
ECE 788 - Optimization for wireless networks

Midterm, Fall 2011

Please provide clear and complete answers.

PART I: Questions -

Q.1. (1 point) Calculate the distance between two parallel hyperplanes {x ∈ Rn|aTx =
b1} and {x ∈ Rn|aTx = b2} as a function of (a, b1, b2). Based on the obtained expression,
maximize the distance at hand with respect to vector a and scalars b1, b2 under the constraint
that a must lie outside the ball B2(0, 1) (i.e., the unit ball with respect to the ℓ2 norm) and
b1, b2 are in the interval [0, 1].

Sol.: The line x = λa/||a||2 intersects the two hyperplanes at λ1 = b1/||a||2 and λ2 = b2/||a||2,
respectively. From this, it follows that the distance between two hyperplanes is |b1−b2|/|||a||2.
Therefore, the requested maximum is given by sup |b1 − b2|/|||a||2 under the constraints
||a||2 > 1 and 0 ≤ b1, b2 ≤ 1. We thus get that sup |b1 − b2|/|||a||2 = 1.

Q.2. (1 point) Prove that the function

f(x, t) = − log(t2 − ||x||22)

is convex on dom f = {(x, t)|x ∈ Rn, t > ||x||2} (Hint: Show first that ||x||22/t is convex on
{(x, t)|x ∈ Rn, t > 0}).

Sol.: Observe that f(x, t) = − log(t2 − ||x||22) = − log t − log(t − ||x||22/t). The first term,
− log t, is convex on R++. The second term instead can be expressed as the composition

− log(t− ||x||22/t) = h(g(x, t)),

where h(y) = − log y is concave on domh = R++ and h̃(y) is non-increasing; and g(x, t) =
t− ||x||22/t is convex on the set {(x, t)|x ∈ Rn, t > 0}. This is the case because ||x||22/t is the
perspective function of ||x||22. The convexity of h(g(x, t)), and thus of f(x, t), follows from
the composition rules.

Q.3. (1 point) Find an equation describing a separating hyperplane for sets S1 = {x ∈
R
2
++|x1x2 ≥ 1} and S2 = {x ∈ R2|x2 ≤ 0}. Repeat for S1 and S2 = {(0, 0)}. Then, find an

equation for the supporting hyperplane of set S1 at point x = (1, 1).

Sol.: The hyperplane {x|x2 = 0} separates the two sets with both S2 = {x ∈ R2|x2 ≤ 0}
and S2 = {(0, 0)}.
From simple geometric considerations [−1,−1] defines the normal to the hyperplane that
supports S1 at point x = (1, 1). Moreover, since x = (1, 1) is on the hyperplane we have that
the desired equation is

−x1 − x2 = [−1,−1][1, 1]T = −2

or x1 + x2 = 2.
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Q.4. (1 point) Given a non-convex function f(x), show that the function g(x) whose epigraph
satisfies epi g = conv epi f is such that g(x) ≥ p(x) for any other convex function p(x) that
satisfies p(x) ≤ f(x).

Sol.: Consider any convex function p(x) that satisfies p(x) ≤ f(x). We have that epi p is
convex and that epi p ⊆ epi f by the definition of the epigraph of a function. But conv epi
f is the smallest convex set that includes epi f and therefore we must have g(x) ≥ p(x).

PART II: Problems -

P.1. (2 points) Consider the set of all probability mass functions (pmfs) p = (p1, p2, ..., pn)

(i.e., pi ≥ 0 for all i = 1, .., n and
n∑

i=1

pi = 1). Denote as X the random variable with pmf p

so that pi = Pr[X = xi] for some value xi ∈ R, for i = 1, .., n. Discuss whether the following
sets are convex and, if so, discuss whether they are polyhedra.
a. The set of all pmfs such that E[X2] ≤ 1.
b. The set of all pmfs such that Pr[X ∈ {x1, x2}] = 0.1.
c. The set of all pmfs whose entropy −

∑
n

i=1
pi log pi is larger than 0.5 (by convention, we

define 0 log 0 = 0).
d. The set of all pmfs whose entropy −

∑
n

i=1
pi log pi is smaller than 0.5 (by convention, we

define 0 log 0 = 0).
e. The set of all pmfs such that var(X) ≥ 1.
f. The set of all pmfs such as the maximum probability of X is less than 0.3.

Sol.: a. This is the set {p ∈ Rn|p � 0, 1Tp = 1 and aTp ≤1}, where 1 = [1, ..., 1]T and
a = [x21, ..., x

2
n
]T . It is thus a polyhedron.

b. This is the set {p ∈ Rn|p � 0, 1Tp = 1 and p1 + p2 = 0.1}, which is a polyhedron.
c. This is the set {p ∈ Rn|p � 0, 1Tp = 1 and −

∑
n

i=1
pi log pi ≥ 0.5}. It is a convex set

because it is the intersection of a polyhedron with the set {p ∈ Rn|
∑

n

i=1
pi log pi ≤ −0.5},

which is a sublevel set of function
∑

n

i=1
pi log pi, which is convex on Rn+ (when the domain

is extended as mentioned in the text).
d. This is the set {p ∈ Rn|p � 0, 1Tp = 1 and −

∑
n

i=1
pi log pi ≤ 0.5}. It is not a convex

set. This can be seen by building a simple example with n = 2.
e. This is the set {p ∈ Rn|p � 0, 1Tp = 1 and aTp− (xTp)2≥1}, where x = [x1, ..., xn]

T ,
since var(X) = E[X2]−E[X]2. It is a convex set because it is the intersection of a polyhedron
with the set {p ∈ Rn| aTp− (xTp)2≥1}, which is a superlevel set of function aTp− (xTp)2,
which is concave (−(xTp)2 is a concave quadratic function).
f. This is the set {p ∈ Rn|p � 0, 1Tp = 1 and maxi{pi} ≤ 0.3}. It is a polyhedron, since
the inequality maxi{pi} ≤ 0.3 is equivalent to the conditions pi ≤ 0.3 for all i = 1, ..., n.

P.2. (2 points) Consider the unconstrained problem of minimizing the function fo(x) =

1

2
xTQx+ qTx. Vector q is given by q = [1 1]T and matrix Q is Q =

[
2 1
1 1

]
.

a. Using only the first- and second-order necessary conditions and the second-order sufficient
condition for local optimality of general problems (i.e., not exploiting convexity-related re-
sults), what can be concluded about local minima? (Hint: Recall that to find the eigenvalues

λ of a matrix

[
a b
c d

]
, we can solve the equation (a− λ)(d− λ)− bc = 0).
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b. Following the previous point and using also Weierstrass theorem, what can be concluded
about global optimality? What else can be said by using the known properties of convex
problems?

c. Repeat the points a. and b. for Q =

[
1 1
1 1

]
.

d. Repeat the points a. and b. for Q =

[
0 1
1 0

]
.

Sol.: a. The first-oder necessary condition for a local minimum is

Qx+ q = 0,

which leads to the unique solution x = [0 1]T . This point is thus a candidate for local
optimality. Moreover, from the second-order sufficient condition

∇2fo(x) = Q ≻ 0,

we conclude that x = [0 −1]T is a local minimum. Note that Q ≻ 0 since its eigenvalues are
0.382 and 2.618.
b. Weierstrass theorem applies, since the function is continuous (and thus lower-semincontinuous),
the optimization set is closed and the function is coercive (as it can be easily seen). There-
fore, a global minimum exists, and it must be x = [0 −1]T . The fact that the local minimum
is also global and that there is a unique (global) minimum is also supported by the fact that
fo(x) is strictly convex.
c. From the first-order necessary condition, we get that the points on the hyperplane x1+x2 =
−1 can all be local minima. These points also satisfy the second-order necessary condition,
since Q is semipositive definite (eigenvalues 0 and 2). However, they do not satisfy the
second-order sufficient condition. So, we cannot conclude on the local (or global) optimality
of these points. Notice also that Weirstrass is not satisfied as the function is not coercive
(try with x = b[−1, 1]T and b→∞). Using the properties of convex optimization problems,
however, we are able to conclude that all the points on the hyperplane x1+ x2 = 1 are local
and global minima.
d. In this case, the system of first-order necessary condition leads to the unique solution
x = −[1 1]T . But this point does not satisfy the second-order necessary condition, since Q
is not semipositive definite (the eigenvalues are 1 and −1). We conclude that there are no
optimal points. In fact, the problem is unbounded below (to see this, take x1 → −∞ and
x2 = 0).

P.3. (2 points) Consider the two objective functions

f1(x1, x2) = x1 − x2 + 1

and f2(x1, x2) = x2 − x1 + 1,

to be maximized with the constraints 0 ≤ x1 ≤ 1 and 0 ≤ x2 ≤ 1.
a. Show that the set A of all achievable pairs (f1(x1, x2), f2(x1, x2)) is convex using known
properties of convex sets, and plot the region A.
b. Describe how you would obtain the boundary of this set by scalarization.
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c. Find the Pareto optimal points. Which one of the Pareto optimal points is a Nash
equilibrium?
d. Repeat the points above with the objective functions

f1(x1, x2) = x1 − x2 + 1

and f2(x1, x2) = 2x1 − 2x2 + 3.

Sol.:
a. The set A is the image of the convex set {(x1, x2)|0 ≤ x1 ≤ 1 and 0 ≤ x2 ≤ 1} under the
linear transformations f1(x1, x2) and f2(x1, x2), and is therefore convex.
We need to plot the set {(f1, f2) ∈ R

2|f1 = x1−x2+1 and f2 = x2−x1+1, with 0 ≤ x1 ≤ 1
and 0 ≤ x2 ≤ 1}. We observe that this set is equal to {(f1, f2) ∈ R

2|f1 + f2 = 2, with
0 ≤ f1 ≤ 2 and 0 ≤ f2 ≤ 2}, as it can be easly shown by checking that either set includes
the other. So the feasible set is the segment f1 + f2 = 2 in the positive quadrant.
b. We can use scalarization since the set A is convex. Scalarization entails solving the
problem

maximize λ1f1(x1, x2) + λ2f2(x1, x2)
s.t. 0 ≤ x1 ≤ 1 and 0 ≤ x2 ≤ 1

for all λ1 ≥ 0 and λ2 ≥ 0, or equivalently

maximize λ1 (x1 − x2) + λ2 (x2 − x1)
s.t. 0 ≤ x1 ≤ 1 and 0 ≤ x2 ≤ 1

.

It is easy to see that for λ1 > λ2, the solution leads to x = (1, 0), that is, to f1 = 2, f2 = 0,
while for λ2 > λ1, the solution leads to x = (0, 1), that is, to f1 = 0, f2 = 2. Instead, with
λ1 = λ2, any feasible x is optimal, and thus the entire set A lies on its boundary.
c. All points in A are Pareto optimal. The only Nash equilibrium is x = (1, 1), which leads
to f1 = 1, f2 = 1.
d. The set A is convex for the same reason as above. Now, note that we have

f1(x1, x2) = x1 − x2 + 1

and f2(x1, x2) = 2f1(x1, x2) + 1.

Therefore, we have A = {(f1, f2) ∈ R
2|0 ≤ f1 ≤ 2 and f2 = 2f1 + 1}, which is a segment

with a positive slope.
Scalarization always yields the point (f1, f2) = (2, 5), that is, x = (1, 0). This point is also
the only Pareto optimal point and also the only Nash Equilibrium.
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