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Joint Decompression and Decoding for
Cloud Radio Access Networks

Seok-Hwan Park, Osvaldo Simeone, Onur Sahin, and Shlomo Shamai (Shitz)

Abstract—In this work, joint decompression and decoding
is studied for the uplink of multi-antenna cloud radio access
networks. In this system, a set of multi-antenna mobile stations
(MSs) wish to communicate with a “cloud” decoder through a set
of multi-antenna base stations (BSs), which are connected to the
cloud decoder through digital backhaul links of limited capacity.
The BSs compress the received signal and send it to the cloud
decoder, which performs joint decoding of the signals from all
MSs. While the conventional solution prescribes that the cloud
decoder performs first decompression and then decoding, recent
work has shown that potentially larger rates can be achieved with
joint decompression and decoding (JDD) at the cloud decoder. The
sum-rate maximization problem with JDD, under the assumption
of Gaussian test channels, is shown here to be an instance of a
class of non-convex problems known as Difference of Convex (DC)
problems. Based on this observation, an iterative algorithm based
on the Majorization Minimization (MM) approach is proposed
that guarantees convergence to a stationary point of the sum-rate
maximization problem. Numerical results demonstrate the ad-
vantage of the proposed algorithm compared to the conventional
approach based on separate decompression and decoding.

Index Terms—Cloud radio access networks, distributed source
coding, multi-cell processing, noisy network coding.

I. INTRODUCTION

C LOUD radio access networks are by now recognized
to provide a promising approach to solve “bandwidth

crunch” problem and also to minimize the cost required for
initial deployment or management of access points [1], [2]. On
the uplink of the cloud radio access network, the base stations
(BSs) operate as soft relay by compressing and forwarding
the received signals to a cloud decoder through capacity-con-
strained backhaul links, as illustrated in Fig. 1.
Since the received signals at the different BSs are statistically

correlated, it is beneficial to adopt distributed source coding
strategies, as explored in [3]–[7]. In [4], a block-coordinate as-
cent algorithmwas proposed to optimize the compression strate-
gies at the BSs (via the corresponding test channels) under sum-
backhaul capacity constraint. The work [6] instead considered
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Fig. 1. Uplink of a cloud radio access network.

individual backhaul constraints and assumed sequential quanti-
zation with side information. In these previous works, the cen-
tral decoder first decompresses the signals compressed by the
BSs, and then decodes the mobile stations’ (MSs) signals.
In this work, we consider a potentially more advantageous ap-

proach for the design of the cloud decoder, whereby the cloud
decoder performs joint decompression and decoding (JDD). The
idea was introduced and studied in [8], where specific results
were given for single-antenna MSs and BSs. The goal of this
work is to address the optimization of the compression strate-
gies formulti-antennaBSs in the presence of JDD andmulti-an-
tenna MSs. To this end, we show that the sum-rate maximiza-
tion problem, under the assumption of Gaussian test channels,
is an instance of a class of non-convex problems known as Dif-
ference of Convex (DC) problems. Based on this observation,
an iterative algorithm based on the Majorization Minimization
(MM) approach is proposed that solves a sequence of convex
problems obtained by linearizing the convex parts in the ob-
jective function of the original problem (see, e.g., [9]). It is
shown that the proposed algorithm converges to a stationary
point of the sum-rate maximization problem. The MM and re-
lated approaches were studied for beamforming matrix design
in multi-cell downlink systems in [10] and for two-way relay
channel models in [11]. From numerical results, we examine
the advantage of the proposed JDD-based scheme over the con-
ventional separate approach.
Notation: We use to denote conditional probability

density function (pdf) of random variable given . All
logarithms are in base two unless specified. Given vectors

, we define for a subset as
the vector including, in ascending order, the vectors with

; we set as the empty vector. Similarly, given matrices
, we denote by the matrix obtained by stacking

the matrices with vertically in ascending order. No-
tation is used for the correlation matrix of random vector
, i.e., ; and represents the conditional
correlation matrix of given . We denote by
a block diagonal matrix whose diagonal blocks consists of the
matrices for .
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II. SYSTEM MODEL

We consider a cluster of cells, which includes a total number
of BSs and active MSs. We denote the set of all BSs

as . Each th BS is connected to the cloud
decoder via a finite-capacity link of capacity and has
antennas, while each MS has antennas. Throughout the
paper, we focus on the uplink, as illustrated in Fig. 1.
The overall channel from all MSs towards BS is given as

the matrix

(1)

with where we define as the
channel matrix between the th MS and the th BS. The signal
received by the th BS at a specific channel use (c.u.) is given
by

(2)

where vector is the vector of sym-
bols collecting all the vectors transmitted by all
MSs , with . The noise vectors are indepen-
dent across BS index and have independent identically
distributed (i.i.d.) entries with , for . We
assume that the channel matrix remains constant within each
time-slot and is perfectly known by the cloud decoder. The sig-
nals transmitted by each th MS are assumed to be indepen-
dent across index and distributed as for
given correlation matrices , . It follows that
we have with .
Each th BS communicates with the cloud by providing the

latter a compressed version of the received signal . Note
that this does not require the BSs to know the codebooks used
by the MSs (but only their distribution). Using conventional in-
formation-theoretic arguments, a compression strategy for the
th BS is described by a test channel (see, e.g., [12]).
Due to backhaul limitation, the compression at the th BS is
limited to bits per c.u.. We are interested in designing the
compression test channels , with , at the BSs
with the aim of maximizing the achievable sum-rate . The
optimization is performed at the cloud decoder, which then in-
forms the BSs about the optimal test channels.

III. SEPARATE DECOMPRESSION AND DECODING

In this section, we review the sum-rate achievable
with conventional separate decompression/decoding (SDD) ap-
proach at the cloud decoder [4], [6], [8]. Accordingly, the cloud
decoder first decompresses the signals and then, based on all
signals , decodes the MSs’ messages. For
decompression, fix an ordering of the BS indices. The cloud
decoder decompresses in the order .
Therefore, when decompressing , the cloud decoder has
already retrieved the signals . These can be
treated as side information available at the decoder but not to
the encoder, namely BS . As a result, using arguments sim-
ilar to the Wyner-Ziv theorem [13], the description for

can be recovered at the cloud decoder if the test chan-
nels and the backhaul capacities for satisfy
the conditions

(3)

As mentioned, the cloud decodes jointly the signals of all
MSs based on all the descriptions for , so that the
achievable sum-rate for given test channels is
given by

(4)

and the sum-rate maximization problem with SDD is stated as

(5)

Note that the optimization space includes the test channels
as well as the BS ordering . In Section V, we

will consider two ordering methods, exhaustive search, which
requires a search over all possible orderings and greedy or-
dering, which successively chooses the best BS corresponding
to the largest rate increase (see [6] for more detail). We refer to
[3]–[6] for further details on the solution of problem (5).

IV. JOINT DECOMPRESSION AND DECODING

With conventional SDD, the central processor in the cloud
decoder recovers the compressed signals first, and then
performs joint decoding of all of the MSs’ signals . In this
section, instead, we assume that the cloud decoder performs
joint decompression and decoding (JDD), i.e., joint decom-
pression of the signals and decoding of the signals . It is
remarked that errors in decompression do not affect the system
performance as long as the signals are correctly decoded [8].
The sum-rate achievable with the JDD strategy, denoted by

, was derived in [8], [14] for a generic channel model,
as summarized in Lemma 1 below. Our main contribution is to
propose an algorithm for the optimization of the test channels
in the cloud radio access model under study.
Lemma 1: [8], [14]: For given test channels

, the following sum-rate is
achievable with the JDD.

(6)
To interpret the sum-rate (6), we observe that for each subset
of BSs, the rate equals

the sum of: i) the overall backhaul capacity for the
BSs in set discounted by the total rate wasted in compressing
quantization noise, namely ; ii) the sum-rate

that would be achievable based only on the signals
received by the BSs in . Achievability of (6) is proved in [8],
[14].
Using Lemma 1, the sum-rate maximization problemwith the

JDD is formulated as

(7)

Without claim of optimality, we adopt Gaussian test channels,
namely with , for , which
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is known to be optimal with SDD [3]–[6]. With this choice, the
mutual information measures appearing in (7) are computed as

(8)

(9)

where we defined and the covariance is com-
puted as . Moreover, the problem (7)
becomes

(10)

Since the objective function in (10) is not smooth, it is conve-
nient to reformulate (10) by considering the epigraph form [15,
Sec. 4.1.3] of (10) as

(11)

The problem (11) is not convex due to the second term in
the objective function which is a non-linear convex, and thus
not concave, function of (the constraints are instead convex
functions as desired). However, the objective function in (11) is
the difference of two convex functions. Therefore, problem (11)
is a so called DC problem. For this class of problems, various
algorithms are known that have desirable properties [9]–[11].
Here we consider the so calledMM approach [9], which solves a
sequence of convex problems (see (12)) obtained by linearizing
the convex parts in the objective function. The resulting MM
algorithm, summarized in Algorithm 1, provides a sequence of
achievable rates for each iteration , whose proper-
ties are given in the Lemma 2.

Algorithm 1 MM Algorithm for problem (11)

1. Initialize the matrix to an arbitrary positive
semidefinite matrix for and set .

2. Update the matrices for as a solution of
the following (convex) problem.

(12)

Fig. 2. Average per-cell sum-rate versus the inter-cell channel gain with
, , , and .

where the function is a linear function

of defined as

(13)

3. Stop if with predefined
threshold value . Otherwise, set and go back
to Step 2.

Lemma 2: The sequence is monotonically in-
creasing with respect to iteration index , and it converges to a
stationary point of the problem (11) as .

Proof: The proof follows the same steps as [10, Theorem
1] and is thus omitted.

V. NUMERICAL RESULTS

In this section, we present numerical results to investigate the
advantage of the proposed JDD based scheme as compared to
the conventional SDD schemes. For simplicity, it is assumed
that all theMSs use a single transmit antennawith equal transmit
power which leads to the covariance . Moreover,
we assume and there is one MS active in each cell.
The elements of the channel matrix between the MS in the
th cell and the BS in the th cell are i.i.d. complex Gaussian
distributed with . We fix the number of cells to
three, i.e., . The achievable rate is averaged
over the realization of the channel matrices.
In Fig. 2, we plot the average per-cell rate (i.e., sum-rate di-

vided by ) versus the inter-cell channel gain with
, and . We consider two or-
dering methods for SDD, namely exhaustive search and greedy
ordering (see Section III). For reference, we also plot the cutset
upper bound [16, Theorem 14.10.1] , which is computed
as

(14)
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Fig. 3. Average per-cell sum-rate versus the number of BS antennas with
, , , and .

Fig. 4. Average per-cell sum-rate versus the transmit power per user with
, , , , and .

From Fig. 2, it is observed that an increase in the inter-cell
channel gain affects the performance of the SDD schemes in
two conflicting ways: i) it increases the overall system signal-to-
noise ratio which has a positive impact; ii) it increases the com-
pression rate (3) required to keep a given compression fidelity
on the backhaul. As a result, for sufficiently large , the first
effect dominates and the sum-rate of SDD increases, while, for
lower values of , the second effect is more relevant and the
sum-rate of SDD decreases. In contrast, JDD always benefits
from the increased channel power since the backhaul penalty
term in (6) is not affected by the channel matrices
or transmit signals’ powers, but it depends only on the quanti-
zation noise as seen in (8).
Fig. 3 demonstrates the impact of the number of BS

antennas when , and
. It is seen that the gain of the JDD scheme is more pro-

nounced when the BSs have a larger number of antennas. This
is because, as the received signals lie in a large dimensional
spaces, more sophisticated and efficient compression strategies
are called for. Finally, we plot the per-user average sum-rate
versus the transmit power in Fig. 4 with ,

and . The JDD scheme shows relevant
rate gains in the regime of moderate-to-large in which the rate
is not limited by the capacity of the backhaul links. Moreover,

from all the figures, it can be observed that JDD performs quite
close to the cutset upper bound (14).

VI. CONCLUSIONS

In this work, we tackled the problem of optimizing the com-
pression strategies at the BSs for the uplink of a cloud radio
access network. We aimed at maximizing the sum-rate achiev-
able with joint decompression of the signals received by the BSs
and decoding of the MSs’ messages at the cloud decoder. The
proposed iterative solution solves a sequence of convex prob-
lems and produces a sequence of feasible points with increasing
sum-rate that converges to a stationary point of the problem. Nu-
merical results showed the advantage of the proposed scheme
compared to the conventional SDD-based schemes. An open
problem is the management of the complexity of the algorithm
for systems with a large number of BSs, e.g., via appropriate
cell clustering techniques.
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