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Abstract—A cellular multiple-input–multiple-output (MIMO)
downlink system is studied, in which each base station (BS) trans-
mits to some of the users so that each user receives its intended
signal from a subset of the BSs. This scenario is referred to
as network MIMO with partial cooperation since only a subset
of the BSs is able to coordinate their transmission toward any
user. The focus of this paper is on the optimization of linear
beamforming strategies at the BSs and at the users for network
MIMO with partial cooperation. Individual power constraints at
the BSs are enforced, along with constraints on the number of
streams per user. It is first shown that the system is equivalent to
a MIMO interference channel with generalized linear constraints
(MIMO-IFC-GC). The problems of maximizing the sum rate (SR)
and minimizing the weighted sum mean square error (WSMSE)
of the data estimates are nonconvex, and suboptimal solutions
with reasonable complexity need to be devised. Based on this,
suboptimal techniques that aim at maximizing the SR for the
MIMO-IFC-GC are reviewed from recent literature and extended
to the MIMO-IFC-GC where necessary. Novel designs that aim at
minimizing the WSMSE are then proposed. Extensive numerical
simulations are provided to compare the performance of the con-
sidered schemes for realistic cellular systems.

Index Terms—Cooperative communication, linear precoding,
multicell processing, network MIMO, partial cooperation.

I. INTRODUCTION

INTERFERENCE is known to be a major obstacle in
realizing the spectral efficiency increase promised by

multiple-antenna techniques in wireless systems. Indeed,
multiple-input–multiple-output (MIMO) capacity gains are
severely degraded and limited in cellular environments due
to the deleterious effect of interference [1], [2]. Therefore,
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S. Kaviani and W. A. Krzymień are with the Department of Electrical
and Computer Engineering, University of Alberta, Edmonton, AB T6A 2G4,
Canada, and also with TRLabs, Edmonton, AB T5K 2M5, Canada (e-mail:
skaviani@ualberta.ca; wak@ece.ualberta.ca).

O. Simeone is with the Center for Wireless Communications and Signal
Processing Research, New Jersey Institute of Technology, Newark, NJ 07102
USA (e-mail: osvaldo.simeone@njit.edu).

S. Shamai (Shitz) is with the Department of Electrical Engineer-
ing, Technion–Israel Institute of Technology, Haifa 32000, Israel (e-mail:
sshlomo@ee.technion.ac.il).

Digital Object Identifier 10.1109/TVT.2012.2187710

network-level interference management appears to be of fun-
damental importance to overcome this limitation and harness
the gains of MIMO technology. Confirming this point, multicell
cooperation, which is also known as network MIMO, has been
shown to significantly improve the system performance [3].

Network MIMO involves cooperative transmission by multi-
ple base stations (BSs) to each user. Depending on the extent of
multicell cooperation, network MIMO reduces to a number of
scenarios, ranging from a MIMO broadcast channel (BC) [4] in
case of full cooperation among all BSs to a MIMO interference
channel [5], [6] in case no cooperation of the BSs is allowed.
In general, network MIMO allows cooperation only among a
cluster of BSs for transmission to a certain user [7], [8] (see
also references in [3]).

In this paper, we consider a MIMO interference channel with
partial cooperation of the BSs. It is noted that all BSs cooperat-
ing for transmission to a certain user have to be informed about
the message (i.e., the bit string) intended for the user. This can
be realized using the backhaul links among the BSs and the
central switching unit. We focus on the sum-rate maximization
(SRM) and the minimization of weighted sum-MSE (WSMSE)
under per-BS power constraints and constraints on the number
of streams per user. Moreover, although nonlinear processing
techniques such as vector precoding [9], [10] may generally be
useful, we focus on more practical linear processing techniques.
Both the SRM and WSMSE minimization (WSMMSE) prob-
lems are nonconvex [11], and thus suboptimal design strategies
of reasonable complexity are called for.

The contributions of this paper are as follows.

1) It is first shown in Section II-A that network MIMO with
partial BS cooperation, i.e., with partial message knowl-
edge, is equivalent to a MIMO interference channel, in
which each transmitter knows the message of only one
user under generalized linear constraints, which we refer
to as MIMO-IFC-GC.

2) We review the available suboptimal techniques that have
been proposed for the SRM problem [12]–[14] and ex-
tend them to the MIMO-IFC-GC scenario where neces-
sary in Section V. Since these techniques are generally
unable to enforce constraints on the number of streams,
we also review and generalize techniques that are based
on the idea of interference alignment [5] and are able to
impose such constraints.

3) Then, we propose two novel suboptimal solutions for
the WSMMSE problem in Section VI under arbitrary
constraints on the number of streams. It is noted that the
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Fig. 1. Downlink model with partial BS cooperation or equivalently partial
message knowledge.

WSMMSE problem without such constraints would be
trivial, as it would result in zero minimum mean square
error (MMSE) and no stream transmitted. The proposed
solutions are based on a novel insight into the single-user
MMSE problem with multiple linear constraints, which is
discussed in Section IV.

4) Finally, extensive numerical simulations are provided in
Section VII to compare the performance of the proposed
schemes in realistic cellular systems.

Linear MMSE precoding and equalization techniques pro-
posed in this paper were discussed briefly in [15]. The detailed
analysis and discussion (including the proofs to the lemmas) are
included in this paper. Additionally, we have also reviewed and
extended available solutions to the SRM problem. Furthermore,
we have included discussions of the complexity and overhead
of the proposed techniques and previously available (and/or
extended) solutions.

Notation: We denote the positive definite matrices as A �
0. [·]+ denotes max(·, 0). Capital bold letters represent ma-
trices, and small bold letters represent vectors. We denote
the transpose operator with (·)T and conjugate (Hermitian)
transpose with (·)H. A−(1/2) represents the inverse square of
positive definite matrix A.

II. SYSTEM MODEL AND PRELIMINARIES

Consider the MIMO downlink system shown in Fig. 1, with
M BSs forming a set M and K users forming a set K. Each BS
is equipped with nt transmit antennas, and each mobile user
employs nr receive antennas. The mth BS is provided with the
messages of its assigned users set Km ⊆ K. In other words, the
kth user receives its message from a subset of Mk BSs Mk ⊆
M. Notice that if Km contains one user for each transmitter
m and Mk = 1, then the model at hand reduces to a standard
MIMO interference channel. Moreover, when all transmitters
cooperate in transmitting to all the users, i.e., Km = K for all
m ∈ M or equivalently Mk = M , then we have a MIMO BC.

We now detail the signal model for the channel at hand,
which is referred to as MIMO interference channel with partial
message sharing. Define as uk = [uk,1, . . . , uk,dk

]T ∈ C
dk the

dk × 1 complex vector representing the dk ≤ min(Mknt, nr)
independent information streams intended for user k. We as-
sume that uk ∼ CN (0, I). The data streams uk are known to
all the BSs in the set Mk. In particular, if m ∈ Mk, the mth
BS precodes vector uk via a matrix Bk,m ∈ C

nt×dk so that the
signal x̃m ∈ C

nt sent by the mth BS can be expressed as

x̃m =
∑

k∈Km

Bk,mUk. (1)

Imposing a per-BS power constraint, the following constraint
must be then satisfied:

E
[
‖x̃m‖2

]
= tr

{
E
[
x̃mx̃H

m

]}
=
∑

k∈Km

tr
{
Bk,mBH

k,m

}
≤ Pm

m = 1, . . . ,M (2)

where Pm is the power constraint of the mth BS.
The signal received at the kth user can be written as

yk =
M∑

m=1

H̃k,mx̃m + ñk (3a)

=
∑

m∈Mk

H̃k,mBk,mUk +
∑
l �=k

∑
j∈Ml

H̃k,jBl,jUl + ñk

(3b)

where H̃k,m ∈ C
nr×nt is the channel matrix between the mth

BS and kth user, and nk is additive complex Gaussian noise
ñk ∼ CN (0, I).1 We assume ideal channel state information
(CSI) at all nodes. In (3b), we have distinguished between
the first term, which represents useful signal, the second term,
which accounts for interference, and the noise.

A. Equivalence With MIMO-IFC-GC

We now show that the MIMO interference channel with
partial message sharing and per-BS power constraints previ-
ously described is equivalent to a specific MIMO interference
channel with individual message knowledge and generalized
linear constraints, which we refer to as MIMO-IFC-GC.

Definition 1: MIMO-IFC-GC: The MIMO-IFC-GC consists
of K transmitters and K receiver, where the kth transmitter
has mt,k antennas and the kth receiver has mr,k antennas. The
received signal at the kth receiver is

yk = Hk,kxk +
∑
l �=k

Hk,lxl + nk (4)

where nk ∼ CN (0, I), the inputs are xk ∈ C
mt,k , and the

channel matrix between the lth transmitter and the kth receiver

1In case the noise is not uncorrelated across the antennas, each user can al-
ways whiten it as a linear preprocessing step. Therefore, a spatially uncorrelated
noise can be assumed without loss of generality.
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is Hk,l ∈ C
mr,k×mt,k . The data vector intended for user k

is uk ∈ C
dk , with dk ≤ min(mt,k,mr,k) and uk ∼ CN (0, I).

The precoding matrix for user k is defined as Bk ∈ C
mt,k×dk ,

so that xk = Bkuk. Inputs xk have to satisfy M generalized
linear constraints

K∑
k=1

tr
{
Φk,mE

[
xkxH

k

]}
=

K∑
k=1

tr
{
Φk,mBkBH

k

}
≤ Pm (5)

for given weight matrices Φk,m ∈ C
mt,k×mt,k and m =

1, . . . ,M . The weight matrices are such that matrices∑M
m=1 Φk,m are positive definite for all k = 1, . . . ,K.
We remark that the positive definiteness of matrices∑M
m=1 Φk,m guarantees that the system is not allowed to

transmit infinite power in any direction [16].
Lemma 1: Let (l)k be the lth BS in subset Mk of BSs that

know user k’s message. The MIMO interference channel with
partial message sharing (and per-transmitter power constraints)
is equivalent to a MIMO-IFC-GC. This equivalent MIMO-
IFC-GC is defined with mt,k = Mknt, mr,k = nr, channel
matrices, i.e.,

Hk,l =
[
H̃k,(1)l

· · · H̃k,(Ml)l

]
(6)

beamforming matrices

Bk =
[
BT

k,(1)k
· · ·BT

k,(Mk)k

]T
(7)

and weight matrices Φk,m being all zero, except that their lth
nt × nt submatrix on the main diagonal is Int

, if m = (l)k. (If
k /∈ Km, then Φk,m = 0). We emphasize that the definition of
MIMO-IFC-GC and this equivalence rely on the assumption of
linear processing at the transmitters.

Proof: The proof follows by inspection. Notice that ma-
trices

∑M
m=1 Φk,m are positive definite by construction. �

Given the generality of the MIMO-IFC-GC, which includes
the scenario of interest of the MIMO interference channel with
partial message sharing as per the aforementioned Lemma, in
the following, we focus on the MIMO-IFC-GC as previously
defined and return to the cellular application in Section VII. It
is noted that a model that subsumes the MIMO-IFC-GC has
been studied in [16], as discussed here.

B. Linear Receivers and MSE

In this paper, we focus on the performance of the MIMO-
IFC-GC under linear processing at the receivers. Therefore, the
kth receiver estimates the intended vector uk using the receive
processing (or equalization) matrix Ak ∈ C

dk×mr,k as

ûk = AH
kyk. (8)

The most common performance measures, such as weighted
sum rate (SR) or bit error rate, can be derived from the estima-
tion error covariance matrix for each user k

Ek = E
[
(ûk − uk)(ûk − uk)H

]
(9)

which is referred to as the mean square error (MSE) matrix (see
[17] for a review). The name comes from the fact that that the
jth term on the main diagonal of Ek is the MSE

MSEk,j = E
[
|ûk,j − uk,j |2

]
(10)

on the estimation of the kth user’s jth data stream uk,j . Using
the definition of MIMO-IFC-GC, it is easy to see that the MSE-
matrix can be written as a function of the equalization matrix
Ak and all the transmit matrices {Bk}K

k=1 as

Ek = AH
kHkBkBH

kHH
k,kAk − AH

kHk,kBk

− BH
kHH

k,kAk + AH
kΩkAk + Ik (11)

where Ωk is the covariance matrix that accounts for noise and
interference at user k, i.e.,

Ωk = I +
∑
l �=k

Hk,lBlBH
l HH

k,l. (12)

III. PROBLEM DEFINITION AND PRELIMINARIES

In this paper, we consider the optimization of the sum of
some specific functions fk(Ek) of the MSE-matrices Ek of
all users k = 1, . . . ,K for the MIMO-IFC-GC. Specifically, we
address the following constrained optimization problem:

minimize
Bk,Ak ∀k

K∑
k=1

fk(Ek)

subject to
K∑

k=1

tr
{
Φk,mBkBH

k

}
≤ Pm, m = 1, . . . ,M

(13)

where the optimization is over all transmit beamforming matri-
ces Bk and equalization matrices Ak. Specifically, we focus on
the WSMSE functions

fk(Ek) = tr {WkEk} =
dk∑

j=1

wkjMSEkj (14)

with given diagonal weight matrices Wk ∈ C
dk×dk , where

the main diagonal of Wk is given by [wk,1, . . . , wk,dk
] with

nonnegative weights wkj ≥ 0. With cost function (14), we refer
to the problem (13) as the WSMMSE problem.

Of more direct interest for communications systems is the
maximization of the SR. This is obtained from (13) by selecting
the SR functions

fk(Ek) = log |Ek|. (15)

With cost function (15), problem (13) is referred to as the SRM
problem. In fact, from information-theoretic considerations, it
can be seen that (15) is the maximum achievable rate (in bits
per channel use) for the kth user, where the signals of the other
users are treated as noise (see, e.g., [17]).
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Remark 1: Consider an iterative algorithm where, at each
iteration, a WSMMSE problem is solved with the weight ma-
trices Wk assumed to be nondiagonal and selected based on
the previous MSE-matrix Ek. This algorithm can approximate
the solution of (13) for any general cost function fk(Ek). This
was first pointed out in [18] for the weighted SRM problem in a
MIMO BC and then in [19] for the single-antenna interference
channel and a general utility function and has been general-
ized to a MIMO (broadcast) interference channel in [20] with
conventional power constraints. It is not difficult to see that
this result also extends to the MIMO-IFC-GC, which is not
subsumed in the model of [20] due to the generalized linear
constraints. We explicitly state this conclusion here.

Lemma 2 [20]: For strictly concave utility functions fk(·)
for all k, the global optimal solution of problem (13) and the
solution of

minimize
Bk,Ak,Wk ∀k

K∑
k=1

{tr {WkEk} − tr {Wkgk(Wk)}

+fk (gk(Wk))}

subject to
K∑

k=1

tr
{
Φk,mBkBH

k

}
≤ Pm, m = 1, . . . ,M

(16)

where gk(·) is the inverse function of the ∇fk(·), are the same.
Consequently, to find an approximate solution of (13), at each

step, matrices Wk for k = 1, . . . ,K are updated by solving
(16) with respect to Wk only (i.e., we keep (Ak,Bk) ∀k
unchanged in this step). Then, using the obtained matrices Wk,
for k = 1, . . . ,K, the problem (16) reduces to a WSMMSE
problem with respect to matrices Ak and Bk for k = 1, . . . ,K
(i.e., matrices Wk are kept fixed). This results in the iterative
algorithm, which is discussed in Remark 1 and leads to a
suboptimal solution of (13). In the special case of the SRM
problem, we have fk(Ek) = log |Ek| and gk(Wk) = W−1

k , in
which problem (16) is then equivalent to the problem

minimize
Bk,Ak,Wk ∀k

K∑
k=1

tr {WkEk} −
K∑

k=1

log |Wk|

subject to
K∑

k=1

tr
{
Φk,mBkBH

k

}
≤ Pm, m = 1, . . . ,M.

(17)

The optimization problem (17) can be solved in an iterative
fashion, where, at each iteration, the weights are selected as
W�

k = E−1
k , and then, the WSMMSE problem is solved with

respect to matrices (Ak,Bk) for k = 1, . . . ,K.

IV. SINGLE-USER CASE (K = 1)

The WSMMSE and SRM problems are nonconvex, and
thus, global optimization is generally prohibitive. In this sec-
tion, we address the case of a single user (K = 1). In particular,
the SRM problem with K = 1 is nonconvex if one includes

constraints on the number of streams d1 but is otherwise
convex and, in this special case, can be efficiently solved [17].
The global optimal solution for the single-user problem with
multiple linear power constraint (and a rank constraint) is still
unknown [21]. The WSMMSE problem is trivial without rank
constraint, as previously explained, and is nonconvex. Here, we
first review a key result in [17] and [22] that shows that, with
K = 1 and a single constraint (M = 1), the solution of the
WSMMSE problem can be, however, efficiently found. We then
discuss that, with multiple constraints (M > 1), this is not the
case, and a solution of the WSMMSE problem, even with K =
1, must be found through some complex global optimization
strategies. One such technique was recently proposed in [21]
based on a sophisticated gradient approach. At the end of this
section, we then propose a computationally and conceptually
simpler solution based on a novel result (see Lemma 5) that our
numerical results have shown to have excellent performance.
This will be then leveraged in Section VI-B to propose a novel
solution for the general multiuser case.

To elaborate, consider a scenario where the noise-plus-
interference matrix Ωk (12) is fixed and given (i.e., not subject
to optimization). Now, we solve the WSMMSE problem with
K = 1 for specified weight matrices W and Φm. For the rest
of this section, we drop the index k = 1 from all quantities for
simplicity of notation. We proceed by solving the problem at
hand: first with respect to A for fixed B and then with respect to
B without loss of optimality. The first optimization, over A, is
easily seen to be a convex problem (without constraints) whose
solution is given by the minimum MSE equalization matrix

A =
(
HBBHHH + Ω

)−1
HB. (18)

Plugging (18) in the MSE matrix (11), we obtain

E =
(
I + BHHHΩ−1HB

)−1
. (19)

We now need to optimize over B the following problem:

minimize
B

tr
{
W
(
I + BHHHΩ−1HB

)−1
}

subject to tr
{
ΦmBBH

}
≤ Pm, m = 1, . . . ,M. (20)

Consider first the single-constraint problem, i.e., M = 1.
The global optimal solution for single-user WSMMSE problem
with M = 1 is given in [21] and [22] and reported here. Recall
that, according to Definition 1, matrix Φ1 is positive definite.

Lemma 3 [22]: The optimal solution of the WSMMSE
problem with K = 1 and a single trace constraint (M = 1) is
given by

B = Φ− 1
2

1 UΣ (21)

where U ∈ C
mt×d is the matrix of the eigenvectors of matrix

Φ−(1/2)
1 HΩ−1HHΦ−(1/2)

1 corresponding to its largest eigen-
values γ1 ≥ · · · ≥ γd, and Σ is a diagonal matrix with diagonal
terms

√
pi defined as

pi =
[√

wi

μγi
− 1

γi

]+
(22)
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with μ ≥ 0 being the “waterfilling” level chosen to satisfy the
single power constraint tr{Φ1BBH} = P1.

Proof: Introducing the “effective” precoding matrix B̄ =
Φ1/2

1 B and “effective” channel matrix H̄ = HΦ−(1/2)
1 , the

problem is equivalent to that discussed in , Theorem 1[22]. �
In the case of multiple constraints, the approach used in

Lemma 3 cannot be leveraged. Here, we propose a simple but
effective approach, which is based on the following considera-
tions summarized in the following two lemmas:

Lemma 4: The precoding matrix (21) and (22) for a given
fixed μ > 0 minimizes the Lagrangian function

L(B̄;μ) = tr
{
W
(
I + B̄HΦ− 1

2
1 HHΩ−1HΦ− 1

2
1 B̄

)−1
}

+ μ tr
{
B̄B̄H

}
(23)

where B̄ is the effective precoding matrix previously defined.
Proof: We first note that (23) is the Lagrangian function of

the single-user single-constraint problem solved in Lemma 2.
Then, we prove (23) by contradiction. Assume that the min-
imum of the Lagrangian function is attained at where the
corresponding E is not diagonal. Then, one can always
find a unitary matrix Q ∈ C

d×d such that the matrix B̄∗ =
B̄Q diagonalizes E since, with B̄∗, we have E = QH(I +
B̄HΦ−(1/2)

1 HHΩ−1HΦ−(1/2)
1 B̄)−1Q [22]. Function tr{WE}

is Schur concave, and therefore, the matrix B̄∗ does not de-
crease function tr{WE} with respect to B̄, whereas B̄B̄H =
B̄∗B̄∗H. This implies that the minimum of tr{WE} is reached
when the MSE matrix is diagonalized. Therefore, we can set
without loss of generality B̄ = UΣ, where U is defined as in
Lemma 3 and Σ is diagonal with nonnegative elements on the
main diagonal. Substituting this form of B̄ into the Lagrangian
function, we obtain a convex problem in the diagonal elements
of Σ, whose solution can be easily shown to be given by (22)
for the given μ. This concludes the proof. �

Lemma 5: Let p� be the optimal value of the single-user
WSMMSE problem with multiple constraints (K = 1,M ≥
1). We have

p� ≥ max
λ≥0

inf
B

L(B;λ) (24)

where

L(B;λ) = tr
{
W
(
I + BHHHΩHB

)−1
}

+
M∑

m=1

λm

(
tr
{
ΦmBBH

}
− Pm

)
(25)

is the Lagrangian function of the single-user WSMMSE prob-
lem at hand, and λ = (λ1, . . . , λM ). Moreover, if there exists
an optimal solution B̃ achieving p� that, together with a strictly
positive Lagrange multiplier λ̃ > 0, satisfies the conditions

∇BL = 0 (26)

tr
{
ΦmB̃B̃H

}
=Pm ∀m (27)

then (24) holds with equality.

Proof: The proof is given in the Appendix. �
Lemma 5 suggests that, to solve the single-user multiple-

constraint problem, under some technical conditions, one can
minimize instead the dual problem on the right-hand side of
(24). Lemma 3 showed that this is always possible with a
single constraint. The conditions in Lemma 5 hold in most
cases where the power constraints for the optimal solution are
satisfied with equality. While this may not be always the case, in
practice, e.g., if the power constraints represent per-BS power
constraints as in the original formulation of Section II, this
condition can be shown to hold [23].

Inspired by Lemma 5, here we propose an iterative approach
to the solution of the WSMMSE problem with K = 1 that
is based on solving the dual problem maxλ≥0 minB L(B;λ).
Specifically, to maximize infB L(B;λ) over λ � 0, in the
proposed algorithm, the auxiliary variables λ is updated at the
jth iteration via a subgradient update given by [16]

λ(j)
m = λ(j−1)

m + δ
(
Pm − tr

{
ΦmBBH

})
∀m (28)

to attempt to satisfy the power constraints. Having fixed the
vector λ(j), problem minB L(B,λ) reduces to minimizing
(23) with Φ1 = Φ(λ(j)) =

∑
m λ

(j)
m Φm and μ = 1. This can

be done using Lemma 3 so that, from (21) and (22), at
the jth iteration, B(j) is obtained as Φ(λ(j))−(1/2)U(j)Σ(j),
where U(j) is the matrix of eigenvectors of matrix
Φ(λ(j))−(1/2)HHHΦ(λ(j))−(1/2) corresponding to its largest
eigenvalues γ1 ≥ · · · ≥ γd and Σ(j) is a diagonal matrix with

the diagonal terms
√

pi =
√

[
√

(wi/γi) − (1/γi)]+.

V. SUM RATE MAXIMIZATION

The SRM problem for a number of users K > 1 is non-
convex, even when removing the constraints on the number of
streams per user. The general problem in fact remains noncon-
vex and is nonprobabilistic-hard [24]. Therefore, since finding
the global optimal has prohibitive complexity, one needs to
resort to suboptimal solutions with reasonable complexity. In
this section, we review several suboptimal solutions to the SRM
problem that have been proposed in the literature. Since some
of these techniques were originally proposed for a scenario
that does not subsume the considered MIMO-IFC-GC, we also
propose the necessary modifications required for application
to the MIMO-IFC-GC. Note that these techniques perform an
optimization over the transmit covariance matrices by relaxing
the rank constraint due to the number of users per streams (see
discussion here). Therefore, we also review and modify when
necessary a different class of algorithms that solve problems re-
lated to SRM but are able to enforce constraints on the number
of transmitting streams per user. The WSMMSE problem does
not seem to have been addressed previously for the MIMO-IFC-
GC and will be studied in the next section.

A. Soft Interference Nulling

A solution to the SRM problem for the MIMO-IFC-GC was
proposed in [12]. In this technique, the optimization is over
all transmit covariance matrices Σk = BkBH

k ∈ C
mt,k×mt,k .
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The constraints on the number of streams would impose a
rank constraint on Σk as rank(Σk) = dk. Here and in all the
following reviewed techniques, unless stated otherwise, such
rank constraints are relaxed by assuming that the number of
transmitting data streams is equal to the transmitting antennas
to that user, i.e., dk = mt,k. From (15) and (18), we can rewrite
the (negative) SR as

K∑
k=1

log |Ek| = −
K∑

k=1

log
∣∣Ωk + Hk,kΣkHH

k,k

∣∣+ log |Ωk|

(29)

where Ωk is defined in (12). Notice that it is often convenient to
work with the covariance matrices instead of the beamforming
matrices Bk since this change of variables may render the
optimization problem convex as, for instance, when minimizing
the first term only in (29). It can then be seen that the SRM
problem is, however, nonconvex due to the presence of the
− log |Ωk| term, which is indeed a concave function of the
matrices Σk.

An approximate solution is then be found in [12] via an
iterative scheme, whereby, at each (j + 1)th iteration, given
the previous solution Σ(j)

k , the nonconvex term − log |Ωk| is
approximated using a first-order Taylor expansion as

− log |Ωk| � − log
∣∣∣Ω(j)

k

∣∣∣
−
∑
l �=k

tr
{(

Ω(j)
k

)−1

Hk,l

(
Σl − Σ(j)

l

)
HH

k,l

}
(30)

where Ω(j)
k = I +

∑
l �=k Hk,lΣ

(j)
k HH

k,l. Since the resulting
problem

minimize
Σk,k=1,...,K

−
K∑

k=1

log |Ωk + Hk,kΣkHk,k|

+
∑
l �=k

tr
{(

Ω(j)
k

)−1

Hk,lΣlHH
k,l

}

subject to
K∑

k=1

tr {Φk,mΣk} ≤ Pm, m = 1, . . . ,M (31)

is convex, a solution can be efficiently found. Following the
original reference [12], we refer to this scheme as “soft interfer-
ence nulling.” See [12] for further details about the algorithm.

B. SDP Relaxation

A related approach is taken in [13] for the SRM problem2 for
a MIMO-IFC with regular per-transmitter, rather than gener-
alized, power constraints. Similarly to the previous technique,
the optimization is over the transmit covariance matrices and
under the relaxed rank constraints. In particular, the authors first
approximate the problem by using the approach in [18]. Then,
an iterative solution is proposed by linearizing a nonconvex
term similar to soft interference nulling, as previously reviewed.

2More generally, the reference studies the weighted SRM problem.

It turns out that such linearized problem can be solved using
semidefinite programming (SDP). Specifically, denoting with
Ω(j)

k matrix (12) corresponding to the solution B(j)
k at the previ-

ous iteration j, i.e., Ω(j)
k = I +

∑
l �=k Hk,lB

(j)
l B(j)H

l HH
k,l, the

SDP problem to be solved to find the solutions B(j+1)
k for the

(j + 1)th iteration is given by

minimize
Yk,Σk ∀k

K∑
k=1

tr{Yk} +
K∑

k=1

tr
{
C(j)

k Σk

}

subject to
K∑

k=1

tr {Φk,mΣk} ≤ Pm, m = 1, . . . ,M

⎡⎢⎣Hk,kΣkHH
k,k + Ω(j)

k

(
W(j)

k Ω(j)
k

) 1
2(

W(j)
k Ω(j)

k

) 1
2

Yk

⎤⎥⎦�0

and Σk � 0, k = 1, . . . ,K

where

W(j)
k = I + Hk,kΣ

(j)
k HH

k,kΩ
(j)−1
k (32)

C(j)
k =

∑
i�=k

HH
i,k

(
I +

∑
l

Hi,lΣ
(j)
l HH

i,l

)−1

W(j)
i

× HiΣ
(j)
i HH

i

(
I +

∑
l

Hi,lΣ
(j)
l HH

i,l

)−1

Hi,k

(33)

and Yk is an auxiliary optimization variable, which is
defined using the Schur complement as Yk = WkΩ

(j)
k

(Hk,kΣkHH
k,k + Ω(j)

k )−1 to convert the original optimization
problem to an SDP problem [13]. The derivation requires minor
modifications with respect to [13] and is therefore not detailed.
The scheme is referred to as “SDP relaxation” in the following:
See [13] for further details about the algorithm.

C. PWF

In [16], the (weighted) SRM problem for a general model
that includes the MIMO-IFC-GC is studied. We review the
approach here for completeness. Two algorithms are pro-
posed, whose basic idea is to iteratively search for a solution
of the Karush–Kuhn–Tucker (KKT) conditions [11] for the
(weighted) SRM problem. Notice that, since the problem is
nonconvex, being a solution of the KKT conditions is only
necessary (as proved in [16]) but not sufficient to guarantee
global optimality. It is shown in [16] that any solution Σk, k =
1, . . . ,K of the KKT conditions must have a specific structure
that is referred to as “polite waterfilling (PWF),” which is
reviewed here for the SRM problem.

Lemma 6 [16]: For a given set of Lagrange multipliers λ =
(μλ1, . . . , μλM ), where μ > 0 and λi ≥ 0 for i = 1, . . . ,M
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associated with the M power constraints in (13), define the
covariance matrices

Ω̂k =
M∑

m=1

λmΦk,m +
∑
j �=k

HH
j,kΣ̂jHj,k (34)

with

Σ̂k =
1
μ

(
Ω−1

k −
(
Ωk + Hk,kΣkHH

k,k

)−1
)

. (35)

An optimal solution Σk, k = 1, . . . ,K, of the SRM problem
must have the PWF form

Σk = Ω̂
− 1

2
k VkPkVH

k Ω̂
− 1

2
k (36)

where the columns of Vk are the right singular vectors of the

“pre- and postwhitened channel matrix” Ω−(1/2)
k Hk,kΩ̂

−(1/2)

k

with (12) for k = 1, . . . ,K, and Pk is a diagonal matrix with
diagonal elements pk,i. The powers pk,i must satisfy

pk,i =
[

1
μ
− 1

γk,i

]+
(37)

where
√

γk,i is the ith singular value of the whitened matrix

Ω−(1/2)
k Hk,kΩ̂

−(1/2)

k . Parameter μ ≥ 0 is selected to satisfy the
constraint

M∑
m=1

λm

K∑
k=1

tr {Φk,mΣk} ≤
M∑

m=1

λm (38)

which is implied by the constraints of the original problem (13).
Moreover, parameters λi ≥ 0 are to be chosen to satisfy each
individual constraint in (13).

To obtain a solution Σk, k = 1, . . . ,K, according to PWF
form as described in Lemma 6, [16] proposes to use the inter-
pretation of Ω̂k in (34) as the interference plus noise covariance
matrix and Σ̂k in (35) as the transmit covariance matrix both at
the “dual” system.3

Based on this observation, the algorithm proposed in [16]
works as follows: At each jth iteration, the first one calculates
the covariance matrices Σ(j)

k in the original system using the
PWF solution of Lemma 6; then, one calculates the matrices

Σ̂
(j)

k using again PWF in the dual system as previously ex-
plained. Finally, at the end of each jth iteration, one updates
the Lagrange multipliers as

λ(j+1)
m = λ(j)

m

K∑
k=1

tr
{
Φk,mΣ(j)

k

}
Pm

(39)

thus forcing the solution to satisfy the constraints of the SRM
problem (13). For details on the algorithm, we refer to [16].

3In the “dual” system, the role of transmitters and receivers is switched, i.e.,
the kth transmitter in the original system becomes the kth receiver in the “dual”
system. The channel matrix between the kth transmitter and the lth receiver in
the dual system is given by HH

l,k .

Remark 2: Other notable algorithms designed to solve the
SRM problem for the special case of a MIMO-BC with gener-
alized constraints are [25] and [26]. As explained in [16], these
schemes are not easily generalized to the scenario at hand where
the cost function is not convex. As such, they will not be further
studied here.

D. Leakage Minimization

While the techniques previously discussed do not enforce
constraints on the number of stream per users, here we extend
a technique previously proposed in [27] that aims at aligning
interference through minimizing the interference leakage and
is able to enforce the desired rank constraints. It is known
that this approach solves the SRM problem for high signal-
to-noise ratio (SNR). In this algorithm, it is assumed that the
power budget is divided equally between the data streams,
and the precoding matrix of user k from BS m is given as
Bk,m =

√
(Pm/Kmdk)B̄k,m, where B̄k,m is an nt × dk ma-

trix of orthonormal columns (i.e., B̄H
k,mB̄k,m = I). The equal-

ization matrices are also assumed to have orthonormal columns
(i.e., AH

kAk = I). Hence, there is no interstream interference
for each user. Total interference leakage at user k is given by

I =
∑

k

tr
{
AH

kQkAk

}
(40)

where Qk=
∑

j �=k

∑
m∈Mj

(Pm/Kmdj)H̃k,mB̄k,mB̄H
k,mH̃H

j,m.
To minimize the interference leakage, the equalization matrix
Ak for user k can be obtained as Ak = vdk

(Qk), where
vdk

(A) represents a matrix with columns given by the
eigenvectors corresponding to the dk smallest eigenvalues of
A. Now, for fixed matrices Ak, the cost function (40) can be
rewritten as

I =
∑

k

∑
m∈Mk

tr
{
B̄H

k,mQ̂k,mB̄k,m

}
(41)

where Q̂k,m =
∑

j �=k,j∈Km
(Pm/Kmdk)H̃H

j,mAjAH
j H̃j,m.4

Minimizing over the matrices Bk leads to choosing
B̄k,m = vdk

(Q̂k,m). The algorithm iterates until convergence.
We refer to this scheme as “min leakage” in the following.

E. Max-SINR

Another algorithm called “max-SINR” has been proposed in
[27], which is based on the maximization of SINR, rather than
directly on the SR. This algorithm is also able to enforce rank
constraints. The max-SINR algorithm assumes equal power
allocated to the data streams and attempts at maximizing the
SINR for each stream by selecting the receive filters. Then,
it exchanges the role of transmitter and receiver to obtain the
transmit precoding matrices, which maximizes the max-SINR.
This iterates until convergence. A modification of this algorithm
is given in [28] by maximizing the ratio of the average signal

4In the original work [27], which is proposed for the interference channels,
the algorithm iteratively exchanges the role of transmitters and receivers to
update the precoding and equalization matrices similarly.
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power to the interference plus noise power (SINR-like) term.
However, these techniques are only given for standard MIMO
interference channels and not for MIMO-IFC-GC.

VI. MEAN SQUARE ERROR MINIMIZATION

In this section, we propose two suboptimal techniques to
solve the WSMMSE problem. We recall that, with the WS-
MMSE problem, enforcing the constraint on dk is necessary
to avoid trivial solutions. Performance comparison among all
the considered schemes will be provided in Section VII for a
multicell system with network MIMO.

A. MMSE Interference Alignment

A technique referred to as MMSE interference alignment
(MMSE-IA) was presented in [19] for an interference channel
with per-transmitter power constraints and where each receiver
is endowed with a single antenna. Here, we extend the approach
to the MIMO-IFC-GC.

The idea is to approximate the solution of the WS-
MMSE problem by optimizing the precoding matrices Bk,
followed by the equalization matrices Ak and iterating
the procedure. Specifically, arbitrarily initialize Bk. Then,
at each iteration j, the following hold: 1) For each user
k, evaluate the equalization matrices using the MMSE
solution (18), obtaining A(j)

k = (Hk,kB
(j−1)
k B(j−1)H

k HH
k,k +

Ω(j−1)
k )−1Hk,kB

(j−1)
k , where, from (12), we have Ω(j−1)

k =
I +

∑
l �=k Hk,lB

(j−1)
l B(j−1)H

l HH
k,l. 2) Given matrices A(j)

k ,
the WSMMSE problem becomes

minimize
Bk,k=1,...,K

K∑
k=1

tr
{
WkE

(j)
k

}

subject to
K∑

k=1

tr
{
Φk,mBkBH

k

}
≤ Pm ∀m ∈ M (42)

where E(j)
k is (11) with A(j)

k in place of Ak. Fixing the

equalization matrices A(j)
k ∀k, this problem is convex in Bk

and can be solved by enforcing the KKT conditions. Therefore,
matrices B(j)

k for the jth iteration can be obtained as follows:

Lemma 7: For given equalization matrices A(j)
k , a solution

B(j)
k , k = 1, . . . ,K, of the WSMMSE problem is given by

B(j)
k =

(
K∑

l=1

HH
l,kA

(j)
l WlA

(j)H
l Hl,k +

∑
m

μmΦk,m

)−1

× HH
k,kA

(j)
k Wk (43)

where μm are Lagrangian multipliers satisfying

μm ≥ 0 (44)

μm

(
K∑

k=1

tr
{
Φk,mB(j)

k B(j)H
k

}
− Pm

)
= 0 (45)

and the power constraints
∑K

k=1 tr{Φk,mB(j)
k B(j)H

k } ≤ Pm

for all m.
Once the matrices B(j)

k are obtained using the results in
Lemma 7, the iterative procedure continues with the (j + 1)th
iteration. We refer to this scheme as extended MMSE-IA
(eMMSE-IA).

Remark 3: The algorithm previously proposed reduces to
that introduced in [19] in the special case of per-transmitter
power constraints and single-antenna receivers. It is noted that,
in such case, problem (42) can be solved in a distributed
fashion so that each transmitter k can calculate its matrix
(more precisely vector, given the single antenna at the receivers)
independently from the other transmitters. In the MIMO-IFC-
GC, the power constraints couple the solutions of the different
users and thus make a distributed approach infeasible.

B. Diagonalized MMSE

We now propose an iterative optimization strategy inspired
by the single-user algorithm that we put forth in Section IV.
At the (j + 1)th iteration, given the matrices obtained at the
previous iteration, we proceed as follows: The WSMSE (14)
with the definition of MSE-matrices (11) is a convex function
in each Ak and Bk when (Bj ,Aj) ∀j �= k are fixed. Neverthe-
less, it is not jointly convex in terms of both (Ak,Bk). Inspired
by Lemma 5 for the corresponding single-user problem, we
propose a (suboptimal) solution based on the solution of the
dual problem for calculation of (Ak,Bk). To this end, we first
obtain Ak as (18). Then, we simplify the Lagrangian function
with respect to Bk by removing the terms independent of Bk.
Specifically, by defining Υk =

∑
l �=k HH

l,kAlWlAH
l Hl,k, we

have that the Lagrangian function at hand is given by

L(Bk;λ) = tr
{
Wk

(
I + BH

kHH
k,kΩ

−1
k Hk,kBk

)−1
}

+ tr
{
ΥkBkBH

k

}
+ tr

{(∑
m

λmΦk,m

)
BkBH

k

}
. (46)

This Lagrangian function for user k is the same as the La-
grangian function (25) of single-user WSMMSE problem when
Φ(λ) is replaced with Fk(λ) = Υk +

∑
λmΦk,m. Matrix

Fk(λ) is nonsingular, and therefore, using the same argument
as in the proof of Lemma 5, for a given Lagrange multipliers λ
and given other users’ transmission strategies (Al,Bl) ∀l �= k,
the optimal transmit precoding matrix can be obtained as

Bk = Fk(λ)−
1
2 UkΣk (47)

where Uk ∈ C
mt,k×dk is the eigenvectors of

Fk(λ)−(1/2)HH
k,kΩ

−1
k Hk,kFk(λ)−(1/2) corresponding to

its largest eigenvalues γk,1 ≥ · · · ≥ γk,dk
, and Σk is diagonal

matrices with the elements
√

pk,i given by

pk,i =
[√

wk,i

γk,i
− 1

γk,i

]+
(48)

with λ � 0 being the Lagrangian multipliers satisfy the
power constraints. Since this scheme diagonalizes the MSE
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matrices defined in (9), it is referred to as diagonalized MMSE
(DMMSE).

To summarize, the proposed algorithm at each iteration j

evaluates the transmit precoding matrices B(j)
k , given other

users’ transmission strategies (A(j−1)
l ,B(j−1)

l ) using (47) and
(48), updates the equalization matrices using the MMSE solu-
tion (18), and updates the λ via a subgradient update

λ(j+1)
m = λ(j)

m + δ

(
Pm −

K∑
k=1

tr
{
Φk,mBkBH

k

})
(49)

to satisfy the power constraints.
Remark 4: In this paper, we assume perfect knowledge of

CSI. Therefore, each transmitter and receiver has sufficient in-
formation to calculate the resulting precoders and equalizers by
running the proposed algorithms. Under this assumption, which
is common to other reviewed works such as [12] and [13], no
exchange of precoder and equalizer vectors is required between
the transmitters and receivers. Nevertheless, in practice, the
CSI may only be locally available, in the sense that trans-
mitter k knows channel matrices Hl,k, for all l = 1, . . . ,K,
whereas receiver k is aware of channel matrices Hk,l, for all
l = 1, . . . ,K. The proposed DMMSE and the reviewed PWF
[14], [16] algorithms require, aside from the local CSI, that
the transmitter k also has available the interference-plus-noise
covariance matrix, Ωk and the current equalization matrices Al

for all l = 1, . . . ,K to update the precoder for user k. Hence,
to enable DMMSE and PWF with local CSI, exchange of
the equalizer matrices is needed between the nodes. Similarly,
the proposed eMMSEIA and the min leakage and Max-SINR
algorithms [27] require the transmitters to know the equalizing
matrices Al for l = 1, . . . ,K at each iteration, in addition to
the local CSI. Moreover, each receiver must know the current
precoders Bl for all l = 1, . . . ,K. Therefore, the overhead for
the proposed eMMSEIA and the min leakage and Max-SINR
algorithms involves the exchange of equalizer and precoder
matrices between the transmitters and the receivers. However,
these latter algorithms can also be adapted using the bidi-
rectional optimization process proposed in [29]. This process
involves bidirectional training, followed by data transmission.
In the forward direction, the training sequences are sent using
the current precoders. Then, at the user receivers, the equalizers
are updated to minimize the least-square error cost function.
In the backward training phase, the current equalizers are used
to send the training sequences, and the precoders are updated
accordingly. Finally, the soft interference nulling (SIN) [12]
and SDP relaxation [13] techniques are applied in a centralized
fashion (rather than by updating the transmitter and receiver for
each user at each iteration), and they require centralized full
knowledge of all channel matrices.

Remark 5: In [13], the SRM problem for a MIMO-IFC
with regular per-transmitter, rather than generalized, power
constraints is addressed. The problem is addressed by solving
an SDP problem at each iteration. Moreover, the optimization
is over the transmit covariance matrices and under the relaxed
rank constraint. This enforces a constraint on the number of
transmitted streams per user. In [14]–[16], study the (weighted)

SRM problem is studied by decomposing the multiuser problem
into single-user problems for each user. Each single-user prob-
lem is a standard single-user SRM problem with an additional
interference power constraint. The approach used in [14]–[16]
assumes that the number of transmitted streams is equal to nr.
In this paper, we address WSMMSE problem and allow for an
arbitrary number of streams (dk ≤ nr).

Remark 6: Our algorithms consists of an inner loop, which
solves the WSMMSE problem, and an outer loop, which is the
subgradient algorithm to update λ. The subgradient algorithm
in the outer loop is convergent (with a proper selection of
the step sizes [30]) due to the fact that the dual function
infB L(B;λ) is a concave function with respect to λ [11]. The
inner loops of the proposed algorithms in this paper (i.e., eMM-
SEIA and DMMSE) are convergent since the objective function
decreases at each iteration. A discussion of the convergence for
a special case of the eMMSEIA algorithm can be found in [19].
However, the original problem is nonconvex, and our solutions
are only local minima. Nevertheless, the DMMSE algorithm is
shown to converge to a local minimum with better performance
compared to the previously known schemes in Section VII.

VII. NUMERICAL RESULTS

We consider a hexagonal cellular system where each BS is
equipped with nt transmit antennas and each user has nr re-
ceive antennas. The users are uniformly located at random. Two
tiers of surrounding cells are considered as interference for each
cluster. We consider the worst-case scenario for the intercluster
interference, which will be the condition that interfering BSs
transmit at the full allowed power [7], [8], [31], [32]. We define
the cooperation factor κ as a number of BSs cooperating on
transmission to each user. The κ BSs are assigned to each user,
so that the corresponding channel norms (or, alternatively, the
corresponding received SNRs) are the largest.

The propagation channel between each BS’s transmit an-
tennas and the mobile user’s receive antenna is characterized
by path loss, shadowing, and Rayleigh fading. The path-loss
component is proportional to d−β

km, where dkm denotes distance
from BS m to mobile user k and β = 3.8 is the path-loss
exponent. The channel from the transmit antenna t of the BS
b at the receive antenna r of the kth user is given by [7]

H(r,t)
k,b = α

(r,t)
k,b

√
γ0ρk,bA

(
Θ(t)

k,b

)(dk,b

d0

)−β

(50)

where α
(r,t)
k,b ∼ CN (0, 1) represents Rayleigh fading, ρ

(dBm)
k,b is

the lognormal shadow fading between the bth BS and the kth
user with a standard deviation of 8 dB, and d0 = 1 km is the cell
radius. γ0 is the interference-free SNR at the cell boundary. We
consider one user randomly located per cell for the numerical
results.

When sectorization is employed, the transmit antennas are
equally divided among the sectors of a cell. Each transmit
antenna has a parabolic beam pattern as a function of the
direction of the user from the broadside direction of the antenna.
(For more details, see [7] and [33].) The antenna gain is a
function of the direction of the user k from the broadside
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Fig. 2. Per-cell SR for a MIMO-IFC-GC with M = 3 and κ = 2.

direction of the tth transmit antenna of the bth BS denoted by
Θ(t)

k,b ∈ [−π, π], Θ3 dB is the half-power angle, and As is the
sidelobe gain. The antenna gain is given as [33]

A
(
Θ(t)

k,b

)
dB

= −min

⎛⎝12

(
Θ(t)

k,b

Θ3dB

)2

, As

⎞⎠ . (51)

For the three six-sector cells, As = 20, 23 dB, and Θ3 dB =
(70π)/180, (35π)/180, respectively [7], [33], [34]. When there
is no sectorization, we set A = 1.

We first compare different algorithms (for the solution of
the SRM problem) without enforcing rank constraints on SIN,
PWF, SDP relaxation and setting dk = min(mt,k,mr,k) = nr

for the eMMSEIA and DMMSE algorithms. To solve the SRM
problem, the weight matrices in the eMMSEIA and DMMSE
algorithms are updated at each iteration as Wk = E−1

k using
the current MSE-matrix Ek. Fig. 2 compares the per-cell SR
of the algorithms discussed in this paper for a cluster with
M = 3 cells and a cooperation factor κ = 2. The results show
that our proposed DMMSE algorithm outperforms other tech-
niques, whereas the PWF algorithm [14], [16] has a similar
performance. Our proposed eMMSEIA scheme converges to a
poorer local optimum value compared with these two schemes.
The soft interference nulling (SIN) [12] and SDP relaxation
[13] algorithms, which use the approximation of the nonconvex
terms in the objective function, perform worse in this example.

In Fig. 3, we evaluate the effect of partial cooperation for
the DMMSE, eMMSEIA, and PWF algorithms in a cluster of
size M = 5, where each BS is equipped with nt = 4 transmit
antennas, each user employs nr = 2 receive antennas, and
two users are randomly dropped in each cell. Recall that the
cooperation factor κ represents the number of BSs cooperating
in transmission to each user. It can be seen that, as κ increases,
the performance improves with diminishing returns as κ grows
large. Moreover, the relative performance of the algorithms
confirms the considerations previously.

In Fig. 4, we compare again the performance of the schemes
considered in Fig. 3 but with a stricter requirement on the
number of streams, namely, dk = 1. It can be seen that the
proposed DMMSE tends to perform better than PWF, which

Fig. 3. Per-cell SR for a MIMO-IFC-GC with M = 5 and κ = 1, 2, 3, 5,
nt = 4, nr = dk = 2, and two users per cell.

Fig. 4. Per-cell sum rate of the schemes that can support dk <
min(mt,k, mr,k) for dk = 1, nt = 4, nr = 2, M = 3, and κ = 2.

was not designed to handle rank constraints. We have adopted
the PWF algorithm to support dk < min(mt,k,mr,k) by using

a thin SVD of Ω̂
−(1/2)

k HH
k,kΩ

−(1/2)
k when computing (36).

In Fig. 5, we vary the size of cluster M , showing also the
advantages of coordinating transmission over larger clusters,
even when the number of cooperating BSs κ is fixed. Recall that
M represents the set of BSs whose transmission is coordinated,
but only κ BSs cooperate for transmission to a given user. As
an example, for a cluster size of M = 7, a cooperation factor of
κ = 4 performs almost as well as the full cooperation scenario
with κ = 7. Moreover, the performance gains with respect to
the noncooperative case κ = 1 are evident. We also show the
performance with a cluster containing a single cell, i.e., M = 1.
This highlights the performance gains attained, even in the
absence of message sharing among the BSs (i.e., κ = 1) due
to the coordination of the BSs within the cluster.

Finally, the effect of sectorization is studied in Fig. 6, where
nt = 6 transmit antennas at each BS are divided equally into
S = 1, 3, 6 sectors. Each cell contains six users, each equipped
with nr = 2 receive antennas. The users are randomly located
at the distance of 2/3d0 from its BS. For a given channel
realization, the DMMSE algorithm is used to obtain the per-cell
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Fig. 5. Per-cell SR of the proposed DMMSE scheme for cluster sizes M =
1, 3, 7 versus the cooperation factor κ, with nt = nr = 2, SNR = 20 dB, and
a single user per cell.

Fig. 6. CDF of the per-cell sum rates achieved by DMMSE for S = 1, 3, 6
sectors per cell, M = 1, 3, 7 coordinated clusters, and κ = 1, 2, 3 cooperation
factors, with γ0 = 20 dB, nt = 6, and nr = 2. The circles represent the mean
values of the per-cell SRs.

sum rate. The cumulative distribution functions (CDFs) of per-
cell sum rates are computed using a large number of channel
realizations. The gains of sectorization and cooperation are
compared. For example, the system with coordination of seven
cells and κ = 3 cooperation factor and without sectorization
performs better than the sectorized system with S = 6 and with
no coordination between the BSs.

VIII. CONCLUSION

In this paper, we have studied a MIMO interference channel
with partial cooperation at the BSs and per-BS power con-
straints. We have shown that the channel at hand is equiva-
lent to a MIMO interference channel under generalized linear
constraints (MIMO-IFC-GC). Focusing on linear transmission
strategies, we have reviewed some of the available techniques
for the maximization of the SR and extended them to the
MIMO-IFC-GC when necessary. Moreover, we have proposed
two novel strategies for minimization of the weighted MSE on

the data estimates. Specifically, we have proposed an exten-
sion of the recently introduced MMSE interference alignment
strategy and a novel strategy termed diagonalized MSE ma-
trix (DMMSE). Our proposed strategies support transmission
of any arbitrary number of data streams per user. Extensive
numerical results show that the DMMSE outperforms most
previously proposed techniques and performs just as well as
the best known strategy. Moreover, our results bring insight
into the advantages of partial cooperation and sectorization and
the impact of the size of the cooperating cluster of BSs and
sectorization.

We have concluded with a brief discussion on the complexity
of the algorithms. Due to the difficulty of complete complexity
analysis, particularly in terms of speed of convergence, we have
presented a discussion based on our simulation experiments.
The PWF algorithm converges in almost the same number
of iterations as the DMMSE algorithm. The complexity per
iteration of PWF and DMMSE is also almost the same as
K(O(κntn

2
r) + O(n3

r)) (required for the thin SVD operation).
However, the PWF algorithm contains additional operations
(matrix inversion and SVD) to obtain the precoding matrices
from the calculated transmit covariance matrices.5 In addition,
the PWF algorithm includes a waterfilling algorithm within its
inner loop, which is not required in the DMMSE algorithm.
The eMMSEIA algorithm has lower complexity per iteration
(i.e., KO(n3

r)) than the PWF and DMMSE algorithms since its
complexity is due to a matrix inversion per iteration per user.
However, eMMSEIA converges in a larger number of iterations
than DMMSE and PWF. The complexity per iteration for the
SDP relaxation is higher than that for the SIN algorithm. (This
is because of the extra auxiliary positive semidefinite matrix
variable Y introduced in the SDP relaxation algorithm). The
SIN algorithm also converges in a smaller number of iterations
than the SDP relaxation algorithm.

APPENDIX

PROOF OF LEMMA 5

The inequality (24) follows from weak Lagrangian duality.
We now prove the second part of the statement. Recognizing
now that tr{WE} with (19) is a Schur-concave function of the
diagonal elements of (19),6 it can be argued that the minimum
is attained when E is diagonalized as we did for Lemma 4.
Defining R = HHΩ−1H, we can conclude that BHRB must
also be diagonal in this search domain. Now, assume that
an optimal solution of the single-user WSMMSE problem is
denoted as B̃. Without loss of generality, we can assume that
this solution diagonalizes the MSE matrices. The necessity of
the KKT conditions can be proved as in [16] and in special cases
such as the MIMO interference channel with partial message
sharing of Section II; it also follows from linear independence
constraint qualification conditions [30].

5This can be performed together with finding the MMSE receive matrices.
6A Schur-concave function f(x) of vector x = (x1, . . . , xd) is such that

f(x) ≤ f(x′) if x majorizes x′, i.e., if
∑j

i=1
x[i] ≥

∑j

i=1
x′
[i]

for all j =

1, . . . , d, where x[i] (and x′
[i]

) represents the vector sorted in decreasing order,

i.e., x[1] ≥ · · · ≥ x[d] (and x′
[1]

≥ · · · ≥ x′
[d]

).
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Hence, there exists a Lagrange multiplier vector λ̃, which,
together with B̃, satisfies the KKT conditions of the WSMMSE
problem (20) [18], [30]. As stated in the Lemma, we consider
the case that λ̃m are also strictly positive (i.e., λ̃m > 0 for all
m). Simplifying the KKT condition (26), we have7

∇BL = −RB̃ẼWẼ +
M∑

m=1

λ̃mΦmB̃ = 0. (52)

Left-multiplying (52) by B̃H gives us

B̃HRB̃ẼWẼ = B̃H

(∑
m

λ̃mΦm

)
B̃. (53)

Since B̃HRB̃ and, correspondingly, Ẽ are diagonal matrices,
B̃H(

∑
m λ̃mΦm)B̃ must also be diagonal. For simplicity, we

introduce Φ(λ̃) =
∑M

m=1 λ̃mΦm. Since λ̃m > 0 for every m;
therefore, Φ(λ̃) is a nonsingular matrix. This can be easily
verified due to the structure of Φm. Hence, we can write
B̃HΦ(λ̃)B̃ = Δ̃, where Δ̃ ∈ C

d×d is a diagonal matrix. There-
fore, we can write

Φ(λ̃)1/2B̃ = ŨΣ̃ (54)

where Ũ ∈ C
mt×d consists of orthonormal columns (i.e.,

ŨHŨ), and Σ̃ ∈ C
d×d is a diagonal matrix with the diagonal

terms of
√

p̃i. Hence, we can write

B̃ = Φ(λ̃)−1/2ŨΣ̃. (55)

Replacing the structure of B̃ given in (55), we can write

B̃HRB̃ = Σ̃
H
ŨHΦ(λ̃)−

1
2 RΦ(λ̃)−

1
2 ŨΣ̃ = D. (56)

Thus, we can conclude from the preceding equation that Ũ must
contain the eigenvectors of Φ(λ̃)−(1/2)RΦ(λ̃)−(1/2).

Now, plugging (55) into (26) and left-multiplying it with
Φ−(1/2), we get

Γ̃Σ̃
(
I + Γ̃Σ̃

2
)−1

W
(
I + Γ̃Σ̃

2
)−1

= Σ̃ (57)

where Γ̃(λ̃) = diag[γ1(λ̃) · · · γd(λ̃)] is a diagonal matrix
with the diagonal terms of the d largest eigenvalues of
Φ(λ̃)−(1/2)RΦ(λ̃)−(1/2). Since all the matrices are diagonal,
(57) reduces to the scalar equations

wiγi(λ̃)(
1 + p̃iγi(λ̃)

)2 = 1. (58)

Solving these equations gives us the optimal p̃i given by

p̃i =

[√
wi

γi(λ̃)
− 1

γi(λ̃)

]+

. (59)

7We use a differentiation rule ∇Xtr{AXHB} = BA and
∇Xtr{Y−1} = −Y−1(∇XY)Y−1. For the complex gradient operator,
each matrix and its conjugate transpose are treated as independent
variables [35].

Thus, for the given Lagrange multiplier λ̃, which, together with
B̃, satisfying the KKT conditions of (20), B̃ must satisfy (55)
and (59). If all power constraints are satisfied with equality by
this solution, then (55) and (59) also solve the single constraint
problem

minimize
B

tr
{
W
(
I + BHHHΩ−1HB

)−1
}

subject to tr
{
Φ(λ̃)BBH

}
≤

M∑
m=1

λ̃mPm. (60)

The solution of this problem is given in Lemma 3 as

B(λ̃) = Φ(λ̃)−
1
2 UΣ (61)

where U consists of d eigenvectors of Φ(λ̃)−(1/2)RΦ
(λ̃)−(1/2) corresponding to its largest eigenvalues, and Σ is a
diagonal matrix with the diagonal elements of

√
pi, which is

given by

pk,i =

[√
wi

μγi(λ̃)
− 1

γi(λ̃)

]+

(62)

for a waterfilling value of μ ≥ 0, which satisfies the power
constraint

tr
{
Φ(λ̃)B(λ̃)B(λ̃)H

}
≤
∑
m

λ̃mPm. (63)

On the other hand, summing up the KKT conditions λ̃m(Pm −
tr{ΦmBBH}) = 0 for all m, we obtain that

tr

{(∑
m

λ̃mΦm

)
B̃B̃H

}
=
∑
m

λ̃mPm. (64)

If we set μ = 1 and comparing (59) and (62), we can conclude
that p̃i = pi ∀i, which, together with a comparison of (61) and
(55), we can conclude that B(λ̃) = B̃ and the μ = 1 is the
optimal Lagrange multiplier of the single-constraint WSMMSE
problem (60). Following Lemma 4, this precoding matrix is also
a result of minimization of the Lagrangian function (23) when
μ = 1 and Φ1 = Φ(λ̃), which means

p� = inf
B

L(B; λ̃). (65)

On the other hand, we have

max
λ≥0

inf
B

L(B;λ) ≥ inf
B

L(B; λ̃). (66)

which in concert with (24) and (65) results in

p0 = inf
B

L(B; λ̃) = max
λ≥0

inf
B

L(B;λ) (67)

thus concluding the proof.
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