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This Chapter

@ In the previous chapters, we have adopted a limited range of
probabilistic models, namely Bernoulli and categorical for discrete rvs
and Gaussian for continuous rvs.

@ While these are the most common modelling choices, they clearly do
not represent many important situations.
@ Examples:

» Discrete data may a priori take arbitrarily large values, making
Bernoulli and categorical models not suitable

* ex.: waiting times for next arrival in a queue;

» Continuous data may be non-negative, making Gaussian models not
suitable

* ex.: measurements of weights or heights.
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This Chapter

@ Furthermore, we have seen that Bernoulli, categorical, and Gaussian
distributions share several common features:

» The gradient of the log-loss with respect to the model parameters can
be expressed in terms of a mean error that measures the difference
between mean under the model and observation (see Chapters 4 and 6);

» ML learning can be solved in closed form by evaluating empirical
averages (see Chapters 3, 4, and 6);

» Information-theoretic quantities such as (differential) entropy and KL
divergence can be computed in closed form (see Chapter 3).
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This Chapter

@ In this chapter, we will introduce a general family of distributions that
includes Bernoulli, categorical, and Gaussian as special cases: the
exponential family of distributions.

@ The family is much larger, and it also encompasses distributions such
as

» Poisson and geometric distributions, whose support is discrete and
includes all integers;

» exponential and gamma distributions, whose support is continuous and
includes only non-negative values.

@ All distributions that depend on a finite parameter vector and are
supported on a set that does not depend on model parameters are in
the exponential family.
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This Chapter

@ A rare example of a distribution that does not belong to this class is
given by a uniform distribution in an interval dependent on model
parameters.

@ We will discover that all distributions in the exponential family share
the useful properties mentioned above in terms of log-loss, ML
learning, and information-theoretic measures.

@ As a result, the methods studied in the previous chapters can be
extended to a much larger class of problems by replacing Bernoulli,
categorical, and Gaussian distributions with another model in the
exponential family.

Osvaldo Simeone ML4Engineers 5/97



Overview

Exponential family: definitions and examples
Gradient of the log-loss, or score vector

ML learning

Information-theoretic metrics

Fisher information matrix

Generalized linear models
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Exponential Family: Definitions and
Examples




Exponential Family

@ Bernoulli, categorical, and Gaussian distributions have the useful
property that the log-loss — log p(x|n) is a convex function of the
model parameters 7).

@ Note that in this chapter we will introduce two different definitions
for model parameters, which will be denoted as 1 (natural
parameters) and p (mean parameters). Accordingly, we will not adopt
the notation 6 used thus far when we need to identify which type of
model parameter is being considered.

e Ex.: For a Gaussian rv x ~ N (), 1), the log-loss is given as

1
—log p(x|n) = E(X —n)? + const. indep. of 7,

which is quadratic, and hence convex in the parameter 7.

@ All distributions in the exponential family share this key property,
which simplifies optimization (see Chapter 5), and they are defined as
follows.
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Exponential Family

@ A probabilistic model p(x|n) in the exponential family is described by
» a K x 1 vector of sufficient statistics

Sl(X)
s(x) = ; ;

SK.(X)

» as well as by a “log-base measure” function M(x).

@ This is in the sense that the distribution p(x|n) depends on x only
through vector s(x) and function M(x). One can hence think of s(x)
and M(x) as defining a vector of features that determines the
distribution of x.
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Exponential Family

@ Specifically, the exponential family contains discrete and continuous
distributions whose log-loss can be written as

“logp(xin) =~ sk~ MG) o+ Al

VK log-base measure  log-partition function
D k=1 MkSk(x)

where we have defined

» the K x 1 natural parameters vector n = [11, ..., 7k] ",
> and the log-partition function A(7).
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Log-Partition Function

@ The log-partition function A(n) is fixed once functions s(-) and M(-)
are specified, and is convex in 7.
@ To see this, we can write the distributions in the exponential family as

plxin) = exp (17 s(x) = Aln) + M(x))
= m exp (nTS(X) + /V’(X)) :

o In order to guarantee the normalization [ p(x|n)dx = 1 for continuous
variables and >~ p(x|n) = 1 for discrete variables, we need to set

A(n) = Iog/exp (nTs(x) + I\/I(x)) dx
for continuous rvs and

= log Z exp (77 s(x) + M(X))

for discrete rvs.
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Log-Partition Function

@ The log-partition function has a “log-sum-exp” form and is hence
convex in 7.

@ Note that the function exp(A(7n)) is known as partition function —
whence the name log-partition function for A(n).

o The log-loss is the sum of a linear function in 7, namely —n"s(x),
and of a convex function in 7, namely A(n). This implies that the
log-loss is convex in 7.

@ The vector of natural parameters 1 can take any value that ensures
that the distribution can be normalized, i.e., A(n) < co. This feasible
set is convex (i.e., it contains all segments between any two points in
the set) and is taken to be open, that is, not to include its boundary.

@ (Technically, this defines the class of distributions in the regular
exponential family, which we will focus on).
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Exponential Family

@ To summarize, the exponential family contains discrete and
continuous distributions that are specified by sufficient statistics s(x)
and log-base measure function M(x) as

p(x|n) o exp n's(x)  +  M(x) :
——

linear function of n  general function of x

where the “proportional to" sign oc makes the normalizing constant

1 . -
W ImPIICIt.
@ When no confusion can arise, we will write a distribution in the
exponential family as

p(x|n) = ExpFam(x|n),
where the notation hides the dependence on s(x) and M(x).

Osvaldo Simeone ML4Engineers 13 /97



Example 1: Gaussian Distribution with Fixed Variance

@ For the Gaussian distribution N'(v, 371) with a fixed precision 3, the
log-loss can be written as

—log N(x|v, 371) = - -5x* - % log(27577)

\ﬁ/ 2

M(x)

{\‘“
N
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Example 1: Gaussian Distribution with Fixed Variance

@ The log-partition function can be expressed in terms of the natural
parameter 7 = Sv as

g2 _ 1y
A== 2T

2 20

» As expected, this is a (strictly) convex function of 7 for all n € R.

@ In the previous chapters, we would have parametrized the distribution
N (v, 371) through the mean parameter
v =Ex x5 = Exonws1 X
» We now have an alternative parametrization in terms of the natural
parameter 7).
» The natural parameter 7 and the mean parameter p are in a one-to-one
relationship as one can be recovered from the other through the

equality v = n/f (recall that S is fixed and hence it should be
considered as a numerical value).
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Example 2: Bernoulli Distribution

@ The Bernoulli distribution can be written as

Bern(x|p) = p* (1 — p)*™,

where x € {0,1} and we have the mean parameter
n= Eowern(xLu) [X] = PI‘[X = 1]'
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Example 2: Bernoulli Distribution

@ The Bernoulli distribution can be written as

Bern(x|p) = p* (1 — p)* ™,

where x € {0,1} and we have the mean parameter
n= Eowern(xLu) [X] = PI‘[X = 1]'

@ Therefore, the log-loss is

where M(x) = 0.
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Example 2: Bernoulli Distribution

o It follows that the natural parameter is the logit or log-odds (see

Chapter 6)
o (Bem(w)\ [ n
""°g<Bern(0|u) =le{1—)

@ The mean parameter i is in a one-to-one relationship with the natural
parameter 7: inverting the equality above, we have

1
14+e

p=o(n)=

@ Therefore, the log-partition function can be expressed in terms of the
natural parameter 7 as

A(n) = log(1 + e7),

which is a (strictly) convex function of 1 € R.
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Example 3: General Gaussian Distribution

e For a Gaussian distribution N (v, 571
have the log-loss

—log N (x|v, B71) = —

where M(x) =

Bl 2
Bux—i——ax

~—
m si(x) ‘77"’ s2(x)
2

[\

V2B L

1
P4 Slog(ans ™ |

A(n)

@ Note that we now have a two-dimensional vector of sufficient

statistics, i.e., K = 2, namely s(x) =

Osvaldo Simeone
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Example 3: General Gaussian Distribution

@ Following the previous examples, the two-dimensional vector of mean
parameters is defined as the vector of averages of the sufficient
statistics under the model, i.e.,

Eqn,s-1)ls1(x)] ] _ [ E 51X ] _ [ v ] .
EXNN(V,B*I)[S2(X)] EXN/\/'(I/,,B*I)[X2] v? + /8_1
@ This vector is in a one-to-one correspondence with the vector of
natural parameters
1522
n= _é )

2
and we can write the log-partition function as

2
A = 2+ tog(2m )

'u:

which is strictly convex in the domain 11,72 € R X R™, an open set.
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Exponential Family

@ This is a much larger family!

@ In fact, any distribution that can be described by a finite-dimensional
vector of parameters and whose support does not depend on the
parameters is in the exponential family.

@ Among others, apart from the mentioned distributions, it includes the
following distributions:

» discrete: binomial, negative binomial, geometric, Poisson;
» continuous: lognormal, gamma, inverse gamma, chi-squared,
exponential, beta, Dirichlet, Pareto, Laplace.
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Example 4: Poisson Distribution

@ As an example of a distribution that we have not considered before
consider the Poisson distribution, which is used extensively in fields as
diverse as neuroscience and communication network design.

@ The Poisson distribution can be written as

A exp(—A)

Poiss(x|A\) = |
x!

where x € {0,1,2,...}.
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Example 4: Poisson Distribution

@ As an example of a distribution that we have not considered before
consider the Poisson distribution, which is used extensively in fields as
diverse as neuroscience and communication network design.

@ The Poisson distribution can be written as

Poiss(x|\) = Aexp(=A)
x|
where x € {0,1,2,...}.
@ The log-loss is
— i - _ |
log Poiss(x|\) log(A) x + A +log(x!).

n s A m(x)
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Example 4: Poisson Distribution

© The mean parameter y = Ey_poigs(x|2)[X] = A is in a one-to-one
relationship with the natural parameter n = log(\).

@ Therefore, the log-partition function can be expressed in terms of the
natural parameter 7 as

A(n) = exp(n),

which is a (strictly) convex function of n € R.
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Natural vs Mean Parameters

@ Generalizing the examples above, distributions in the exponential
family can be specified by the vector i of natural parameters or by
the vector p of mean parameters

m = Exrvp(x|77) [S(X)] )

which is the vector of averages of the sufficient statistics.

@ Therefore, we can write a distribution in the exponential family as a
function of 1 as p(x|n) = ExpFam(x|n) or as a function of u as
p(x|i2) = ExpFam(x|u).

@ We have used, and we will use, both notations, hence overloading the
notation p(x|-).

@ As we will see below, there may be multiple natural parameter vectors
7 yielding the same distribution and hence the same mean parameters
78
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Minimal Exponential Family

@ A class of distributions p(x|n) = ExpFam(x|n) in the exponential family is
said to be minimal if no two natural parameter vectors yield the same
distribution, or more precisely if there is no n in the domain for which
n"s(x) is constant.

> If there were such a value of 7, then we could add it to any other value
of 1 without changing the distribution.

@ For minimal classes of distributions, there is a one-to-one correspondence
between natural and mean parameters:

> In this case, each natural parameter vector yields a different
distribution p(x|n);

» each mean parameter vector u is associated with a single natural
parameter vector 7 (the vice versa is always true);

» and there exists a general explicit expression for the log-loss as a
function of the mean parameters (see Appendix).

@ For minimal classes of distributions, the log-partition function is strictly
convex, and hence we have V2A(n) = 0.
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Example 5: Categorical (or Multinoulli) Distribution

@ Not all classes of distributions in the exponential family are minimal.

@ Consider the categorical distribution for a rv x that can take C values
{0,1,..,,C —1}.

@ The distribution can be written as

T L(x=k) 1 !
Cat(xlp) = [ m "™ = S T] (o) "=,
k=0 k=0

with any a > 0 and probabilities

pk = Pr[x = k].
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Example 5: Categorical (or Multinoulli) Distribution

@ The log-loss is

— log(Cat(x|u)) = Z log( auk k) + (loga)
i Sk(X) A(n)=log(>"( 5 ™)

@ Therefore, we have
» sufficient statistics s(x) = [1(x = 0),... ,1(x = C —1)]7, which is the
C x 1 one-hot vector x°! (see Chapter 6)
» natural parameters 1 = [1o, ..., jc_1] ", which will be seen below to
correspond to the logits discussed in Chapter 6;
» mean parameter: 1 = [o, ..., ic_1]" with
Mk = Ewaat(xm) [Sk(X)] = PI‘[X = k]
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Example 5: Categorical (or Multinoulli) Distribution

@ This parameterization is not minimal since we can always add a
constant vector to the logit vector n without changing the
distribution:

> the parameter a > 0 is arbitrary in the parametrization of the logits
Nk = log(afik).-
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Example 5: Categorical (or Multinoulli) Distribution

@ Even for non-minimal families, there is a single mean parameter
vector for each natural parameter vector 7.
@ In the case of a categorical distribution, the relationship is given by
the softmax function (see Chapter 6)
e"O
E:k o ek
u = softmax(n) = :

e’ic 1

§:k 0 ek

@ But there are infinitely many logit vectors associated to each mean
vector namely
log(10)
n= ; +bx1c,
log(pc-1)
where b is arbitrary.
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Example 5: Categorical (or Multinoulli) Distribution

@ Example with C =3:
» x ~ Cat(x|[0.1,0.8,0.1]7)
» mean parameters: o =Pr[x =0]=0.1, yy =Pr[x =1] =0.8,
ua =Prlx=2]=0.1
» natural parameters (logits) with a = 1: 1o =, = log(a-0.1) = —2.30
and 7, = log(a-0.8) = —0.22.
> we have the equality

—2.30 emn 0.1
softmax | |—0.22 = szlom e”| =108 = pu.
—2.30 e’ 0.1
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Example 5: Categorical (or Multinoulli) Distribution

o Categorical distributions can be conveniently represented on a simplex
(or ternary) plot for C = 3 (arrows represent reading directions).

0.2 0.8

0.1 0.9
0 09 08 07 06 05 04 03 02 01

n=11,0,0" M X w=10,0,1J"
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Example 6: Joint Bernoulli-Gaussian Distribution

@ Consider the rv x = [x1,x2]7 with x; ~ Bern(x|p) and x3 ~ N (v, 871),
where the precision § is fixed and the model parameters are (u, v, v1). Note
that, when both rvs xjand x, are observed, this corresponds to a generative
model of the type studied in Chapter 6.

@ Following the same steps as in the examples above, one can see that this
joint distribution is in the exponential family, with sufficient statistics given
by s(x) = [x1,x(1 — x1), x2x1]” and natural parameter vector
1 = [log (1/(1 = ), Bro, frr] .

@ The marginal distribution of x; under this joint distribution is a mixture of
Gaussians, which is not in the exponential family.

@ This example shows that the exponential family is not “closed” with respect
to the operation of marginalization.
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Alternative Formulation of Exponential Family

@ As we have seen, the log-loss for the exponential family is given as

—logp(xn)=— n"s(x) — M) + A
S~—— SN~ S~~~
25:1 nksc(x) log-base measure log-partition function

@ For the purpose of analytical calculations, it is often convenient to
write the distribution in terms of an augmented natural parameter

vector 7) = [ 717 ] and augmented sufficient statistics

fi(x) = [ ;,((XX)) ] yielding

—logp(xln) =~ 7Td(x) +  A@n)
SN—— S~~~
ZkK:1 fikdi(x)  convex function of n

or equivalently
p(xln) o< exp (77 ()
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Exponential Family

@ This a useful reference table. Note that, when s(x) is a square

matrix, the corresponding natural parameters 7 are also in the form a
matrix of the same dimension and the inner product is written as the
trace tr(ns(x)).

distribution s(x) n ©
Bern(p) X log (ﬁ) (logit) a(n)
Cat(p) xOH (one-hot vector) nk = log(apy) for a > 0 (logits) p = softmax(n)
N(v,071), fixed © x ov v
N, 1) x and xxT Ov and 7%@ vand®@ ! 4T
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Exponential Family via Maximum-Entropy Modelling

@ To conclude this first section, we ask: How can we justify the use of
the exponential family apart from analytical tractability?

@ Suppose that the only information available about some data x is
given by the means E,_,(,)[sk(x)] = pk of given functions, or
statistics, sx(x) for k =1,..., K

» How should we choose p(x)?
» Note that we cannot use density estimation since we do not have
samples from x.

@ Ex.: We measure empirical mean average lifetime of all the nuclei of a

radioactive atomic species — how should we model their distribution?

@ One well-established principle is to choose the distribution p(x) that
is least predictable, or “more random”, under the given average
constraints.
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Exponential Family via Maximum-Entropy Modelling

@ Recall that the entropy is a measure of “unpredictability” of a random
variable, i.e., it measures the minimum average prediction log-loss
when all that is known is the distribution p(x).

@ So the outlined problem can be formulated as the optimization

m(au)( H(p(x)) s.t. Exwpp[sk(x)]=pk for k =1,..., K.
p(x

@ It can be proved that the distribution

plxin) = exp (n"s(x) + M(x) = A(n))

from the exponential family solves this problem, where each natural
parameter 7, is the optimal Lagrange multipliers associated with the
kth constraint. This provides another interesting link between mean
and natural parameters.
@ This result offers a theoretical justification for the use of distributions
in the exponential family:
> the exponential family “makes the least assumptions” while being

consistent with the available data.
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Gradient, or Score Vector




Gradient of the Log-Loss, or Negative Score Vector

@ As we will prove, the partial derivative of the log-loss with respect to
each natural parameter 7 is

d(—log p(x|n))

= — si(x
o Lk — sk(x)

mean error for si(x)
@ Equivalently, the gradient with respect to the natural parameters is
Vy(—logp(x|n)) = p—s(x)
N——
mean error for s(x)

@ In other words, the score vector is given as the negative mean error

Vi log p(x|n) = s(x) — p.

@ As we have already seen in Chapter 6, this formula underlies many
machine learning algorithms based on gradient descent.
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Gradient, or Score Vector
@ The score vector V log p(x|n) points to the direction in natural
parameter space that locally maximizes the log-probability of x.

e Example: The score vector V, log N'(x|v,l) = x — v is illustrated in
the figure for x = [0.5,0.5] .

1 N 1 7
08 —= —= —= ~— ~ ~ ~ \ / e A
06— —> — — — - - N/ - -
(®)
o4 — = - = = . . [
el = - - -, ’ \ ~ ~
£\1 o - = 7 7 / ! \ AN N
oo — = =7 7 7 / ! \ NN
Pl A A A R B W
w7/ NN
w7 NN
: A
-1 -0.5 0 05 1
V1
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Gradient, or Score Vector

@ Proof of the gradient formula: By using the expression of the log-loss,
we directly have

d(— log p(x|n))
On

_ 9A(n)
= —Sk(X) + 8—7’]/(

@ Moreover, we have the relationship (see Appendix):

0A(n)
I Exwp(x|n) [Sk(x)] = 1k

or, in vector form,

VUA(U) = Ex~p(x|77) [S (X)] = M.

@ This concludes the proof.
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From Natural Parameters to Mean Parameters

@ The identity
VnA(n) = u
is a key result:
» The gradient V,A(7) of the log-partition function maps natural
parameter vector 7 to the corresponding mean parameter vector.
@ The inverse mapping from p to n exists only if the distribution is
minimal, in which case the mapping between p and 7 is one-to-one.
We refer to the Appendix for further discussion on this point.
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From Natural Parameters to Mean Parameters

@ The figure illustrates the one-to-one mapping between natural and mean
parameters for minimal parametrizations, in which case the log-partition
function is strictly convex (i.e., it is a strictly positive curvature), and the
many-to-one mapping between natural and mean parameters for
non-minimal parametrizations, for which the log-partition function is convex
(i.e., it has zero curvature for some values of 7).

minimal parametrization
: : : :

8
6
=0 VA@m) =p
= .
o I
'
I
0 . . . . .
06 08 1 1.2 1.4 1.6 1.8 2
n
non-minimal parametrization

VA(®n) =4
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ML Learning
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Training Models from the Exponential Family

@ Let us now consider the problem of ML learning for probabilistic
models in the exponential family.

N
n=1-

e Given training data D = {x,} the training log-loss is given as

LN
Lp(n) =— N > " log p(xaln)

T 1
=N Nz_:ls(xn)

:=s(D), empirical average of the suff. statistics

Osvaldo Simeone ML4Engineers 43 / 97



Training Models from the Exponential Family

@ Therefore, the training log-loss, seen as a function of the model
parameter vector 7, depends on the training set D only through the
empirical average of the sufficient statistics

N

s(D) = %Zs(x,,).

n=1

o Note, in fact, that the term N~ SN M(x,) does not depend on the
parameter vector 7.

o It follows that the training does not require the entire data set and its
complexity — in terms of computation and storage — does not increase
with the size of the data set N.
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Training Models from the Exponential Family

@ Using the formula derived above for the score function, the gradient
of the log-loss can be directly computed as

N

> Vil log p(xa[n))

1

Vip(n) =

==

n

I
==
™=

(1 — s(xn))
1 ———

"= mean error for s(xn)

= M_S(D) )
———

mean error for s(D)

where we recall that © = V,A(n) is the mean parameter associated
to the natural parameter vector 7.

@ The gradient is hence given by mean error signal obtained as the
difference between the ensemble average under the model i and the
empirical average s(D) = N~! ZnNzl s(xn) of the observations for the

sufficient statistics.
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Training Models from the Exponential Family

@ Since the log-loss is convex, the stationarity condition VLp(n) =0 is
necessary and sufficient for global optimality:

> It follows that the ML estimate of the mean parameters is given as

that is, as the empirical average of the sufficient statistics;
» This moment matching condition can be written more explicitly as

Exwp(xm) [S(X)] = EXNP‘D(X) [S(X)]a

=p =s(D)

where pp(x) is the empirical distribution of the data;
» For minimal distributions, we can obtain the ML estimate n™ from
uME using the one-to-one mapping; for non-minimal families there will

be multiple equivalent solutions n™L for the ML problem.
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Example

@ We have already encountered the moment matching condition in Chapter 6 when
discussing the training of generative models, which required the ML training of
Bernoulli, categorical, and Gaussian distributions.

@ As a reminder and a simple example, consider the problem of ML training for a
Bernoulli distribution Bern(u) using training set D ={0,1,1,0,0,0,1,0,0,0} with
N =10.

@ Using the moment matching condition, we have the ML estimate of the mean

parameter
N N
w1 1 N[ 3
K _N;S(X")_NZX"_ N T 100

n=1
where
N[1]=/{n: x, =1} =3
is the count of observations equal to 1.

@ Since this is a minimal distribution, we can obtain the unique ML estimate of the
logit, i.e., of the natural parameter, as n""* = log(u™ /(1 — ™).
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Example

As another example, consider a categorical distribution Cat(u) with C = 4, and a
data set D ={0,1,2,0,0,0,2,0,0,0} with N = 10.

Using moment matching, the ML estimate is

N[o]
1| N[
N N2 |

N[3]

ML
7 =

which is the standard histogram of the observations.

Note the “black-swan problem”: The value x = 3 was never observed, and the
model assigns it zero probability!

Since the parametrization is not minimal, there is an infinity of possible solutions
for the logits, i.e., for the natural parameters, namely any vector

log(115™)
"t = : T hx1c
log (¢ 1)

for some constant b.
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Training Models from the Exponential Family

@ |t is important to realize that the moment matching condition is not
always tractable.

@ This is because it may difficult to compute the moment parameters
as a function of the model parameters, and hence this condition
cannot be solved explicitly.

@ An example is given by the Boltzmann distribution

—log p(x|n) = —xT Wx +a’x + A(n)

:—ZZWUX,XJ Zax,—i—A(n

i=1 j=1

where 7 = (a, W) are the natural parameters and the sufficient
statistics are given as
s(x) = [x,xxT].
@ For cases such as this one, as we have seen in the special case of
RBM in Chapter 7, one can leverage SGD based on the formula for

the gradient obtained above.
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Information-Theoretic Metrics for the Exponential Family

@ Distributions in the exponential family have the useful property that
information-theoretic metrics can be efficiently evaluated.

@ This is important in many learning methods that rely on
information-theoretic metrics such as KL divergence and entropy.

e Using the augmented formulation p(x|n) o exp (7" ii(x)) seen above,
the general form of the entropy for distributions in the exponential
family is (see Appendix for a proof)

H(ExpFam(x|n)) = Exp(x|n) [~ log p(x|n)]
= —i" i+ A(n),

where we have defined the augmented mean vector as
~ K
" B M) |

@ This relation shows that (negative) entropy and log-partition function
are “dual” to each other, in a sense that is made precise in the
Appendix.
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Information-Theoretic Metrics for the Exponential Family

@ This general expression can be evaluated explicitly as a function of p
or n for each distribution in the exponential family. Examples are
given in the table.

distribution H(ExpFam(x|n))
Bern(u)  —plogp — (1 — p)log(1 — p)
Cat(p) =S50 log(puk)

N(v,071) %Iogdet((27re)®*1)
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Information-Theoretic Metrics for the Exponential Family

@ The general form of the KL divergence for distributions in the same
class within the exponential family can be computed as

p(XIm)]
KL(ExpFam(x ExpFam/(x = Eyop(x log ————=
(ExpFam(x|n1)||[ExpFam(x|n2)) p( |m){ & (<)

= A(2) — A(m) — (2 — m) " pua,

where (1 is the mean parameter vector corresponding to 7.

@ This formula shows that the KL divergence can be computed as a
distance beween 77 and 7, in a sense that is again made precise in
the Appendix.
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Information-Theoretic Metrics for the Exponential Family

@ The formula can be computed explicitly for all distributions in the
exponential family, and some examples can be found in the table.

p(x) q(x) KL(pl|q)
Bern(1)  Bern(f1) plog & + (1 — p) log ;=4
Cat(y)  Cat(7) SC uklog 2
N@E) N@E) 3o (E75) +log ($58) + (7 —») -5 - v) - D)
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Score Vector and Fisher Information Matrix

@ Related to information-theoretic measures is an important metric
known as Fisher information matrix (FIM).

@ To describe it, let us focus first on a general probabilistic models
p(x|0), not necessarily from the exponential family.

@ The cross entropy

H(p(X|9), p(X|0/)) = Exwp(x|9)[_ |Og p(X|0I)]

can be interpreted as the population log-loss when the population
distribution is p(x|6) for some ground-truth value 6 and 6’ is the
model parameter vector.

e We know that the minimum of H(p(x|0), p(x|6’)) over § — and
equivalently the minimum of KL(p(x|0)||p(x|0")) over 8’ — is given by
0 =0.

@ This has two useful consequences.
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Score Vector and Fisher Information Matrix

@ 1) The first-order optimality condition requires the equality
Vo H(p(x|0), p(x]6"))|er= = 0, which implies

Vo H(p(x[0), p(x|6"))lo=6 = Exp(xig) |~ Vologp(x|0) | =0

score vector

» The score vector Vg log p(x|6) has zero mean when averaged over
p(x|0).
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Score Vector and Fisher Information Matrix

@ 2) The second-order optimality condition
Vi H(p(x[6), p(x]6"))lo=6 > O implies

V5 H(p(x|0), p(x|6"))|or—p = E,p(x6)[— V5 log p(x]0)] =0:

:=FIM(0), Fisher Information Matrix (FIM)

» The FIM FIM(6) measures the (non-negative) curvature of the
population log-loss H(p(x|6), p(x|6")) at the optimal point 6’ = 6:
* The “larger” the FIM FIM(60*) is, the “easier” it is to obtain the
optimal value 6 when minimizing H(p(x|0), p(x|0")) over ¢'.
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Fisher Information Matrix

e The FIM FIM(0) quantifies the amount of information that data
generated from the model p(x|f) provides about the value of the
model parameter 6.

@ Ex.: For a Bern(u) rv, the FIM is FIM(u) = m :

» When data is generated as x ~ Bern(u), it is easier to estimate the
parameter values ;4 = 0 and p = 1, and most difficult to estimate
1= 0.5, at which point the observations are maximally random.

@ Ex.: For a N(v, 371) rv with a fixed precision 3, the FIM is
FIM(v) = 5:
» When data is generated as x ~ N (v, 371) all values v are equally

difficult to estimate, and the amount of information we have about v
increases with the precision .
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Fisher Information Matrix

@ The FIM can also be written as the covariance of the score vector, i.e.,

FIM(G) X~p (x10) [ v@ log p(Xlg)]
:EXNP(X|9) [(V@ |Og p(X’e))(VQ |Og p(X|9))T]

@ Note that the above is the covariance matrix since the mean of the
score vector is zero.

@ A proof of this equality and further discussion on the FIM can be
found in the Appendix.
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Fisher Information Matrix

@ The same argument can also be applied by swapping the role of 8 and
0.

@ Putting together the resulting first and second-order derivatives, we
have the following useful Taylor second-order approximation of the KL
divergence

KL(p(x[6). p(x|fo)) = 3 (6 — o) TFIMI(#0)(# — o)

around any point 6.

@ So the FIM FIM(6p) describes the curvature of the KL divergence
around 6.
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Fisher Information Matrix for Exponential Family

@ Having discussed the FIM in the context of general probability
models, we now specialize the results to the exponential family.

@ Using the general definition above, the FIM for the natural
parameters can be directly computed as

FIM(U) = EXNp(X\n)[_V% |0g p(X|T/)]a
= V%A(ﬁ)v

that is the FIM is the Hessian of the log-partition function.

@ This implies that the FIM is positive definite FIM(n) > 0, and hence
invertible, if the class of distributions is minimal.
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Fisher Information Matrix for Exponential Family

@ As a result of the equality above, by computing the Hessian of the
log-partition function, the FIM can also be written as the covariance
of the sufficient statistic vector s(x), i.e.,

FIM(1) = Exp(xjn) | (5(x) = )(s(x) = ) T |-

@ Proofs are in the Appendix.

@ The FIM can also be used to define an alternative to gradient descent
that is known as natural gradient descent. Unlike gradient descent,
natural gradient descent operates in the geometry implied by the KL
divergence in the space of distributions.

@ Intuitively, and informally, natural gradient descent can be seen as a
way to approximate Newton's method. This is because the Hessian
N=1 3701 (= V2 log p(xnln)) of the log-loss N1 3=, (— log p(xa|n))
for general probabilistic models tends to the FIM as N grows large.
Note that this is true if the data is assumed to be generated by the
model, i.e., if we have i.i.d. samples x, ~ p(x|n).

@ More discussion can be found in the Appendix.
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Fisher Information Matrix for Exponential Family

@ The general formula above can be computed explicitly for all
distributions in the exponential family, as per the examples in the

table.
distribution FIM(p)
Bern(u) ﬁ
N(v,©71), fixed © o1t
N(v.0-1) o1 0
v, _
0 307
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Generalized Linear Models (GLM)

The exponential family provides a flexible class of distributions to model
densities.

In many problems in machine learning, we need to model conditional
distributions.

A useful extension of exponential-family distributions to conditional models
is given by GLMs.

We have already encountered several GLMs in Chapter 4 and 6, namely
polynomial regression in Chapter 4 and logistic and softmax regression
models in Chapter 6.

A GLM defines a model class of conditional probabilities defined as

p(tlx, W) = ExpFam(¢lu = g(Wu(x))

where

» ExpFam(t|n) represents any distribution in the exponential family with
mean parameter vector y;

» u(x) is a vector of features, as defined in previous chapters;

» W is a matrix defining the model parameters;

» g(-) is an invertible function — the inverse g ~1(-) is known as link
function.
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Generalized Linear Models (GLM)

@ Intuitively, GLMs generalize deterministic linear models of the form
t = Wu(x) by “adding noise” around the mean p = g(Wu(x)) that is
drawn from a distribution in the exponential family.

@ GLMs in the canonical form are written as
p(t|x, W) = ExpFam(t|n = Wu(x)),

so that the natural parameter vector is the linear function n = Wu(x).
@ Note that here the rv is t, while x is the fixed input.
@ This corresponds to setting the inverse of the link function as
g(n) = V,A(n).
@ As two examples, we will now see that logistic and softmax regression
are special cases of GLMs.
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Logistic Regression as a GLM

@ As we discussed in Chapter 6, logistic regression assumes that the
label is conditionally distributed as

(thx =x, 6)~Bern(o (67 u(x))),

so that we have the predictive distribution p(t = 1|x,0) = o(8 " u(x))
for model parameter 6.

@ Therefore, logistic regression is a GLM with exponential-family
distribution given by the Bernoulli distribution and natural parameter
given by the logit n = 07 u(x).

@ Note that the gradient with respect to 6 derived in Chapter 6 can be
directly obtained from the score function derived above via the chain
rule as

Vo~ log Bern(o (67 u(x)))) = 5 (~ log Bern(n)l-grage)) ¥ Vor
= (o(0Tu() )% u(x)
—~—

:=6(x,t), mean error  feature vector
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Softmax Regression as GLM

@ Softmax regression assumes that the one-hot label vector is
distributed as

(t|x = x, W) ~ Cat(t|n = Wu(x))

for model parameter matrix W.

@ Therefore, the conditional distribution p(t|x, W) is a GLM with
exponential-family distribution given by the categorical distribution
and natural parameter given by the logit vector n = Wu(x).

@ Again, it can be readily checked that the gradient with respect to W
derived in Chapter 6 can be directly obtained form the score function
derived above via the chain rule.
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Summary
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Summary

@ The exponential family contains a large number of discrete and
continuous parametric distributions:

» it contains all distributions with finite-dimensional parameterization
and fixed support.

@ Distributions in the exponential family have convex log-loss,
easy-to-compute score vectors (i.e., gradients of the log-loss) and
information-theoretic measures, including FIMs.

@ A distribution in the exponential family can be expressed in terms of
natural parameters i or mean parameters (; we can write

p(x|n) = ExpFam(x|n)

or
p(x|p) = ExpFam(x|u)

where ExpFam denotes any distribution in the exponential family.
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Summary

o For every natural parameter vector 7, there is a unique mean vector
w= Ewapram(x\n) [S(X)] :

@ For a mean vector u, there may be more than one natural parameters
71 unless the distribution class is minimal.

@ For all distributions in the exponential family, by definition, the
log-loss is a convex function

— log(ExpFam(x|n)) = —n 7 s(x) + A(n)+terms indep. of

@ Furthermore, for a training set D, the training log-loss

Lp(n) =

2 \

N
Z log(ExpFam(x,|n))) = —n " s(D) + A(n),

and hence also the ML estimates of the parameters, depend only on
the empirical average of the sufficient statistics s(D) = 4 ZnN:1 s(xn).
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Summary

@ The gradient of the log-loss, or negative score vector, is given as
V(- log(ExpFam(x|n))) = p— s(x)
——
mean error for s(x)
and the gradient of the training loss is given as
Vip(n) = p—s(D)
———
mean error for s(D)

@ ML is obtained via moment matching, or, when not feasible, via
gradient descent.

@ Information-theoretic measures and FIM can be easily computed.
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Appendix
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Gradient of the Log-Partition Function

@ Here, we validate the relationship between mean parameters and
gradient of the log-partition function introduced in the text.

@ This is done through the direct calculation

DA(m) _ Sesk(x)exp (n”s(x) + M(x))

Ik Yeexp(nTs(x’) + M(x'))
= Exp(x|n) [5k()] = p

@ The same derivation applies for continuous rvs by replacing sums with
integrals.
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Duality and Exponential Family

@ Exponential family distributions have interesting properties in terms
of duality, as we explore next.
@ To start, let us first define the Bregman divergence:
» given a convex function f(-), the Bregman divergence is defined as

Br(x,y) = f(x) = f(y) = (x = y) TV (x);
> using the convexity of f(x), it can be directly proved that we have

Bf(x,y) > 0 and Bf(x,x) = 0;
> it can also be seen that Bf(x, y) is convex in x, but not necessarily in y.

Osvaldo Simeone ML4Engineers 76 / 97



Convex Duality

@ We also need the definition of convex dual, or Fenchel dual, of a convex
function f(x) as

(y) = max {XTy — f(x)} )

@ Geometrically, the convex dual finds the negative intercept of the tangent to
the function f(x) with gradient y.

@ In fact, since f(x) is convex, global optimal solutions can be found by solving
the equation Vf(x) = y. Accordingly, we have f*(y) = x7 Vf(x) — f(x)
where x is such that we have y = Vf(x). The intercept is defined as the
value at the origin of the domain of the first-order approximation, i.e.,

f(x) + Vf(x)T(O - x).

@ A strictly convex function can be fully described by the set of intercepts for
each possible gradient value y. In fact, for every possible gradient value y,
there is at most one value of x for which we have Vf(x) = y.

@ For a convex function, there may be multiple such values of x.

@ In either case, we also have f**(x) = f(x), that is, the convex dual of the
convex dual is the function itself.
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Duality and Exponential Family

@ Since the log-partition function is convex, we can define its convex
dual as

A*(y) = max {07y - Am)}.

@ Under the assumption of minimality, the log-partition function is
strictly convex and hence its global optimum can be obtained by
applying the first-order optimality solution V,A(n) = y:

> It follows that the optimal value of 7 is the natural parameter vector
corresponding to mean parameter p.

@ We conclude that we have the equality

A*(p) =n"p— An),

where (11,m) is the pair of mean and natural parameters.
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Duality and Exponential Family

@ A useful way to recall this relationship is

A*(p) + Am) =" p.

@ This relationship can also be used to prove that, for minimal
distributions, we have the inverse mapping between natural and mean
parameters

VA" (1) = 1.

@ We now discuss some important implications of duality.
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Distribution and Log-Loss as a Function of the Mean
Parameters

@ With this background, we can first prove that, under the assumption
of minimality, the distribution can be expressed as

p(x|p) = exp(—Ba=(s(x), 1) + G(x)),

for a suitable function G(x) independent of the model parameters.

@ Hence all minimal distributions in the exponential family have
associated a measure of distance in the mean parameter space:

» The probability of x depends on how far s(x) is from the mean vector
L.
@ Ex.: For the Gaussian distribution A/(p, 1), we have
p(x|p) o exp(—||x — ul?/2).
——

Bax (s(x);)
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Distribution and Log-Loss as a Function of the Mean
Parameters
@ From the table, the Gaussian distribution is associated with the

(weighted) squared Euclidean distance, while Bernoulli and
categorical variables are associated with the KL divergence.

@ We have defined KL(x||x1) = x log <5) + (1 —x)log ( ) for the

Bernoulli distribution and KL(x||u) = Zk 0 Xk Iog( ) for the
categorical distribution.

distribution A(n) A*(p) Bax (s(x), 1)
Bern(u) log(1 + e) plog p+ (1 — p)log(l — p) KL(x]||p)
Cat(u) log (Zf o ek ) S5 i log g KL(x]|| )
N (v, 1) with fixed ©~1 InTe 1y 1uTeu Lis(x) — wll3
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Distribution and Log-Loss as a Function of the Mean
Parameters

@ Proof of the equality p(x|u) = exp(—Ba-(s(x), 1) + G(x)): We have
p(xln) = exp (n"s(x) = An) + M(x))
(nTS(X) = (0= A" (1)) + M(x))

= exp (A" (1) + 1 (s(x) = ) + M(x))

= exp | —(A"(s(x)) = A" (1) = (s(x) = 1) " VA" (1)) + (A"(s(x)) + M(X))) :

B (s(x).11) =G(x)
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Duality and Entropy

@ As another implication of duality, we show now that negative entropy
and log-partition function are dual to one another.

@ As we have seen in the main text, the entropy of an exponential
family distribution can be written as

H(p(x|n)) = Exp(xn)[— log p(x[n)]
= —77TM + A(U) - Exrvp(x\n)[M(X)]'

@ So, we have the duality relationship between entropy and log-partition
function

A* (1) = —H(p(x[1)) = Exp(xin) IM(x)]-
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Duality and KL Divergence

@ We now relate the KL divergence between two distributions
p(x|m) = ExpFam(x|n1) and p(x|n2) = ExpFam(x|n.) from the
same exponential family with log-partition function A(-), and
sufficient statistics s(-), to the Bregman divergence. This will allow us
to obtain an explicit expression as a function of the moment
parameters ;1 and po.

@ As we have seen in the text, we have the following identity

KL(ExpFam(x|n;)|[ExpFam(x[n2)) = Ba(n2,m1)
= A(m2) — Alm) — (2 — m) " pa.

@ Using duality for minimal families, we can also write

KL(ExpFam(x|u1)||[ExpFam(x|u2)) = Bas (2, pi1)
= A"(p1) = A" (p2) — (11 — uz)Tﬁ2~
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Fisher Information Matrix
@ We now prove the equality
FIM(G) :EXNp(x|9)[_V§ log p(Xle)]
=Exp(x(0)[(Vo log p(x]6))(Ve log p(x]6)) T].

e To prove this result, we first note that the Hessian V2 log p(x|f) can
be written as

V5 log p(x|0) = Vg(Vg log p(x|6))

Vop(x|0)
— v, (LePXIY)
x|6
_ ((Vel;((xe)) >)<V0P(X9)) T L Vip(x|0)
p(x|0) p(x|0) p(x|0)
Vip(x]6)

— [e) X o X ! ’
= —(Valog p(x|0))(Ve log p(x|0)) T + p(x[0)
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Fisher Information Matrix

@ Now, taking the expectation, the first term recovers the desired
result, while the second equals an all-zero vector since

Exwp(x|€) [%] = ;vgp(xye)
= V> p(x6) =0.

1
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FIM and Estimation

@ We have said in the text that FIM(#) measures how “easy” it is to
estimate 6 based on data from the model p(x|#). We now discuss a
formal statement of this property.

@ In statistics, and sometimes also in machine learning, it is assumed
that the model class

H={p(x,tl]f): 0 € O}

includes the (unknown) population distribution p(x, t) for some true
(unknown) value of the parameter vector 6y, i.e., p(x, t|fo) = p(x, t).

@ This is also referred to as a realizabilty assumption since the true
distribution can be “realized” by the model.

@ In this case, one can ask how well the true parameter 6y is estimated.
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FIM and Estimation

@ Under the realizability assumption, it is common in statistics to
provide properties of an estimator of 6y based on data.
@ Most notably, as the number of data points goes to infinity, i.e.,
N — o0, one can prove the following properties for the ML estimator
oML
» ML provides a consistent estimate, that is, we have OML 5 0, with
high probability;
» ML is asymptotically Gaussian, that is, the rv v/N(8ML — 6) tends to
have distribution A/(0, FIM(6p) ™).
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Fisher Information Matrix for Exponential Family

@ Here, we prove the equalities
FIM(n) = V3A(0) = Exp(ai(s(x) = 1)(s(x) = 1) T1].

@ Using the expression for the score vector V,(log p(x|n)) = s(x) — u,
we have

FIM(n) = Exp(xin)[— V2 log p(x|n)]
= EXNp(X|7]) [_vn(vn log p(x[n))]
= Exp(xin)[=Vs(x) + V]
=V,
= Vy(VyA(n))
= V3A®).

Osvaldo Simeone ML4Engineers 89 / 97



Fisher Information Matrix for Exponential Family

@ Using the expression for the score vector V,(log p(x|n)) = s(x) — u,
we also have

FIM(1) = Exp(xl) (Vi log p(x[1)) (V' log p(xIn)) ]
= Exop(u[(s(x) — 1)(s(x) — 1) 1.
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Natural Gradient Descent

Recalling that we have the mapping V,A(1) = 1, the FIM can also
be expressed in terms of the mean parameters as the Jacobian

FIM(3) = V2A() = V.

As we will see next, this is useful to relate derivatives with respect to
mean and natural parameters.

To see this, consider a function g(n) of the natural parameters, e.g.,
g(n) = Exwp(x|n)[f (x)] for some function f(-). We have the following
relationship between the gradients V, f(n) and V,f(7):

Vuf(n) = Vpu - Vuf(n) = FIM(n) - V. f(n).
Furthermore, if the class of distributions is minimal, we can also write

Vuf (1) = (FIM(1) 7V, f (n).
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Natural Gradient Descent

@ In gradient descent, we minimize at each step the following strictly
convex approximant of the cost function

& (0:09) = g(0) + Vg (0)T(0 — 0) +

/

Sl — 0|2
~ 2y
first-order Taylor approximation
proximity penalty
@ Therefore, the distance between 6 and the previous iterate is
measured by the Euclidean distance || — 6()|?:
» With probabilistic models, the Euclidean distance may not reflect
actual changes in the distribution.
@ Therefore, the choice of the learning rate must be conservative in
order to avoid unstable updates.
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Natural Gradient Descent

@ As an example, consider the optimization over the mean p for a

Gaussian distribution with fixed variance o2.

e For a fixed squared Euclidean distance ||z — p{)]|?, the two
distributions (11, 72) and NV (u(?), 02) may be more or less distinct
depending on the value of o- :

» if 02 is large compared to || — u()|[?, the two distributions are very
similar;
> while the opposite is true when o2 is sufficiently smaller.
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Natural Gradient Descent

@ In light of this, natural gradient descent replaces the square Euclidean
distance ||6 — 0()||2 with a more relevant measure of the distance
between the two distributions p(x|#) and p(x|0()).

@ As we know, a relevant measure is the KL divergence
KL(p(x|0)||p(x[01)).

@ Using directly the KL divergence as a penalty yields the mirror
descent method (to be discussed).

@ Natural gradient descent approximates the KL divergence assuming
that A9() = 0 — 00 is sufficiently small by using the discussed
second-order Taylor approximation with respect to A6
1

KL(p(x|0)[Ip(x|0)) = 5 (0 — 0) TFIM(0)(0 — 61)
1

i)12
= 5”9 - 9( )HFIM(Q(I'))'

o Note that, if FIM(6()) = I, we recover the standard squared

Euclidean distance.
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Natural Gradient Descent

@ Overall, natural gradient descent minimizes at each iteration

dg (6"
df

~
first-order Taylor approximation

2,(6:007) = g(6) + €7D (g gy 4 llo = o

(&

’ HFIM(QU)) :

proximity penalty

@ This yields the update
9l+1) = 9() — A (FIM(6D)) "1V g(6).

@ Note that this applies to any distribution parametrized by a vector 0
and not only to the exponential family.

o Natural gradient descent is hence generally more complex because it
requires to invert the FIM.

@ However, by operating using a metric that is tailored to the space of
distributions, it generally allows to use of larger step size, potentially
reducing the number of iterations needed to obtain a desirable value
of the cost function.
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Natural Gradient Descent for the Exponential Family

@ But the natural-gradient update simplifies for minimal
exponential-family distributions.

@ To see this, consider natural gradient descent with respect to the
natural parameters, whose update is given as

i) = ) — y(FIM(n(D))71V,g(n7).

o As we haye seen in the text, we have the equality
(FIM(n(0)) 1V, g(nD) = V,.g(u()), which yields the equivalent
simplified update
N =) — v, g(ul).

@ So, natural gradient descent on the natural parameters follows the
gradient with respect to the mean parameters.
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Mirror Descent

@ In contrast to natural gradient descent, mirror descent minimizes at
each iteration the convex approximation

£,(6:67) = g(0") + V(0))7 (6 — 07) + “KL(p(x/9) }p(x/6")).

first-order Taylor approximation
proximity penalty

@ Note that this applies to any distribution parametrized by a vector 6
and not only to the exponential family.
@ Consider the important case of a categorical distribution

5 i i i Ny, L i
& (i) = g(u) + V() (n — n) + ;KL(Cat(Xlu)IICat(XIM( ).

first-order Taylor approximation

proximity penalty

@ This yields the exponentiated gradient update

LD _ i exp (—v[Ve (1))
k - _ i .
S U exp (< [V (u)]e)
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