, the length of the
training sequence, assumed to be optimally designed, is LP = 20 (larger than the minimum
value LP ≥ W = 15) and the fading amplitudes uncorrelated from block to block ϕi(m) =

δ(m), i = 1, ..., d. Under this last assumption, as already discussed, there is nothing to be
gained from tracking the fading amplitudes; therefore herein the investigation will be limited
to the MA-F estimator.

In this first example the number of (temporal) modes will be assumed to be known, r̂ =
r = rT .

Structured versus unstructured estimate of the long term features of the channel

To simplify the problem at hand, herein a channel with a single propagation path (d = 1)
with delay 5.1T is considered. Fig. 5.11 compares the MSE of MA-F computed through
simulations for NB = 10, 30 blocks with the asymptotic HCRB (dashed lines). Notice that
the HCRB (4.25) coincides with its asymptotic value (4.36) for the case considered here of
temporally uncorrelated fading amplitudes. It can be seen that for NB large enough, the
performance of the MA-F estimator reaches the HCRB (not shown in this figure for clarity,



100 Channel estimation by modal analysis/filtering

see following examples) as expected from the analysis in Sec. 5.5. Moreover, in order to
demonstrate that the linear channel estimator proposed here is not impaired by the threshold
effects, typical of non-linear estimation problems, fig. 5.11 shows the normalized MSE (i.e.,
E[||ĥc−hc||2]/E[||hc||]) of a structured channel estimator based on the direct computation of
multipath delays [4] [5]. The choice of a channel with a single delay implies that the ML delay
estimator is τ̂ = argmaxτ g(τ)

T (
PNB

c=1 hUML,ch
H
UML,c)g(τ) (recall that for ideal training

sequence, the additive noise on hUML(c) is white) and the block-by-block amplitude estimate
is β̂c = (gT (τ̂)/||g(τ̂)||2) · hUML,c [4]. Even though this constitutes a privileged scenario for
delay estimation (as there are no resolution issues), the threshold effect causes the structured
method to be outperformed by the proposed technique for NB > 10 and sufficiently small
SNR0s as shown in fig. 5.11. For higher SNR’s the structured method attains the MSE

bound. As expected, the unstructured technique has a slower convergence owing to the larger
number of long term parameters that have to be estimated from the multiblock measurements.
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Figure 5.11: Normalized MSE of MA-F compared to the asymptotic HCRB and the MSE of a
structured channel estimator based on the direct computation of delays (SISO channel).

Effects of residual timing offset

To make the multiblock approach of the proposed estimator valid in practice, the received
signals {yc}NB

c=1 should be sampled with synchronized timing in each block in order to have
equal multipath delays. Here we investigate the effect of timing errors characterized by a
random offset independently selected in each block. The delays are selected as τ = [5.1, 6.2,
6.8, 9.8]T and the power-delay profile is Ω =Ω0 diag{[0,−3,−6,−9][dB]} (Ω0 is scaled to



Channel estimation by modal analysis/filtering 101

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.5

1

1.5

2

2.5

3

M
SE

 d
eg

ra
da

tio
n

[d
B

]

Tjitter /σ

dBSNR 0=

dBSNR 10=

30=BN

30=BN

10=BN
10=BN

Figure 5.12: MSE degradation due to a residual random timing offset with standard deviation
σjitter (SISO channel).

ensure the normalization (2.35)) so that rT = 4. The matrixG(τ ) is modified by adding a time
misalignment∆τ c that is independent from block to block: G(τ ) = [g(τ1 +∆τ c) · · ·g(τd +
∆τ c)]with∆τ c ∼ N (0, σ2jitter). Even though it is reasonable to assume that the variables∆τ c
are generally correlated (as it happens for instance due to the mismatch between the transmitter
and receiver clocks), the simple model considered here constitutes an interesting worst-case
scenario. Fig. 5.12 shows the MSE degradation compared to the MSE for σjitter = 0

versus the timing error normalized to the symbol interval (σjitter/T ) for SNR = 0, 10dB.
The modal analysis is robust with respect to random timing error as the MSE degradation can
be quantified to be less than 3dB for σjitter/T < 0.4, NB ≤ 30 bursts and SNR < 10dB.

Notice that since the gain of modal analysis is approximately rT/W ' 5.7dB with respect to
UML estimation, it can be concluded that the proposed techniques is still advantageous for a
wide range of timing offset standard deviations.

5.6.2 Example 2: SIMO channel (beamforming scenario)

Simulation setting

In this example, a SIMO system (NT = 1, NR = 8) within a beamforming scenario is
considered. In particular, the receiver is equipped with a uniform linear antenna array of
NR = 8 elements with half-wavelength inter-element spacing and the temporal support of
the channel is W = 15 symbols. The space-time channel is characterized by d = 8 paths
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with with power-delay profile Ωi=Ω0 × (0.5)(i−1) (Ω0 is scaled so as to ensure channel nor-
malization (2.35)). The paths are obtained from two main clusters, each corresponding to four
paths with the same AOA and different delays: the first set of paths (first cluster) is charac-
terized (where not stated otherwise) by the AOA αi = π/3 for i = 1, . . . , 4 and the delays
[τ1 · · · τ4] = [3.2, 5.1, 6.2, 6.8]T whereas the second has AOA αi = π/6 for i = 5, . . . , 8 and
delays [τ5 · · · τ8] = [9.8, 11.1, 11.9, 12.8]T. The transmitted pulse g(t) is a raised cosine with
roll-off factor 0.2. The training sequence, optimally designed, has length LP = 40 (larger than
the minimum LP ≥W = 15).

As in the previous example, fading amplitudes are assumed to be uncorrelated from block
to block, ϕi(m) = δ(m), i = 1, ..., d, therefore the investigation focuses on the S/T MA-F
estimator. The joint space-time modal analysis (MA-F estimator) will not be considered here
for its poor convergence performance (see Example 4 below for further details). However, as
practical alternatives to S/T MA-F, S MA-F and T MA-F will be considered.

Effect of spatially correlated noise (interference)

Here the aim is the evaluation of the performance of the estimator for spatially correlated noise.
This models, the presence of out-of-cell interferers or in-cell interference for non-orthogonal
signaling. We consider five interferers with AOA’s [ᾱ1 · · · ᾱ5] = [−π/3, −π/6, 0, π/6, π/3]
equally spaced within the angular support [−60 60] deg. They are modelled as Gaussian dis-
turbance so that the noise correlation matrix reads

Rn = (σ
2
i /5)

5X
k=1

a(ᾱk)a(ᾱk)
H + σ2wIM (5.43)

and therefore the noise power is the sum of the contributions from white noise and interference,
σ2n = σ2i + σ2w. Notice that in this case the signal to noise ratio SNR has to be interpreted as
signal to noise plus interference ratio. Here we let P/σ2w = 50dB and let the SNR vary by
modifying the power of interferers, i.e., the ratio P/σ2i .

In fig. 5.13 the simulations for the MSE on the channel estimate (normalized on the
channel norm E[||hc|||2] = NRNT = 8) of S/T MA-F, S MA-F and T MA-F (markers)
are compared with the analytical asymptotic MSE (5.36), (5.39) and (5.40) (dashed lines),
respectively. As a reference, the performance of the UML estimator both from simulation and
analysis (5.32) are shown. The number of blocks NB is selected so as to guarantee convergence
to the asymptotic results (in practice, here NB > 30 is enough, see also Example 4). As for the
top part of fig. 5.13, the angles of arrival of the user are aligned with those of the interferers:
αi = ᾱ5 = π/3 for i = 1, . . . , 4, and αi = ᾱ4 = π/6 for i = 5, . . . , 8. At the bottom,
the angles of arrival are slightly misaligned: αi = π/4 for i = 1, . . . , 4, and αi = π/8 for
p = 5, . . . , 8 (see the box on both figures). Here, it is assumed that the number of modes is
correctly estimated, r̂S = rS = 2 and r̂T = rT = 8. When the user angles are separated
from those of the interferers (bottom), the spatial processing performed by the S/T MA-F and
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S MA-F methods leads to a value of MSE that is independent on the interference level, but
it is ruled by the background white noise. According to the analysis in Sec. 5.6, here the S
MA-F method outperforms the T MA-F because in this propagation environment the spatial
gain (NRNT/rS = 4) is larger than the temporal gain (W/rT = 1.875). To be precise, this
argument applies to the case of spatially white noise, but it turns out to be a reliable rule of
thumb to choose the modal estimators according to their expected performance in that case.
The following simulations consider the angles of arrival for the user aligned with those of the
interferers (top part of fig.5.13) as this corresponds to the worst case.

Estimate of the number of modes

The simulations presented above were obtained for an unbiased estimate by choosing the de-
gree of diversity r̂S = rS = 2 and r̂T = rT = 8. However, it is well known that it may be
advantageous for low SNR’s to underparametrize the model of interest (i.e., to select a smaller
number of modes) in order to trade some bias for a lower MSE [17]. This is shown in fig. 5.14
for the S/T MA-F method with NB = 10 (similar results can be shown for all the methods).
For simplicity, the number of spatial modes is fixed to r̂S = rS = 2 while r̂T ranges from
r̂T = 1 to r̂T = rT = 8 (dashed line). The normalized MSE versus SNR curves show that
for SNR < −10dB the MSE is minimized by choosing r̂T = 1, while for larger SNR values
the MSE shows a floor due to the bias for under-parameterization. Larger values of r̂T have to
be used for increasing SNR in order to select the number of modes that minimizes the MSE.
The performance of S/T MA-F with number of modes r̂T selected according to the MDL prin-
ciple [9] is shown in bold line. It can be concluded that MDL provides a rank estimation that
approximately minimizes the MSE (see also [17]).

Subspace tracking versus batch modal analysis

Here the performance degradation of the computationally efficient subspace tracking imple-
mentation of modal analysis as compared to the batch approach is investigated. Toward this
goal, in fig. 5.15 the performances of S/T MA-F through the subspace tracker proposed in [12]
is evaluated in terms of MSE versus the number of blocks NB . The exact batch implemen-
tation (dashed lines) and the subspace tracking implementation (bold lines) are compared for
varying SNR0s (forgetting factor γ = 1, the number of modes is assumed to be known). The
MSE corresponding to the UML estimate is also shown as a reference (dash-dotted lines) and
confirms the accuracy of the subspace tracking methods for real time implementations.

5.6.3 Example 3: MIMO system (diversity scenario)

Simulation setting

In this example, we consider a MIMO system within a diversity scenario. The number of
transmit antennas is NT = 4 and the number of receiving antennas is NR = 4. The multipath
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channel is characterized by a temporal support W = 8 samples and the number of paths is
d = 4 with uniform power-delay profile and sample spaced delays τ i/T = (i − 1), i =
1, ..., 4. The paths have equal uniform Doppler spectrum selected according to the Clarke’s
model and equal separable spatial correlationR = R(T )⊗R(S) where the transmit and receive
side correlations R(T ) and R(S) are assumed to be obtained from an autoregressive model
so that they are Toeplitz matrices with first column [1 ρT · · · ρN−1T ]T and [1 ρR · · · ρN−1R ]T

respectively. The correlation coefficients 0 ≤ ρT , ρR ≤ 1 measure the transmit and receive
side spatial correlation respectively. The noise is spatially white and the training sequences
optimally designed with length LP = NTW = 32.

Effect of Doppler spread and spatial correlation

The asymptotic MSE of the MA-F and the MSE of the UML estimators are evaluated and com-
pared with the asymptotic HCRB (4.36) in fig. 5.16 for varying normalized Doppler spread
fDTS and SNR = 0, 10, 20dB (upper part) and as a function of fading correlation ρT = ρR

for fDTS = 0.1, 0.5. As already discussed, performance degradation of these techniques oc-
curs as these estimators fail to fully exploit the information on the MIMO channel matrix.
Indeed the UML estimator does not use any deterministic or statistical information whereas
the MA-F only capitalize on structural modelling of the channel (i.e., does not track the fading
amplitudes). However when the information neglected by the estimator is not helpful in im-
proving the performance, no degradation is expected. In this regard, consider the upper part of
fig. 5.16. For increasing fDTS , i.e., increasingly uncorrelated fading amplitudes across differ-
ent bursts, no benefits can be obtained by tracking the amplitudes and, as a consequence, the
degradation of the two estimators decreases. Similarly, a decreasing spatial (ρT ) or temporal
(ρR) correlation renders the MMSE approach of the optimum estimator increasingly ineffec-
tive and the degradation decreases, as shown in the lower part of fig. 5.16. An increased SNR
would make this effect less noticeable (not shown in the figure). The impact of the SNR, stud-
ied in the upper part of fig. 5.16 can be interpreted in the same way: an increasing SNR makes
the MMSE approach of the optimum estimator closer in performance to a UML approach and,
as a consequence, the degradation decreases.

The results presented above can be interpreted in the light of the discussion of Sec. 4.9
about the relationship between the asymptotic HCRB and the conventional CRB. In fact, the
MA-F estimator, being a ML estimate, attains the conventional CRB for NB → ∞ (asymp-
totically efficient estimation [8]) and the latter coincides with the asymptotic HCRB for i)
NB → ∞, ii) high SNR, iii) temporally (and spatially for a diversity scenario) uncorrelated
fading.
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5.6.4 Example 4: MIMO system (beamforming scenario)

Simulation setting

The performance of the proposed channel estimation methods is evaluated herein for a MIMO
system within a beamforming environment. NT = 4 transmitting antennas and NR = 4

receiving antennas (half-wavelength spaced linear antenna arrays at both sides) communicate
over a frequency selective channel with temporal support W = 8. The length of the training
sequences, optimally designed, is LP = NTW = 32. Where not stated otherwise, the channel
is characterized by d = 4 paths with uniform power delay profile, delays τ = [1 3 4 6]T,
DODs and DOAs equally-spaced in the angular support (−60, 60) deg . With these choices, all
the paths are resolvable in both temporal and spatial domain and therefore the number of modes
equals the number of paths, i.e., r = 4, rS = 4 and rT = 4. Moreover, Doppler spectra of
different path are equal and selected according to the Clarke’s model with normalized Doppler
spread fDTS = 0.03. Validation of the proposed channel estimation algorithms for the channel
model standardized by the 3GPP/3GPP2 SCM (spatial channel modeling) adhoc group [25]
(that falls within the category of beamforming models) has been presented in [26].

Estimation of the number of modes and comparison between different techniques

Figure 5.17 compares the performance of the S/T MA-F and MA-F channel estimators im-
plemented through subspace tracking with rank estimation in terms of MSE versus SNR with
the UML channel estimate and the asymptotic HCRB. For the S/T MA-F, both the asymptotic
results derived in Sec. 5.5 and the MSE obtained after NB = 50 blocks through subspace
tracking (with γ = 0.999, β = 0.6, rS,max = 15 and rT,max = 7) are shown (perfomance as
a function of NB is considered next). On the other hand, the performance of MA-F is plotted
only in terms of the asymptotic MSE (5.35) given its prohibitive complexity and rate of con-
vergence (see below for details). The lower bound is shown for the case fDTS = 0.5 (where
it coincides with the conventional CRB) in order to confirm the analytical considerations pre-
sented in Sec. 5.5. The upper part of the figure shows the estimated number of spatial and
temporal modes after NB = 50 blocks.

Observing the figure from the upper curve, we can make the following considerations. i)
The S/T MA-F estimator outperforms (asymptotically) the UML channel estimate by a factor
NRNTW/(rSrT ) ' 9dB as expected from the analysis in Sec. 5.5. ii) For NB = 50 blocks,
the S/T MA-F essentially converges to the asymptotic perfomance. Moreover, for small SNR
(SNR < 0dB) the number of modes is underestimated and this has the effect of lowering
the MSE as compared to the asymptotic result (valid for large SNR). This phenomenon can be
explained by noticing that reducing the number of modes implies trading a bias in the estimate
(due to the underparametrization) for a reduced variance [6] (see also Example 2). iii) The
asymptotic MSE of the MA-F technique coincides with the asymptotic HCRB for large SNR,
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as anticipated in Sec. 5.5. iv) The S/T MA-F technique has an asymptotic degradation of
r/(rSrT ) = 6dB. v) The qualitative behavior of the asymptotic HCRB for small SNR is
analogous to that discussed above of S/T MA-F. In this case, the underparametrization of the
channel (and consequent trade-off between bias and variance) is automatically performed by
MMSE filtering. Accordingly, for very small SNR , the asymptotic HCRB tends to the channel
norm (recall (4.39)).

Convergence to the asymptotic MSE

The MSE as a function of the number of processed blocks NB for SNR = 5dB is shown
in fig. 5.18 for MA-F, S/T MA-F, MA-LMS and S/T MA-LMS. It can be seen that LMS
amplitude tracking (with µ = 0.8) allows a gain of approximately 2dB with respect to modal
filtering. Moreover, convergence of the perfomance of S/T MA-F to the asymptotic value (5.35)
is obtained (by a fraction of dB) for NB > 50. On the other hand, M MA-F has a very slow
convergence and becomes advantageous with respect to S/T MA-F only for NB > 80. Finally,
suboptimality of S/T MA-LMS can be quantified by approximately 5dB through comparison
with the asymptotic HCRB MSEĥ.
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5.7 Extension to multiuser systems

The extension of the channel estimation algorithms presented above to a multiuser setting is
straightforward for both downlink and uplink if the training sequences of different users are
appropriately designed, i.e., if (recall the signal model in Sec. 3.4)

X(n)HX(k) ' 0, n 6= k. (5.44)

Indeed, in this case, channel estimation corresponding to each user can be obtained (by the
base station in uplink or by the users in downlink) separately, according to the algorithms pre-
sented above, with no additional interference. This condition on the training sequences, as
already discussed is (approximately) met in both time-domain and frequency-domain trans-
mission current standards. However, in order to account for possible suboptimality of training
sequences, a novel strategy can be employed that reduces to the separate estimation of channels
from different users when condition (5.44) is met. This strategy is here derived for MA-F and
uplink since the generalization to other settings follows the same lines.

Recalling the signal model (3.32), the signal received by the base station can be written
again as

yc = Xhc + nc, (5.45)

where the channel vector and the training matrix contain the contributions from all users, i.e.,
hc = [h

(1)T
c · · ·h(K)Tc ]T and X = [X(1) · · ·X(K)]. With these definitions, the negative log-

likelihood function can thus still be written as (5.19). In order to separate the contribution
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of each user in the likelihood (5.19), we partition the Cholesky factorization of the whitening
matrixQUML into blocksQij of size NRn

(i)
T W ×NRn

(j)
T W :

Q
−H/2
UML =

⎡⎢⎣ Q11 · · · QK1
... . . . ...
0 · · · QKK

⎤⎥⎦ (5.46)

yielding

L (U,D) =
KX
k=1

NBX
c=1

°°°°°QkkU
(k)d

(k)
c −

"
Qkkh

(k)
UML,c +

KX
i=k+1

³
Qkih

(i)
UML,c −U

(i)d
(i)
c

´#°°°°°
2

.

(5.47)
The optimization of L (U,D) in a closed form is not an easy task but the analysis of

(5.47) suggests an approximated solution similar to the successive interference cancellation in
multiuser detection [27]. This solution is obtained by minimizing separately the terms corre-
sponding to each user, starting with the Kth user down to the first. The iterative scheme is (for
k = K,K − 1, ..., 1) (recall (5.23))

ĥ
(k)
c (c) = Q−1kk

bΠ(k)h̃(k)UML,c (5.48)

where the pre-whitening accounts for the interference cancellation

h̃
(k)
UML,c = Qkkh

(k)
UML,c +

KX
i=k+1

Qki

³
h
(i)
UML,c − ĥ

(k)
c

´
, (5.49)

recall that Π̂(k) is the projector onto the subspace spanned by the r̂(k) principal eigenvectors of
the correlation matrix N−1

B

PNB
c=1 h̃

(k)
UML,ch̃

(k)H
UML,c. Let us remark that if the training sequences

are mutually uncorrelated, the multiuser algorithm described by (5.48)-(5.49) reduces to the
single-user case to be carried out on a user by user basis. In this case (which is closely ap-
proximated by third generation standards [28]), the multiuser approach does not increase the
computational complexity of channel estimation per user. In addition, the near-far effect or the
different correlation properties of the training sequences could be taken into account by sorting
the users and thus optimizing the performances of this iterative scheme.

Further analysis on this iterative scheme can be found in [29].

5.8 Application 1: MIMO-OFDM system with BICM and Turbo-
Equalization

In order to show the effectiveness of the proposed channel estimation technique in terms of
probability of error of a practical system, here we consider a MIMO-OFDM system based on
Bit Interleaved Coded Modulation [30] and Turbo-Equalization [31]. This combination has
been recently recognized as a promising candidate for next generation wireless LAN [33].
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With reference to fig. 3.4, the block diagram of the MIMO encoder/modulator for the
considered system is shown in fig. 5.19-(a). The information bit stream dm is passed through
a convolutional encoder producing the encoded bits ck, then interleaved (interleaved bits are
denoted as bk) and finally modulated into a M -QAM constellation and blocked into LD × 1
vectors x(nT )c (nT = 1, ..., NT ) to be transmitted by different transmitting antennas. No attempt
of optimizing the interleaving operation over different transmitting antennas and frequencies is
made here.

The receiver is depicted in fig. 5.19-(b). Channel estimation is not included in the block
diagram for simplicity. The received signals on each data frequency yc[k] (k = 1, ..., LD −
1) are processed separately by a Soft Input Soft Output (SISO) BLAST decoder [31]. This
performs MMSE linear filtering of the input signals and, based on the gaussian approximation
of the residual interference, computes the a posteriori log-likelihood ratios (LLRs) Λ1(bk)
of the encoded and interleaved bits bk (k = 0, ..., LD − 1). The NT log2M × 1 vector bk
represents the encoded and modulated bits that are mapped onto the symbols collected in the
NT × 1 vector xc[k] transmitted on the kth subcarrier. After subtraction of the a priori LLR
λ1(bk) (obtained from the SISO decoder, as explained below, and initialized to zero for the first
iteration), the so obtained extrinsic LLR λE1 (b) (where b = [bT0 ...b

T
LD−1]

T ) are deinterleaved
producing the a priori LLR λ2(c) for the SISO decoder (c is the LDNT log2M × 1 vector
obtained by deinterleaving of b). In a similar way, from the a posteriori LLR Λ2(c) produced
by the decoder, the a priori LLR λ2(c) are subtracted, yielding the extrinsic LLR λE2 (c) that,
interleaved, provide the a priori LLR for the SISO BLAST equalizer.

5.8.1 Simulation results

The proposed MIMO-OFDM system with the following specific features is tested: the convolu-
tional encoder has rate R = 1/2 and generators [7, 5], the interleaver is random, the modulation
is 4−QAM (M = 4) and the SISO decoder is log-MAP [32]. The BER of such a system is
plotted in fig. 5.20 for the ideal case of perfect knowledge of the channel, for a UML channel
estimate and for a S/T MA-F estimator (with NB = 50 as in fig. 5.17) as a function of the
equalization-decoding iteration (after the third only minor improvement are obtained). For a
BER equal to 10−3, S/T MA-F guarantees approximately 7dB gain as compared to the UML
channel estimate and is only 3dB away from the case of ideal channel knowledge.

5.9 Application 2: Uplink of a TD-SCDMA system with a ZF block
linear equalizer

The perfomance of S/T MA-F are validated here for the standard for 3rd generation cellular
system TD-SCDMA [28]. We consider the uplink with a ZF block linear equalizer at the base
station [34]. The latter is equipped with NR = 8 antennas (inter-element spacing λ/2)whereas
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each user has n(k)T = 1 antenna. According to the specification , the parameters of interest are:
TS = 10 ms, W = 16, LP = 129, roll-off equal to 0.22, carrier central frequency 1950
MHz. Moreover, each one of the K = 8 users transmits at the same rate using a spreading
factor Q = 16: the data field thus contains 22 QPSK information symbols (LD = 352 chips).
The K training sequences are chosen according to the standard specifications. We consider a
simple radio environment characterized by two clusters with angles randomly chosen within
the angular support [−60, 60] deg, four paths per cluster (d(k) = 8) with angular dispersion
of 5 deg and an exponential power profile: Ωi = Ω0(0.5)(i−1) (Ω0 is scaled to ensure the
normalization (2.35)) (paths i = 1, .., 4 correspond to the first cluster and paths i = 5, .., 8

to the second). In each cluster the delays are chip interval (T ) spaced and the first delay is
randomly selected in the interval [2, 10]T . The fading variation is simplified by assuming the
same velocity v for all the users according to the Clarke’s model. The covariance matrix of
noise is (5.43) with 6 out-of-cell terminals with angles ᾱk uniformly spaced in [−60 60] deg.
The number of modes (r(k)S and r

(k)
T ) are estimated here by using the MDL criterion.

In fig. 5.21 the performance of the S/T MA-F algorithm is evaluated in terms of BER
and MSE of the channel estimate. The modal analysis estimate for NB = 10 is compared
to the single-blocks techniques UML and Reduced Rank (RR, [17]). For any mobility of the
terminal, from the pedestrian environment (v = 3 km/h), up to the vehicular (v = 120 km/h),
the performance of the S/T MA-F method are the same. On the other hand, for a static channel
(v = 0 km/h) the S/T MA-F technique performs better since the number of modes rS and rT

can be reduced (see ref. [6]). Fig. 5.21 (upper figure) shows that for NB = 10 and time-varying
channel (v ≥ 3 km/h) the MSE is very close to the asymptotical MSE. Compared to the ZF
block linear equalizer based on the UML channel estimate, the modal analysis method shows
a meaningful advantage in term of SNR (approximately 3-4 dB) that is practically independent
on the variation of the faded amplitudes (lower figure). In addition, the loss with respect to the
ideal case of known channel, or perfect CSI, (dashed line) is approximately 1.5dB.

5.10 Conclusion

Based on the insight obtained from the analysis performed in the previous Chapter, practical
channel estimators have been designed that perform close to the performance limit set by the
HCRB. The proposed channel estimators compute the long term features by identifying the
invariant, over multiple blocks, space-time modes of the channel (modal analysis). Modal
analysis can be performed either through a batch or an adaptive approach based on subspace
tracking. On the other hand, the fast varying fading amplitudes are either estimated block-
by-block (modal filtering) or possibly tracked by using least squares techniques that exploit
temporal (i.e., over multiple blocks) correlation of the fading process (LMS tracking). For the
beamforming scenario, an alternative parametrization of the space-time modes into decoupled
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spatial and temporal modes has been advocated and, accordingly, decoupled spatial and tem-
poral modal analysis proposed.

Thorough numerical investigation has validated the performance of the proposed tech-
niques in different propagation scenarios and systems. Moreover, the extension to multiuser
system has been considered. Finally, two applications have been disclosed, namely MIMO-
OFDM with Bit Interleaved Coded Modulation and the uplink of a TD-SCDMA system, in
order to evaluate the impact of channel estimation on BER.

Remark 8 The investigation of modal analysis and filtering through subspace tracking for up-
link combined with transmit beamforming for downlink has been studied in [35] in the context
of CDMA systems.

5.11 Appendix-A: estimation of the spatial noise covariance ma-
trix

From the signal models (3.6) (time-domain transmission) and (3.22) (frequency-domain trans-
mission), the noise matrix Nc can be estimated, once the UML channel estimate has been
computed, as

N̂c = Yc − B̆UML,cX T , (5.50)

where B̆UML,c reads H̆UML,c or F̆UML,c (i.e., the channel matrices estimated according to
UML) for time and frequency-domain transmission respectively. Then, an estimate of the
noise spatial correlation matrix can be evaluated by the following sample average:

R̂n =
1

NBLP

NBX
c=1

N̂cN̂
H
c . (5.51)

This estimate can be easily shown to be consistent under the condition that rank(N̂c) =

rank(Rn) = NR. But, recalling that B̆UML,c = YcX ∗(X ∗)†, the estimate (5.50) can be
stated as N̂c = Yc(ILP −ΠX ∗) = YcΠ

⊥
X ∗ . Therefore, the condition stated above entails

LP − rank(X ∗) ≥ NR so that
LP ≥ NTW +NR. (5.52)

In other words, while for channel estimation only is enough to allocate LP ≥ NTW training
(or pilot) symbols per block, when the spatial noise covariance matrix is of interest, condition
(5.52) should be satisfied.

5.12 Appendix-B: asymptotic optimality of S/T MA-F

The exact ML estimation of spatial modes should be obtained by evaluating the first rS eigen-
vectors of the sample correlation matrix 1/NB

PNB
c=1 H̃UML,cΠT H̃

H
UML,c (and similarly for
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the temporal modes). However, the proposed S/T MA-F estimator computes this estimate as
the first rS eigenvectors of the sample correlation matrix 1/NB

PNB
c=1 H̃UML,cH̃

H
UML,c. Let

us for simplicity consider spatially white noise and optimal designed training sequences. The
proof can be easily extended to the more general case of correlated noise on the UML estimate.
When NB → ∞ for ergodicity (recall the discussion in Sec. 5.2 and in particular equation
(5.14)) we have

1

NB

NBX
c=1

H̃UML,cΠŨT
H̃H

UML,c → E[H̃UML,cH
H
UML,c] = SSΓ̆SS

H
S +

σ2n
LPP

I, (5.53)

where Γ̆S = Id¯ (SHT ΠŨT
ST ). Therefore the subspaces spanned by the rS leading eigenvec-

tors of the correlation matrices (5.14) and (5.53) coincide if [SHT ΠŨT
ST ]kk 6= 0 ∀k. Since a

sufficient condition is range{ΠŨT
} ⊇ range{ST}, the choiceΠŨT

= IW does not preclude
the optimality so that the ML estimate Π̂ŨS

can be obtained from the eigenvectors of (5.14)
for NB →∞.
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Chapter 6
Information rate with imperfect CSI

6.1 Introduction

ACCORDING to the principle of synchronized detection, after channel estimation (i.e.,
CSI acquisition) has been performed on the training part of the block (see fig. 3.1 for

time-domain transmission and fig. 3.3 for multicarrier transmission), the detection process
is carried out on the data symbols by considering the estimated channel as if it was the real
channel [1]. So far, this thesis focused on evaluating at first the theoretical limit perfomance
of the channel estimation process (Chapter 4) and then on designing novel channel estimators
able to approach the theoretical bound (Chapter 5). Here the analysis focuses on the detection
phase by pursuing an information theoretic analysis of a MIMO system with imperfect CSI.
Toward this goal, channel estimators that attain the asymptotic limit performance derived in
Chapter 4 will be considered.

To start with, Sec. 6.2t addresses the case of a single user MIMO system over a frequency-
selective channel and, in order to simplify the analysis, therein it is assumed that no CSI is
available at the transmitter. Similar investigations have been proposed in [2] within the context
of a frequency-flat channel in a diversity scenario and recently in [3], where the study was
limited to UML channel estimation. The capacity of a frequency-flat MIMO system in presence
of imperfect CSI at the transmitter has been investigated in [4].

Under the assumption of no CSI at the transmitter, the extension of the analysis presented
in Sec. 6.2 to a multiuser system is straightforward (see Sec. 6.4 and [5] for an overview on the
information theoretic analysis of MIMO systems). However, in case of (generally imperfect)
CSI available at the transmitter, the analysis requires more care. In fact, while for the uplink
the capacity region and the sum-capacity in case of perfect CSI at the transmitter are well
studied, only recently an achievable rate region and the sum-capacity have been determined
for the downlink through a duality result [6]. This duality result is based on a non-linear
precoding technique proposed in [7], that requires perfect CSI at the transmitter. Therefore,
while the study of uplink under the assumption of imperfect CSI is a relatively easy task and
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follows the lines of Sec. 6.4, an investigation of the information rate of the downlink under
the same condition is an open problem. Thus, in this Chapter (Sec. 6.4), we focus on the
information rate of a specific linear precoding scheme for the downlink of a multiuser MIMO
system in presence of imperfect CSI. The scheme under consideration has been proposed in
[8] and essentially enforces a zero inter-user interference constraint through orthogonal linear
precoding.

6.2 Lower bound on the information rate for a single-user MIMO
link

The impact of imperfect channel knowledge on the system performance is investigated in [9]
for a SISO link in terms of capacity. In particular, a lower bound on the information rate
assuming a gaussian input distribution is derived. Notice that the choice of a gaussian input
distribution might not lead to the maximization of the information rate and thus to the capacity
of the system, but it greatly simplifies the mathematical analysis. The received signal (3.12)
can be written in terms of the channel estimate ĥ as (we drop the temporal dependence on the
block c for simplicity of notation):

y =Hx+ n = bHx+ ((H− bH)x+ n), (6.1)

where bH is the block-convolution matrix (3.13) for time-domain transmission or the block-
diagonal matrix (3.30) for multicarrier transmission built from the channel estimate ĥ. Accord-
ing to [9], a lower bound on the information rate I(y,x|ĥ) between the transmitted signal x
and the received signal y can be obtained by treating the equivalent disturbance term in (6.1)
due to the channel estimation error, (H− bH)x, as a gaussian additive noise. Letting the input
distribution be Gaussian, as stated above, with E[xxH ] = P/NT I, we get that the covariance
matrix of the additive noise is P/NTQcH, where we defined the NRLD ×NRLD correlation
matrix QcH = E[( bH −H)( bH −H)H ]. Now, recall that the capacity for perfect CSI at the
receiver (and no CSI at the transmitter) for a block of length L reads

C=I(y,x|h) = 1

L
log2 |I+

P

NT
(ILD ⊗R−1n )HHH | [bit/s/Hz]. (6.2)

Notice that, from Chapter 3, the block length reads L = LD + LO, where LO accounts for the
overhead necessary for channel estimation and for ensuring absence of inter-block (and inter–
carrier for multicarrier transmission) interference. Then, according to the discussion above, a
lower bound on the information rate

C ≥ I(y,x|ĥ) ≥ Ilb (6.3)

can be computed by adding to the noise covariance matrix Rn the additional term due to the
channel estimation error P/NTQcH as in

Ilb =
1

L
log2 |I+

P

NT
[(ILD ⊗Rn)+

P

NT
QcH]−1 bH bHH | [bit/s/Hz]. (6.4)
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Notice that in (6.4) the power transmitted over the data part of the block is assumed to be
equal to the power transmitted over the training symbols P , see [10] [3] and Sec. 6.4 for a
discussion on the benefits of exploiting the degree of freedom in the choice of different power
for data and training. Under the assumption NB → ∞ (consistent with the infinite temporal
horizon of information theory), the signal model (4.28) is linear in the fading amplitudes and
similarly to [2] [9] [10] we can consider the matrix bH as obtained from the MMSE estimator
of the fading amplitudes described in Chapter 4 so that QcH can be computed from the error
correlation matrixQĥ, as shown in the Appendix. Notice that a different choice for the channel
estimator would decrease the lower bound (6.4) so that the inequality I(y,x|ĥ) ≥ Ilb holds for
a channel estimator that reaches the performance bound (4.46).

6.3 Numerical examples: single user MIMO link

6.3.1 Simulation setting

The simulation setting is in Table 6.1. To gain some insight into the effects of system param-
eters and channel characteristics on the information rate, the correlation matrices involved in
signal modelling are assumed to be obtained from an autoregressive model: ZN (ρ) denotes a
N × N Toeplitz matrix with first column [1 ρ · · · ρN−1]T . Here ρn accounts for the spatial
correlation of noise (Rn), ρl and ρa for auto- and mutual-correlation of the training sequences
of different antennas (training sequences in practical systems are usually designed to have
ρl = ρa ' 0 as explained in Chapter 4). For the beamforming scenario, the arrays at both ends
are assumed to be uniform linear with half-wavelength inter-element spacing. For the diversity
scenario the spatial correlation matrices of different pathsRi = R, i = 1, ..., d, are assumed to
be equal and separable (see (4.44)) and the correlation coefficient ρT and ρR characterize the
spatial correlation of the fading at the transmitter and receiver side, respectively. The Doppler
spectrum of all paths is uniform with (normalized) Doppler spread fDTS .

The influence of system parameters and channel characteristics on the lower bound on the
information rate in presence of imperfect CSI (6.4) and on the capacity for a known channel
(6.2) is investigated numerically. The computation of the bound (6.4) is carried out by aver-

Table 6.1: Default parameter settings

NR 4 Q P/NTZNR
(ρn)

NT 4 Rx P/NTZW (ρl)⊗ ZNT (ρa)

W 8 R ZNT (ρT )⊗ ZNR(ρR)

d 4 ρn 0

τ i/T i− 1 ρl 0

α
(T )
i , α

(R)
i −60 + 120/d · (i− 1) deg ρa 0
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aging over the distribution of fading amplitudes (recall that angles, delays and power-delay
profile are deterministic) by using 103 runs of Monte Carlo simulations. Similarly to the exper-
imental analysis carried out in [2], the estimate d̂ of the fading amplitudes (recall Sec. 4.7) has
a circularly symmetric Gaussian distribution with covariance matrixQd̂, i.e., d̂ v CN (0,Qd̂).
The size of the data part of the block is LD = 30 and SNR = P/σ2n = 10dB.

6.3.2 Optimal training length

The optimal choice of the length LP of the training sequences is investigated first. The study
here focuses on the diversity scenario since the beamforming scenario would lead to simi-
lar conclusions. Fig. 6.1 shows the ergodic capacity (dashed lines) and the lower bound on
the information rate (solid lines) versus LP for ρT = ρR = 0.3, different Doppler shifts
(fDTS = 0.1, 0.5) and number of paths d = 4, 8. Increasing LP has two opposite effects on
the information rate: it increases the overhead LO (which reduces both the scaled capacity
and the information rate), and it decreases the channel estimation error (which has a beneficial
impact on the information rate). Therefore, the bound Ilb versus LP shows an optimum trade-
off between transmission overhead and channel estimation error as in fig. 6.1. The optimum
training sequence length LP depends on both the number of paths d and the Doppler shift. For
fDTS = 0.1 the information rate Ilb peaks at approximately LP ' d, whereas for larger fDTS
the maximum moves towards slightly higher values of LP . This can be simply interpreted by
pointing out that in a block-fading channel, it is advisable to increase LP in order to experi-
ence a constant channel for a longer interval if the channel itself varies rapidly over consecutive
bursts. Interestingly, under the assumption of known long term features of the channel, the op-
timum LP is much smaller than the number of training symbols required to obtain the UML
estimator (i.e., LP ≥ NTW ).

6.3.3 Effect of spatially correlated fading and number of paths

Fig. 6.2 shows the degradation of the average information rate Ilb compared to the case of
known channel as a function of normalized Doppler spread fDTS , spatial correlation ρT =

ρR (for the diversity scenario) and number of paths d (for the beamforming scenario). The
degradation is measured as (C− Ilb)/C (notice that being Ilb ≤ I ≤ C the selected quantity is
an upper bound on (C − I)/C) and set LP = 32. The values of the capacity C are in the table
in the upper left corner.

For decreasing Doppler shifts, the degradation decreases and vanishes for fD = 0 since a
static channel can be estimated with any accuracy as NB → ∞ (see Sec. 4.7.2). Moreover,
the degradation decreases with increasing spatial correlation (for the diversity scenario) since
higher correlations lead to a smaller channel estimation error. In order to keep the example
consistent, as d = 4 for the diversity scenario, the delays are selected as τ i/T = b(i− 1)/4c
for i = 1, .., d with d = 4, 12, 20 for the beamforming scenario (i.e., the delays span the
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Figure 6.1: Ergodic capacity with perfect CSI C and average lower bound on the information
rate with imperfect channel state information Ilb versus the length of the training sequence LP

(diversity model, ρT = ρR = 0.3).

first four samples of the channel). With this choice, increasing the number of paths in the
beamforming scenario has qualitatively the same effect as decreasing the spatial correlation
in the diversity scenario, as shown in fig. 6.2. As a final remark, the degradation for the
beamforming scenario is smaller than for the diversity scenario as in the first case the number
of parameters (amplitudes) to be tracked is r ' d whereas in the latter is larger (r ' NRNTd).

6.3.4 Effect of the correlation properties of the training sequences

The effect of the correlation properties of the training sequences (ρa and ρl) on the system per-
formance is addressed in terms of the information rate degradation as in the previous example.
The results for the diversity scenario with fDTS = 0.1 and LP = 32 (C = 3.1 bit/sec/Hz as
shown in figures 6.1 and 6.2) are depicted in fig. 6.3. The degradation of the average infor-
mation rate versus ρl with ρa = 0 and versus ρa with ρl = 0 show that both ρa and ρl have a
similar impact on the information rate. The correlations range from 0 to 0.9 since a complete
correlation (ρa = 1 or ρl = 1) would not be compatible with the assumption of a consistent
estimate of the long term channel features.
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Figure 6.4: Block diagram of the downlink of a MIMO system with linear precoding.

6.4 Lower bound on the information rate for downlink with or-
thogonal precoding

As explained in Sec. 6.1, the more challenging setting in which to study the information rate
in presence of imperfect CSI at the transmitter (and the receiver) is the downlink of a multiuser
MIMO system. In order to simplify the investigation, in this Section a specific linear precoding
scheme that ensures zero inter-user interference through orthogonal precoding [8] is assumed.
Moreover, as a further simplification, this Section considers a frequency-flat channel (W = 1)

within a diversity scenario with spatially and temporally uncorrelated fading, R = INRNT .

Notice that in this case L = LD + LP (i.e., LO = LP ). Finally, noise is assumed to be
spatially white and the training sequences optimally designed.

6.4.1 Orthogonal spatial precoding

From (3.4) and (3.36), the signal received by the kth user within the data part of the cth block
can be written as the NR × 1 vector y(k)c [m]

y
(k)
c [m] =H

(k)
c x

(k)
c [m] +H

(k)
c

KX
i=1
i6=k

x
(i)
c [m] + n

(k)
c [m], m = 0, ..., LD − 1. (6.5)

In (6.5), the second term on the right hand side represents the interference from other users.
Notice that for a frequency-flat channel, time and frequency-domain transmission strategies
give rise to the same signal model (6.5). In the following we drop for simplicity of notation the
dependence on the time sample m and the block c. A general block diagram for downlink with
linear precoding is shown in fig. 6.4.

Accordingly, the NT × 1 vector x(k)c [m] transmitted by the kth user is obtained by linearly
precoding the p(k) × 1 data vector a(k) output by the modulator through multiplication by the
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NT × p(k) matrix F(k):
x(k) = F(k)a(k). (6.6)

It is important to emphasize that in this Section we are assuming that the number of spatial
channels p(k) assigned to each user is selected as p(k) = rank(H

(k)
c ) = n

(k)
R (NT ≥ n

(k)
R ) and

that condition

NT ≥
KX
k=1

n
(k)
R (6.7)

is satisfied. The condition (6.7) makes it possible to calculate the set of orthogonal precoding
matrices F = {F(k)}Kk=1 as explained below. This assumption will be removed in Chapter 8.

Orthogonal precoding proposed in [8] is obtained by maximizing the sum-capacity of the
system under a total power constraint and under the condition of zero inter-user interference:

F = argmax
F

KX
i=1

C(i)(F) (6.8a)

s.t.
KX
k=1

tr(F(k)F(k)H) ≤ L(1− υ)

(L−NT )
P̄ , (6.8b)

H(i)F(j) = 0 if i 6= j, (6.8c)

with the capacity of each user being

C(i)(F) = log2 |Idi+R(i)−1n (H(i)F(i)F(i)HH(i)H)| (6.9)

and the noise (interference) covariance matrix for each user (recall (6.5))

R(i)n = σ2nIn(k)Ri

+
X
k 6=i

H(i)F(k)F(k)HH(i)H . (6.10)

The power constraint (6.8b) requires more explanation. The total power available at the base
station (averaged over the block length L) is P̄ , which has to be distributed among the training
(PP ) and data (PD) part as

P̄ = PP
LP

L
+ PD

LD

L
= P̄P + P̄D. (6.11)

Notice that in (6.11) we are distinguishing between the instantaneous power and the average
(over the block length) power by the upperscore. In the following we consider a fixed amount
of training symbols, i.e., the minimum amount needed in order to obtain a meaningful channel
estimate, LP = NT (see Chapter 4 and 5), and share the average power P̄ as P̄P = νP̄ and
P̄D = (1− υ)P̄ , 0 ≤ υ ≤ 1. From this discussion, the average power constraint (6.8b) easily
follows. Moreover, equation (6.8c) enforces the zero inter-user interference constraint.

The optimization problem (6.8) is solved in [8] by assuming perfect channel knowledge at
the transmitter as explained below. Let us consider the matrix gathering all the channel matrices
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except the ith user’s matrix H̄(i) = [H(1)H ..,H(i−1)H ,H(i+1)H , ..,H(K)H ]H . Now, in order
to guarantee the zero-interference constraint (6.8c) the subspace spanned by the columns of the
precoding matrix F(i) must lie into the null space of matrix H̄(i), that can be computed from
the (full) singular value decomposition

H̄(i) =
h
Ū(i) Ū

(i)
0

i ∙ Λ̄i 0
0 0

¸ h
V̄(i) V̄

(i)
0

iH
(6.12)

as the subspace spanned by the columns of the orthonormal matrix V̄(i)
0 . Since H̄(i)V̄

(j)
0 = 0

for j 6= i, the precoding matrix can be written as F(i) = V̄
(i)
0 F̆

(i), where the first term V̄
(i)
0

nulls inter-user interference while F̆(i) is used for further optimization. Notice that in general
the condition (6.7) is required for V̄(i)

0 to exist. To obtain F̆(i), let us consider the (interference-
free) channel matrix for user i beH(i)V̄

(i)
0 and its singular value decomposition (limited to the

non-zero eigenvalues)
H(i)V̄

(i)
0 = U(i)Λ(i)V(i)H . (6.13)

The precoding matrices F(i) that maximize the capacity (8.6) can then be expressed as (F̆(i) =
V(i)Φ(i), see also [5])

F(i) = V̄
(i)
0 V

(i)Φ(i), (6.14)

whereΦ(i) is a diagonal matrix that defines power allocation over the channel modes according
to waterfilling:

|[Φ(i)]kk|2 = (ξ −
σ2n

[Λ(i)]2kk
)+, (6.15)

where (x)+ = max(x, 0) and ξ is such that the power constraint (6.8b) is satisfied.

6.4.2 Imperfect CSI at the transmitter

The CSI available at the transmitter to calculate the precoding matrices {F(i)}Ki=1in (6.14) con-
sists of a set of estimates {Ĥ(i)}Ki=1 of the channel matrices {H(i)}Ki=1, generally fedback by
the receivers via a dedicate link [11]. Notice that in case the channel is reciprocal as in a Time
Division Duplex link, the CSI could be directly acquired by the base station via measurements
on the uplink (as long as the differences in the electronics at the transmitter and receiver can
be estimated and compensated for). However, in general, the actual and estimated channel
matrices are mismatched because of the effects of i) channel estimation errors and ii) feedback
delay that outdates the estimated channels when the propagation environment is time varying.

In order to simplify the analysis, we consider the channel estimates obtained by the UML
channel estimator, whose performance are recalled here for reference (see Sec. 4.2):

QUML =
σ2n

LPPP
INRNT

. (6.16)

We emphasize that this is a minor limitation to our analysis since as shown in Sec. 4.7.2,
the UML estimator for the setting considered here attains the conventional CRB. Moreover, it
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achieves the HCRB as well for high SNR and temporally uncorrelated fading amplitudes. In
the following, we define for simplicity of notation the normalized (on the channel norm) MSE
on channel estimation as MSE = σ2n/(LPPP ). Accordingly, the estimates Ĥ(i) can be written
as the sum of the real channel and the estimation error: Ĥ(i) = H(i)+H

(i)
e , where the entries

ofH(i)
e are independent identically distributed [H(i)

e ]nR,nT ∼ CN (0,MSE).

6.4.3 Lower bound with channel estimation error

Under the assumption of imperfect CSI available at the transmitter, even with orthogonal pre-
coding all the users interfere with each other as, in general, H(i)F̂(j) 6= 0 for i 6= j, with
F̂(j) being the precoding matrix for the jth user computed according to the channel estimates
{Ĥ(i)}Ki=1: Ĥ(i)F̂(j) = 0 for i 6= j. The received signal in (6.5) then reads

y(k) = H(k)F̂(k)a(k) +H(k)
KX
i=1
i6=k

F̂(i)a(i) + n(k) =

= Ĥ(k)F̂(k)a(k) −H(k)
e F̂a+ n(k), (6.17)

where F̂ = [F̂(1) · · · F̂(K)] and a = [a(1)T · · ·a(K)T ]T . In (6.17) the channel estimate Ĥ(k)

plays the role of the real channel and the term (−H(i)
e F̂a+ n(k)) of additive noise.

In order to evaluate a lower bound on the information rate for orthogonal precoding
PK

k=1 I(y
(k),a|ĥ) ≥

Ilb, according to [9], we need to evaluate the distribution of the additive noise term in (6.17)
conditioned on the channel estimates Ĥ(k). Toward this goal, it can be easily proved that the
entries of the channel estimation error H(k)

e , conditioned on Ĥ(k), are uncorrelated and dis-
tributed as

[H(k)
e ]nR,nT |Ĥ(k) ∼ CN

³
µe · [Ĥ(k)]nR,nT , σ

2
e

´
(6.18)

where µe = (MSE)/(1 +MSE) and σ2e = MSE/(1 +MSE). The interference term can
then be written by separating the mean error µeĤ(k) and the zero mean remaining term H̄

(k)
e

as [H̄(k)
e ]nR,nT |Ĥ(k) ∼ CN

¡
0, σ2e

¢
:

H(k)
e F̂a = (µeĤ(k) + H̄(k)

e )F̂a = µeĤ(k)F̂a+ H̄(k)
e F̂a, (6.19)

It should be noticed that the term µeĤ
(k)F̂a in (6.19) is correlated with the desired part of the

signal and accounts for an equivalent power loss with respect to the perfect channel estimation
case. On the other hand, the residual error H̄(k)

e F̂a is uncorrelated with the useful part of the
signal. Even though the latter is not Gaussian distributed, the assumption of gaussianity (with
the same covariance matrix) provides the worst-case scenario in terms of capacity loss [9]. A
lower bound on the information rate for each user can then be easily evaluated as [9] [12]

I(y(k),a|ĥ) ≥ I
(k)
lb =

LD

L
log2 |In(k)R

+ (Υ(k)e )−1(1− µe)
2Ĥ(k)F̂(k)F̂(k)HĤ(k)H |), (6.20)
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whereΥ(k)e is the noise covariance matrix

Υ(k)e = (σ2n +
L(1− υ)

(L−NT )
P̄ σ2e)In(k)R

. (6.21)

A lower bound on the downlink information rate is then obtained as
PK

k=1 I(y
(k),a|ĥ) ≥PK

k=1 I
(k)
lb .

6.4.4 Lower bound with channel estimation error and feedback delay

As discussed above, in practice, the channel estimates {Ĥ(i)}Ki=1 must be fed back by the K

users to the base station before being used for the optimization of spatial precoding. Here, the
delay related to this transmission is assumed equal to one block, which amounts to optimizing
transmission over the channel realization H(i)

c using the estimate of the previous block Ĥ(i)
c−1.

The precoding matrices are hence selected so that Ĥ(i)
c−1F̂

(j)
c = 0 for i 6= j. In this case,

following the same steps of the previous Section, the received signal in (6.5) reads,

y
(k)
c = Ĥ

(k)
c F̂

(k)
c a

(k)
c −H

(k)
e,c F̂

(k)
c a

(k)
c +H

(k)
c

KX
i=1
i6=k

F̂
(i)
c a

(i)
c + n

(k)
c , (6.22)

where the channel estimate Ĥ(k)
c plays the role of the real channel and the remaining term of

additive noise. Let the fading amplitudes have a temporal correlation following an autoregres-
sive model of order one with correlation coefficient 0 ≤ ρ ≤ 1. By the same arguments used in
the previous section and after some more tedious calculations, the entries of H(k)

e,c conditioned
on a realization of {Ĥ(k)

c , Ĥ
(k)
c−1} are now distributed as

[H
(k)
e,c ]nR,nT |{Ĥ(k)

c ,Ĥ
(k)
c−1}
∼ CN

µ
µ0d

h
Ĥ
(k)
c

i
nR,nT

+ µ00d

h
Ĥ
(k)
c−1

i
nR,nT

, σ2d

¶
(6.23)

with µ0d =
MSE

¡
1 +MSE

¢¡
1 +MSE

¢2 − ρ2
, µ00d =

−MSEρ¡
1 +MSE

¢2 − ρ2
and σ2d =

MSE
¡
1− ρ2 +MSE

¢¡
1 +MSE

¢2 − ρ2
.

Therefore, after decomposing the interference term as (following the same notation as in the
previous Section)

H
(k)
e,c = µ0dĤ

(k)
c + µ00dĤ

(k)
c−1 + H̄

(k)
e,c , (6.24)

and defining H̄(k)
c = (1− µ0d)Ĥ

(k)
c − µ00dĤ

(k)
c−1, equation (6.22) can be rearranged as

y
(k)
c = H̄

(k)
c F̂

(k)
c a

(k)
c − H̄

(k)
e,c F̂

(k)
c a

(k)
c + (1− µ0d)Ĥ

(k)
c

KX
i=1
i6=k

F̂
(i)
c a

(i)
c + n

(k)
c . (6.25)

A lower bound on information rate for the kth user can then be computed as [9]

I(y(k),a|ĥ) ≥ I
(k)
lb =

LD

L
log2 |In(k)R

+ (Υ
(k)
d )−1H̄(k)

c F̂
(k)
c F̂

(k)H
c H̄

(k)H
c |, (6.26)
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where the correlation matrixΥ(k)d reads

Υ
(k)
d = Υ(k)e + (1− µ0d)

2Ĥ
(k)
c F̂

(k)
c F̂

(i)H
c Ĥ

(k)H
c , (6.27)

that accounts for both the channel estimation error (Υ(k)e ) and the feedback delay (Ĥ(k)
c F̂

(k)
c 6=

0 in presence of feedback delay as explained above).

6.5 Numerical examples: downlink with orthogonal precoding

The lower bound on the downlink information rate derived above is here evaluated through
computer simulations under different assumptions on the CSI available at the transmitter as
detailed in the following.

1. Open loop (no CSI at the transmitter): channel estimation is carried out at the receiver,
but there is no feedback of the estimate to the base station. Therefore, orthogonal precod-
ing cannot be used and user separation must be carried on in the time (or frequency/code)
domain [13]. Spatial multiplexing of data is still possible for a single user by transmit-
ting equal power on each antenna. In this case, a lower bound on the information rate for
user k can be calculated as (6.4) that, adapted to the setting considered herein, reads

I
(k)
lb =

c(k)

L
log2

¯̄̄̄
I+

PD
NT

[Υ(k)e ]−1H(i)H(i)H

¯̄̄̄
, (6.28)

where c(k) is the number of time instants assigned to user k for transmission out of the
LD available (

XK

k=1
c(k) = LD). Recall that all the users share the training part of the

block.

2. Closed loop transmission with perfect CSI: The receiver performs both channel esti-
mation and feedback of the estimate to the base station and the latter employs orthog-
onal precoding. It is assumed that perfect CSI is available at the transmitter, so that
Ĥ(k) = H(k) and H(k)

e = 0. Moreover the transmission delay is zero. The information
rate for user k is then

I(k) =
LD

L
log2

¯̄̄
I+ σ−2n H(k)F(k)F(k)HH(k)H

¯̄̄
. (6.29)

3. Closed loop transmission with estimation error: feedback delay is not taken into account,
whereas estimation error is handled as explained in Sec. 6.4.3.

4. Closed loop transmission with estimation error and feedback delay: feedback delay and
estimation error are taken both into account, according to the results in Sec. 6.4.4.

Fig. 6.5 shows contour plots of the lower bound Ilb (averaged over the fading distribution)
on the sum rate as a function of υ (the fraction of power used for channel estimation) and
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Figure 6.5: Average sum rate Ilb versus SNR and υ for open loop (left column), and closed
loop transmission with channel estimation error (right column).

SNR for open loop ("Open loop") and closed loop transmission with estimation error ("Est.
error"). The downlink considered consists of K = 2 users, each with n

(i)
R = 2 (top) and 4

(bottom) receiving antennas, and a base station equipped with NT = 4 (top) and 8 (bottom)
antennas. Using orthogonal precoding results in approximately a 50% increase of the system
throughput. Moreover, it can be seen that the optimal fraction of power dedicated for channel
estimation for a wide range of SNR lingers around υ = 0.25, value used in the following
simulation.

In fig. 6.6 it is shown the lower bound on the sum rate Ilb as a function of SNR for K = 2

users, n(i)R = 2 and NT = 4. The impact of estimation error alone is not severe, less than 2dB
uniformly with respect to SNR. On the other hand, channel outdating due to feedback delay
has a remarkable effect, due to inter user interference accounted for by the rightmost term in
(6.27). From fig. 6.6, for a channel correlation of ρ = 0.8, the simpler open loop strategy
performs uniformly better than orthogonal precoding, due to the levelling effect on capacity of
inter user interference growing at the same rate as useful signal power.

6.6 Conclusion

A lower bound on the information rate for a single user MIMO system over a frequency-
selective channel with imperfect CSI at the receiver (and no CSI at the transmitter) has been
adapted from the SISO counterpart proposed by Medard in [9]. The bound on the information
rate has been thoroughly investigated through numerical results in order to show the impact
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Figure 6.6: Average sum rate Ilb versus SNR for various coding strategies and temporal corre-
lation coefficient of the fading process ρ.

of system parameters (e.g., length of the training sequence versus size of the data block, cor-
relation properties of the training sequences) and channel characteristics (e.g., Doppler shift,
spatial correlation) on the system performance.

Under the assumption of imperfect CSI at the receiver and no CSI at the transmitter, the
extension of the analysis discussed above to a multiuser setting is straightforward. Therefore,
here we focused on the downlink of a MIMO system in case of noisy and outdated CSI avail-
able at the transmitter. The selected case is of particular importance since, as opposed to the
uplink, an achievable rate region and the sum-capacity for the downlink have been determined
through a duality result based a non-linear precoding technique proposed by Costa in [7], that
requires perfect CSI at the transmitter. Therefore, while the study of uplink under the assump-
tion of imperfect CSI is a relatively easy task, an investigation of the information rate of the
downlink under the same condition is an open problem. Thus, in this Chapter we derived a
lower bound on the information rate of a specific linear precoding scheme for the downlink.
The scheme under consideration has been proposed in [8] and essentially enforces a zero inter-
user interference constraint through orthogonal linear precoding. The impact of the considered
deviations from the ideal condition of perfect and instantaneous CSI have been considered both
analytically and through simulations in order to test the robustness of this transmission strategy.
From this analysis, performance of orthogonal precoding strongly depends on the correlation
between successive channel realizations suggesting to restrict its use to channels varying slowly
enough. Possible performance gain from using more complex channel modeling, estimation
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and prediction remains an open subject for further study.

6.7 Appendix: computation ofQcH fromQbh
Let us at first consider time-domain transmission. The matrix LDNR×LDNT matrix bH is the
block-convolution matrix (here shown for LD = 5 and W = 3 for illustration purposes):

bH =

⎡⎢⎢⎢⎢⎢⎣
Ĥ[0] 0

Ĥ[1] Ĥ[0]

Ĥ[2] Ĥ[1]

0 Ĥ[2]
0 0

0 0 0
0 0 0

Ĥ[0] 0 0

Ĥ[1] Ĥ[0] 0

0 Ĥ[1] Ĥ[0]

⎤⎥⎥⎥⎥⎥⎦ . (6.30)

The LDNR×LDNR covariance matrixQcH = E[( bH−H)( bH−H)H ] can be written as the
block matrix

QcH =

⎡⎢⎢⎢⎢⎣
Q[0] Q[1]
Q[1] 2Q[0]
Q[2] 2Q[1]
0 Q[2]
0 0

Q[2] 0 0
2Q[1] Q[2] 0
3Q[0] 2Q[1] Q[2]
2Q[1] 3Q[0] 2Q[1]
Q[2] 2Q[1] 3Q[0]

⎤⎥⎥⎥⎥⎦ (6.31)

where the NR×NR blocksQ[k] are defined asQ[k] = E[(Ĥ[i]−H[i])(Ĥ[i+k]−H[i+k])H ].
For the general case with any LD and W , the (i, j)th NR×NR block of the covariance matrix
QcH reads: min{max(i, j),W−|i−j|)Q[|i−j|]}. The blocksQ[k] can be computed from the
HCRB matrixQĥ. In fact,Qĥ is a W×W block matrix such that the (i, j)th block, denoted as
Qĥ(i, j), is the NRNT ×NRNT matrixQĥ(i, j) = E[vec{Ĥ[i]−H[i]} vec{Ĥ[j]−H[j]}H ],
for i, j = 0, ..,W −1.Qĥ(i, j) can in turn be written as a NT ×NT block matrix composed of
NR ×NR blocks such that E[(Ĥ[i]−H[i])(Ĥ[j]−H[j])H ] is equal to the sum of the blocks
on its main diagonal.

For multicarrier transmission, the matrix bH is block-diagonal and, following the lines of the
Appendix of Chapter 3, can be written in terms of the corresponding quantity in time domain
(6.30) as (denoting with a tilde the matrix in the frequency domain) beH = (Θ⊗ INR)

bH(ΘH ⊗
INT

), withΘ representing here the LD×LD DFT matrix corresponding to the data subcarriers.
Accordingly, the covariance matrixQcH for multicarrier transmission is readily obtained using
the result above for time-domain transmission.



138 Information rate with imperfect CSI



Bibliography

[1] H. Meyr, M. Moeneclaey and S. Fechtel, Digital communication receivers, Wiley, 1998.

[2] J. Baltersee, G. Flock and H. Meyr, “Achievable rate of MIMO channels with data-aided
channel estimation and perfect interleaving,” IEEE J. Select. Areas Commun., vol. 19, pp.
2358-2368, Dec. 2001.

[3] H. Vikalo, B. Hassibi, B. Hochwald and T. Kailath, "On the capacity o frequency-selective
channels in training-based transmission schemes," IEEE Trans. Signal Processing, vol.
52, no. 9, pp. 2572-2583, Sept. 2004.

[4] D. Samardzija and N. Mandayam, "Pilot-assisted estimation of MIMO fading channel
response and achievable data rates," IEEE Trans. Signal Proc., vol. 51, no. 11 , pp. 2882-
2890, Nov 2003.

[5] A. Goldsmith, S. A. Jafar, N. Jindal and S. Vishwanath, "Capacity limits of MIMO chan-
nels," IEEE J. Select. Areas Commun., vol. 21, no. 5, pp. 684-702, June 2003.

[6] N. Jindal, S. Vishwanath and A. Goldsmith, "On the duality of Gaussian multiple-access
and broadcast channels," IEEE Trans. Inform. Theory, vol. 50, no. 5, pp. 768-783, May
2004.

[7] M. Costa, "Writing on dirty paper," IEEE Trans. Inform. Theory, vol. 29, no. 3, pp. 439-
441, May 1983.

[8] Q. H. Spencer, A. L. Swindlehurst and M. Haardt, "Zero-forcing methods for downlink
spatial multiplexing in multiuser MIMO channels," IEEE Trans. Signal Proc., vol. 52, no.
2, pp. 461-471.

[9] M. Medard, “The effect upon channel capacity in wireless communications of perfect
and imperfect knowledge of the channel,” IEEE Trans. Inform. Theory, vol. 46, no. 3, pp.
933-946, May 2000.

139



140 Information rate with imperfect CSI

[10] B. Hassibi and B. M. Hochwald, “How Much Training is Needed in Multiple-Antenna
Wireless Links?,” IEEE Trans. Inform. Theory, vol. 49, no. 4, pp. 951-963, April 2003.

[11] T. Marzetta and B. Hochwald, "Fast Transfer of Channel State Information in Wire-
less Systems," submitted to IEEE Trans. Signal Proc. [also available on http://mars.bell-
labs.com/cm/ms/what/mars/papers/channel_estimation/]

[12] E. Biglieri, J. Proakis, and S. Shamai, "Fading channels: information-theoretic and com-
munications aspects," IEEE Trans. Inform. Theory, vol. 44, pp. 2619–2692, Oct. 1998.

[13] J. G. Proakis, Digital communications, McGraw-Hill, 1995.



Chapter 7
Linear and non-linear
precoding/equalization with long-term
CSI at the transmitter

7.1 Introduction

IN order to achieve the high spectral efficiencies promised by the information theory over a
MIMO link (see previous Chapter for details and references), different practical approaches

have been proposed, e.g., space-time codes [1] and V-BLAST [2]. This Chapter is concerned
with the optimization of the transceiver structure shown in fig. 7.1, that operates over a (single
user) frequency-flat MIMO channel, under the constraint that the CSI available at the transmit-
ter is limited to the long term features of the channel. In particular, as discussed in Chapter 2,
this implies that the transmitter is provided with the second order statistics (i.e., the correlation
matrix) of the channel. We refer to this condition as long-term CSI or, herein in short, LT-CSI,
see also [3] [4] [5]. The assumption of LT-CSI at the transmitter is of crucial relevance for
systems in which the fading amplitudes are sufficiently fast-varying to make the condition of
instantaneous CSI (in short I-CSI) at the transmitter not realistic, as anticipated by the analy-
sis in the previous Chapter (Sec. 6.4). The LT-CSI can be acquired by the transmitter either
directly from measurements of the opposite link [7] or by feedback from the receiver. On the
other hand, in the design of the receiver, the instantaneous realization of the channel matrixH
(i.e., I-CSI) is assumed known (effects of channel estimation errors are studied by means of
simulations).

The design of linear/non-linear precoding/equalization for a multiuser MIMO system based
on LT-CSI at the transmitter is an open problem. The next Chapter is devoted to the study of lin-
ear precoding/equalization for the downlink of a MIMO system with channel aware scheduling
and I-CSI at the transmitter.

Linear and non-linear precoding and equalization are considered in the scheme of fig. 7.1.
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Figure 7.1: Block diagram of linear/non-linear precoding/equalization for a single user MIMO
system.

As explained below, the non-linear block at the transmitter, named MOD(.), limits the dynamic
range of the precoded sequence whereas the non-linear block at the receiver, DEC, is the tra-
ditional decision device. The structure reduces to known systems for specific constraints on
the matrices {B,F,G,D}. For instance, imposing B = 0 and F = I the scheme reduces to a
decision feedback equalizer (or equivalently to the V-BLAST receiver without optimal order-
ing [2] [8]); for B = 0 and D = 0 we have the linear precoding-linear equalization structure
(LP-LD), studied in [9] [10], under the assumption of I-CSI at both the transmitter and the
receiver; for F = I andD = 0 the Tomlinson-Harashima precoding (THP) structure proposed
in [6] and studied for LT-CSI at the transmitter in [4] is obtained.

7.2 Linear/non-linear precoding

We focus on a MIMO wireless link with an equal number of transmit and receive antennas
NT = NR = N. The N × 1 data vector a (the time dependence of all the variables is implied)
is composed of complex symbols taken from the M−QAM constellation, i.e., each entry ai

(i = 1, .., N) belongs to the set A = {aI + jaQ|aI , aQ ∈ {±1,±3, ..,±
√
M − 1}}. The data

vector is passed through the non-linear part of the precoder defined by the N×N strictly upper
triangular matrix B (i.e., [B]ii = 0). In order to stabilize the precoder, or equivalently to limit
the dynamic range of the precoded sequence, a non-linear modulo-arithmetic operation (MOD)
is introduced, as it is done in THP (see, e.g., [12] [13]). This operation performs a periodic
mapping (or modulo reduction) of its input z0 on the square region of the complex plane that
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contains A and has side length 2
√
M, i.e., R = {zI + jzQ|zI , zQ ∈ (−

√
M,
√
M ]}. In other

words, zi = MOD(z0i) = z0i + 2
√
Mki, where the real and imaginary parts of ki are integers

chosen to reduce zi ∈ R. Notice that there is only one ki that satisfies this condition. It
follows that the non-linear part of the precoder can be equivalently redrawn by deleting the
block MOD and adding at the input an input-dependent vector d (see box in fig. 7.1) such that
di = 2ki

√
M . Therefore, the effective symbols input to the non-linear precoder are v = a+ d.

After linear precoding with the N × N matrix F and propagation through the N × N radio
channel H, the received signal on each time-instant or each frequency of the data part of the
block can be written as (we drop the dependence on the block c for simplicity of notation):

y = HFz+ n, (7.1)

where we recall that the circularly symmetric Gaussian noise has correlation E[nnH ] = Rn

and we set E[zzH ] = IN . Notice that the latter assumption, also made in [6] and [4] to make
the problem tractable, is not rigorously satisfied when B 6= 0 since in this case E[zzH ] is a
function of the unknown (i.e., design target) matrix B. When optimizing the scheme of fig.
7.1, the power constraint E[||Fz||2] = tr{FFH} ≤ P will be imposed. This condition is
clearly satisfied when no linear precoding is employed (F = I). Notice that we are assuming
equal power within the training and data part of the block.

7.3 Channel model: a brief review

According to Chapter 2, the beamforming and diversity scenarios adapted to a frequency-flat
setting as the one considered here yield to:

1) Diversity scenario: the channel matrixH is assumed to be zero-mean (Rayleigh fading)
circularly symmetric complex Gaussian distributed with a separable spatial correlation function

H = [R(R)]H/2Hw[R
(T )]1/2, (7.2)

where the correlation matrices R(R) and R(T ) account for receive and transmit side spatial
correlation and Hw is a matrix of independent identically distributed circularly symmetric
complex Gaussian variables with unit power. For simplicity, the numerical evaluation of the
performance of the presented algorithms will be carried out for an autoregressive model of the
spatial correlation (see also Sec. 5.6.3). For later use, we remark that the correlation matrix of
the channel (that is related to the LT-CSI available at the transmitter, see next Section) is

E[HHH] = R(T ) · tr{R(R)} = NR(T ).

2) Beamforming scenario: the channel matrixH is

H = A(α(R)) diag(β)A(α(T ))T , (7.3)
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and for simplicity we consider all paths with the same power, Ωi = 1/d. The latter assumption
is considered for mathematical convenience and appears to be realistic in a frequency-flat sce-
nario, where all the paths are likely to experience the same path loss and shadowing. For later
use, we remark that the correlation matrix of the channel is

E[HHH] =
1

d
A(α(T ))∗A(α(T ))T . (7.4)

7.4 MMSE-based precoding and equalization

At the receiver side, the received signal is linearly processed by the N ×N matrix G, passed
through the feedback loop defined by the N×N strictly upper triangular matrixD and modulo
reduced into R if B 6= 0 (not shown in fig. 7.1). Here we optimize the general transceiver
scheme of fig. 7.1 by minimizing the MSE between the variables at the input of the decision
device and the effective data symbols v = a+ d [6]. As previously discussed, we constrain
the design of the operators at the transmitter side, i.e., of the matrices F and B, to be based
only on LT-CSI, represented by the second order statistics of channel and noise. In particular,
the transmitter is given only the correlation matrix E[HHR−1n H] [3] [5]. On the other hand,
the operators G and D at the receiver side are allowed to depend directly on the I-CSI, i.e., on
the channel matrix H. Furthermore, we will assume perfect error recovery at the output of the
decision device as it is usually done in the literature on decision feedback equalization [14].
The effect of error propagation will be investigated in Sec. 7.5 through simulations.

We now proceed with the derivation of the optimum precoding and equalization matrices.
Since the vector at the input of the decision device can be written as Gy − Dv (recall the
assumption of no error propagation made above), the design problem can be stated as

{B,F,G,D} = arg min
{B,F,G,D}

E[||Gy −Dv − v||2] (7.5)

s.t. E[||Fz||2] ≤ P,

we will show below how we take into account the different types of CSI’s at the transmitter
and the receiver. From fig. 7.1 one can easily show that v = Cz whereC = I+B, so that

MSE(B,F,G,D) =E[||Gy −ECz||2]=E[||Gy −Kz||2] (7.6)

with E = I+D. The upper triangular (with unit diagonal) feedback matrices C and E (or
equivalently B and D) can not be independently identified using the MMSE criterion. In the
following we will thus setK = EC and restate (7.6) as MSE(F,G,K). We remark thatK is
still an upper triangular matrix with unit diagonal.

From the standard theory of Wiener linear filtering, we get G =KE[zyH ]E[yyH ]−1 and
after algebraic manipulations

G = KFHH̃H(H̃FFH̃
H
+
N

P
IN )

−1·R−H/2
n =

G = KQ−1FHH̃H ·R−H/2
n (7.7)
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whereQ = FHH̃HH̃F+N/P IN and H̃ = R
−H/2
n H. The result (7.7) states that the optimum

linear filter at the front-end of the receiver performs the whitening of the received signal and
then applies a linear operator that has the classical Wiener structure. Substituting (7.7) into the
expression of MSE(F,G,K) we obtain

MSE(F,K) = tr{KQ−1KH}. (7.8)

In our framework, minimizing (7.8) with respect to K leads to different results depending on
the way the matrix K is factorized into the transmitter (C) and receiver (E) part. Here, we
consider two cases:

1) non-linear equalization (C = I ⇒ K = E): since the receiver has access to the I-CSI
H, the feedback matrixK = E is obtained as

E = VQ1/2, (7.9)

whereV is a diagonal matrix that scales to unity the elements on the main diagonal ofK;
2) non-linear precoding [4] (E = I ⇒ K = C): since the transmitter is given only the

LT-CSI
RH = E[H̃HH̃] =E[HHR−1n H] (7.10)

we can not minimize (7.8). Instead, it is reasonable to consider E[tr{KQ−1KH}] as the loss
function. It can be shown that

E[tr{KQ−1KH}] ≥ tr{KQ̄−1KH}, (7.11)

where Q̄ = F
H
E[H̃HH̃]F+N/P IN (see Appendix). Therefore, similarly to the approach of

[3] and [4], we minimize the lower bound MSE(F,K) = tr{KQ̄−1KH} obtaining

C = VQ̄
1/2

, (7.12)

whereV is the scaling matrix as in (7.9).
After substitution of (7.9) ifC = I or (7.12) if E = I according to the two cases discussed

above, we should in principle minimize MSE(F,K) = tr{KQ̄−1KH} with respect to the
transmit precoding matrix F. To make the problem tractable and obtain a solution independent
on K, we minimize tr{Q̄−1} instead. In other words, the matrix F is designed by assum-
ing that neither non-linear precoding nor non-linear equalization is included in the transceiver
(K = I). Nonetheless, simulation results show that the so obtained linear precoder performs
satisfactorily even for K 6= I (see Sec. 7.5). The precoder F can thus be obtained following
the steps outlined in [9]. It is

F = UΦ (7.13)

whereU is obtained from the eigenvalue decomposition of the LT-CSIE[H̃HH̃] = UΛU
H and

Φ is a diagonal matrix such that

|[Φ]ii|2 =
Ã

N +
PN̄

n=1 λ
−1
nn

P/N
PN̄

n=1 λ
−1/2
nn

λ
−1/2
ii − N

λiiP

!+
, (7.14)
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where (x)+ = max(x, 0) and N̄ ≤ N is such that |[Φ]nn|2 > 0 for n ∈ [1, N̄ ] and |[Φ]nn|2 =
0 for all other n. Therefore, the optimal precoder modulates each signal in the spatial domain
by an eigenvector of the LT-CSI matrix RH of the channel. It is worth emphasizing that
the correlation matrix RH , or its eigenvalue decomposition {U,Λ}, has to be updated only
occasionally at the transmitter, e.g., by a low rate feedback channel in a FDD link, since it is
assumed to be invariant over a large time scale. Recall from Chapter 2 that temporal variations
of RH (or equivalently R(T )) are likely to be caused by the movements of the transmitting
array and these can be assumed to be small enough (compared to the geometry of environment
and arrays) to guarantee the invariance of LT-CSI across multiple symbols.

Some remarks on the results of the optimization (7.7), (7.9)-(7.12) and (7.13) are in order.
i) In case we relax the assumption of LT-CSI at the transmitter, i.e., we allow the matrices
C and F to depend on the instantaneous CSI, we get K = I and F and G coincide with the
results derived in [9]. In other words, if both sides of the link have access to the channel matrix
H, the setting that minimizes the MSE (7.5) results in linear precoding and equalization. In
this case, F and G are obtained from the singular value decomposition of the channel matrix
H̃, as it can be inferred from (7.7) and (7.13). ii) Setting F = I and E = I leads to the THP
followed by a MMSE residual linear equalizer derived in [4]. 3) Following the approach of [9],
the linear precoder F can be obtained alternatively by minimizing tr{Q̄−1} subject to a peak
power constraint or by maximizing the information rate, i.e., minimizing det{Q̄−1}. These
alternatives will be further pursued in Sec. 7.4.2.

7.4.1 Long-term linear precoding as a whitening operation

Here we would like to further investigate the properties of the optimal linear precoding in
(7.13). Notice that precoding (7.13) has been shown to maximize the capacity in [3], mini-
mize the probability of error for orthogonal space-time codes in [5] and, as explained above,
to minimize the MSE between the transmitted vector z and the decision variables for linear
equalizers, under the assumption of LT-CSI at the transmitter. To start with, it is easy to show
that the LT-CSI matrixRH reads

RH = R
(T ) · tr{R−1n R(R)}. (7.15)

In particular, if we assume spatially white noise it simplifies asRH = N/σ2nR
(T ).

According to (7.15), the linear precoder performs the beamforming of the transmitted vec-
tor a along the spatial modes U of the channel (recall the discussion in Chapter 4). It is then
clear that the role of the linear pre-equalizer F is that of cancelling the channel correlation at
the transmitter side. Decorrelating the transfer matrix H is known to guarantee enhanced link
performance [11]. Fig. 7.2-(a) shows the signal model (transmitter, channel and noise whiten-
ing) by explicitly including the channel correlation matrices. The cascade of F and R(T )1/2 is
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Figure 7.2: (a) Block diagram of the signal model (transmitter, channel and noise whitener).
(b) Equivalent signal model that shows the role of linear precoding.

a diagonal matrix sinceR(T ) = UΣUH (withΣ = Λ/ tr{R−1n R(R)}) and

R(T )1/2F = Σ1/2UHUΦ = Σ1/2Φ. (7.16)

Therefore, the signal model can be simplified as in fig. 7.2-(b), proving by this simple reasoning
that the correlation matrix at the transmitter side is diagonalized by the precoderF. The channel
correlation at the receiver side,R(R)H/2 has to be dealt with at the receiver.

7.4.2 Different power allocation over the channel modes

In this Section, we consider two alternative power allocation schemes over the spatial modes
that constraint the total radiated power as E[||Fz||2] ≤ P .

1. Waterfilling: maximizing the capacity [3] or minimizing the probability of error for
orthogonal space-time codes [5] we get the classical waterfilling solution:

|[Φ]ii|2 =
Ã
P/N +

PN̄
n=1 λ

−1
nn

P/NN̄
− 1

λiiP/N

!+
, (7.17)

where (x)+ = max(x, 0) and N̄ ≤ N is such that |[Φ]nn|2 > 0 for n ∈ [1, N̄ ] and |[Φ]nn|2 =
0 for all other n.

2. Uniform power allocation: assuming that the same power is transmitted from each
eigenmode

|[Φ]ii|2 = P/N. (7.18)

Recall that in case the MMSE is minimized, we get the power allocation in (7.14), referred
to in the following as MMSE waterfilling.
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7.5 Simulation results

The performance of the precoder/decoder structure of fig. 7.1 is first evaluated in terms of un-
coded SER for a 16-QAM constellation (M = 16), N = 8 antennas and the diversity model.
We compare the performance of the general setting withK = C orK = E, referred to as NP-
LE (non-linear precoding, linear equalization) and LP-NE (linear precoding, non-linear equal-
ization) respectively, with the following special cases: 1) B = 0, F = I: MMSE-V-BLAST
receiver (or MMSE-DFE) with no stream ordering; 2) B = 0 and D = 0: linear precoding-
linear equalization (LP-LE); 3) F = I andD = 0: THP with MMSE residual equalization [4].
We further limit the study to the spatially white noise case. Notice that appropriate scaling of
the transmitted vector a is performed to compensate for the power amplification due to non-
linear precoding [12] [13] so that the performance comparison is based on equal total average
transmitted power P (see Sec. 7.2). It is worth emphasizing again that that all the schemes
taken into account perform precoding based on LT-CSI at the transmitter, except DFE that does
not entail any processing at the transmitter side. Moreover, where not stated otherwise, we
consider linear precoding with power allocation according to MMSE waterfilling (7.14).

Non-linear precoding (or equalization) causes the N transmitted data streams to have dif-
ferent error rates. This problem can be tackled by, e.g., coding across the different streams or
using more powerful codes on weaker streams. Here we limit the analysis to uncoded trans-
mission, leaving the issues raised by the introduction of coding in the considered scheme (e.g.,
soft/hard equalization, horizontal/vertical layering) to further investigations. In the following,
the SER is thus averaged over the N transmitted data streams.

In fig. 7.3 the SER is plotted as a function of SNR for ρT = 0.4 (left) and ρT = 0.8 (right)
(ρR = 0.4). Apart from the expected performance degradation due to the decreased spatial
diversity, it can be seen that the benefits (if any) of precoding based on LT-CSI compared to the
DFE receiver are more relevant for increasing values of ρT . This is intuitively clear since for
ρT = 0 the LT-CSI E[H̃HH̃] =N/σ2nR

(T ) = N/σ2nIN does not bring any side information
that can be exploited by the transmitter to improve the performance of the link. In this case, it
is F = IN and B = 0 from (7.13) and (7.12) respectively. Furthermore, it can be concluded
that the LP-NE gives the best performance in terms of uncoded SER. Simulations show that
similar gain can be obtained even for SNR > 30dB (not shown in the figure). To study the
effect of error propagation, the performance of genie-aided (i.e., perfect past decisions) DFE
and LP-NE are shown as dashed lines. It is important to remark that when comparing the
performance of the schemes of interest, other considerations, apart from the SER, should be
taken into account. For instance, it is well-known that non-linear precoding at the transmitter
causes a relevant increase of the dynamic range at the input of the decision device that can limit
its feasibility [15].

To have a clearer understanding of the role of the spatial correlation at the transmitter side
on the performance of different schemes, fig. 7.4 plots the uncoded SER as a function of ρT
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for SNR = 20dB, N = 8 and ρR = 0.4. In accordance with the previous discussion, all
precoding schemes outperform the DFE for ρT large enough. Moreover, the LP-NE structure
shows the lowest SER except for very high values of ρT , where it is slightly outperformed by
the THP scheme.

We now want to assess the effects of an imperfect I-CSI at the receiver. To this end, we
assume that for the design of G (7.7) and D (7.9) only a noisy version of the channel matrix
is available. A conventional UML estimate of the channel is carried out at the receiver with
LP = N and power used for training equal to the power used for the data part of the burst.
The SER is plotted as a function of SNR in fig. 7.5 for ρT = 0.4 (left) and ρT = 0.8 (right)
respectively (ρR = 0.4, N = 8). The same considerations discussed for perfect I-CSI apply
also to the case in which the channel estimation error is taken into account, except for the
performance degradation due to the imperfect I-CSI. In particular, LP-NE still gives the best
performance uniformly with respect to the SNR.

Let us now consider the beamforming model. According to (7.4) the spatial correlation at
the transmitter side is mainly related to the number of resolvable angle of departure rT (i.e.,
the number of spatial modes, see Chapter 4). To complement the analysis carried out in fig.
7.4 for the diversity model, fig. 7.6 shows the uncoded SER against rT for SNR = 20dB,

N = 8, rR = 8 and the beamforming model. Increasing rT produces two simultaneous effects:
increasing the rank of the channel matrix (rank(H) =min(rT , rR) = rT ) and decreasing the
spatial correlation at the transmitter side (i.e., increasing the spatial diversity). The first effect
tends to reduce the SER (multiplexing gain, see, e.g., [2]) whereas the latter tends to lessen
the benefits of precoding. Accordingly, the SER of DFE is monotonically decreasing while
the SER of the different precoding schemes, with the only exception of THP, presents a U-
shape. For a wide range of values of rT , LP-NE results in the lowest SER as for the diversity
case. Nevertheless, for rT = 1 (high spatial correlation) and rT ≥ 7, THP presents the best
performance.

In summary, precoding with long term channel state information appears to be advanta-
geous in dense multipath channels (as for diversity model) with relatively large correlation at
the transmitter (ρT ≥ 0.2) or in sparse multipath channels (as for beamforming model). More-
over, the experimental results show that the most promising scheme is LP-NE, also considering
the practical limitations of non-linear precoding [15]. The preferred scheme essentially adds a
linear precoder to a modified BLAST receiver, where the feedforward filterG and the feedback
filterD are designed by taking into account the precoder F according to (7.7) and (7.9).

The preferred scheme (LP-NE) is now evaluated for the three different power allocation
strategies discussed in Sec. 7.4.2. Fig. 7.7 shows the uncoded SER versus SNR for the diver-
sity model and ρT = 0.8 and ρR = 0.4 while fig. 7.8 plots the uncoded SER versus ρT for
SNR = 20dB and ρR = 0.4 (analogous behavior as a function of ρT is obtained lower SER
as well). LP-NE guarantees better performance as compared to the DFE over the entire range



150 Linear and non-linear precoding

0 10 20 30 40
10

-4

10-3

10
-2

10-1

100

SNR [dB]

SE
R

0 10 20 30 40
10

-4

10-3

10
-2

10-1

100

SNR [dB]

LP-NE
DFE  
THP  
LP-LE
NP-LE

Figure 7.3: SER versus SNR for ρT = 0.4 (left) and ρT = 0.8 (right) (ρR = 0.4, N = 8).
Dashed lines represent the case with genie-aided decision feedback.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

ρT

SE
R

LP-NE
DFE  
THP  
LP-LE
NP-LE

Figure 7.4: Effect of spatial correlation at the transmitter side on the uncoded SER (SNR =
20dB, N = 8, ρR = 0.4).
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Figure 7.5: SER vs. SNR for ρT = 0.4 (left) and ρT = 0.8 (right) in case of imperfect I-CSI
at the receiver (ρR = 0.4, N = 8). Dashed lines represent the case with genie-aided decision
feedback.
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Figure 7.6: SER versus rT for the beamforming model (SNR = 20dB, N = 8, rR = 8).
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Figure 7.7: SER versus SNR for DFE and LP-NE with different power allocation schemes
(ρT = 0.8, ρR = 0.4 and N = 8).

of correlation ρT and SNR considered. In particular, for SER = 10−3, pre-equalization with
waterfilling provides around 15dB gain in SNR. Moreover, waterfilling power allocation only
slightly outperforms the uniform power allocation, that has the advantages of simplicity and
reduced feedback (only the eigenvectors have to be transmitted by the receiver). Note that if
the constellation size was allowed to vary with allocated power, then waterfilling solution could
potentially increase its SNR margin as compared to the uniform power scheme. The degrada-
tion of the MMSE waterfilling scheme (around 5dB for SER = 10−3) can be explained by
recalling from Sec. 7.4 that the corresponding design assumes a linear equalizer (not a DFE
receiver).

For ρT = 0, the transmitter can not capitalize on the LT-CSI RH=N/σ2nI to improve the
performance of the link (F = I) so that DFE and LP-NE have the same SER. For large ρT

the performance of all the methods degrade because of the decreased spatial diversity and the
performance gap among the methods shrinks as the channel matrixH becomes rank-deficient.

7.6 Conclusion

A transceiver structure for frequency flat MIMO channels that includes linear/non-linear pre-
coding/equalization has been studied under the assumption that the CSI available at the trans-
mitter is limited to the second order statistics of channel and noise (long-term CSI). Simulations
have shown that relevant benefits can be obtained by exploiting the long term channel state in-
formation at the transmitter in both dense multipath channels with relatively large correlation
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Figure 7.8: SER versus ρT for DFE and LP-NE (SNR = 20dB, N = 8, ρR = 0.4).

at the transmitter side and in sparse multipath channels. Moreover, the preferred scheme es-
sentially adds a linear precoder to a modified BLAST receiver.

7.7 Appendix: proof of (7.11)

The inequality E[tr{KQ−1KH}] ≥ tr{KE[Q]−1KH} = tr{KQ̄−1KH} directly follows
from the Jensen’s inequality once the function tr{KQ−1KH} is proved to be convex in the
positive definite matrix Q. To show the convexity of the function of interest, it is sufficient to
demonstrate that kH(λQ1+(1−λ)Q2)−1k ≤ λkHQ−11 k+(1−λ)kHQ−12 k,where 0 ≤ λ ≤ 1
and k is any vector. The aforementioned condition can be stated as (λQ1 + (1− λ)Q2)

−1 ≤
λQ−11 + (1− λ)Q−12 or equivalently as (th. 7.7.3 of [16])

(((λQ1 + (1− λ)Q2)(λQ
−1
1 + (1− λ)Q−12 )) ≥ 1, (7.19)

where ((·) denotes the spectral radius. After simple manipulations, we obtain

((Q1Q
−1
2 +Q2Q

−1
1 ) ≥ 2. (7.20)

Since Q1 and Q2 are hermitian matrices (in particular, they are positive definite), we can find
a nonsingular matrix Z such that Q1 = ZZH and Q2 = ZΘZH , where Θ =diag([Θ1 · · ·
ΘN ]) is diagonal and Θi is real and positive (th. 7.6.3 and 7.6.5 of [16]). It follows that
Q1Q

−1
2 +Q2Q

−1
1 = Z(Θ+Θ−1)Z−1, which implies that (7.20) becomes

Θi + 1/Θi ≥ 2 ∀i = 1, 2, .., N, (7.21)

that is clearly satisfied ∀Θi > 0.
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Chapter 8
Channel aware scheduling for downlink
with orthogonal precoding and fairness
constraints

8.1 Introduction

IN the downlink of a broadcast (downlink) fading channel, the base station can capitalize
on multiuser diversity provided by independent fading realizations across different users.

Channel aware scheduling is a technique that allows to achieve this goal by appropriately timing
transmission to a subset of one or more users in each available time (code/frequency) slot.
Scheduling is performed according to the knowledge of the CSI available at the scheduler with
the general goal of granting transmission to the users that have instantaneous channel near the
peak [1].

If base station and users are equipped with a single antenna, it has been shown that trans-
mission to the user with the strongest channel is a strategy that achieves channel capacity [2].
However, if the base station is equipped with an antenna array, more users can be served simul-
taneously in the same time slot. In particular, if the base station has NT antennas, up to NT

users can be allocated in the same time slot with controlled interference. In this case, transmis-
sion to a single user is not the optimal solution and the design of the scheduler becomes more
complicated depending on the beamforming and power allocation strategy [3] [4].

In MIMO systems (i.e., antenna array at both base station and terminals), the scheduler
can leverage on another degree of freedom since each user can be assigned to multiple spatial
channels [5]. In fact, if each user has nR receiving antennas (nR ≤ NT ), the base station
can grant up to nR spatial channels (out of the available NT ) to any user [6]. The design of
the scheduler has to take into account the processing performed at the transmitter (e.g., linear
precoding and power allocation) and the receivers (e.g., linear equalizer).

Scheduling with linear processing at the base station that simply associates each spatial
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Figure 8.1: Block diagram of a broadcast channel with linear interfaces at the transmitter (base
station) and receivers (users).

channel with a transmitting antenna and linear interfaces at the receivers has been considered
in [5] (zero forcing equalizer) and [7] (MMSE equalizer). In this Chapter, we consider channel
aware scheduling for orthogonal linear precoding at the base station (see Chapter 6) and linear
zero-forcing equalizers at the receivers [8]. Using this transmitting/receiving strategy, the spa-
tial channels intended for a given user do not interfere neither with the signal destined to other
users nor among themselves. Here we consider perfect CSI at both transmitter and receiver.

Channel aware scheduling for orthogonal precoding has been first studied in [8]. Here we
set the problem in a novel mathematical framework and propose a scheduling algorithm that is
shown by simulation to guarantee superior performance in terms of sum capacity. Moreover,
fairness constraints inspired by the proportional fair criterion [9] [10] are introduced in the
scheduling process in order to guarantee the desired long term fairness properties.

8.2 Review of the signal model and problem formulation

The broadcast channel with linear interfaces at the transmitter and receivers is depicted in fig.
8.1. Let K̆ be the set of K̆ available users. The ith user is equipped with an antenna array of
n
(i)
R elements and the base station with NT antennas. The subset of Kc users that are served

by the base station within the cth time slot is denoted as Kc⊆ K̆ and its element indexed by
k = 1, 2, ...,Kc.

The scheduler allocates p(k)c ≤ n
(k)
R spatial channels to the kth user so that all the available

NT spatial channels are used:
KcX
k̄=1

p
(k̆)
c = NT . (8.1)

The signal intended for the kth user, collected in the p(k)c × 1 vector a(k)c is linearly precoded
by the NT × p

(k)
c matrix F(k)c . Following the conventional notation (see, e.g., [6]) and referring

to fig. 8.1, the signal received by the kth user across its n(k)R receiving antennas within the cth
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time slot can be written as the n(k)R × 1 vector y(k)c

y
(k)
c = H

(k)
c F

(k)
c a

(k)
c +H

(k)
c

X
i6=k

i∈K(t)

F
(i)
c a

(i)
c + n

(k)
c (8.2)

whereH(k)
c is the n(k)R ×NT channel matrix of the kth user and n(k)c is the zero mean additive

Gaussian noise with E[n
(k)
c n

(k)
c

H ] = σ2nIn(k)R

(we assume spatially white noise).

The received signal y(k)c lies in a n(k)R -dimensional linear space. However, only p(k)c ≤ n
(k)
R

spatial channels are assigned to the kth user. Therefore, the useful part of the received signal
spans a p(k)c -dimensional subspace that we refer to as receiving subspace. In order to account
for this, at the receiver, the n(k)R ×1 received signal y(k)c is pre-filtered by the p(k)c ×n

(k)
R matrix

G
(k)
c

ỹ
(k)
c = G

(k)
c y

(k)
c = H̃

(k)
c F

(k)
c a

(k)
c + H̃

(k)
c

X
i6=k

i∈K(t)

F
(i)
c a

(i)
c + ñ

(k)
c , (8.3)

where we have defined the p
(k)
c × NT equivalent channel H̃(k)

c = G
(k)
c H

(k)
c and ñ(k)c =

G
(k)
c n

(k)
c . In order to simplify the analysis and without limiting the generality of the approach,

we assume
G
(k)
c G

(k)H
c = I

p
(k)
c

, (8.4)

so that E[ñk(t)ñk(t)H ] = σ2nIp(k)c

. The range space of G(k)H
c corresponds to the receiving

subspace for the kth terminal. As a last step, equalization and detection is performed on ỹ(k)c .

In this work, we assume that the channel matrices H(k)
c are known to the transmitter and

receivers, e.g., by transmission of training sequences and feedback of the channel state infor-
mation from the receivers to the base station. An analysis of the effect of imperfect channel
state information and feedback delays is proposed in Chapter 6.

In order to simplify the notation, in the following the temporal dependence on c is omitted.

8.2.1 Problem formulation

In principle, we would like to find the subset of usersK, the set of precoding matricesF ={F(i)}K̆i=1
and pre-filtering matrices G = {G(i)}K̆i=1 so that the sum capacity is maximized under a total
power constraint (recall also that the constraints (8.1) and (8.4) have to be fullfilled):

{G,F} = argmax
G,F

K̆X
i=1

C(i)(G,F) (8.5a)

s.t.
K̆X
i=1

tr(F(i)F(i)H) ≤ P, (8.5b)

where C(i)(G,F) is the link capacity for the ith user [6]

C(i)(G,F) = log2 |Ip(i)+R(i)−1(H̃
(i)
F(i)F(i)HH̃(i)H)| (8.6)
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with
R(i)n = σ2nIp(i) +H

(i)
X
k 6=i
k∈K

F(k)F(k)HH(i)H . (8.7)

In (8.6)-(8.7) the assumption of Gaussian codebooks with E[a(i)a(i)H ] = Ip(i) is implied.
Moreover, as a result of the optimization problem (8.5) the ith user belongs to the set of active
users K if p(i) > 0 or equivalently (F(i),G(i)) are not empty matrices.

Solution of the optimization problem (8.5) is not known, even for the case of given sets
K and G. In [8], an algorithm is proposed for obtaining an approximate solution based on the
additional constraint of zero inter-user interference and the separate computation of precoding
and scheduling as explained in Sec. 8.3. We refer to this algorithm as the Largest Singular
Value (LSV) algorithm. The treatment is aimed at setting the results of [8] in the discussed
mathematical framework and review the main concepts. A novel approximate solution of (8.5)
is then proposed in Sec. 8.4. The algorithm, referred to as Successive Vector Selection (SVS)
is still based on the inclusion of the zero inter-user interference constraint but, differently from
[8], it performs jointly precoding and scheduling.

8.3 Orthogonal precoding with LSV scheduling

According to the approximate solution of (8.5) proposed in [8], at first the scheduling step
is performed. This amounts to select the subset K and the corresponding K matrices G(k).

Recall that the choice of G(k) implies the allocation of p(k) spatial channel to the kth user
and the corresponding receiving subspace. Then, the design of the precoding matrices F(k) is
carried out with the additional constraint of granting inter-user interference free transmission.

In [8], selection of the subset K and of the corresponding K matrices {G(k)}Kk=1 is per-
formed so as to set as active the spatial channels corresponding to the largest singular values
(LSV) of matrices {H(k)}K̆k=1. To elaborate, let λ(k)j , j = 1, . . . , r(k) = rank(H(k)) be the
non-zero singular values of channel matrix H(k) gathered in the diagonal matrix Λ(k) and
(u
(k)
j ,v

(k)
j ) the corresponding left and right singular vectors collected by columns in matrices

U(k) andV(k) respectively: H(k) = U(k)Λ(k)V(k). The LSV algorithm selects the NT largest
singular values of the set {λ(k)j | k = 1, ..., K̆, j = 1, . . . , r(k)} and builds matricesG(k)H with
the corresponding right singular vectors u(k)j .

This algorithm can equivalently be stated as the solution of the following optimization
problem: find the set G = {G(k)}K̆k=1 so that (recall also constraints (8.1) and (8.4)):

G = argmax
G

K̆X
k=1

°°°G(k)H(k)
°°°2 , (8.8)

Notice that an user belongs to K if the corresponding number of assigned channel p(k) is not
zero, or equivalently G(k) is not empty.
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Given the output of the scheduling algorithm (i.e., the set K and matrices {G(k)}Kk=1), the
precoding matrices F(k) are selected according to the orthogonal precoding described in Sec.
6.4.1. In particular, we recall that the precoding matrices are selected as

F(k) = V̄
(k)
0 V(k)Φ(k), (8.9)

where V̄(k)
0 is the null space of matrix H̄(k)H with H̄(k)= [H̃(1)H · · · H̃(k−1)H , H̃(k+1)H · · · H̃(K)H ]H

that guarantees the condition of orthogonality

H̃(i)F(k) = 0 if i 6= k, (8.10)

andV(k) is the subspace spanned by the rows of the single user matrix H̃(k)V̄
(k)
0 according to

(6.13). Finally,Φ(k) is the diagonal matrix that defines the waterfilling power allocation (6.15).

8.4 Orthogonal precoding with SVS scheduling

The approximate solution of the problem (6.8) proposed by [8] suffers from degraded per-
formance (as it will be shown by numerical results in Sec. 8.6) mainly because the precod-
ing matrices F(k) and the prefiltering matrices G(k) (and the associated set K) are optimized
separately. Here we propose a joint optimization that approximates problem (6.8) as follows.
i) The zero interference constraint (8.10) is imposed, thus obtaining a orthogonal precoding
as in [8]. As explained in Sec. 6.4, the resulting precoding matrices have the form (8.9).
ii) The objective function C(i)(G,F) is approximated by its first term of the Taylor expan-
sion: C(i)(G,F) ' 1/σ2n

°°G(i)H(i)F(i)
°°2. The latter approximation is expected to hold at

sufficiently low signal-to-noise ratios. The resulting optimization problem reads (recall also
constraints (8.1) and (8.4) and define V̄0 = {V̄(i)

0 }K̆i=1):

{G, V̄0} = argmax
G,V̄0

K̆X
i=1

N (i)(G, V̄0), (8.11a)

s.t. H̃(i)V̄
(j)
0 = 0 , i 6= j, (8.11b)

where we definedN (i)(G, V̄0) =
°°°G(i)H(i)V̄

(i)
0

°°°2 . The objective function (8.11a) is amenable
to an efficient numerical optimization and will be shown in Sec. 8.6 to yield relevant advantages
as compared to the separate optimization proposed in [8]. Notice that in order to simplify the
solution of the problem, the remaining term of the precoding matrices (8.9), V(i) and Φ(i) are
assumed to be computed according to Sec. 6.4.1, thus guaranteeing zero interference among
different streams and the enforcement of the total power constraint.

8.4.1 Successive Vector Selection (SVS) channel aware scheduling

Problem (8.11) can be efficiently solved by a greedy approach as detailed in the following.
The idea is to select at each step the spatial channel that yields the largest increase of the
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objective function (8.11a). Let us denote with the argument (n) the quantities of interest as
computed at the nth iteration. At each iteration a spatial channel (out of the NT available)
is allocated to a specific user so that a total number of NT iterations are needed. We are
interested in updating the receiving subspaces G(i) (initialized as G(i)(0) equal to an empty
matrix) and the transmitting subspaces V̄(i)

0 , or equivalently its orthogonal complement V̄(i)

(initialization: V̄(i)
0 (0) = INT

). Let u(j) be a possible candidate vector to be included in the
receiving subspaceG(j)[n] of user j at the nth iteration (j = 1, ..., K̆). As a result of the choice
of u(j) at the nth iteration, the objective function (8.11a) modifies as (dropping the functional
dependence on G, V̄0 for simplicity of notation)

K̆X
i=1

N (i)(n,u(j)) =
K̆X
i=1

N (i)(n) +
K̆X
i=1

∆N (i)(n,u(j)). (8.12)

Among all the possible vectors u(j) for all users j = 1, ..., K̆, the vector u(j) is selected so as
to maximize the increase of the objective function

PK̆
i=1∆N

(i)(n,u(j)). In the following, the
computation of∆N (i)(n,u(j)) is carried out.

To elaborate, we need to define for each user a basis U(j)(n) that spans the range space of
the channel matrixH(j) that at the nth iteration has not be assigned to any receiving subspace.
Formally, it is: range{U(j)(n)} = range{U(j)}∩null{G(j)(n)}. Therefore, the correspond-
ing initialization is U(j)(0) = U(j). At the nth iteration we have

PK̆
i=1 p

(i)(n) = n and the
possible candidate vectors to be included in the receiving subspace of the jth user are linear
combinations of the columns ofU(j)(n):

u(j) = U(j)(n)a(j), with
°°°a(j)°°°2 = 1. (8.13)

With the selection of (8.13), the corresponding receiving subspace is updated as G(j)(n)H =

[G(j)(n− 1)H u(j)j ] while its transmit subspace remains unchanged, V̄(j)
0 (n) = V̄

(j)
0 (n− 1),

since no new constraint (8.11b) is imposed upon it. It follows that

∆N (i)(n,u(j)) =
°°°u(j)HH(j)V̄

(j)
0 (n)

°°°2 . (8.14)

Then, let v(j) = H(j)Hu(j) be the vector corresponding to u(j) on the transmitter side. The
choice of u(j) for user j results in an additional zero-interference constraint for any user i 6= j

(see (8.11)), that leads to
V̄(i)(n) =

h
V̄(i)(n− 1)w(i)

i
, (8.15)

wherew(i) is the projection of v(j) over V̄(i)
0 (n− 1), scaled to unit length

wi = (V̄
(i)
0 (n− 1)V̄

(i)
0 (n− 1)Hv(j))/||V̄

(i)
0 (n− 1)V̄

(i)
0 (n− 1)Hv(j)||. (8.16)

V̄
(i)
0 (n) is updated as well, so that range(V̄(i)

0 (n)) = null(V̄(i)(n)H). This step can be per-
formed, e.g., by updating the QR decomposition of (8.15) [12]. On the other hand, nothing
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changes at the receiver side of the ith user,G(i)(n) = G(i)(n− 1). It is easy to show that

∆N (i)(n,u(j)) = −
°°°G(i)(n)H(i)w(i)

°°°2 i 6= j. (8.17)

To sum up, from (8.14) and (8.17) the increase of objective function (8.11) due to the choice
of vector u(j) at the nth iteration is

K̆X
i=1

∆N (i)(n,u(j)) =
°°°u(j)HH(j)V̄

(j)
0 (n)

°°°2 −X
i6=j

°°°G(i)(n)H(i)w(i)
°°°2 . (8.18)

The first term in (8.18) accounts for the increased useful power received by user j on the newly
assigned spatial channel, whereas the other terms represent the power loss suffered from the
other users from not being allowed to transmit overw(i). Recalling (8.16) and (8.13), function
(8.18) can be easily recognized to be a sum of Rayleigh quotients in terms of vector a(j). While
the maximization of a single Rayleigh quotient is analytically feasible since it corresponds to
the solution of a generalized eigenvalue problem, maximizing a sum of Rayleigh quotients is
much more difficult and costly. Here, we resort to a sub-optimal approach, by restricting a(j) to
be a column of an identity matrix, which translates to restricting our search of the optimal u(j)

to the columns ofU(j)(n). This approach has been proved by simulation to yield performance
very close to the optimum solution.

8.5 SVS algorithm with proportional fairness constraints

The algorithms discussed so far aim to maximize the system throughput. If the users are un-
balanced, with some of them experiencing strongly attenuated channels (recall Sec. 3.4), it
is expected that the algorithms will result in an unfair sharing of system resources that might
preclude communication to some users (see also Sec. 8.6). Similarly to the proportional fair
criterion [10], a scheduling procedure that achieves over a long term an appropriate balance
between sum capacity and fairness among users can be defined by modifying (8.11) as follows
(here we explicit for convenience the time dependence):

{Gc, V̄0c } = argmax
Gc,V̄0c

K̆X
i=1

log(E[N (i)(G, V̄0)]), (8.19a)

s.t. H̃(i)
c V̄

(j)
0,c = 0 , i 6= j. (8.19b)

where E[·] refers to the long term average over time. Following the analysis of [9] and the
considerations in Sec. 8.4 , it can be shown that a procedure that (approximately) converges
to the solution of (8.19) can be obtained by implementing the SVS algorithm on normalized
channel matrices

H̄
(i)
c =

H̄
(i)
c

α̂
(i)
c

(8.20)
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with
α̂
(i)
c =

µ
1− 1

cc

¶
α̂
(i)
c−1 +

1

cc
N (i)(Gc−1, V̄0c−1), (8.21)

where parameter cc rules the memory of the algorithm. Parameter α̂(i)c measures the channel
power that each user has been allowed to use within a window of cc time slots. The rationale
of the algorithm is that if a given user has been ignored by the scheduling procedure in the
considered time window, the matrix scaling (8.20) will force the SVS algorithm to allocate
resources to it.

The criterion (8.19) is a fairness constraints on the channel norms: its implication on the
channel rates is not obvious and will be investigated in the next Section by numerical simula-
tions.

8.6 Numerical simulations

The performance of the proposed SVS algorithm is compared with the LSV algorithm [8] by
Monte Carlo simulations. We consider K̆ = 4 users, where each user has the same number of
receiving antennas n(i)R = 2 while the base station is equipped with NT = 4 antennas. Where
not stated otherwise, the channels are assumed to be subject to identically distributed Raleigh
fading, vec(H(i)) ∼ CN (0, I

NTn
(i)
Ri

). As reference performance, a random user selection algo-

rithm is considered that chooses randomly a set K of users such that (8.1) is satisfied. On this
subset, orthogonal precoding is applied as detailed in Sec. 6.4.1. Moreover, the performance
of a NT ×NT single user MIMO link is evaluated in order to set a reference level for the sum
capacity of the multiuser system.

The ergodic sum capacity is plotted versus the signal to noise ratio in fig. 8.2. The pro-
posed SVS algorithm yields a gain of about 4dB as compared to the LSV algorithm, whose
performance are, in this case, similar to random users selection. As explained in Sec. 8.4, the
advantage of SVS is due to the joint computation of the transmitting and receiving subspaces.

Fig. 8.3 shows sum capacity versus outage probability for SNR = 10dB. It can be seen
that the slope of the outage probability for SVS is comparable to that of a single user channel,
proving the ability of the SVS algorithm to appropriately exploit the diversity of the broadcast
channel.

Let us now consider unbalanced users in order to validate the performance of the SVS
algorithm with fairness constraints. To be specific, as explained in Sec. 3.4, the channels
are assumed to be selected so that vec(H(i)) ∼ CN (0, α(i)INTnRi

), where α(1) = 0dB,

α(2) = −5dB, α(3) = −10dB and α(4) = −20dB. The performance of the SVS algorithm
is evaluated with and without fairness constraints (cc = 20). The results are summarized in
fig. 8.4 in terms of ergodic sum capacity and individual ergodic capacity versus time c. The
total throughput loss increases as the fairness constraints are imposed by the scaling algorithm
discussed in Sec. 8.5 and converges to approximately 2bit/s/Hz. This decrease of the sum
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Figure 8.2: Ergodic sum capacity versus SNR (K̆ = 4, NT = 4, n
(i)
R = 2).
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capacity translates in a more fair sharing of resources as proved by the individual channel ca-
pacities. Notice that the channel capacities for c = 0 correspond to the performance of the SVS
algorithm with no fairness constraints. Even though the fairness constraint (8.19) was imposed
on the channel norms, rather than on the individual rates as in [10], the simulation results in-
dicate that the proportional fair criterion is very closely followed by the channel capacities as
well. In fact, the user capacities approximately converge to the dashed lines in fig. 8.4 that
denote the individual capacities as obtained by sharing the long term sum capacity according
to the proportional fair criterion (i.e., in proportion to the single user capacities).

8.7 Conclusion

The problem of channel aware scheduling for broadcast MIMO channels with orthogonal linear
precoding and linear interfaces at the receivers has been investigated. Starting from the work
in [8], that introduced a scheduling algorithm based on the separate computation of precoding
and equalization matrices (LSV algorithm), here we proposed a novel technique (SVS) that
performs joint optimization of precoding and scheduling. This solution has been shown by
simulation to be superior to known techniques in terms of sum capacity.

However, the sum-capacity is not the appropriate performance measure for practical sys-
tems where fairness constraints have to be guaranteed among the users. Therefore, a modifica-
tion of the SVS algorithm has been proposed that is based on the enforcement of proportional
fairness constraints. Simulation results have validated the modified SVS algorithm by showing
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that it retains the desirable long term fairness properties.
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Chapter 9
Concluding remarks

THIS thesis has dealt with the analysis of the perfomance of single and multiuser MIMO
systems over time-varying frequency-selective channels. Our investigation considered

under the same framework both the time-domain and multicarrier transmission. In either case,
the transmission is organized in blocks that contains both training (or pilot) symbols, that are
used at the receiver side for CSI acquisition, and data symbols. The main contribution of this
work has been the study of the performance of the CSI acquisition phase and of linear pre-
coding and equalization under a realistic multipath channel model. In particular, the analysis
has capitalized on the fundamental property of the time-varying MIMO channel. The time-
variability of the propagation is due to two classes of parameters that have different varying
rates. The first set encompasses the long-term features of the multipath, such as angles, de-
lays and power-delay profile, whereas the second accounts for the fast varying fading process.
Within the block-fading assumption, this implies that while the first set of parameters can
be considered as approximately constant over multiple blocks, the latter varies from block to
block.

Based on this property, the algebraic structure of the channel vector has been studied, re-
vealing that long-term and fast varying multipath features can be analytically decoupled. In
particular, it was shown that long-term parameters only determine the space-time channel cor-
relation, that is generally rank-deficient. Therefore, this matrix is defined by the space-time
channel modes, that are identified by its principal eigenvectors. On the other hand, the fading
process translates into the time-varying amplitudes to be assigned on a block-by-block basis on
each space-time mode. The implications of the results discussed above have been investigated
for the CSI acquisition phase in the first part of this dissertation and for linear precoding and
equalization in the second part.

In the first part of the thesis, the analysis of CSI acquisition is tackled at first from a theoret-
ical point of view, by determining a lower bound on the performance of any unbiased channel
estimator, through the computation of the hybrid CRB. This study not only allowed to assess
the impact of channel and system characteristics on the performance of channel estimation, but
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also discloses the properties of (asymptotically) optimal channel estimators. According to this
result, the optimal strategy for channel estimation prescribes a separate computation of long-
term and fast-varying multipath parameters. Linear estimators that are designed based on this
idea have been then proposed. To be specific, these estimators perform a direct estimation of
space-time channel modes through subspace tracking while computing the fading amplitudes
by least squares techniques. Thorough performance analysis and simulation demonstrated that
the proposed techniques are able to attain he theoretical bound under appropriate conditions.

The second part of the dissertation focused on the design of linear precoding and equal-
ization based on different assumptions about the CSI available at the transmitter. At first, the
impact of imperfect CSI at both ends of the link has been assessed from an information theoretic
standpoint by evaluating a lower bound on the information rate. This study has been performed
for both a single user MIMO system over a frequency-selective channel and the downlink of a
multiuser MIMO system over a frequency-selective channel with orthogonal linear precoding.
An information theoretic analysis of the downlink for more general linear or non-linear pre-
coding algorithms is an open issue. Subsequently, design of linear/non-linear precoding and
equalization based on long-term CSI at the transmitter for a single user MIMO system over
a frequency-flat channel has been proposed. Finally, joint design of linear precoding, equal-
ization and scheduling for the downlink of a multiuser MIMO system over a frequency-flat
channel has been considered. The designed aimed at either maximizing the sum rate or ensur-
ing some fairness constraints among the users. Therein, it was assumed that instantaneous CSI
is available at both receiver and transmitter.

Throughout the thesis, the fraction of symbols dedicated in each block to the transmission
of training has been held fixed. The benefits that can be gained from he exploitation of this
additional degree of freedom by using long-term CSI at the transmitter are investigated in the
Appendix.
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Appendix: adaptive pilot pattern based
on long term CSI at the transmitter for
OFDM systems

10.1 Introduction

IN order to achieve high spectral efficiency and reliability, wireless data transmission over
fading channels requires techniques that are able to adaptively adjust to the channel state.

Based on the CSI available at the transmitter, transmission parameters such as transmit power,
constellation size and coding scheme can be adaptively chosen at the physical layer in order to
satisfy some quality of service (QoS) criterion [1].

So far we have considered the ratio between the number of data (LD) and pilot (LP ) sub-
carriers to be held fixed over all the transmitter blocks. In this Chapter, we propose to extend
the set of parameters to be adapted based on CSI to the pilot (or training) arrangement, i.e.,
to the number of pilot symbols to be transmitted on each block. As with the other adaptive
transmission techniques, adaptive pilot placement promises to increase the spectral efficiency
of the system. This study will be performed on a single user SISO (NR = NT = 1) OFDM
system since the extension to more complex system is conceptually straightforward.

Adaptive pilot placement can be described as follows. QoS requirements from higher layers
determine a maximum channel estimation error that the system can tolerate. Based on the
prediction of channel estimation error at the receiver, the transmitter can then allocate the pilot
pattern (i.e., over a given number of OFDM symbols, say NB) with the goal of guaranteeing
the reliability of the channel estimate while minimizing the number of pilot subcarriers.

Prediction of the channel estimation error at the transmitter is herein performed by consid-
ering the performance of a Kalman channel estimator at the receiver. According to the practical
considerations in Chapter 7, the transmitter is assumed to know the long term features of the
channel, i.e., the second order statistics of the channel (long term CSI) and the average SNR.
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Figure 10.1: Description of an OFDM system with adaptive pilot placement,

This CSI can be either acquired directly by the transmitter in a TDD link or fedback by the
receiver in a FDD link. Notice that in the latter case, the feedback link is only required to
support a low rate since the considered CSI can be assumed to be slowly varying.

10.2 System description

10.2.1 Adaptive pilot pattern: motivation and fundamentals

The system is illustrated in fig. 10.1. The physical layer of the link employs OFDM modula-
tion with training-based channel estimation. Higher layers set some constraint on QoS, such as
frame/symbol error probability. The physical layer then adapts transmission parameters (modu-
lation, code rate and power) in order to satisfy the QoS requirements. Furthermore, it computes
a maximum SNR degradation η due to channel estimation (or equivalently a maximum channel
estimation error) that leads to negligible system performance loss. A certain SNR degradation
can be guaranteed by appropriately placing pilot subcarriers in each OFDM symbol as it will be
explained in the following. The adaptive choice of the pilot pattern is made every NB OFDM
symbols, where NB can be for instance the duration of the time-slot assigned to a given user
in a TDMA system [5]. According to Chapter 3, the total number of subcarriers is L. Notice
that L could be a fraction of the subcarriers available in the bandwidth of an OFDMA system
[6]. Moreover, for simplicity, we assume that no guardband is allocated within the L available
subcarrier (LG = 0).

To ease the implementation of the OFDM modulator, the number of available subcarri-
ers L is set to be a power of 2, L = 2l. The subcarriers are indexed as k = 0, 1, ..., L − 1
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while the OFDM symbols are denoted as c = 0, 1, ..., NB − 1 (see fig. 10.1). Equi-spaced
pilot subcarriers in the frequency domain are known to minimize the channel estimation er-
ror [7]; accordingly, the number of pilot arrangements that constitute possible choices for the
transmitter in each OFDM symbol are l + 1 and precisely (fig. 10.1):

1. no pilot subcarriers (LP = 0): the OFDM symbol contains only data subcarriers;
2. LP = 2

m equispaced pilot subcarriers (with m = 1, ..., l): the pilot subcarriers occupy
the frequency bins i · 2l−m with i = 0, 1, ..., LP − 1.

10.2.2 Review of signal and channel model

From Chapter 3, to which we refer for details, we recall that the signal received on the kth
subcarrier in the cth OFDM symbol can be written as (see (3.15))

yc[k] = xc[k]fc[k] + nc[k], (10.1)

where fc[k] is the channel gain and nc[k] the additive Gaussian noise. By stacking the signal
received over the used bandwidth (yc = [yc[0] · · · yc[L−1]]T ), the measurement within the cth
OFDM symbol can be written as

yc = Xcfc + nc (10.2)

where Xc is the L × L diagonal matrix (3.24), Xc = diag{[xc[0] · · ·xc[L − 1]]}, and fc =
[fc[0] · · · fc[L−1]]T is the L×1 channel vector in the frequency domain, related to the channel
in the time domain through the L×W DFT matrixΘ

fc = Θ · hc. (10.3)

In order to simplify the analysis, we consider a channel characterized by sample spaced
delays (G(τ ) = IW ) so that the channel model described in Chapter 3 (for both beamforming
and diversity scenarios) reads

hc = Ω
1/2βc. (10.4)

Moreover, the Doppler spectrum of all the paths is assumed to be well approximated over
the NB OFDM symbols by an autoregressive model of order 1, i.e., E[βcβ

H
c−m] = ρmIW ,

where ρ can be written in terms of the Clarke’s model as a function of the Doppler shift fD as
ρ = Jo(2πfDTS) [11]. Notice that the second order statistics of the channel

E[hch
H
c−m] = Ωρ

t (10.5)

are assumed to be constant over the temporal horizon of interest (quasi static model of the long
term channel features over NB OFDM symbols as in Chapter 4).

From (10.3) and (10.4), the channel correlation in the frequency domain isRF = E[fcf
H
c ] =

ΘΩΘH or equivalently, for the entries, [RF ]ij =
PW−1

n=0 [Θ]in[Θ]
∗
jnΩn, which implies that

unless L =W and the power delay profile is uniform, the channel is correlated over frequency.
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10.2.3 Effective (average) signal to noise ratio SNReff

The (average) SNR over the kth subcarrier and the cth OFDM symbol in absence of channel
estimation error can be written as (3.14). We recall that the SNR (3.14) would depend on the
frequency bin k and on the OFDM symbol c if adaptive power allocation is employed on a
subcarrier (or group of subcarrier) basis and/or on a symbol by symbol basis (i.e., if E[|xc[k]|2]
is a function of c and/or k). Here, we simplify the presentation by setting E[|xc[k]|2] = LP

(recall the discussion in Sec. 3.6) equal for all subcarrier and blocks (within the interval of
interest). The extension to the most general case of adaptive power allocation is not covered
here as it is straightforward and requires minor modifications.

The effect of channel estimation errors can be taken into account by defining an "effective"
(average) SNR as follows. By introducing the channel estimate f̂c[k], the received signal (10.1)
can be restated as

yc[k] = f̂c[k]xc[k] + (fc[k]− f̂c[k])xc[k] + nc[k] (10.6)

The term related to the channel estimation error, (fc[k] − f̂c[k])xc[k], can be then modelled
as explained in Chapter 6 as an additive Gaussian noise with zero mean and power E[|fc[k]−
f̂c[k]|2]LP, assuming that the error and the transmitted signal are independent [12]. For equi-
spaced equi-powered pilot subcarriers, the channel estimate variance E[|fc[k] − f̂c[k]|2] =
MSEc is independent on k so that the effective SNR can be defined as

SNReff
c =

P

(σ2n +MSEc · LP )
=

SNR

1 +MSEc · SNR
, (10.7)

where MSEc is the normalized (with respect to the channel norm E[|fc[k]|2] = 1/L) channel
estimation error: MSEc =MSEc/(1/L).

10.2.4 Adaptive pilot pattern: problem formulation

As previously stated, the physical layer at the transmitter computes a maximum SNR loss η due
to channel estimation. Equivalently, the physical layer sets a minimum effective SNR, denoted
as SNR

eff
, that it is required to guarantee over the NB OFDM symbols. Feasibility calls for

SNR
eff

< SNR, or in other words η = SNR/SNR
eff

> 1.

The goal of the physical layer is to place pilot subcarriers over the NB OFDM symbols in
order to guarantee that

SNReff
c ≥ SNR

eff
, (10.8)

or in terms of channel estimation error

MSEc ≤
1

SNR
eff
− 1

SNR
. (10.9)

In the next Section, we will be able to write MSEc as a function of the pilot pattern for a
Kalman channel estimator (that we know from Chapter 4 to be the optimal channel estimation
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strategy if we assume to know the multipath delays and the second order statistics of the chan-
nel). The physical layer at the transmitter side tries to guarantee the minimum effective SNR
(SNR

eff
, see (10.8) or (10.9)) for c = 0, 1, ..., NB − 1 by using the minimum number of pilot

subcarriers over the NB OFDM symbols.

Remark 9 Decision directed or iterative techniques can improve the channel estimation accu-
racy at the cost of increased complexity. When these techniques are implemented, the require-
ment on MSEc can be alleviated accordingly.

Remark 10 Similarly to all the adaptive transmission techniques, adaptive pilot pattern re-
quires the transmitter to inform the receiver about the selected pilot arrangement (over the
l + 1 available) for each c.

Remark 11 If the adaptive modulation and code rate algorithm has selected different modes
for different subcarriers or OFDM symbols, the maximum allowable SNR loss could be a func-
tion of k and c itself. In this case, a possible choice in our framework is to define η with respect
to the most demanding requirement, that is η = minc,k η(c, k).

10.3 Kalman channel estimation

From (10.4) and (10.5), the channel model and the received signal can be written in a state
form equation

βc = ρβc−1 + vc (10.10a)

yc = Ccβc +wc, (10.10b)

whereCc = XcΘΩ
1/2 and vc is zero mean circularly symmetric Gaussian with E[vcvHc−m] =p

(1− ρ2)IW δm. Assuming that the second order statistics of the channel (long term CSI) ρ
(or equivalently the Doppler shift fD) and Ω are known at the receiver (e.g., from long term
measurements of the channel), the L×1 vector βc can be tracked by a Kalman filter [10]. Since
we focus on training-based channel estimation, that is we do not consider the data symbols as
useful information for channel estimation, the vector xc will be thereafter redefined as x̃c,
where:

[x̃c]k = 0 if the kth subcarrier contains a data symbol

[x̃c]k 6= 0 if the kth subcarrier contains a pilot symbol.

Matrices X̃c and C̃c = X̃cΘΩ
1/2 are defined accordingly.

The a posteriori error correlation matrix Rβ,c = E[(βc − β̂c)(βc − β̂c)
H ] of the Kalman

filter can be written as a function of the pilot pattern x̃c following the standard theory [10].
Since the estimate of the frequency domain channel vector is then obtained as

f̂c = ΘΩ
1/2β̂c, (10.12)
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the error correlation matrix for the channel estimate in the frequency domain follows as

Re,c = E[(fc − f̂c)(fc − f̂c)H ] = ΘΩ1/2Rg,cΩ
1/2ΘH . (10.13)

Notice that MSEc = [Re,c]ii. It is easy to show that Re,c can be computed recursively as a
function of the pilot pattern x̃c as (see Appendix-A)

Re,c = Ac − ρ2AcX̃
H
c (X̃cAcX̃

H
c +σ

2
nI)

−1X̃cAc (10.14a)

Ac = ρ2Re,c−1 + (1− ρ2)RF . (10.14b)

Equations (10.14a) and (10.14b) can be implemented at the transmitter as long as the long term
CSI (i.e., ρ and Ω) is known at the transmitter either by direct measurement (TDD link) or by
(low rate) feedback by the receiver (FDD link). The initial estimation (c = 0) of the channel is
assumed to be obtained by a traditional UML estimator

β0 = (C̃
H
0 C̃0)

−1C̃H
0 y0, (10.15)

so thatRg,0 = σ2n(C̃
H
0 C̃0)

−1 and

Re,0 = σ2nΘΩ
1/2(C̃H

0 C̃0)
−1Ω1/2ΘH = σ2nΘ(Θ

HΩx,0Θ)
−1ΘH , (10.16)

where the pilot pattern power profile Ωx,c = X̃
H
c X̃c has been defined. Notice that in order to

make the initial UML estimate (10.15) feasible, the initial training pattern x̃0 has to contain at
least LP ≥W pilot subcarriers.

Restating the problem illustrated in Sec. 10.2.4, the transmitter has to guarantee that
MSEc = [Re,c]ii satisfies (10.9) for c = 0, 1, ..., NB − 1 while minimizing the number of
pilot subcarriers.

10.3.1 Training sequence design

From (10.16) it is clear that the initial channel estimation error only depends on the pilot pattern
power profile Ωx,c: the training sequence x̃c can be drawn from any constellation as long as
the power profile is the same. The same applies to the channel estimation error for any c as
it is shown in Appendix-B. Moreover, here we are interested as for the derivation of (10.7)
in a uniform channel estimation error over the subcarriers so that we opt for a uniform power
allocation over the pilot subcarriers.

10.4 "Greedy" pilot pattern

The choice of the optimum pilot pattern x̃c c = 0, 1, ..., NB−1would require to explore a large
number of possible solutions, on the order of (l+1)NB . A suboptimum solution that proved to
perform satisfactorily is the ”greedy” algorithm described below:
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for c = 0: select the minimum m = 1, ..., l such that: a) LP = 2m ≥ W and b) the
constraint (10.9) is satisfied;

for c > 0: select the minimum LP = 0 or LP = 2m (m = 1, ..., l) such that (10.9) is
satisfied.

This algorithm is referred to as greedy since it selects for each OFDM symbol the best
immediate solution, i.e., the minimum number of pilot subcarriers that guarantees (10.9).

10.5 Simulation results

Let us consider an OFDM link with L = 64 subcarriers and a block of NB = 10 OFDM
symbols. Moreover, fDTS = 0.1 (ρ = 0.9975), W = 16 and the power delay profile is
uniform,Ω=1/W IW .We start with a simple example in order to clarify the system under study
and to show the effectiveness of the greedy solution. The SNR is known to be SNR = 20dB

and the physical layer sets as a requirement a SNR loss η = 5dB or equivalently SNR
eff

=

15dB. It follows from (10.9) that MSEc ≤ 0.0216. The dashed line in fig. 10.3 represents
this upper bound on the normalized error MSEc. A first choice for the pilot pattern could be to
place in each OFDM symbol the same number of pilot LP that allows the initial least squares
estimate to guarantee MSE0 ≤ 0.0216. Fig. 10.2 shows this pattern in the first row ("fixed
pattern") with LP = W = 16. In this case, the total number of pilot subcarriers employed
over NB = 10 OFDM symbols turns out to be 16 × 10 = 160. If we used the initial least
squares estimate for the entire block of NB symbols ("only initial training"), we would end up
with only 16 pilot subcarriers employed but we would not be able to satisfy (10.9) for c > 4.
A practical and widely used choice is to re-train the system whenever we need it ("periodic
re-training"). In this case, the use of 16× 4 = 64 pilot subcarriers is enough to satisfy (10.9)
for every c. As shown in fig. 10.2 and 10.3, the greedy pilot pattern not only satisfies the SNR
requirement but also allows to reduce the number of pilot subcarriers to 52, thus improving
the spectral efficiency of the system. Notice that letting NB grow, we could notice that the
greedy pilot pattern reaches a steady state periodic pilot arrangement with period of 6 OFDM
symbols such that LP over each period varies as {0, 0, 2, 8, 2, 16}. By contrast, the "periodic
re-training" algorithm (optimized to guarantee the same SNR loss η = 5dB) has a period of 3
OFDM symbols with LP varying as {0, 0, 16}.

We now consider the performance of the greedy adaptive pilot pattern compared to the
traditional periodic re-training approach for varying channel correlation (fig. 10.4) and SNR

(fig. 10.5) for two different SNR loss η = 3dB (dashed lines) and η = 5dB (solid lines). As in
the previous example, both schemes are implemented so as to satisfy (10.8) for c = 0, 1, ..., 9.
The performance is shown in terms of the fraction of total subcarriers (NB×L = 10×64) used
as pilot subcarriers. As expected, increasing the channel variability (i.e., fDTS) decreasing
the SNR loss η or increasing SNR cause the number of needed pilot subcarriers to increase.
Moreover, the greedy algorithm (circles) uniformly outperforms the periodic training scheme
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Figure 10.2: Number of pilot subcarriers LP versus c for different pilot arrangements.

(triangles) leading to a more efficient use of the available bandwidth.

10.6 Conclusion

In this Chapter, the extension of link adaptability to the pilot pattern has been proposed. A
suboptimum solution based on the greedy principle has been considered and its effectiveness
evaluated through simulation with respect to known (non-adaptive) pilot arrangements. Our
findings show that adaptive pilot arrangement can greatly improve the spectral efficiency of the
system when compared to conventional strategies.

10.7 Appendix-A: proof of (10.14a)-(10.14b)

For Kalman filtering [10], the correlation matrixRg,c can be computed recursively as

Rg,c = R̆g,c − ρGcC̃cR̆g,c, (10.17)

where
R̆g,c = ρ2Rg,c−1 + (1− ρ2)I (10.18)

is the correlation matrix of the one-step prediction error and

Gc= ρR̆g,cC̃
H
c (C̃cR̆g,cC̃

H
c +σ

2
nI)

−1 (10.19)

is the Kalman gain. Recalling (10.13) and defining

Ac = ΘΩ
1/2R̆g,cΩ

1/2ΘH = ρ2Re,c−1 + (1− ρ2)RF , (10.20)
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Figure 10.3: Normalized channel estimation error MSEc as a function of the OFDM symbol
c for different pilot arrangements. Dashed line represents the constraint ( 10.9).

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

fr
ac

tio
n

of
 p

ilo
t s

ub
ca

rr
ie

rs

SDTf

greedy algorithm
periodic re-training

dB3=η

dB5=η

Figure 10.4: Fraction of total subcarriers (NB ×L = 10× 64) used as pilot subcarriers for the
periodic re-training and greedy algorithm versus the Doppler spread fDTS (SNR = 20dB).



182 Appendix

-10 -5 0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

fr
ac

tio
n

of
 p

ilo
t s

ub
ca

rr
ie

rs

greedy algorithm
periodic re-training

dB5=η

dB3=η

SNR [dB]
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period re-training and greedy algorithm versus SNR (fDTS = 0.1).

that coincides with (10.14b), we have from (10.17)

Re,c = Ac − ρΘΩ1/2GcC̃cR̆g,cΩ
1/2ΘH =

= Ac − ρΘΩ1/2GcX̃cAc, (10.21)

for the second equality we have used the definition C̃c = X̃cΘΩ
1/2. Substituting (10.19) in

(10.21) we finally get (10.14a).

10.8 Appendix-B: error correlation matrix as a function of the
power allocation

From (10.17), (10.18) and (10.19), the error correlation matrix can be written as (we drop the
argument c for brevity)

Rg = R̆g − ρ2R̆gC̃
H(C̃R̆gC̃

H+σ2nI)
−1C̃R̆g. (10.22)

Applying the matrix inversion lemma, we get

Rg = R̆g −
ρ2

σ2n
[R̆gC̃

HC̃R̆g −

−R̆gC̃
HC̃(σ2nR̆

−1
g + C̃HC̃)

−1
C̃HC̃R̆g)], (10.23)

that does not depend directly on X̃ but only on the power allocation matrixΩx, since C̃HC̃ =

Ω1/2ΘHΩxΘΩ
1/2. SinceRg,c andRe,c are related through (10.13), the same applies to error

correlation matrixRe,c.
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