5646

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 61, NO. 22, NOVEMBER 15, 2013

Joint Precoding and Multivariate Backhaul
Compression for the Downlink of Cloud Radio
Access Networks

Seok-Hwan Park, Member, IEEE, Osvaldo Simeone, Member, IEEE, Onur Sahin, Member, IEEE, and
Shlomo Shamai, Fellow, IEEE

Abstract—This work studies the joint design of precoding and
backhaul compression strategies for the downlink of cloud radio
access networks. In these systems, a central encoder is connected
to multiple multi-antenna base stations (BSs) via finite-capacity
backhaul links. At the central encoder, precoding is followed by
compression in order to produce the rate-limited bit streams deliv-
ered to each BS over the corresponding backhaul link. In current
state-of-the-art approaches, the signals intended for different BSs
are compressed independently. In contrast, this work proposes to
leverage joint compression, also referred to as multivariate com-
pression, of the signals of different BSs in order to better control
the effect of the additive quantization noises at the mobile stations
(MSs). The problem of maximizing the weighted sum-rate with re-
spect to both the precoding matrix and the joint correlation ma-
trix of the quantization noises is formulated subject to power and
backhaul capacity constraints. An iterative algorithm is proposed
that achieves a stationary point of the problem. Moreover, in order
to enable the practical implementation of multivariate compres-
sion across BSs, a novel architecture is proposed based on succes-
sive steps of minimum mean-squared error (MMSE) estimation
and per-BS compression. Robust design with respect to imperfect
channel state information is also discussed. From numerical re-
sults, it is confirmed that the proposed joint precoding and com-
pression strategy outperforms conventional approaches based on
the separate design of precoding and compression or independent
compression across the BSs.

Index Terms—Cloud radio access network, constrained back-
haul, distributed antenna systems, multivariate compression, net-
work MIMO, precoding.

I. INTRODUCTION

ELLULAR systems are evolving into heterogeneous net-
works consisting of distributed base stations (BSs) cov-
ering overlapping areas of different sizes, and thus the problems
of interference management and cell association are becoming
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complicated and challenging [1]. One of the most promising so-
lutions to these problems is given by so called cloud radio ac-
cess networks, in which the encoding/decoding functionalities
of the BSs are migrated to a central unit. This is done by oper-
ating the BSs as “soft” relays that interface with the central unit
via backhaul links used to carry only baseband signals (and not
“hard” data information) [2]-[9]. Cloud radio access networks
are expected not only to effectively handle the inter-cell inter-
ference but also to lower system cost related to the deployment
and management of the BSs. However, one of the main impair-
ments to the implementation of cloud radio access networks is
given by the capacity limitations of the digital backhaul links
connecting the BSs and the central unit [10]. These limitations
are especially pronounced for pico/femto-BSs, whose connec-
tivity is often afforded by last-mile cables [1], [11], and for BSs
using wireless backhaul links [12].

In the uplink of cloud radio access networks, each BS com-
presses its received signal to the central unit via its finite-ca-
pacity backhaul link. The central unit then performs joint de-
coding of all the mobile stations (MSs) based on all received
compressed signals!. Recent theoretical results have shown that
distributed compression schemes [14] can provide significant
advantages over the conventional approach based on indepen-
dent compression at the BSs. This is because the signals re-
ceived by different BSs are statistically correlated [15]-[19],
and hence distributed source coding enables the quality of the
compressed signal received from one BS to be improved by
leveraging the signals received from the other BSs as side infor-
mation. Note that the correlation among the signals received by
the BSs is particularly pronounced for systems with many small
cells concentrated in given areas. While current implementa-
tions [3], [20] employ conventional independent compression
across the BSs, the advantages of distributed source coding were
first demonstrated in [15], and then studied in more general set-
tings in [16]-[19]. Related works based on the idea of com-
puting a function of the transmitted codewords at the BSs, also
known as compute-and-forward, can be found in [21], [22].

In the downlink of cloud radio access networks, the central
encoder performs joint encoding of the messages intended for
the MSs. Then, it independently compresses the produced base-
band signals to be transmitted by each BS. These baseband sig-
nals are delivered via the backhaul links to the corresponding

!In fact, joint decompression and decoding, an approach that is now often
seen as an instance of noisy network coding [13], is generally advantageous
[15].
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BSs, which simply upconvert and transmit them through their
antennas. This system was studied in [23], [24]. In particular,
in [23], the central encoder performs dirty-paper coding (DPC)
[25] of all MSs’ signals before compression. A similar approach
was studied in [24] by accounting for the effect of imperfect
channel state information (CSI). Reference [26] instead pro-
poses strategies based on compute-and-forward, showing ad-
vantages in the low-backhaul capacity regime and high sensi-
tivity of the performance to the channel parameters. For a review
of more conventional strategies in which the backhaul links are
used to convey message information, rather than the compressed
baseband signals, we refer to [27]-[30].

A. Contributions

In this work, we propose a novel approach for the compres-
sion on the backhaul links of cloud radio access networks in the
downlink that can be seen as the counterpart of the distributed
source coding strategy studied in [ 16]-[19] for the uplink. More-
over, we propose the joint design of precoding and compression.
A key idea is that of allowing the quantization noise signals cor-
responding to different BSs to be correlated with each other.
The motivation behind this choice is the fact that a proper de-
sign of the correlation of the quantization noises across the BSs
can be beneficial in limiting the effect of the resulting quanti-
zation noise seen at the MSs. In order to create such correla-
tion, we propose to jointly compress the baseband signals to be
delivered over the backhaul links using so called multivariate
compression [14, Ch. 9]. We also show that, in practice, mul-
tivariate compression can be implemented without resorting to
joint compression across all BSs, but using instead a succes-
sive compression strategy based on a sequence of Minimum
Mean Squared Error (MMSE) estimation and per-BS compres-
sion steps.

After reviewing some preliminaries on multivariate com-
pression in Section III, we formulate the problem of jointly
optimizing the precoding matrix and the correlation matrix
of the quantization noises with the aim of maximizing the
weighted sum-rate subject to power and the backhaul con-
straints resulting from multivariate compression in Section IV.
There, we also introduce the proposed architecture based on
successive per-BS steps. We then provide an iterative algorithm
that achieves a stationary point of the problem in Section v.
Moreover, we compare the proposed joint design with the
more conventional approaches based on independent backhaul
compression [23]-[26] or on the separate design of precoding
and (multivariate) quantization in Section VI. The robust de-
sign with respect to imperfect CSI is also discussed in detail.
In Section VII, extensive numerical results are provided to
illustrate the advantages offered by the proposed approach. The
paper is terminated with the conclusion in Section VIII.

Notation: We adopt standard information-theoretic defini-
tions for the mutual information 7(X; Y") between the random
variables X and Y, conditional mutual information 7(X;Y|Z)
between X and Y conditioned on random variable Z, differ-
ential entropy h(X) of X and conditional differential entropy
h{X]Y) of X conditioned on Y[14]. The distribution of a
random variable X is denoted by p(z) and the conditional
distribution of X conditioned on Y is represented by p(z|y).
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Fig. 1. Downlink communication in a cloud radio access network in which
there are /N multi-antenna BSs and iV ,; multi-antenna MSs. The Ny BSs in-
clude both macro-BSs and pico/femto-BSs. The N 3 MSs are distributed across
all the cells.
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All logarithms are in base two unless specified. The circularly
symmetric complex Gaussian distribution with mean g and
covariance matrix R is denoted by CA/ (g, R). The set of all
M x N complex matrices is denoted by CM*¥ and E(.)
represents the expectation operator. We use the notations
X = 0 and X > O to indicate that the matrix X is posi-
tive semidefinite and positive definite, respectively. Given a
sequence X1,...,X,,, we define a set Xs = {X,|j € S}
for a subset S C {1,...,m}. The operation (-)' denotes
Hermitian transpose of a matrix or vector, and notation ¥,
is used for the correlation matrix of random vector x, i.e.,

2. = E[xx]; Y.,y represents the cross-correlation matrix
Ty = E[xy']; Zyy is used for the conditional correlation
matrix, i.e., ¥yy = E[xx'[y].

II. SYSTEM MODEL

We consider the downlink of a cloud radio access network
as illustrated in Fig. 1. In the system, a central encoder com-
municates to N; MSs through Np distributed BSs. The mes-
sage M, for each kth MS is uniformly distributed in the set
{1,...,27B+} where n is blocklength and Ry, is the informa-
tion rate of message M}, in bits per channel use (c.u.). Each MS
k has mps i receive antennas for £ = 1,..., Ny, and each BS
i is equipped with np ; antennas for 7 = 1,..., Np. Note that
the BSs can be either macro-BSs or pico/femto-BSs and that
the MSs are arbitrarily distributed across the cells. Each ith
BS is connected to the central encoder via digital backhaul link
with finite-capacity C; bits per c.u. For notational convenience,
we define ng = ELN:’? npg,; as the total number of transmit-

ting antennas, ny; = Z,?T:”l nps,x as the total number of re-
ceive antennas, and the sets Ng = {l,...,Ng} and Ny =
{1,..., N}

As shown in Fig. 2, each message M, is first encoded by a
separate channel encoder, which produces a coded signal sy,.
The signal s, € C™**! corresponds to the 7, x 1 vector of en-
coded symbols intended for the ~£th MS for a given c.u., and
we have 1, < mpz7.,. We assume that each coded symbol sy, is
taken from a conventional Gaussian codebook so that we have
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Fig. 2. Illustration of the operation at the central encoder.

s ~ CN(0,I). The signals s1, .. .,sy,, are further processed
by the central encoder in two stages, namely precoding and com-
pression. As is standard practice, precoding is used in order to
control the interference between the data streams intended for
the same MS and for different MSs. Compression is instead
needed in order to produce the Np rate-limited bit streams de-
livered to each BS over the corresponding backhaul link. Specif-
ically, recall that each BS 7 receives up to C; bits per c.u. on the
backhaul link from the central encoder. Further discussion on
precoding and compression can be found in Section IV.

On the basis of the bits received on the backhaul links, each
BS i produces a vector x; € C"B5-+% L for each c.u., which is the
baseband signal to be transmitted from its 73 ; antennas. We
have the per-BS power constraints?

E [|Ix:||*] < P, for i € Np. (1)

Assuming flat-fading channels, the signal y € C™** received
by MS £ is written as

Ve = Hyx + 24, (2

where we have defined the aggregate transmit signal vector x =
[x1,... ,xj,r\,B]T, the additive noise z;, ~ CN(0,1)3, and the
channel matrix H, € C"¥.#*"5 toward MS k as

H,=[H;:1 Hi» ... Hynpl, 3)

with Hy ; € C"¥.# X785+ denoting the channel matrix from BS
i to MS k. The channel matrices remain constant for the en-
tire coding block duration. We assume that the central encoder
has information about the global channel matrices Hj, for all
k € N and that each MS k is only aware of the channel ma-
trix Hy. The BSs must also be informed about the compression
codebooks used by the central encoder, as further detailed later.
The case of imperfect CSI at the central encoder will be dis-
cussed in Section V—D.

Based on the definition given above and assuming single-user
detection at each MS, the rates

Ry =1 (si:%) @)
can be achieved for each MS k € N4

2The results in this paper can be immediately extended to the case with more
general power constraints of the form E[x'@;x] < & forl € {1,...,L},
where the matrix ©; is a non-negative definite matrix (see, e.g., [31, Sec. II-C)).
3Correlated noise can be easily accommodated by performing whitening at

each MS k to obtain (2).
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Fig. 3. Tllustration of (a) conventional compression; (b) multivariate compres-
sion.

III. PRELIMINARIES

This section reviews some basic information-theoretical
results concerning multivariate compression, which will be
leveraged in the analysis of the proposed backhaul compression
strategy in Section I[V—B.

A. Conventional Compression Problem

To fix the ideas and the notation, we first consider the conven-
tional compression problem illustrated in Fig. 3(a). The com-
pression unit compresses a random sequence X ™ of n indepen-
dent and identically distributed (i.i.d.) samples with distribution
p(z) at a rate of R bits per symbol. Specifically, the compressor
selects a codeword X™ within a codebook C of size 2"% and
sends the corresponding index, of n R bits, to the decompres-
sion unit. At the decompression unit, the sequence X" e Cin-
dicated by the received index is recovered. Using the standard
information-theoretic formulation, the compression strategy is
specified by a conditional distribution p(z|x), which is referred
to as the test channel (see, e.g., [14, Ch. 2]). For a given test
channel, compression consists in selecting a sequence Xrec
that is jointly typical* with the sequence X" with respect to the
given joint distribution p(x, &) = p(x)p(£|x). Compression is
hence successful if the encoder is able to find a jointly typical
sequence X" in the codebook C. A classical result in informa-
tion theory is that this happens with arbitrarily large probability
as the block length n grows large if the inequality

I (X; X) <R (5)
is satisfied [14, Ch. 3], [32].

B. Multivariate Compression Problem

We now review the more general multivariate compression il-
lustrated in Fig. 3(b). Here, the sequence X is compressed into
M indices with the goal of producing correlated compressed
versions X7',..., X7,. Bach ith index indicates a codeword
within a codebook C; of size 2%, and is sent to the ith de-
compression unit for i € {1,..., M}. Each ith decompression
unit then recovers a sequence X € C; corresponding to the
received index. We emphasize that the choice of the codewords

4Two sequences X" and Y™ are called jointly typical with respect to a dis-
tribution p(«, y) if their joint empirical distribution (i.e., normalized histogram
with step size A — 0) does not deviate much from p(z, y) (see, e.g., [14, Ch.
2] for a formal definition).
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X . X 7 1s done jointly at the compression unit. In partic-
ular, the specification of the compression strategy is given by
a test channel p(d1, . ... #a7]2). This implies that the compres-
sion unit wishes to find codewords X7, ..., X 7 that are jointly
typical with the sequence X ™ with respect to the given joint dis-
tribution p(x, £1,...,4ax) = p(x)p(£1,...,Zar|x). The fol-
lowing lemma provides a sufficient condition for multivariate
compression to be successful (we refer to [14, Lemma 8.2] for
a more precise statement).

Lemma 1: [14, Ch. 9] Consider an i.i.d. sequence X" and
n large enough. Then, there exist codebooks Ci,...,Cxs
with rates Ri,...,Rps, that have at least one tuple of
codewords (Xf, . ,X&) € C; x -+ x Cypy jointly typ-
ical with X™ with respect to the given joint distribution
ple, &1, ..., 8a) = pla)p(d,. .., Ex|x) with probability
arbitrarily close to one, if the inequalities

Sh <X) —h (X5|X) <Y R forall S C{L...., M}
€S €S (6)

are satisfied.
Proof: See [14, Ch. 9] for a proof. ]

We observe that, for a given test channel p(Z1, ..., Zar|z),
the inequalities (6) impose joint conditions on the rate of all
codebooks. This is due to the requirement of finding codewords
X Tyeves X that are jointly correlated according to the given
test channel p(&1,..., & |x). Also, note that the vector X"
may be such that each X is itself a vector and that the distor-
tion requirements at each decompression unit prescribe that the
decompression unit be interested in only a subset of entries in
this vector. The connection between the multivariate set-up in
Fig. 3(b) and the system model under study in Fig. 1 will be de-
tailed in the next section.

IV. PROPOSED APPROACH AND PROBLEM DEFINITION

In this section, we first propose a novel precoding-compres-
sion strategy based on multivariate compression for the down-
link of a cloud radio access network. We then establish the
problem definition. Finally, a novel architecture that implements
multivariate compression via a sequence of MMSE estimation
and per-BS compression steps is proposed.

A. Encoding Operation at the Central Encoder

As mentioned in the previous section, the operation at the cen-
tral encoder can be represented by the block diagram in Fig. 2.
Specifically, after channel encoding, the encoded signals s =
[s'{7 ce SR,M ]* undergo precoding and compression, as detailed
next.

Precoding: In order to allow for interference management
both across the MSs and among the data streams for the same
MS, the signals in vector s are linearly precoded via multiplica-
tion of a complex matrix A € C™*#*"» The precoded data can
be written as

X = As, 7
where the matrix A can be factorized as
A=[A;... Ay,]. ®)
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with A, € C"5*"v.+ denoting the precoding matrix corre-
sponding to MS k. The precoded data x can be written as x =
(X1, ,:ETNB]T, where the signal x; is the np,; x 1 precoded
vector corresponding to the ¢th BS and given as

%; = El As, ©9)

with the matrix E; € C"#*"5.+ having all zero elements ex-
cept for the rows from (Zj;ll npj+1)to (X5, np ;) which
containann g ; X n g ; identity matrix. Note that non-linear pre-
coding using DPC techniques can also be considered, as dis-
cussed in Remark 3 below.

Compression: Each precoded data stream x; for i € Np
must be compressed in order to allow the central encoder to de-
liver it to the ¢th BS through the backhaul link of capacity C;
bits per c.u. Each ¢th BS then simply forwards the compressed
signal x; obtained from the central encoder. Note that this im-
plies that the BSs need not be aware of the channel codebooks
and of the precoding matrix A used by the central encoder. In-
stead, they must be informed about the quantization codebooks
selected by the central encoder. Using standard rate-distortion
considerations, we adopt a Gaussian test channel to model the
effect of compression on the backhaul link. In particular, we
write the compressed signals x; to be transmitted by BS ¢ as?

Xi = X; + 4, (10)

where the compression noise q; is modeled as a complex
Gaussian vector distributed as CA/(0, £2; ;). Overall, the vector
X = [XJ{, e ,xR,-B]'i' of compressed signals for all the BSs is
given by

x=As+q, (11)
T T

where the compression noise q = [qy, . - - qNH]T is modeled as
a complex Gaussian vector distributed as q ~ CA(0,€2). The
compression covariance 2 is given as

Qi1 Qi Q1 v
Q7 Qo> Q2 vy

Q= . o (12)
QNB,l QNB,Z QNR.,NR

where the matrix €, ; is defined as 2, ; = [E[qiq}] and defines
the correlation between the quantization noises of BS 2 and BS j.
Rate-distortion theory guarantees that compression codebooks
can be found for any given covariance matrix £ > 0 under ap-
propriate constraints imposed on the backhaul links’ capacities.
This aspect will be further discussed in Section III- 5.

With the described precoding and compression operations,
the achievable rate (4) for MS % is computed as

I(spiye) = fr (A 9)

£ logdet (I +H; (AAT +Q) HZ)
I+ H; Z AIA;r‘I'Q HZ
leENm\{F}

— logdct

(13)

5The test channel x; = B;X; + q; is seemingly more general than (10), but
this can be captured by adjusting the matrix A in (7).
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Remark 1: Inthe conventional approach studied in [23]-[26],
the signals x; corresponding to each BS 7 are compressed inde-
pendently. This corresponds to setting €2, ; = 0 forall¢ # j in
(12). A key contribution of this work is the proposal to leverage
correlated compression for the signals of different BSs in order
to better control the effect of the additive quantization noises at
the MSs.

Remark 2: The design of the precoding matrix A and of the
quantization covariance €2 can be either performed separately,
e.g., by using a conventional precoder A such as zero-forcing
(ZF) or MMSE precoding (see, e.g., [33]-[36]), or jointly. Both
approaches will be investigated in the following.

Remark 3: If non-linear precoding via DPC [25]
is deployed at the central encoder with a specific en-
coding permutation # : Ny — Naq of the MS indices
N, the achievable rate Ry for MS (k) is given as
Rﬁ-(k) =1 (Sﬁ'(k); Yﬁ'(k) |S77r(1)7 s Sﬁ—(kfl)) in lieu of (4) and

can be calculated as Rimy = fa) (A, ) with the function
Jaey (A, Q) given as

ffr(k) (A7 Q)

Ny
2 log det (1 + Hi (Z ArpALy + 9) Hj?(k))
=k
JVM . "
— log det (1 + Hag ( Y AzpAly+ 9) Hv’*r(k)) :

I=kt1
(14)

Note that the DPC is designed based on the knowledge of the
noise levels (including the quantization noise) in order to prop-
erly select the MMSE scaling factor [37].

B. Multivariate Backhaul Compression

As explained above, due to the fact that the BSs are con-
nected to the central encoder via finite-capacity backhaul links,
the precoded signals X; in (9) for i € Ny are compressed be-
fore they are communicated to the BSs using the Gaussian test
channels (10). In the conventional case in which the compres-
sion noise signals related to the different BSs are uncorrelated,
ie,€;; =0foralli # j € N asin [23]-[26], the signal x;
to be emitted from BS 4 can be reliably communicated from the
central encoder to BS i if the condition

I(%::%;) = logdet (E[AATE; + ;) ~log det () < €

(15)
is satisfied for # € Aj. This follows from standard rate-distor-
tion theoretic arguments (see, e.g., [32] and Section I1I—A). We
emphasize that (15) is valid under the assumption that each BS ¢
is informed about the quantization codebook used by the central
encoder, as defined by the covariance matrix €2, ;.

In this paper, we instead propose to introduce correlation
among the compression noise signals, i.e., to set £}; ; # 0 for
i # 7, in order to control the effect of the quantization noise
at the MSs. As discussed in Section III, introducing correlated
quantization noises calls for joint, and not independent, com-
pression of the precoded signals of different BSs. As seen, the
family of compression strategies that produce descriptions with
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correlated compression noises is often referred to as multi-
variate compression. By choosing the test channel according to
(11) (see Section III—B), we can leverage Lemma 1 to obtain
sufficient conditions for the signal x; to be reliably delivered
to BS ¢ for all ¢ € Ag. In Lemma 2, we use Es to denote
the matrix obtained by stacking the matrices E; for 2= € &
horizontally.

Lemma 2: The signals xi,...,xy, obtained via the test
channel (11) can be reliably transferred to the BSs on the
backhaul links if the condition

s (A, Q)2 h(x) - h(xs]%)
icS
= Z log det (EEAATEZ- + Qi,i)
€8

— logdet (ELQEé)

<> G

€S

(16)

is satisfied for all subsets S C A/3.

Proof: The proof follows by applying Lemma 1 by sub-
stituting X = As for the signal X to be compressed, and
X1,...,Xy, for the compressed versions Xl, - ,XM. |

Comparing (15) with (16) shows that the introduction of cor-
relation among the quantization noises for different BSs leads
to additional constraints on the backhaul link capacities.

C. Weighted Sum-Rate Maximization

Assuming the operation at the central encoder, BSs and MSs
detailed above, we are interested in maximizing the weighted
sum-rate Rqyy = ;\” wy Ry subject to the backhaul con-

straints (16) over the precoding matrix A and the compression

noise covariance £ for given weights wy > 0, k € Aaq. This
problem is formulated as
N
mi):%ntl%)ze ; wi fr (A, ) (17a)
st gs(AQ) <Y G, forall S C N,
i€S
(17b)

br (EjAATE,- n Q) < P, for all i€ Ng. (17¢)

The condition (17b) corresponds to the backhaul constraints due
to multivariate compression as introduced in Lemma 2, and the
condition (17c) imposes the transmit power constraints (1). It is
noted that the problem (17) is not easy to solve due to the non-
convexity of the objective function Z‘ e 1 wefr (A, Q) in (17a)
and the functions gs (A, §2) in (17b) W1th respect to (A, €2). In
Section V, we will propose an algorithm to tackle the solution
of problem (17).

D. Successive Estimation-Compression Architecture

In order to obtain correlated quantization noises across BSs
using multivariate compression, it is in principle necessary to
perform joint compression of all the precoded signals x; corre-
sponding to all BSs 4 for i € Np (see Section III—B). If the
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Fig.4. Proposed architecture for multivariate compression based on successive
steps of MMSE estimation and per-BS compression.

number of BSs is large, this may easily prove to be imprac-
tical. Here, we argue that, in practice, joint compression is not
necessary and that the successive strategy based on MMSE es-
timation and per-BS compression illustrated in Fig. 4 is suffi-
cient. The proposed approach works with a fixed permutation
7w : Ng — Npg of the BSs’ indices Ng.

The central encoder first compresses the signal X (1) using
the test channel (10), namely Xr(1) = Xg(1) + Qx(1), With
Ar(1) ~ CN(0, €1y x(1)), and sends the bit stream describing
the compressed signal X (1) over the backhaul link to BS 7(1).
Then, for any other : € N with i > 1, the central encoder
obtains the compressed signal x(;y for BS 7 () in a successive
manner in the given order 7 by performing the following steps:

(a) Estimation: The central encoder obtains the MMSE es-
timate X,(;) of X, (;) given the signal X(;) and the previously

obtained compressed signals Xy (1), - .-, Xr(;—1). This estimate
is given by
Xr(i) = E [Xa () [Ue(i)]

= s un >2—w( o Un (i) (18)
where we deﬁned the vector  Ug(j =
[xi(l)7 e ,x;rr(t. 1y X )] and the correlation ma-
trices Xx_ ;) u,;, and Xsu ., are given as
p

Kor(4) War (4}

=[B!l AATEs. .+ Qs ) L AATE ] (19)

and
oy —
E; AA'Es , ,+Qs . s, ., E} L AATE ;)
Ew(T)AATESWH Em)AA Ex(i
(20)

with Qs 7 = ELQET for subsets S, 7 C N and the set S, ;
defined as Sy ; = {n(1),...,7(i)}.

(b) Compression: The central encoder compresses the MMSE
estimate X ;) to obtain x,; using the test channel

Xr(i) = Xn(i) T Ar(i)» (21)
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where the quantization noise g (;; is independent of the esti-
mate X ;) and distributed as §(;) ~ CN(0, %1%, () with

2xw<v‘>|*«<z>
= wam\uﬂu)
_ y-1 i
= Qriiyr() = Qn(iyse Vs s gy s,y
(22)

Note that the first equality in (22) follows from the fact that the
MMSE estimate X ;) is a sufficient statistic for the estimation
of X (;) from u,(;y (see, e.g., [38]). Moreover, the compression
rate I (Xx(;); Xx(i)) required by the test channel (21) is given by

I(%r )3 X ()
= h (Xn(iy) = b (X ()| X))
= logdct (E LAATE @+ Qﬂ(i),w(z‘))

710gdet(ﬂ"r(‘ 7_()797‘_(":)7$W,i*1ng,i—lvsw,i 1

Qs )
(23)

To see why the structure in Fig. 4 described above realizes
multivariate compression, we need the following lemma.

Lemma 3: The region of the backhaul capacity tuples
(C4, ..., Cny) satisfying the constraints (17b) is a contrapoly-
matroid® [39, Def. 3.1]. Therefore, it has a corner point for
each permutation 7 of the BS indices A, and each such corner
point is given by the tuple (Cr(1), . . ., Cr(ny,)) With

iy =1 (Xn(i)i X Xe(1)s -+ Xn(i 1))
:I( 'n'i’ Tri)) (24)
for 4 = 1,....Ng. Moreover, the corner point
(Cr1ys--+:Cr(nvy)y) in (24) is such that the con-

straints (17b) are satisfied with equality for the subsets
S={r(L)} {=x(1),x(2)},..., {=x(1),.... w(Np)}.
Proof: This lemma follows 1mmed1ately by the definition
and properties of contrapolymatroids as summarized in [39,
Def. 3.1]. Moreover, the second equality of (24) holds due to
the fact that the MMSE estimate X, (;) is a sufficient statistic
for the estimation of x,¢;) from u. (see, e.g., [38]), or
equivalently from the Markov chain X ;) — Xx(;) — Ur(s). B
Lemma 3 shows that the region of backhaul capacities that
guarantees correct delivery of the compressed signals (10) to the
BSs, as identified in Lemma 2, is a type of polyhedron known
as contrapolymatroid, as exemplified in Fig. 5. A specific fea-
ture of contrapolymatroid is that the corner points can be easily
characterized as in (24). From standard rate-distortion theory
arguments, the equality between (23) and (24) implies that the
corner point (Cr(1), ..., Cr(ny)) can be obtained for any per-
mutation 7 by the successive estimation-compression strategy
outlined above and illustrated in Fig. 4.
Overall, the discussion above shows that, for any correlation
matrix €} in (12), multivariate compression is feasible by using

®Let us define M = {1,...,] M} and f : M — R_ with M being the
set of all subsets of .M. Then, the polyhedron {(x, )| >, cs T =

F(8), forall§ € M}isa contrapolymatrmd if the functlon f satisfies the
condmons (a)f(f]], =0, fS) S HTHIS CT;(f(S)+f(T) <
FEUT)+ F(ENT)[39, Def. 3.1].
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2()=1, 7(2)=2
I(Xz;i’xl) ”””” "
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| >
0 I(x;X) I(x;X.x)) e

Fig. 5. Tllustrative example of the contrapolymatroidal region of backhaul ca-
pacities (C'1. C3) satisfying the constraint (17b) imposed by multivariate com-
pression for Ny = 2. The two corner points are given by (24).

the successive estimation-compression architecture in Fig. 4 if
the backhaul capacities satisfy the corner point condition (24)
for the given BS order 7. Note that, in general, conditions (24)
are more restrictive than (17b), which allows for any backhaul
capacities in the contrapolymatroid. This is because the solution
to the optimization problem (17) can be seen by contradiction to
lie necessarily on the boundary of the region (17b) but possibly
not on the corner points. Further discussion on this point can be
found in Section V—B, where we observe that, in practice, this
limitation is not critical.

V. JOINT DESIGN OF PRECODING AND COMPRESSION

In this section, we aim at jointly optimizing the precoding
matrix A and the compression covariance €} by solving
problem (17). In Section VI, we will then consider the gener-
ally suboptimal strategy in which the precoding matrix is fixed
according to standard techniques, such as ZF [33], MMSE
[34] or weighted sum-rate maximizing precoding [35], [36] by
neglecting the compression noise, and only the compression
noise matrix £} is optimized.

A. MM Algorithm

As mentioned, the optimization (17) is a non-convex
problem. To tackle this issue, we will now show how to obtain
an efficient scheme that is able to achieve a stationary point of
problem (17). To this end, we first make a change of variable
by defining the variables Ry = AkA' for k € N . Then, we

define the functions fy ({Rj}iMi,Q) and gs ({RL Jam Q)
with respect to the Variables {Rk} Pl ” which are obtained by

substituting Ry = AkA into the functions i (A, ) and
gs (A, Q) in problem (17), respectively, and the transmit power

constraint as tr (Z\” ETRkE +€Q; L) < P; fori € Ng.
The so-obtained problem over the variables {Rk}i\:wi and ) is
still non-convex due to the second term in fj ({R,}JN:“1 Q)
and the first term in gs ({Rk}k\z”lﬂ), which are concave

in the variables {Ry}»* and Q. However, we observe that
it falls into the class of difference-of—convex (DC) problems
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[40]. Among various algorithms having desirable properties
for the solution of DC problems [40], we adopt the Ma-
jorization Minimization (MM) scheme [40], which solves
a sequence of convex problems obtained by linearizing

non-convex parts in the objective function fj ({R]};V:”1 Q)

and the constraint function gs ({Rk}k M Q) It is shown
that the MM algorithm converges to a stationary point of
the original non-convex problems (see, e.g., [36, Theorem
1], [40, Section 1.3.3] and [41, Theorem 3]). The proposed
algorithm is summarized in Table Algorithm 1 where we
: / (t+1) RNy o+l o®)
define the functions f;({R; ", R}, L) and

SRS RO 0D, 00) o
i (RS Ry ) o)

Nas
Llogdet | I+ Z R(Hl) + Q(H_l)
7=1
N

j\r/\f
ol 30 R 30 RO +af

i¢,)g'+9k
71=1,7%#k J=1l.i#k
(25)
and
gs ({Rgtﬂ)’ Rgt)}?r:‘vi‘ QUt+D. Q(t))
Akl (t4+1) (t+1) o () (t)
A
2536 [ S ERITVE, +0f ZE R;'E; +Q;;
ic8 j=1 i=1
—logdet (EEQ(HI)Es) (26)

()A

with R(tz £ H R(t)HJ{, Q H, Q(f)HT and the function

»(X,Y) given as

©(X,Y) £ logdet (Y) + Ly (Y™

= "(X-Y)).

27

B. Practical Implementation

As we have discussed in Section IV, given the solution
(A, ) obtained from the proposed algorithm, the central
processor should generally perform joint compression in
order to obtain the signals x; to be transmitted by the BSs.
However, as seen in Section IV—D, if the solution is such
that the corner point conditions (24) are satisfied for a given
permutation 7 of the BSs’ indices, then the simpler successive
estimation-compression structure of Fig. 4 can be leveraged
instead. We recall, from Lemma 3, that in order to check
whether the conditions (24) are satisfied for some order m, it
is sufficient to observe which inequalities (17b) are satisfied
with equality: If these inequalities correspond to the subsets
S={r(\)}{x(1),7(2)},... . {x(1),..., 7(Np)} foragiven
permutation 7, then the given solutlon corresponds to the corner
point (24) with the given 7. In our extensive numerical results,
we have consistently found this condition to be verified. As a
result, in practice, one can implement the compression strategy
characterized by the calculated covariance £ by employing the
implementation of Fig. 4 with the obtained ordering 7.
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Algorithm 1 MM Algorithm for problem (17)

1. Initialize the matrices {RS)};E and Q) to arbitrary
feasible positive semidefinite matrices for problem (17)
and sett = 1.

2. Update the matrices {REJH) }oM and QY asa
solution of the following (convex) problem.

Nu
o . t=+1 N
maximize E wy. fr, ({RE + )_/ RE )}]\:\41’ Q(t+1)‘ Q(t))
t1 V7 ’
{Ri. )to}k:\/i’ k=1
Q{t+L >0

s.t. g ({11,(,“'1)7 R&t) };\:Ml Q) Q(t))

< Z(Jh forall§ C Nz,
i€ES

N
tr (i ERTVE, + Q(.t.“)> <P
k=1 ’
foralli € A5. (28)
3. Go to Step 4 if a convergence criterion is satisfied.
Otherwise, set ¢ « ¢ 4+ 1 and go back to Step 2.
4. Calculate the precoding matrices Ay «— VkD,le/ 2 for
k € Ny, where Dy, is a diagonal matrix whose diagonal
elements are the nonzero eigenvalues of Rgf) and the
columns of V, are the corresponding eigenvectors.

C. Independent Quantization

For reference, it is useful to consider the weighted sum-rate
maximization problem with independent quantization noises as
in [23]-[26]. This is formulated as (17) with the additional con-
straints

Qi,j = 0j for all 4 #] S /\/’B. (29)
Since the constraints (29) are affine, the MM algorithm in Table

Algorithm 1 is still applicable by simply setting to zero matrices
Q; ; = 0 fori # j as per (29).

D. Robust Design With Imperfect CSI

So far, we have assumed that the central encoder has infor-
mation about the global channel matrices Hy, for k € AMay. In
this subsection, we discuss the robust design of the precoding
matrix A and the compression covariance £ in the presence
of uncertainty at the central encoder regarding the channel ma-
trices Hy, for & € Auq. Specifically, we focus on determin-
istic worst-case optimization under two different uncertainty
models, namely singular value uncertainty [42] and ellipsoidal
uncertainty models (see [43], [44, Section IV.1] and references
therein). While the singular value uncertainty model can be re-
lated via appropriate bounds to any normed uncertainty on the
channel matrices, as discussed in [42, Section V], the ellipsoidal
uncertainty model is more accurate when knowledge of the co-
variance matrix of the CSI error, due, e.g., to estimation, is avail-
able [44, Section IV.1]. In the following, we briefly discuss both
models.
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1) Singular Value Uncertainty Model: Considering multi-
plicative uncertainty model of [42, Section II-A], the actual
channel matrix H;, toward each MS % is modeled as

H, =H,(I+A), (30)

where the matrix I:Ik is the CSI known at the central encoder
and the matrix A, € C"5*"# accounts for the multiplicative
uncertainty matrix. The latter is bounded as

Omax (Ak) S € < 1 (31)

where 01,,x(X) is the largest singular value of matrix X.
Then, the problem of interest is to maximizing the worst-case
weighted sum-rate over all possible uncertainty matrices Ay
for k € N subject to the backhaul capacity (17b) and power
constraints (17¢), namely

Ny
B N
st.gs (A Q) <>, forall S C N, (32b)
€S
tr (ETAATE; + Q) < Py, forall i € N
(32¢)

The following lemma offers an equivalent formulation for
problem (32).

Lemma 4: The problem (32) is equivalent to the problem
(17) with the channel matrix Hy, replaced with (1 — e;C)I:I;C for
k€ NM

Proof: We first observe that the uncertainty matrix Ay af-
fects only the corresponding rate function fx(A,€) in (13).
Therefore, the minimization versus matrices Ay for & € Ny
in (32a) can be performed separately for each & by solving the
problem mina, fx(A, ). It can be now easily seen, following
[42, Theorem 1], that the result of this minimization is obtained
when Ay, is such that A, = —e,I. This concludes the proof. B

Based on Lemma 4, one can hence solve problem (32) by
using the MM algorithm in Table Algorithm 1 with only change
of the channel matrices from {Hk},"\:”l to {(1 — ek)ﬂk}k\:”l

2) Ellipsoidal Uncertainty Model: We now consider the el-
lipsoidal uncertainty model. To this end, for simplicity and fol-
lowing related literature (see, e.g., [44, Section IV.1]), we focus
on multiple-input single-output (MISO) case where each MS is
equipped with a single antenna, i.e., narr = 1 for k € Ny
Thus, we denote the channel vector corresponding to each MS
kbyH; = hz € C1*"5 _ The actual channel hy, is then mod-
eled as

h; =hy + ey, (33)
with flk and e, being the presumed CSI available at the central
encoder and the CSI error, respectively. The error vector ey, is
assumed to be bounded within the ellipsoidal region described
as

el Crexr <1, (34)

for k € Naq with the matrix Cy, > 0 specifying the size and
shape of the ellipsoid [43]. Following the standard formulation,
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we consider here the “dual” problem of power minimization
under signal-to-interference-plus-noise ratio (SINR) constraints
for all MSs (see [44, Section IV-A.1] and references therein).
This problem is stated as

Ng Ny
minimize > p; - tr (Z E/RLE; + i) (35a)

{Ry, =0}, @m0 =1

h!R;h;

Tk il e > Ty
Zjez\/’M\{k} h;Rih; +h, Qh, +1
for all e with (34) and k € My,  (35b)
95 (A.Q) <D G, forall § C N, (35¢)

icS

s.t.

where the coefficients y1; > 0 are arbitrary weights, I'; is the
SINR constraint for MS %, and we recall that we have R, £
AiAl for k € N The problem (35) is challenging since
it contains an infinite number of constraints in (35b). But, fol-
lowing the conventional S-procedure [45, Appendix B.2], we
can translate the constraints (35b) into a finite number of linear
constraints by introducing auxiliary variables 3, for k& € Ny,
as discussed in the following lemma.

Lemma 5: The constraints (35b)hold if and only if there exist

constants {3, > 0}2 such that the condition

Er Zchy . | Cx O
LT » n — Pk >
hiZ, h[Zh, - Fk] B [ 0 1} =0 (36

is satisfied for all £ € Ay where we have defined 2, = Ry —
Ty ZjEMM\{k} R; - T:Q fork € Ny
Proof: Tt directly follows by applying the S-procedure [45,
Appendix B.2]. ]
By transforming the constraint (35b) into (36), we obtain a
problem that falls again in the class of DC problems [40]. There-
fore, one can easily derive the MM algorithm, similar to Table
Algorithm 1, by linearizing the non-convex terms in the con-
straint (35c¢). The algorithm is guaranteed to converge to a sta-
tionary point of problem (35¢) (see, e.g., [36, Theorem 1], [40,
Section 1.3.3] and [41, Theorem 3]).

VI. SEPARATE DESIGN OF PRECODING AND COMPRESSION

In this section, we discuss a simpler approach in which the
precoding matrix A is fixed a priori to some standard scheme,
such as ZF, MMSE or weighted sum-rate maximizing pre-
coding, by neglecting the compression noise. The compression
covariance £ is then designed separately so as to maximize the
weighted sum-rate.

A. Selection of the Precoding Matrix

The precoding matrix A is first selected according to some
standard criterion [33]-[36] by neglecting the compression
noise. A subtle issue arises when selecting the precoding matrix
A that requires some discussion. Specifically, the design of A
should be done by assuming a reduced power constraint, say
~; P; for some ~; € (0,1) for i € Ng. The power offset factor
vi € (0, 1) is necessary since the final signal x; transmitted by
each BS ¢ is given by (10) and is thus the sum of the precoded
signal EI-LAS and the compression noise q;. Therefore, if the
power of the precoded part EjAs is selected to be equal to the
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power constraint P;, the compression noise power would be
forced to be zero. But this is possible only when the backhaul
capacity grows to infinity due to (17b). As a result, in order to
make the compression feasible, one needs to properly select the
parameters 71, . . ., vn, depending on the backhaul constraints.

B. Optimization of the Compression Covariance

Having fixed the precoding matrix A, the problem then re-
duces to solving problem (17) only with respect to the compres-
sion covariance 2. The obtained problem is thus a DC problem
which can be tackled via the MM algorithm described in Table
Algorithm 1 by limiting the optimization at Step 2 only to matrix
Q. It is observed that, as discussed above, this problem may not
be feasible if the parameters -y;, i € Nz, are too large. In prac-
tice, one can set these parameters using various search strategies
such as bisection.

VII. NUMERICAL RESULTS

In this section, we present numerical results in order to
investigate the advantage of the proposed approach based on
multivariate compression and on the joint design of precoding
and compression as compared to the conventional approaches
based on independent compression across the BSs and sep-
arate design. We will focus on the sum-rate performance
Reum = Zk-eNM Ry (ie., we set w, = 1 in (17a)). We
also assume that there is one MS active in each cell and we
consider three cells, so that we have Ng = N3y = 3. Every
BS is subject to the same power constraint P and has the same
backhaul capacity C, i.e., P, = P and C; = C fori € Nj.

A. Wyner Model

We start by considering as a benchmark the performance in a
simple circulant Wyner model. In this model, all MSs and BSs
have a single antenna and the channel matrices H;, ; reduce to
deterministic scalars given as Hy , = 1 for & = 1,2,3 and
H; ; = g € [0,1] for j # k [46]. In Fig. 6, we compare the pro-
posed scheme with joint design of precoding and compression
with state-of-the-art techniques, namely the compressed DPC of
[23], which corresponds to using DPC precoding with indepen-
dent quantization, and reverse Compute-and-Forward (RCoF)
[26]. We also show the performance with linear precoding for
reference. It is observed that multivariate compression signifi-
cantly outperforms the conventional independent compression
strategy for both linear and DPC precoding. Moreover, RCoF in
[26] remains the most effective approach in the regime of mod-
erate backhaul €, although multivariate compression allows to
compensate for most of the rate loss of standard DPC precoding
in the low-backhaul regime. We finally observe that the lower
saturation level of the rate achieved by RCoF for sufficiently
large C', which corresponds to the rate with no backhaul limita-
tions, is due to the integer constraints imposed on the function
of the messages to be computed by the MSs [26].

B. General Fading Model

In this subsection, we evaluate the average sum-rate perfor-
mance as obtained by averaging the sum-rate 12, over the the
realization of the fading channel matrices. The elements of the
channel matrix Hy, ; between the MS in the kth cell and the BS
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Fig. 6. Per-cell sum-rate versus the backhaul capacity C' for the circular Wyner
model [46] with I = 20) dB and ¢ = 0.5.

in the ith cell are assumed to be i.i.d. complex Gaussian random
variables with CA/(0, @/*~*I) in which we call « the inter-cell
channel gain. Moreover, each BS is assumed to use two transmit
antennas while each MS is equipped with a single receive an-
tenna. In the separate design, we assume that the precoding ma-
trix A is obtained via the sum-rate maximization scheme in [35]
under the power constraint P for each BS with v € (0,1)
selected as discussed in Section VI-A. Note that the algorithm
of [35] finds a stationary point for the sum-rate maximization
problem using the MM approach, similar to Table Algorithm 1
without consideration of the quantization noises.

Fig. 7 demonstrates the impact of the power offset factor ~y
on the separate design of linear precoding and compression de-
scribed in Section VI with P = 5 dB and o = 0 dB. Increasing
7 means that more power is available at each BS, which gen-
erally results in a better sum-rate performance. However, if
exceeds some threshold value, the sum-rate is significantly de-
graded since the problem of optimizing the compression covari-
ance  given the precoder A is more likely to be infeasible as
argued in Section VI-A. This threshold value grows with the
backhaul capacity, since a larger backhaul capacity allows for a
smaller power of the quantization noises. Throughout the rest of
this section, the power offset factor v is optimized via numer-
ical search.

In Fig. 8, the average sum-rate performance of the linear pre-
coding and compression schemes is plotted versus the transmit
power P with C' = 2 bit/c.u. and « = 0 dB. It is seen that
the gain of multivariate compression is more pronounced when
each BS uses a larger transmit power. This implies that, as the
received SNR increases, more efficient compression strategies
are called for. In a similar vein, the importance of the joint de-
sign of precoding and compression is more significant when the
transmit power is larger. Moreover, it is seen that multivariate
compression is effective in partly compensating for the subop-
timality of the separate design. For reference, we also plot the
cutset bound which is obtained as min{ Ry, 3C'} where Ry is
the sum-capacity achievable when the BSs can fully cooperate
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Fig. 7. Average sum-rate versus the power offset factor + for the separate de-
sign of linear precoding and compression in Sec. VI with P = 5 dBand o = 0
dB.
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Fig. 8. Average sum-rate versus the transmit power P for linear precoding with
C = 2 bit/cu. and « = 0 dB.

under per-BS power constraints. We have obtained the rate 24,
by using the inner-outer iteration algorithm proposed in [47,
Section II]. It is worth noting that only the proposed joint design
with multivariate compression approaches the cutset bound as
the transmit power increases.

In Fig. 9, we compare two precoding methods, DPC and
linear precoding, by plotting the average sum-rate versus the
transmit power P for the joint design in Section V with C' = 2
bit/c.u. and @« = 0 dB. For DPC, we have applied Algorithm
1 with a proper modification for all permutations @ of MSs’
indices Ao and took the largest sum-rate. Unlike the conven-
tional broadcast channels with perfect backhaul links where
there exists constant sum-rate gap between DPC and linear
precoding at high SNR (see, e.g., [48]), Fig. 9 shows that DPC
is advantageous only in the regime of intermediate P due to the
limited-capacity backhaul links. This implies that the overall
performance is determined by the compression strategy rather
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Fig. 9. Average sum-rate versus the transmit power P for the joint design in
Sec. V with C' = 2 bit/c.u. and @ = 0 dB.

12 ' ! ! ! ! !
joint design: == =
10F ) . i A ped
S : P : :
> : P 0 A : :
9 : = _ : :
© C : : : :
T ot : : : :
g 6 /._@. o 'separate' d'esign' P S
17 4 : : . .
o /}/O/
© K4
§ 41 4, 1
® £y
_/
2L o
Vv cutset bound
4 * multivariate compression
: : : O independent compression
0 i i i I I I
0 2 4 6 8 10 12

C [bit/c.u.]

Fig. 10. Average sum-rate versus the backhaul capacity C for linear precoding
with P = 3 dBand o = 0 dB.

than precoding method when the backhaul capacity is limited
at high SNR.

Fig. 10 plots the average sum-rate versus the backhaul ca-
pacity C for linear precoding with P = 5 dB and « = 0 dB. It
is observed that when the backhaul links have enough capacity,
the benefits of multivariate compression or joint design of pre-
coding and compression become negligible since the overall
performance becomes limited by the sum-capacity achievable
when the BSs are able to fully cooperate with each other. It is
also notable that the separate design with multivariate compres-
sion outperforms the joint design with independent quantization
for backhaul capacities larger than 5 bit/c.u.

Finally, we plot the sum-rate versus the inter-cell channel gain
« for linear precoding with C' = 2 bit/c.u. and P = 5 dB in
Fig. 11. We note that the multi-cell system under consideration
approaches the system consisting of Vg parallel single-cell net-
works as the inter-cell channel gain « decreases. Thus, the ad-
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Fig. 11. Average sum-rate versus the inter-cell channel gain « for linear pre-
coding with C' = 2 bit/c.u. and P = 5 dB.

vantage of multivariate compression is not significant for small
values of «, since introducing correlation of the quantization
noises across BSs is helpful only when each MS suffers from a
superposition of quantization noises emitted from multiple BSs.

VIII. CONCLUSION

In this work, we have studied the design of joint precoding
and compression strategies for the downlink of cloud radio
access networks where the BSs are connected to the central
encoder via finite-capacity backhaul links. Unlike the conven-
tional approaches where the signals corresponding to different
BSs are compressed independently, we have proposed to ex-
ploit multivariate compression of the signals of different BSs
in order to control the effect of the additive quantization noises
at the MSs. The problem of maximizing the weighted sum-rate
subject to power and backhaul constraints was formulated,
and an iterative MM algorithm was proposed that achieves a
stationary point of the problem. Moreover, we have proposed
a novel way of implementing multivariate compression that
does not require joint compression of all the BSs’ signals but
is based on successive per-BS estimation-compression steps.
Robust design with imperfect CSI was also discussed. Via
numerical results, it was confirmed that the proposed approach
based on multivariate compression and on joint precoding and
compression strategy outperforms the conventional approaches
based on independent compression and separate design of
precoding and compression strategies. This is especially true
when the transmit power or the inter-cell channel gain are
large, and when the limitation imposed by the finite-capacity
backhaul links is significant.
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