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Lossy Computing of
Correlated Sources with Fractional Sampling
Xi Liu, Student Member, IEEE, Osvaldo Simeone, Member, IEEE, and Elza Erkip, Fellow, IEEE

Abstract—This paper considers the problem of lossy compres-
sion for the computation of a function of two correlated sources,
both of which are observed at the encoder. Due to presence
of observation costs, the encoder is allowed to observe only
subsets of the samples from both sources, with a fraction of such
sample pairs possibly overlapping. The rate-distortion function
is characterized for memoryless sources, and then specialized to
Gaussian and binary sources for selected functions and with
quadratic and Hamming distortion metrics, respectively. The
optimal measurement overlap fraction is shown to depend on
the function to be computed by the decoder, on the source
statistics, including the correlation, and on the link rate. Special
cases are discussed in which the optimal overlap fraction is the
maximum or minimum possible value given the sampling budget,
illustrating non-trivial performance trade-offs in the design of the
sampling strategy. Finally, the analysis is extended to the multi-
hop set-up with jointly Gaussian sources, where each encoder
can observe only one of the sources.

Index Terms—Multi-terminal rate-distortion theory, function
computation, fractional sampling.

I. INTRODUCTION

A BATTERY-LIMITED wireless sensor node consumes
energy in both its channel coding and its source coding

components. The energy expenditure of the channel coding
component is due to the power amplifier and to processing
steps related to communication; instead, the source coding
component consumes energy in the process of digitizing the
information sources of interest through a cascade of acquisi-
tion, sampling, quantization and compression. It is also known
that the overall energy spent for compression is generally
comparable to that used for communication and that a joint
design of compression and transmission is critical to improve
the energy efficiency [1] [2]. We refer to the energy associated
with the source coding component, i.e., measurements and
compression of sources, as “sensing energy”.

A reasonable, and analytically tractable model, for the
sensing energy is obtained by assuming that the sensing cost
is proportional to the number of source samples measured
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Fig. 1. The encoder measures correlated sources S1 and S2 for a fraction
of time θ1 and θ2, respectively, and the decoder estimates a function Tn =
fn(Sn

1 , S
n
2 ).

and compressed.1 In our previous work [5], in the presence
of constant per-sample sensing energy, we have investigated
the problem of minimizing the distortion of reconstruction of
independent Gaussian sources measured by a single integrated
sensor under energy constraints on the channel and source
coding components. Reference [5] reveals that, similar to
the channel coding counterpart set-up in [6], it is generally
optimal to measure and process a fraction of the source
samples. We observe that this principle also underlies the
compressive sensing framework [7]. In this work, instead, we
consider a set-up with functional reconstruction requirements
on correlated measured sources, as explained next.

Consider an encoder endowed with an integrated sensor that
is able to measure two correlated discrete memoryless source
sequences Sn

1 = (S1,1, ..., S1,n) and Sn
2 = (S2,1, ..., S2,n)

through two different sensor interfaces, as shown in Fig.
1. Following [5], we assume that measuring each sample
of source Sk, k = 1, 2, entails a constant sensing energy
cost per source sample. For simplicity, instead of having a
total sensing energy budget for all the sources as in [5],
we assume that the integrated sensor has a separate sensing
energy budget (and thus a separate sampling budget) for either
source. That is, the encoder can only measure nθk samples
from source Sk, k = 1, 2, with 0 ≤ θk ≤ 1. The encoder
compresses the measured samples to nR bits, where R is
the communication rate in bits per source sample. Based on
the received bits, the decoder reconstructs a lossy version
of a target function T n = fn(Sn

1 , S
n
2 ) of source sequences

Sn
1 and Sn

2 , which is calculated symbol-by-symbol as Ti =
f(S1,i, S2,i), i = 1, ..., n. We refer to the above problem as
lossy computing with fractional sampling. In Section VI, we
will also consider the problem of multi-hop lossy computing
with fractional sampling, which, as shown in Fig. 2, differs
from the integrated sensor (point-to-point) problem in that
sources S1 and S2 are measured by two distributed sensors
connected by a finite-capacity link.

A key aspect of the problem of lossy computing with
fractional sampling is that the encoder is allowed to choose
which samples to measure given the sampling budget (θ1, θ2).
To fix the ideas, assume that we have (θ1, θ2) = (0.5, 0.5),

1Compression schemes with close to linear complexity include Lempel-Ziv
strategies and related approaches [3] [4].

0090-6778/13$31.00 c© 2013 IEEE



3686 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 61, NO. 9, SEPTEMBER 2013

1R 2R

11 ,
nS 22 ,

nS

nT̂
Encoder 1 Encoder 2 Decoder

Fig. 2. The multi-hop setup studied in Section VII: Encoder 1 and Encoder
2 measure correlated sources S1 and S2 for a fraction of time θ1 and θ2,
respectively, and the decoder estimates a function Tn = fn(Sn

1 , S
n
2 ).

so that only half of the samples can be observed from both
sources. As two extreme strategies, the encoder can either
measure the same samples from both sources, say S1,i, S2,i

for i = 1, ..., n/2, or it can measure the first source S1

for the first n/2 samples, namely S1,i for i = 1, ..., n/2,
and the second source S2 for the remaining n/2 samples,
namely S2,i for i = n/2 + 1, ..., n. With the first sampling
strategy, the encoder is able to directly calculate the desired
function Ti = f(S1,i, S2,i) for i = 1, ..., n/2, while having
no information (beside the prior distribution) about Ti for
the remaining samples. With the second strategy, instead, the
encoder collects partial information about T at all times in the
form of samples from source S1 or source S2.

Relating the discussed fractional sampling model with prior
literature, we observe that, with full sampling of both sources,
i.e., (θ1 = 1, θ2 = 1), the encoder can directly calculate the
function T n = fn(Sn

1 , S
n
2 ) and the problem at hand reduces to

the standard rate-distortion set-up (see, e.g., [3]). Instead, if the
encoder can only measure one of the two sources, i.e., (θ1 =
1, θ2 = 0) or (θ1 = 0, θ2 = 1), the problem at hand becomes a
special case of the indirect source coding set-up introduced in
[8]. The model of fractional sampling is also related to that of
compression with actions of [9], in which the decoder obtains
side information by taking cost-constrained actions based on
the message received from the encoder. Finally, various recent
information-theoretic results on the functional reconstruction
problem without sampling constraints can be found in [10]
(see also references therein).

The main contributions and the organization of the paper
are as follows. We formulate the problem of lossy computing
with fractional sampling of correlated sources for the set-up
in Fig. 1 in Section II. After providing general expressions for
the distortion-rate and the rate-distortion functions in Section
III, we specialize them to Gaussian sources and weighted sum
function T = w1S1 +w2S2 in Section IV and binary sources
with arbitrary functions T = f(S1, S2) in Section V. As
a result, various conclusions are drawn regarding conditions
under which the optimal sampling strategy prescribes the max-
imum or the minimum possible overlap between the samples
measured from the two sources. In Section VI, we extend the
analysis to the multi-hop set-up of Fig. 2, in which sources
S1 and S2 are measured by different encoders connected by
a finite-capacity link.

II. SYSTEM MODEL

In this section, we formally introduce the system model of
interest for the point-to-point set-up of Fig. 1. The multi-hop
model will be introduced in Section VII. As shown in Fig.
1, the encoder has access to two discrete memoryless source

1S
2S

)( 121 θθ −n 12θn )( 122 θθ −n )1( 2112 θθθ −−+n

n

Fig. 3. Sampling profile (θ1, θ2, θ12) at the encoder: a fraction, θ1 − θ12,
of samples is measured only from source S1; a fraction, θ12, of samples is
measured from both sources; a fraction, θ2 − θ12, of samples is measured
only from source S2; and the remaining fraction, 1 + θ12 − θ1 − θ2, of
samples is not measured for either source (0 ≤ θ1, θ2 ≤ 1, and θ12 as in
(1)).

sequences Sn
1 = (S1,1, ..., S1,n) and Sn

2 = (S2,1, ..., S2,n)
respectively, which consist of n independent and identically
distributed (i.i.d.) samples (S1,i, S2,i) with S1,i ∈ S1 and
S2,i ∈ S2, i = 1, ..., n, where S1 and S2 are the alphabet sets
for S1 and S2 respectively. All alphabets are assumed to be
finite unless otherwise stated. Due to presence of observation
costs, we assume the encoder can only sample a fraction θk
of the samples for source Sk, with 0 ≤ θk ≤ 1 for k = 1, 2,
where the samples are determined prior to the observation of
(Sn

1 , S
n
2 ). Given the i.i.d. nature of the sources, without loss

of generality, we assume that the encoder measures the first θ1
fraction of samples of source S1 and measures the θ2 fraction
of samples of S2 starting from sample n(θ1 − θ12) + 12, as
shown in Fig. 3. The samples measured at the encoder from the
two sources thus overlap for a fraction θ12, with θ12 satisfying

θ12,min ≤ θ12 ≤ θ12,max, (1)

with θ12,min = (θ1 + θ2 − 1)+ and θ12,max = min(θ1, θ2),
where (·)+ denotes max(·, 0). We refer to the triple
(θ1, θ2, θ12) as a sampling profile, and to (θ1, θ2) as the
sampling budget.

The decoder wishes to estimate a function T n =
fn(Sn

1 , S
n
2 ), where Ti = f(S1,i, S2,i) for i = 1, ..., n. We let

d : T × T̂ → [0,+∞) be a distortion measure, where T and
T̂ are the alphabet sets of the variables T and T̂ respectively.
We assume, without loss of generality, that for each t ∈ T
there exists a t̂ ∈ T such that d(t, t̂) = 0. The link between the
encoder and the decoder can support a rate of R bits/sample.
Formal definitions follow.

Definition 1: A (n,R,D, θ1, θ2, θ12) code for the problem
of lossy computing of two memoryless sources with fractional
sampling consists of an encoder h : Snθ1

1 × Snθ2
2 →

{1, ..., 2nR}, which maps the measured θ1-fraction of source
S1, i.e., (S1,1, ..., S1,nθ1), and the measured θ2-fraction of
source S2, i.e., (S2,n(θ1−θ12)+1, ..., S2,n(θ1+θ2−θ12)), into a
message of rate R bits per source sample (where the nor-
malization is with respect to the overall number of samples
n); and a decoder g : {1, ..., 2nR} → T̂ n, which maps the
message from the encoder into an estimate T̂ n, such that the
average distortion constraint D is satisfied, i.e.,

1

n
E

[
n∑

i=1

d(Ti, T̂i)

]
≤ D. (2)

Definition 2: Given any sampling profile (θ1, θ2, θ12), a

2Throughout the paper, quantities such as nθ1, nθ2 and n(θ1 + θ2 − θ12)
are implicitly assumed to be rounded to the largest smaller integer.
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tuple (R,D, θ1, θ2, θ12) is said to be achievable, if for
any ε > 0, and sufficiently large n, there exists a
(n,R,D + ε, θ1, θ2, θ12) code. The distortion-rate function
for sampling profile (θ1, θ2, θ12), D(R, θ1, θ2, θ12), is de-
fined as D(R, θ1, θ2, θ12) = inf{D: (R,D, θ1, θ2, θ12) is
achievable}, and the minimum achievable distortion for the
same sampling profile is defined as Dmin(θ1, θ2, θ12) =
limR→∞ D(R, θ1, θ2, θ12).

Definition 3: The distortion-rate function with sampling
budget (θ1, θ2), D(R, θ1, θ2), is defined as D(R, θ1, θ2) =
minθ12 D(R, θ1, θ2, θ12), where the minimum is taken over
all θ12 satisfying (1). Moreover, the minimum achievable
distortion for the same sampling budget is defined as
Dmin(θ1, θ2) = minθ12 Dmin(θ1, θ2, θ12).

Similar definitions are used for the rate-distortion func-
tion. Specifically, the rate-distortion function for sam-
pling profile (θ1, θ2, θ12), R(D, θ1, θ2, θ12), is defined as
R(D, θ1, θ2, θ12) = inf{R: (R,D, θ1, θ2, θ12) is achievable},
and the rate-distortion function with sampling budget
(θ1, θ2), R(D, θ1, θ2), is defined as R(D, θ1, θ2) =
minθ12 R(D, θ1, θ2, θ12) where the minimum is taken over all
θ12 satisfying (1).

Remark 1: In most of the paper, we consider the average
distortion criterion (2), following standard considerations, the
results presented herein hold also under the definition of dis-
tortion level D whereby the probability that the distortion level
D is exceeded by an arbitrarily small amount ε vanishes as the
block length n grows large (i.e., Pr[(1/n)

∑n
i=1 d(Ti, T̂i) ≥

D + ε] → 0 as n → ∞) [11]. Moreover, the worst-
case average per-sample criterion maxi∈{1,...,n}E[d(Ti, T̂i)]
is briefly considered in Appendix F.

III. RATE-DISTORTION TRADE-OFF WITH FRACTIONAL

SAMPLING

In this section, we characterize the distortion-rate functions
D(R, θ1, θ2, θ12) and D(R, θ1, θ2) defined above as well as
their rate-distortion counterparts. To elaborate, we first provide
some standard definitions.

Definition 4: The standard distortion-rate function
for source T , D12(R), is defined as D12(R) =
minp(t̂|t): I(T ;T̂ )≤R E[d(T, T̂ )] [3]. Moreover, the indirect
distortion-rate function for compression of source T when
only source Sk is observed at the encoder, Dk(R), is Dk(R) =
minp(t̂|sk): I(Sk;T̂ )≤R E[d(T, T̂ )]. The distortion Dk,min is
defined as Dk,min = limR→∞ Dk(R) = mingk(·)E(d(T,

gk(Sk))), for k = 1, 2, with gk : Sk → T̂ . Finally, the
distortion Dmax is Dmax = mint̂∈T̂ E[d(T, t̂)].

We similarly define the corresponding rate-distortion func-
tions R12(D) and Rk(D), k = 1, 2.

Lemma 1: For any given sampling profile (θ1, θ2, θ12) and
link rate R, the distortion-rate function for computing T is

given by3

D(R,θ1, θ2, θ12) = min
R1,R12,R2≥0

(θ1 − θ12)D1

(
R1

θ1 − θ12

)

+ θ12D12

(
R12

θ12

)
+ (θ2 − θ12)D2

(
R2

θ2 − θ12

)
+ (1 + θ12 − θ1 − θ2)Dmax, (3)

where the minimization is taken under the constraint R1 +
R2 + R12 ≤ R, and the minimum achievable distortion is
given by

Dmin(θ1, θ2, θ12) =(θ1 − θ12)D1,min + (θ2 − θ12)D2,min

+ (1 + θ12 − θ1 − θ2)Dmax, (4)

Moreover, for any given sampling profile (θ1, θ2, θ12) and
distortion level D ≥ Dmin(θ1, θ2, θ12), the rate-distortion
function for computing T is given by

R(D,θ1, θ2, θ12) = min
D1,D2,D12

(θ1 − θ12)R1

(
D1

θ1 − θ12

)

+ θ12R12

(
D12

θ12

)
+ (θ2 − θ12)R2

(
D2

θ2 − θ12

)
, (5)

where the minimization is taken over all choices of D1, D2

and D12 satisfying D12 ≥ 0, Dk ≥ (θk − θ12)Dk,min, k =
1, 2, and

D1 +D2 +D12 + (1 + θ12 − θ1 − θ2)Dmax ≤ D. (6)

Proof: The rate-distortion function (5), and the corre-
sponding distortion-rate function (3) can be obtained by noting
that the rate-distortion problem with fractional sampling at
hand can in fact be viewed as a special case of the conditional
rate-distortion problem [12]. To this end, let Q ∈ {1, 2, 3, 4}
be a time-sharing random variable independent of S1 and S2

and distributed as: Pr(Q = 1) = θ1 − θ12, Pr(Q = 2) =
θ2 − θ12, Pr(Q = 3) = θ12, Pr(Q = 4) = 1+ θ12 − θ1 − θ2.
Also, let X = S1 if Q = 1, X = S2 if Q = 2,
X = (S1, S2) if Q = 3, X = constant if Q = 4. For
any given sampling profile (θ1, θ2, θ12), the rate-distortion
problem at hand reduces to a standard Wyner-Ziv problem
with (X,Q) as the source available at the encoder and Q
as side information available both at the encoder and the
decoder. Hence, the rate-distortion function in (5) is given
as R(D) = minp(t̂|q,x) I(X ; T̂ |Q), where the minimum is
taken over the set of all conditional distributions p(t̂|q, x) for
which the joint distribution p(q, x, t̂) = p(q)p(x|q)p(t̂|q, x)
satisfies the expected distortion constraint E[d(T, T̂ )] ≤ D.
This expression can be easily evaluated to (5).

Note that the number of samples for each fraction in Fig.
3 grows to infinity for n → ∞ as long as its corresponding
fraction (i.e., θ1−θ12, θ12, θ2−θ12 or 1+θ12−θ1−θ2) is non-
zero. Therefore, these fractions can be considered separately
without loss of optimality.

Note that in Lemma 1, rate Rk is assigned for the de-
scription of the (θk − θ12)-fraction of samples in which only
source Sk is measured, k = 1, 2, while rate R12 is assigned

3For the distortion function D1(x) for x ≥ 0, we define 0 · D1(x/0) =
0, for x ≥ 0, if limx→0 x · D1(1/x) = 0, and similarly for the distortion
functions D12(x) and D2(x).
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for the description of the θ12-fraction of samples in which
both sources are measured (recall Fig. 3). Distortions D1, D2

and D12 are the weighted average per-sample distortions in
the reconstruction of T at the decoder for the corresponding
fractions of samples.

Lemma 2: For any given sampling budget (θ1, θ2), the
minimum achievable distortion for computing T = f(S1, S2)
is given by

Dmin(θ1, θ2) =(θ1 − θ∗12)D1,min + (θ2 − θ∗12)D2,min

+ (1 + θ∗12 − θ1 − θ2)Dmax, (7)

where θ∗12 = θ12,max if Dmax < D1,min + D2,min, θ∗12 =
θ12,min if Dmax > D1,min +D2,min, and θ∗12 is arbitrary if
Dmax = D1,min +D2,min.

Proof: It follows by considering the monotonicity of (4)
with respect to θ12.

Lemma 3: D(R, θ1, θ2) is continuous and convex in R for
R ≥ 0. Similarly, R(D, θ1, θ2) is continuous and convex in
D for D ≥ Dmin(θ1, θ2).

Proof: It follows from the operation definitions given in
Definition 1 similar to [3, Thm. 10.2.1].

IV. GAUSSIAN SOURCES

In this section, we focus on the case in which sources
S1 and S2 are jointly Gaussian, zero-mean, unit-variance
and correlated with coefficient ρ, with ρ ∈ [−1, 1]. The
decoder wishes to compute a weighted sum function T =
w1S1 +w2S2, with w1, w2 ∈ R, under the mean square error
(MSE) distortion measure d(t, t̂) = (t− t̂)2. In the following,
we study two specific choices for the weights w1 = 1, w2 = 0
and w1 = w2 = 1, resulting in the functions T = S1 and
T = S1 + S2, respectively. These two cases are selected in
order to illustrate the impact of the choice of the function
f(S1, S2) on the optimal sampling strategy. The discussion
can be extended with appropriate modifications to arbitrary
choices of weights (w1, w2).

A. Computation of T = S1

Proposition 1: For a given sampling budget (θ1, θ2), the
distortion-rate function for computing T = S1 is

D(R, θ1, θ2) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1− θ1 + θ12
− 2R

θ1 , if R ≤ θ1
2 log2

(
1
ρ2

)
,

1− θ1 − ρ2(θ2 − θ∗12)

+(θ1 + θ2 − θ∗12)2
− 2R

θ1+θ2−θ∗
12

·
(
ρ2
) θ2−θ∗12

θ1+θ2−θ∗
12 , otherwise ,

(8)
where θ∗12 = θ12,min is the optimal overlap fraction. The rate-
distortion function R(D, θ1, θ2) can be obtained by inverting
function (8) with respect to variable D.

Proof: See Appendix A.
Proposition 1 confirms the intuition that if the receiver

is interested in source 1 only, i.e., T = S1, the encoder
should simultaneously measure both sources S1 and S2 for
a fraction of time to be kept as small as possible. Moreover,
if R ≤ (θ1/2) log2(1/ρ

2), the entire rate R is used to describe
only the θ1-fraction of samples measured from source S1

only; otherwise, both the θ1-fraction of source S1 and the

(θ2 − θ∗12)-fraction of source S2 that is not overlapped are
described at positive rates. Using a variant of the classic
reverse water-filling solution [3], the threshold value of rate
R, for which only the independent source with the larger
variance, namely, the θ1-fraction, is described, can be obtained
as (θ1/2) log2(1/ρ

2). This threshold only depends on the
sampling fraction of the source with the larger variance, θ1,
and the ratio of the variances of the θ1-fraction and the
(θ2−θ∗12)-fraction, 1/ρ2. The reader is referred to Appendix A
and [5] for more details on how rate R is optimally allocated
between the two fractions of source samples.

B. Computation of T = S1 + S2

We now consider the case in which the desired function is
T = S1+S2. Note that T is a Gaussian random variable with
zero mean and variance Dmax = 2(1 + ρ), and that T and
S1 (or S2) are jointly Gaussian with correlation coefficient
ρ̃ =

√
(1 + ρ)/2. Moreover, since T = 0 for ρ = −1, it is

enough to focus on the interval ρ ∈ (−1, 1]. Finally, we recall
that the distortion-rate function for T is given by D12(R) =
2(1 + ρ)2−2R for R ≥ 0 [3], and the indirect distortion-rate
function is Dk(R) = 2(1 + ρ)(1 − ρ̃2 + ρ̃22−2R) for R ≥ 0
and k = 1, 2 [13].

Proposition 2: Given sampling budget (θ1, θ2), the
distortion-rate function for computing T = S1 + S2 is

D(R, θ1, θ2) = min
θ12,R12

(1 + ρ)2(θ1 + θ2 − 2θ12)2
− 2(R−R12)

θ1+θ2−2θ12

+ 2(1 + ρ)
(
1 + ρθ12 + θ122

− 2R12
θ12

)
− (1 + ρ)2(θ1 + θ2),

(9)

where the minimization is taken over all θ12 satisfying (1) and
all R12 satisfying R12 ≤ R.

Proof: This proposition follows by Lemma 1 using argu-
ments similar to the ones in Appendix A.

In order to obtain further analytical insight into (9) and
the optimal sampling strategy, we now consider some special
cases of interest.

Proposition 3: For R → ∞, we have

Dmin(θ1, θ2) = 2(1+ρ)(1+ρθ∗12)− (1+ρ)2(θ1+θ2), (10)

where θ∗12 = θ12,min if ρ > 0, θ∗12 = θ12,max if ρ < 0, and
θ∗12 is arbitrary if ρ = 0.

This proposition is easily obtained from Lemma 2. It says
that, if the sources (S1, S2) have positive correlation, i.e.,
ρ > 0, and there are no rate limitations (R → ∞), the MSE
distortion increases linearly with θ12, and it is thus optimal
to set θ12 to be the smallest possible value θ∗12 = θ12,min.
In contrast, if ρ < 0, the MSE distortion decreases linearly
with θ12, and thus the optimal θ∗12 is the largest possible
value, θ∗12 = θ12,max. This shows the relevance of the source
correlation in designing the optimal sampling strategy.

The general conclusions about the optimal sampling strate-
gies discussed above for infinite rate can be extended to finite
rates R in certain regimes. Specifically, Proposition 4 below
states that if ρ ≤ 0, then, just as in the case of R → ∞
of Proposition 3, the encoder should set θ12 to be as large
as possible, i.e., θ∗12 = θ12,max, irrespective of the value
of R. Furthermore, Proposition 5 below demonstrates that,
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for sufficiently small rates, the optimal overlap θ∗12 tends
to be maximum, i.e., θ∗12 = θ12,max, for a larger range of
correlation coefficients ρ than ρ ≤ 0. This is mainly because
when rate R is small enough, it is generally more efficient
to use the available rate to describe T directly during the
overlapping θ12-fraction, rather than indirectly describing T
based on observations of S1 or S2 alone.

Proposition 4: For ρ ≤ 0, the distortion-rate function is

D(R, θ1, θ2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(θ1 + θ2 − θ∗12)(1 + ρ)22
− 2R

θ1+θ2−θ∗12

·
(

2
1+ρ

) θ∗12
θ1+θ2−θ∗12 + 2(1 + ρ)(1 + ρθ∗12)

−(1 + ρ)2(θ1 + θ2), if R >
θ∗
12

2 log2

(
2

1+ρ

)
,

2(1 + ρ)
(
1− θ∗12 + θ∗122

− 2R
θ∗12

)
, otherwise,

(11)
where θ∗12 = θ12,max is the optimal overlapping fraction.

Proof: The proof is obtained by solving (9) for ρ ≤ 0.
Proposition 5: For any ρ > 0, if R ≤

(θ12,min/2) log2(2/(1 + ρ)), the distortion-rate function
is given as

D(R, θ1, θ2) = 2(1 + ρ)(1− θ∗12) + 2(1 + ρ)θ∗122
− 2R

θ∗
12 , (12)

where θ∗12 = θ12,max.
Proof: Given R ≤ (θ12,min/2) log2(2/(1 + ρ)), for

any feasible θ12 satisfying (1), we always have R ≤
(θ12/2) log2(2/(1 + ρ)). In this case, for any given θ12,
applying the standard Lagrangian method to (9), we obtain
R∗

12 = R. Substituting into (9) and considering the mono-
tonicity of function D(R, θ1, θ2, θ12) with respect to θ12,
we can show that the optimal overlap fraction is given by
θ∗12 = θ12,max, leading to the distortion-rate function as stated
in the proposition.

C. Numerical Results

In this subsection, we numerically evaluate the distortion-
rate function with fractional sampling for computation of
function T = S1 + S2. Fig. 4 and Fig. 5 show the mini-
mum MSE distortion D and the optimal overlap fraction θ∗12
versus rate R, respectively, for (θ1, θ2) = (0.5, 0.75), and
ρ = −0.5, 0, 0.5. The curves are obtained by numerically
solving the optimization in (9). It can be seen from Fig. 5 that,
as predicted by Proposition 4, the optimal overlap fraction θ∗12
is equal to the maximum possible fraction θ12,max = 0.5, for
ρ = −0.5 < 0 and ρ = 0. Moreover, for ρ = 0.5 > 0,
with sufficiently small rates R, as described in Proposition
5, the optimal overlap fraction θ∗12 equals to the maximum
overlap θ12,max = 0.5. However, as R increases, θ∗12 drops to
the minimum value θ12,min = 0.25, which is consistent with
Proposition 3.

V. BINARY SOURCES

In this section, we consider binary sources so that S1 =
S2 = T = T̂ = {0, 1}, and (S1, S2) is a doubly symmetric
binary source (DSBS), i.e., we have S1 ∼ Bernoulli(1/2),
S2 ∼ Bernoulli(1/2) and S1 ⊕ S2 ∼ Bernoulli(p), where
0 ≤ p ≤ 1/2. In other words, S2 is the output of a binary
symmetric channel with crossover probability p corresponding
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Fig. 4. Distortion-rate function for computing T = S1 + S2, (S1, S2)
jointly Gaussian with correlation coefficient ρ = −0.5, 0, 0.5, respectively.
The sampling budget is (θ1, θ2) = (0.5, 0.75).
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Fig. 5. Optimal overlap fraction θ∗12 that minimizes the average expected
distortion as a function of rate R for computing T = S1 + S2, (S1, S2)
jointly Gaussian with correlation coefficient ρ = −0.5, 0, 0.5, respectively.
The sampling budget is (θ1, θ2) = (0.5, 0.75).

to the input S1. We take the Hamming distortion as the
distortion measure, i.e., d(t, t̂) = 1−δtt̂, where δtt̂ = 1 if t = t̂
and δtt̂ = 0 otherwise. Since all non-trivial binary functions
are equivalent, up to relabeling, to either the exclusive OR or
the AND [14], it suffices to consider only these two options
for function T = f(S1, S2): (i) the exclusive OR or binary
sum, i.e., T = S1 ⊕ S2; (ii) the AND or binary product, i.e.,
T = S1⊗S2. In the following, we focus on deriving the rate-
distortion R(D, θ1, θ2) for convenience, since in general it
takes a simpler analytical form as compared to the distortion-
rate function D(R, θ1, θ2).

A. Computation of T = S1 ⊕ S2

Proposition 6: For given sampling budget (θ1, θ2), the rate-
distortion function for computing T = S1 ⊕ S2 is given by

R(D, θ1, θ2) =

⎧⎪⎨
⎪⎩
h(p)− h

(
D−(1−θ∗

12)p
θ∗
12

)
,

if (1 − θ∗12)p ≤ D < p,

0, if D ≥ p,

(13)

where h(x) = −x log2(x)− (1− x) log2(1− x) is the binary
entropy function, and θ∗12 = θ12,max is the optimal overlap
fraction, for (1− θ∗12)p ≤ D < p.
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Proof: Since T = S1 ⊕ S2 is a Bernoulli(p) random
variable independent of S1 and S2, the observation of either
S1 or S2 is not useful for computing T . Thus, one should
choose the overlap fraction to be as large as possible, i.e.,
θ∗12 = θ12,max. The rate-distortion function (13) then follows
immediately from the rate-distortion function of the binary
random variable T [3].

B. Computation of T = S1 ⊗ S2

In this subsection, we focus on the binary product T = S1⊗
S2, which is Bernoulli distributed with probability (1− p)/2.
For convenience, we start by finding the minimum possible
distortion at the decoder given (θ1, θ2), i.e., Dmin(θ1, θ2) as
defined in Lemma 3, and the minimum required rate to achieve
it. Then, we proceed to derive the rate-distortion function.

Proposition 7: For given sampling budget (θ1, θ2), the min-
imum achievable distortion for computing T = S1 ⊗ S2 is
given by

Dmin(θ1, θ2) =
1− p

2
+

(
p− 1

2

)
(θ1+θ2)+

(
1− 3p

2

)
θ∗12,

(14)
where θ∗12 = θ12,min if p < 1/3 and θ∗12 = θ12,max if 1/3 ≤
p ≤ 1/2. Moreover, distortion Dmin(θ1, θ2) can be achieved
as long as R ≥ Rmin(θ1, θ2) = θ1 + θ2 −

(
2− h

(
1−p
2

))
θ∗12.

Proof: See Appendix B.

The results in Proposition 7 can be seen as the counterpart
of Proposition 3 for binary sources. In fact, they show that,
for sufficiently large R, if p < 1/3, the average Hamming
distortion increases linearly with θ12 and thus we should set
θ12 to the smallest possible value θ12,min; instead, if 1/3 ≤
p ≤ 1/2, the optimal value of θ12 is the largest possible,
namely, θ12,max.

Before we proceed to investigate the general rate-distortion
function R(D, θ1, θ2), we first derive the indirect rate-
distortion function R1(D) when only S1 is observed at the
encoder.

Lemma 4: The indirect rate-distortion function for T =
S1 ⊗ S2 is given by

R1(D) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

min
1−p−2D

1−2p
≤y≤1

h

(
D + y(1− p) +

p− 1

2

)
− 1

2
h(y)

− 1
2
h(2D + y(1− 2p) + p− 1), p

2
< D ≤ 1−p

2
,

0, D ≥ 1−p
2

,
(15)

Proof: See Appendix C.

By symmetry, the indirect rate-distortion function R2(D)
for T when S2 is observed at the encoder is also given
by Lemma 4. The rate-distortion function R12(D) for T is
obtained from standard results [3] as R12(D) = h((1 −
p)/2) − h(D) if 0 ≤ D ≤ (1 − p)/2, and R12(D) = 0 if
D > (1− p)/2.

Proposition 8: For a given sampling budget (θ1, θ2), the
rate-distortion function for computing T = S1 ⊗ S2 is given
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Fig. 6. Distortion-rate function for computing T = S1⊗S2, (S1, S2) doubly
symmetric binary with probability Pr[S1 �= S2] equal to p = 0.1, 0.2, 0.4,
respectively. The sampling budget is (θ1, θ2) = (0.5, 0.75).

as

R(D, θ1, θ2) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

min
θ12,D3,D12

θ12

(
h

(
1− p

2

)
− h

(
D12

θ12

))
+(θ1 + θ2 − 2θ12)R1

(
D3

θ1+θ2−2θ12

)
,

if Dmin(θ1, θ2) ≤ D < 1−p
2 ,

0, if D ≥ 1−p
2 ,

(16)

where Dmin(θ1, θ2) is as given in Proposition 7 and the
minimization is taken over all choices of θ12, D3 and D12

such that (1) is satisfied, p(θ1 + θ2 − 2θ12)/2 ≤ D3 ≤
(1−p)(θ1+θ2−2θ12)/2, pθ12/2 ≤ D12 ≤ (1−p)θ12/2, and

D3 +D12 +

(
1− p

2

)
(1 + θ12 − θ1 − θ2) = D. (17)

Proof: See Appendix D.

C. Numerical Results

In this subsection, we numerically evaluate the distortion-
rate function for computation of function T = S1⊗S2. Fig. 6
and Fig. 7 plot the minimum average Hamming distortion D
and the optimal overlap fraction θ∗12 for (θ1, θ2) = (0.5, 0.75),
and p = 0.1, 0.2, 0.4. In Fig. 6, as predicted by Proposition
7, the minimum rate Rmin(θ1, θ2) that achieves distortion
Dmin(θ1, θ2), is given by 0.9982, 0.9927, 0.69 for p =
0.1, 0.2, 0.4, respectively. It can be observed from Fig. 7,
for p = 0.4 > 1/3, the optimal overlap fraction θ∗12 is
equal to the maximum possible value θ12,max = 0.5, for any
0 ≤ R ≤ 1. However, for smaller probabilities p = 0.1, 0.2,
the optimal overlap fraction equals to the maximum possible
value θ12,max = 0.5 for sufficiently smaller rates and then
drops to the minimum possible value θ12,min = 0.25 once
R gets larger. Moreover, the smaller the probability p is, the
larger range of rates R over which the optimal overlap fraction
θ∗12 is θ12,min = 0.25. We note that with a larger p, it is easier
to describe T directly, since T ∼ Bernoulli((1 − p)/2), but
the indirect description of T based on S1 or S2 becomes more
difficult since T becomes less correlated with S1 or S2.4 This

4The correlation coefficient between T and S1 or S2 is given by√
(1− p)/(1 + p).
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Fig. 7. Optimal overlap fraction θ∗12 that minimizes the average expected
distortion as a function of R for computing T = S1 ⊗ S2, (S1, S2) doubly
symmetric binary with probability Pr[S1 �= S2] equal to p = 0.1, 0.2, 0.4,
respectively. The sampling budget is (θ1, θ2) = (0.5, 0.75).

explains why the optimal overlap fraction should be chosen
as the maximum possible value θ12,max = 0.5 when p is
larger than 1/3 (see the curve p = 0.4). In this sense, the
regime p ≥ 1/3 may be considered as the binary counterpart
of the regime ρ ≤ 0 for the Gaussian sum case in Section
IV-B. For probabilities p < 1/3, the numerical results above
imply that the optimal overlap depends on the link rate R.
Similar to the Gaussian sum case when ρ > 0 (Proposition
5), when R is sufficiently small, it remains optimal to choose
the overlap fraction to be the maximum possible; however, as
R grows sufficiently large, it is more advantageous to have
the overlap fraction as small as possible, which is consistent
with Proposition 7.

VI. MULTI-HOP LOSSY COMPUTING WITH FRACTIONAL

SAMPLING

In this section, we extend the analysis of lossy computing
with fractional sampling from the point-to-point setup to a
multi-hop setup as depicted in Fig. 2. We assume that Encoder
k can only sample a fraction θk of the samples for source Sk,
with 0 ≤ θk ≤ 1, for k = 1, 2. Moreover, the encoders make
decisions on which samples to sense independently and based
only on the statistics of the sources. In particular, to ensure
causality, Encoder 2 is not allowed to observe the message
from Encoder 1 before making a decision on which samples
to measure as instead assumed in [15] for a related set-up.
Under this assumption, the sampling fractions can overlap for
a fraction θ12, with θ12 satisfying (1). Similar to the point-
to-point setup of Fig. 1, it is without loss of generality to
assume the sampling profile is as shown in Fig. 3. The links
between Encoder 1 and Encoder 2 and between Encoder 2
and the decoder can support a rate of R1 bits/sample and a
rate of R2 bits/sample, respectively. As above, the goal is to
estimate a function T n = fn(Sn

1 , S
n
2 ) at the decoder. It is

observed that if R1 is unbounded, then the scenario reduces
to the point-to-point system studied in the previous sections.

Definition 5: A (n,R1, R2, D, θ1, θ2, θ12) code for the prob-
lem of multi-hop lossy computing of two memoryless sources
with fractional sampling consists of an encoder (Encoder
1) f1 : Snθ1

1 → {1, ..., 2nR1}; an encoder (Encoder 2)

11 , θS n

nT̂
1REncoder Decoder

22 ,
nS

Fig. 8. Lossy computing with side information at the decoder and fractional
sampling: The encoder measures source S1 for a fraction of time θ1, and
the decoder measures source S2 for a fraction of time θ2 and estimates a
function Tn = fn(Sn

1 , S
n
2 ).

f2 : Snθ2
2 × {1, ..., 2nR1} → {1, ..., 2nR2}; and a decoder

g : {1, ..., 2nR2} → T̂ n such that distortion constraint D is
satisfied as in (2). It is assumed that encoder f1 operates on
the measurements (S1,1, ..., S1,nθ1) and encoder f2 operates
on the measurements (S2,n(θ1−θ12)+1, ..., S2,n(θ1+θ2−θ12)) as
well as the index received from Encoder 1.

The distortion-rate function D(R1, R2, θ1, θ2, θ12) and the
distortion-rate function D(R1, R2, θ1, θ2) are defined in a
similar manner as in the point-to-point setup of Section II.
In the remaining of this section, we focus on the specific case
in which sources S1 and S2 are Gaussian and the decoder
wishes to compute the sum T = S1+S2. Other cases studied
in Section IV and Section V can also be investigated similarly.

A. Lower Bounds on the Achievable Distortion

Two lower bounds on the achievable distortion for the
Gaussian multi-hop lossy computing problem discussed above
can be derived based on the cut-set arguments [16]. Specifi-
cally, the first cut is around Encoder 1 and the second cut is
around the decoder. These two cuts induce the following two
subproblems of the original problem in Fig. 2: 1) For the cut
around Encoder 1, the problem is equivalent to point-to-point
lossy computing with side information, in which the encoder
and the decoder can only measure a fraction of the n samples
from the respective source; 2) For the cut around the decoder,
the problem reduces to that of point-to-point source coding
problem investigated in Section IV-B, leading to a lower bound
as given by (9) of Proposition 2 with R replaced by R2.

In the following, we study the first subproblem identified
above, namely, the problem of lossy computing with side
information at the decoder and fractional sampling as shown
in Fig. 8. To elaborate, the encoder measures a fraction θ1
of samples from S1 and describes it using rate R1 to the
decoder. At the same time, the decoder measures a fraction,
θ2, of samples of a correlated source S2, which overlaps with
the encoder’s measurements for a fraction θ12 of samples.
Based on the description received from the encoder and its
own measurements, the decoder forms the estimate T̂ n.

Proposition 9: For the problem of lossy computing with
side information at the decoder and fractional sampling, given
sampling budget (θ1, θ2) and rate R1, the distortion-rate
function D(1)(R1, θ1, θ2) can be obtained as follows.
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1) For ρ > 0,

D(1)(R1, θ1, θ2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1 + ρ)2(θ1 − θ∗12)2
− 2R1

θ1−θ∗12

+(1 + ρ)2(θ∗12 − θ1 − θ2)

+2(1 + ρ),

if R1 ≤ θ1−θ∗
12

2 log2

(
1+ρ
1−ρ

)
,

θ1(1 + ρ)2
(

1−ρ
1+ρ

) θ∗12
θ1

2−
2R1
θ1

+2ρ(1 + ρ)θ∗12 − (1 + ρ)2

·(θ1 + θ2) + 2(1 + ρ), otherwise,
(18)

where θ∗12 = θ12,min is the optimal overlap fraction;
2) If ρ ≤ 0, then

D(1)(R1, θ1, θ2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1 − ρ2)θ∗122
− 2R1

θ∗12 − (1− ρ2)θ∗12
−(1 + ρ)2θ2 + 2(1 + ρ),

if R1 ≤ θ∗
12

2 log2

(
1−ρ
1+ρ

)
,

θ1(1 + ρ)2
(

1−ρ
1+ρ

) θ∗12
θ1

2−
2R1
θ1

+2ρ(1 + ρ)θ∗12 − (1 + ρ)2

·(θ1 + θ2) + 2(1 + ρ), otherwise,
(19)

where θ∗12 = θ12,max is the optimal overlap fraction.
Proof: See Appendix E.

Proposition 9 states that, in the setting of Fig. 8, it is optimal
to have the overlap fraction as small as possible if the two
sources are positively correlated, and as large as possible if
they are negatively correlated. This result is consistent and
follows from similar considerations as Proposition 3, 4 and 5.

B. Upper Bounds on the Achievable Distortion

In this subsection, we first propose a specific strategy, thus
providing an upper bound on the achievable distortion. The
derived upper bound is then compared to the lower bounds in
Proposition 2 and Proposition 9 through numerical examples.

In the proposed strategy, we treat the (θ1 − θ12)-fraction
of samples measured only at Encoder 1, the overlapping θ12-
fraction measured by both the encoders, and the (θ2 − θ12)-
fraction measured only at Encoder 2 separately in terms of
encoding and decoding. In particular, on the link between the
two encoders, which is of rate R1, we assign rate R11 to
the encoded version of the (θ1 − θ12)-fraction of samples and
rate R12 to the θ12-fraction. Moreover, on the link between
Encoder 2 and the decoder, which is of rate R2, we allocate
rate R21 to forward the encoded version of the (θ1 − θ12)-
fraction, rate R22 to the θ12-fraction and rate R23 to the (θ2−
θ12)-fraction. By definition, we thus have the conditions

R11 +R12 ≤ R1, (20a)

and R21 +R22 +R23 ≤ R2. (20b)

We specify the source coding strategy used for the different
fractions of samples and discuss the resulting average distor-
tions as follows. For the (θ1 − θ12)-fraction measured only
by Encoder 1, we have available an end-to-end rate equal to
min(R11, R21). Encoder 1 thus compresses this fraction of
samples of S1 at rate min(R11, R21)/(θ1 − θ12) bits/source

sample using a standard indirect rate-distortion optimal code,

leading to average distortion 1− ρ2+(1+ ρ)22−
2 min(R11,R21)

θ1−θ12

[13]. Similarly, for the (θ2−θ12)-fraction of samples measured
only by Encoder 2, Encoder 2 can employ rate R23/(θ2−θ12)
using a standard indirect rate-distortion optimal code, leading

to average distortion 1 − ρ2 + (1 + ρ)22−
2R23

θ2−θ12 [13]. For
the (1 + θ12 − θ1 − θ2)-fraction measured by neither node,
the average distortion at the decoder is equal to the variance
of source T = S1 + S2, namely, 2(1 + ρ). For the θ12-
fraction measured by both nodes, the setup at hand reduces
to the multi-hop source coding problem investigated in [17]
with the average link rates over the two links being R12/θ12
and R22/θ12, respectively. Among the class of achievable
schemes considered in [17], under the assumption of unit-
variance sources, the so called “re-compress” scheme is op-
timal. Therefore, we assume the “re-compress” scheme for
the θ12-fraction at hand, which leads to average distortion
D0(R12/θ12, R22/θ12), where D0(R1, R2) = (1 − ρ2)(1 −
2−2R2)2−2R1 + 2(1 + ρ)2−2R2 , for R1 ≥ 0 and R2 ≥ 0.

Applying the source coding strategy described above, an
achievable distortion at the decoder is given by summing the
contributions of the different fractions of samples with the
appropriate weights as

Dub(R1, R2, θ1, θ2) = min
θ12,R11,R22

θ12D0

(
R1 −R11

θ12
,
R22

θ12

)

+ (1 + ρ)2
[
(θ1 − θ12)2

− 2R11
θ1−θ12 + (θ2 − θ12)2

− 2(R2−R11−R22)
θ2−θ12

]

+ 2ρ(1 + ρ)θ12 − (1 + ρ)2(θ1 + θ2) + 2(1 + ρ), (21)

where the minimum is taken under the constraints (1) and (20).
Note that in (21), we have set R12 = R1 − R11, R21 = R11

and R23 = R2 −R11 −R22 without loss of optimality, since
the two rate bounds in (20) are easily seen to be satisfied with
equality at an optimal solution.

C. Numerical Results

Fig. 9 and Fig. 10 plot the achievable distortion
Dub(R1, R2, θ1, θ2) and the corresponding optimized overlap
fraction θ∗12 as a function of rate R2 when R1 = 0.3,
(θ1, θ2) = (0.5, 0.75) and ρ = 0.5. In Fig. 9, the two
lower bounds obtained, D(1)(R1, R2, θ1, θ2) from Proposition
9 and D(2)(R1, R2, θ1, θ2) from Proposition 2 are also plotted
for comparison. We observe that the distortion of the pro-
posed scheme decreases as R2 increases and gets arbitrarily
close to lower bound D(1)(R1, R2, θ1, θ2), corresponding to
the cut around Encoder 1, as R2 gets sufficiently large.
In contrast, lower bound D(2)(R1, R2, θ1, θ2), corresponding
to the cut around the decoder, is tighter than lower bound
D(1)(R1, R2, θ1, θ2) for small rates R2.

The optimal overlap fraction θ∗12 for the achievable rate is
equal to the minimum possible fraction θ12,min = 0.25 when
R2 is sufficiently small, i.e., R2 ≤ 0.03. It is interesting to
compare this result with Proposition 5. In fact, the latter entails
that, for the point-to-point case when R1 goes to infinity, if
rate R2 is small enough, then the optimal overlap fraction θ∗12
equals the largest possible value θ12,max. Thus, the optimality
of the choice θ∗12 = θ12,min in the multi-hop scenario with the
given value of R1 is due to the fact that the source S1 received
at Encoder 2 is noisy as a result of the necessary compression
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Fig. 9. The upper and lower bounds on the achievable average distortion
versus link rate R2 for computing T = S1 + S2, (S1, S2) jointly Gaussian
with correlation coefficient ρ = 0.5. The sampling budget is (θ1, θ2) =
(0.5, 0.75) and the link rate between the encoders is R1 = 0.3.
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Fig. 10. The optimal overlap fraction θ∗12 that minimizes the achievable
average distortion versus link rate R2 for computing T = S1+S2, (S1, S2)
jointly Gaussian with correlation coefficient ρ = 0.5. The sampling budget is
(θ1, θ2) = (0.5, 0.75) and the link rate between the encoders is R1 = 0.3.

at Encoder 1. Moreover, since rate R2 is very small, similar
to Proposition 5, the rates of both links are entirely allocated
for describing the overlapped fraction of samples.5 As rate R2

increases, the optimal overlap fraction θ∗12 gradually increases
until it reaches the maximum possible value θ12,max = 0.5. In
this regime, in addition to the overlapped fraction of samples,
Encoder 2 also starts describing the non-overlapped fraction of
samples measured only from source S2. Finally, as R2 grows
beyond 0.16, the non-overlapped fraction of samples measured
only from source S1 also starts being allocated a non-zero rate
and the optimal overlap fraction θ∗12 decreases down to the
minimum possible value θ12,min = 0.25. This is consistent
with Proposition 9, which shows that as R2 goes to infinity,
the optimal overlap fraction is θ12,min = 0.25.

VII. CONCLUSIONS

In this paper, we considered the problem of lossy compres-
sion for computing a function of correlated sources. Motivated

5The fact that θ∗12 equals θ12,min , despite the fact that only the overlapped
samples are described, is explained mathematically by the non-convexity of
function D0(R1, R2).

by the fact that acquiring the information necessary for com-
putation may be costly in sensor networks, we assumed that
the encoder can only observe a fraction of the samples from
each source according to a sampling strategy that is subject
to design. We also investigated the corresponding multi-hop
problem with two encoders each observing a fraction of one
of the sources. The results highlight the dependence of the op-
timal sampling strategy on the function to be computed by the
decoder, on the source statistics, including the correlation, on
the link rate and the desired metric for distortion. Interesting
future work includes investigation of other network scenarios
and extensions to sources with memory.

APPENDIX A
PROOF OF PROPOSITION 1

Given T = S1, we have the distortion rate functions
D1(R) = D12(R) = 2−2R and D2(R) = 1 − ρ2 + ρ22−2R

[13]. In this case, applying Lemma 1, we obtain

D(R, θ1, θ2, θ12)

= min
R1,R2,R12≥0

(θ1 − θ12)2
− 2R1

θ1−θ12 + θ122
− 2R12

θ12

+ (θ2 − θ12)
(
1− ρ2 + ρ22−

2R2
θ2−θ12

)
+ (1 + θ12 − θ1 − θ2)

(22)

= min
0≤R2≤R

θ12
− 2(R−R2)

θ1 + (θ2 − θ12)ρ
22−

2R2
θ2−θ12

+ 1− θ1 − ρ2(θ2 − θ12), (23)

where the minimization in (22) is under the constraint R1 +
R2 + R12 ≤ R. Note that the optimization in (22) is
equivalent to that in (23), since in any optimal solution, we
have R12/θ12 = R1/(θ1 − θ12) by the convexity of function
2−2r for r ≥ 0, and the condition R1 + R2 + R12 ≤ R
must be met with equality. It can be easily seen that function
D(R, θ1, θ2, θ12) above is monotonically non-decreasing with
respect to θ12. Therefore, the optimal overlap is the minimum
possible, which equals θ∗12 = θ12,min. Moreover, the optimal
rate R∗

2 that minimizes (23) can be obtained using standard
Lagrangian methods similar to [5] as:

R∗
2 =

θ2 − θ∗12
θ1 + θ2 − θ∗12

(
R− θ1

2
log2

1

ρ2

)+

. (24)

With the so obtained R∗
2, the results in Proposition 1 follows

immediately.

APPENDIX B
PROOF OF PROPOSITION 7

For any given sampling profile (θ1, θ2, θ12), in order to
minimize the distortion with respect to R, we can take R
to be arbitrarily large (in fact, given the binary alphabets,
R = 1 suffices). With no rate limitations, it is easy to see
that, during the θ12-fraction, T can be computed at the encoder
and described to the decoder losslessly with a rate equal to
the entropy of T , h((1−p)/2). During the (θ1−θ12)-fraction,
only source S1 is observed and can be described to the decoder
losslessly with a rate h(1/2) = 1. Based on source S1, the best
estimate at the decoder is as follows: T̂ = 0 if S1 = 0, and
T̂ = 1 if S1 = 1, leading to average Hamming distortion
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p/2. Similarly, during the (θ2 − θ12)-fraction, the average
Hamming distortion is also p/2. During the (1+θ12−θ1−θ2)-
fraction, neither source S1 nor source S2 is observed. Since
T is Bernoulli distributed with (1 − p)/2, the best estimate
is given by t̂ = 0, leading to average Hamming distortion
(1 − p)/2. Therefore, we have D1,min = D2,min = p/2 and
Dmax = (1−p)/2. Substituting into (7) of Lemma 2, we have

Dmin(θ1, θ2) =
1− p

2
+

(
p− 1

2

)
(θ1 + θ2) +

1− 3p

2
θ∗12,

(25)

where θ∗12 = θ12,min if p < 1/3, and θ∗12 = θ12,max if p ≥
1/3. Finally, from the discussion above, it follows that, for
any R ≥ Rmin(θ1, θ2) = θ1 + θ2 − (2− h((1− p)/2)) θ∗12,
distortion Dmin(θ1, θ2) can be achieved at the decoder.

APPENDIX C
PROOF OF LEMMA 4

In the case of indirect description of T based on only source
S1, the indirect rate-distortion function is given by R1(D) =
minp(t̂|s1): Ed(T,T̂ )≤D I(S1; T̂ ) [8]. Let p(t̂ = 1|s1 = 0) = x

and p(t̂ = 1|s1 = 1) = y, where 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1.
Note that if we select x = y = 0, i.e., T̂ = 0 with probability
1, the average distortion D = (1 − p)/2 is achievable at the
decoder. Thus, for D ≥ (1 − p)/2, we have R1(D) = 0.
Moreover, from the proof of Proposition 7, it follows that D ≥
p/2 must hold. For the nontrivial case p/2 ≤ D < (1− p)/2,
the expected distortion constraint can be written as

E(d(T, T̂ )) =
x

2
+

1− y

2
(1− p) +

y

2
p

=
x+ (2p− 1)y + 1− p

2
≤ D, (26)

and the mutual information I(S1; T̂ ) can be written as

I(S1; T̂ ) = H(T̂ )−H(T̂ |S1)

= h

(
x+ y

2

)
− 1

2
h(x) − 1

2
h(y). (27)

For any given y, considering the monotonicity of (27) with
respect to x for 0 ≤ x ≤ 2D−(1−p)+(1−2p)y, we can easily
show that (27) is minimized at x = 2D− (1−p)+ (1− 2p)y,
i.e., (26) is met with equality. Therefore, for p/2 ≤ D <
(1− p)/2, we obtain R1(D) as in (15).

APPENDIX D
PROOF OF PROPOSITION 8

If we set T̂ = 0 at the decoder, the resulting Hamming
distortion is (1 − p)/2. Hence, for D ≥ (1 − p)/2, zero
rate is required for description, i.e., R(D, θ1, θ2) = 0. For
Dmin(θ1, θ2) ≤ D < 1−p

2 , for any given sampling profile
(θ1, θ2, θ12), we can use Lemma 1 by setting D1,min =
D2,min = p/2, D12,min = 0 and Dmax = (1 − p)/2. Due
to the convexity of R1(D), it is optimal to have D1/(θ1 −
θ12) = D2/(θ2 − θ12) in any optimal solution. Moreover,
with Dmin(θ1, θ2) ≤ D < 1−p

2 , for optimality, (6) must be
met with equality, i.e.,

D1 +D2 +D12 +
(1 + θ12 − θ1 − θ2)(1 − p)

2
= D, (28)

and D1, D12 and D2 must be such that D1/(θ1 − θ12),
D12/θ12 and D2/(θ2 − θ12) are all less than or equal to
Dmax = (1−p)/2. If we let D3 = D1+D2, then D3 satisfies

p(θ1 + θ2 − 2θ12)

2
≤ D3 ≤ (1 − p)(θ1 + θ2 − 2θ12)

2
. (29)

Finally, taking the minimum of R(D, θ1, θ2, θ12) over all θ12
satisfying (1), we obtain R(D, θ1, θ2) as in the proposition for
Dmin(θ1, θ2) ≤ D < 1−p

2 .

APPENDIX E
PROOF OF PROPOSITION 9

For any given sampling profile (θ1, θ2, θ12), we denote by
R11 and R12, the rates used by the encoder in Fig. 8 to
describe the non-overlapping (θ1 − θ12)-fraction of samples
and the overlapping θ12-fraction of samples measured from
S1, respectively. During the θ12-fraction, using rate R12/θ12,
one can achieve average distortion (1− ρ2)2−2R12/θ12 by the
Wyner-Ziv theorem [18]. During the (θ1 − θ12)-fraction, only
source S1 is observed and described to the decoder using
rate R11/(θ1 − θ12) and the resulting average distortion is
given by 2(1+ ρ)(1− ρ̃2 + ρ̃22−2R11/(θ1−θ12)), where ρ̃ is as
defined in Section IV. During the (θ2−θ12)-fraction, since only
S2 is observed perfectly at the decoder, the resulting average
distortion can be easily seen to be 1− ρ2. Finally, during the
(1+θ12−θ1−θ2)-fraction, with neither source S1 nor source
S2 observed, the average distortion at the decoder is equal to
the variance of T , namely, 2(1+ρ). From the independence of
samples measured from the different fractions of samples, the
minimum achievable distortion for sampling budget (θ1, θ2)
and rate R1 can be obtained as

D(1)(R1, θ1, θ2) = min
θ12,R11,R12

(1− ρ2)θ122
− 2R12

θ12

+ (1 + ρ)2(θ1 − θ12)2
− 2R11

θ1−θ12 + 2ρ(1 + ρ)θ12

− (1 + ρ)2(θ1 + θ2) + 2(1 + ρ), (30)

where the constraint on θ12 is as in (1) and the constraint
on R11, R12 is given by R11 + R12 ≤ R1. The minimum
achievable distortion in the proposition is obtained by solving
the optimization problem (30). Specifically, for ρ > 0, we
can show that it is optimal to have θ∗12 = θ12,min by simply
considering the monotonicity of function D(1)(R, θ1, θ2, θ12)
with respect to θ12. Similarly, we can show that for ρ ≤ 0,
it is optimal to have θ∗12 = θ12,max. Moreover, the optimal
rate R∗

11 and R∗
12 can be obtained using standard Lagrangian

methods similar to [5]. Details are omitted.

APPENDIX F
TRADE-OFF BETWEEN AVERAGE DISTORTION AND

WORST-CASE DISTORTION

In the problem formulation considered in Section II, the
goal was minimizing the average distortion D(R, θ1, θ2) at the
decoder for any given rate R and sampling budget (θ1, θ2).
As a result of the average of over all the source samples in
(2), this performance metric does not make guarantees on the
maximum average distortion per sample. In fact, as seen in
(3), the average distortion is the average of the distortions
accrued over the four relevant fractions of samples illustrated
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Fig. 11. Optimal overlap fraction θ∗12 that minimizes distortion
Dμ(R, θ1, θ2) as a function of μ for computing T = S1 + S2, (S1, S2)
jointly Gaussian with correlation coefficient ρ = 0.5. The sample budget is
(θ1, θ2) = (0.5, 0.75) and the link rate is R = 0.3, 0.6, respectively.

in Fig. 3, namely the fraction of samples in which only S1,
both S1 and S2, only S2 or neither S1 nor S2 are measured. In
this appendix, we extend the analysis in Sections III, IV and
V in order to allow the decoder to strike the desired balance
between the average and the worst-case distortions.

A. Formulation for General Sources

For any given sampling profile (θ1, θ2, θ12)
and any rate allocation (R1, R2, R12), we define
Dw(R1, R2, R12, θ1, θ2, θ12) as the maximum average
distortion among all the sampling fractions shown in Fig. 3,
i.e.,

Dw(R1, R2, R12, θ1, θ2, θ12) = max

[
1{θ12>0}D12

(
R12

θ12

)
,

1{θ1−θ12>0}D1

(
R1

θ1 − θ12

)
, 1{1+θ12−θ1−θ2>0}Dmax,

1{θ2−θ12>0}D2

(
R2

θ2 − θ12

)]
, (31)

where the indicator function 1{A} takes value 1 if A is true and
0 otherwise. We then define the weighted sum of the average
distortion in (2) and the worst-case distortion (31) as

Dμ(R, θ1, θ2, θ12) = min
R1,R2,R12≥0

(θ1 − θ12)D1

(
R1

θ1 − θ12

)

+ θ12D12

(
R12

θ12

)
+ (θ2 − θ12)D2

(
R2

θ2 − θ12

)
+ (1 + θ12 − θ1 − θ2)Dmax

+ μDw(R1, R2, R12, θ1, θ2, θ12), (32)

where μ > 0 is the relative weight of the worst-case distortion.
Accordingly, given any sampling budget (θ1, θ2), the modified
distortion-rate trade-off is characterized by Dμ(R, θ1, θ2) =
infθ12 Dμ(R, θ1, θ2, θ12).

In the case of sampling budget (θ1, θ2) satisfying θ1 +
θ2 < 1, regardless of the choice of the overlap fraction
θ12 and of the rate allocation (R1, R2, R12), the worst-case
distortion occurs during the (1 + θ12 − θ1 − θ2)-fraction of
samples in which neither source is measured and therefore

we have Dw(R1, R2, R12, θ1, θ2, θ12) = Dmax. In this case,
the addition of a constant term in the objective function of (32)
does not affect the optimization and thus the optimal overlap
fraction θ∗12 and the optimal rate allocation (R∗

1, R
∗
2, R

∗
12)

remains the same as in the case when μ = 0. Therefore, in
the following, we focus on the nontrivial case where we have
0 < θ1 < 1, 0 < θ2 < 1 and θ1 + θ2 ≥ 1. In this regime,
function Dμ(R, θ1, θ2, θ12) takes different forms depending
on the value of θ12. Specifically, if the overlap fraction θ12 is
selected such that θ12,min < θ12 ≤ θ12,max, then we have

Dμ(R, θ1, θ2, θ12) = min
R1,R12,R2≥0

(θ1 − θ12)D1

(
R1

θ1 − θ12

)

+ θ12D12

(
R12

θ12

)
+ (θ2 − θ12)D2

(
R2

θ2 − θ12

)
+ (1 + θ12 − θ1 − θ2)Dmax + μDmax. (33)

This is because, with θ12,min = θ1+θ2−1, we have 1+θ12−
θ1 − θ2 > 0 and accordingly Dw(θ1, θ2, θ12, R1, R2, R12) =
Dmax. The minimum distortion (33) when θ12 is in the
interval θ12,min < θ12 ≤ θ12,max thus can be obtained in the
same manner as done in the previous sections when μ = 0.
On the other hand, if the overlap fraction is θ12 = θ12,min =
θ1 + θ2 − 1, then we can write

Dμ(R, θ1, θ2, θ12,min) = min
R1,R12,R2

(1− θ2)D1

(
R1

1− θ2

)

+ (θ1 + θ2 − 1)D12

(
R12

θ1 + θ2 − 1

)
+ (1− θ1)D2

(
R2

1− θ1

)

+ μmax

(
D1

(
R1

1− θ2

)
, 1{θ1+θ2−1>0}D12

(
R12

θ1 + θ2 − 1

)
,

D2

(
R2

1− θ1

))
. (34)

The minimization (34) is discussed below for the Gaussian
case. The minimization of (32) is then obtained by taking the
minimum between (34) and the value obtained for the interval
θ12,min < θ12 ≤ θ12,max from (33).

B. Computation of the Sum of Jointly Gaussian Sources

In the special case of Gaussian sources S1 and S2 and of
calculation of the function T = S1 + S2 as in Section IV-B,
we can simplify (34) as

Dμ(R, θ1, θ2, θ12,min)

= min
R1,R12,R2

(2− θ1 − θ2)D1

(
R1 +R2

2− θ1 − θ2

)
+ (θ1 + θ2 − 1)

·D12

(
R12

θ1 + θ2 − 1

)
+ μmax

(
D1

(
R1 +R2

2− θ1 − θ2

)
,

1{θ1+θ2−1>0}D12

(
R12

θ1 + θ2 − 1

))
(35)

=min
R12

(2− θ1 − θ2)D1

(
R−R12

2− θ1 − θ2

)
+ (θ1 + θ2 − 1)

·D12

(
R12

θ1 + θ2 − 1

)
+ μmax

(
D1

(
R−R12

2− θ1 − θ2

)
,

1{θ1+θ2−1>0}D12

(
R12

θ1 + θ2 − 1

))
, (36)

where (35) follows from the facts that D1(R) = D2(R) for
R ≥ 0 and that the function is minimized when R1/(1 −
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θ2) = R2/(1 − θ1); and (36) follows because the constraint
R1 +R2 +R12 ≤ R is easily seen to be met with equality in
any optimal solution.

We now numerically evaluate (36), the trade-off between
the average distortion and the worst distortion for the Gaussian
case at hand. Fig. 11 shows the optimal overlap fraction θ∗12
versus the relative weight μ when (θ1, θ2) = (0.5, 0.75) and
ρ = 0.5, for two choices of rates R = 0.3 and R = 0.6
respectively. From the curve with R = 0.3, we can see that,
for sufficiently small μ, here, μ ≤ 0.069, the optimal sampling
fraction is θ12,max = 0.5, consistent with the result of Fig. 5.
However, as μ grows larger, the optimal sampling fraction
drops to the minimum possible value θ12,min = 0.25. This is
since, as the value of μ grows sufficiently large, one needs
to keep the worst distortion as small as possible. Similar
conclusions are reached for R = 0.6, except that the optimal
sampling fraction for sufficiently small μ (μ ≤ 0.004) is 0.42
instead, which is also consistent with the result of Fig. 5.
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