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Abstract—Consider a discrete-time system in which a centralized con-
troller (CC) is tasked with assigning at each time interval (or slot) re-
sources (or servers) to out of nodes. A node can execute a
task when assigned to a server . The tasks are independently generated at
each node by stochastically symmetric and memoryless random processes
and stored in a finite-capacity task queue. The tasks are time-sensitive since
there is a non-zero probability, within each slot, that a task expires before
being scheduled. The scheduling problem is tackled with the aim of max-
imizing the number of tasks completed over time (or the task-throughput)
under the assumption that the CC has no direct access to the state of the
task queues. The scheduling decisions at the CC are based on the outcomes
of previous scheduling commands, and on the known statistical properties
of the task generation and expiration processes.
Based on a Markovian modeling of the task generation and expiration

processes, the CC scheduling problem is formulated as a partially observ-
able Markov decision process (POMDP) that can be cast into the frame-
work of restless multi-armed bandit (RMAB) problems. When the task
queues are of capacity one, the optimality of a myopic (or greedy) policy
is proved. The settings in this technical note provide a rare example where
a RMAB problem can be explicitly solved.

Index Terms—Communication networks, Markov processes, queueing
systems, stochastic optimal control.

I. INTRODUCTION

The problem of scheduling concurrent tasks under resource con-
straints finds applications in a variety of fields including communica-
tion networks [1], distributed computing [2] and virtual machine sce-
narios [3]. In this technical note we consider a specific instance of this
general problem in which a centralized controller (CC) is tasked with
assigning at each time interval (or slot) resources, referred to as
servers, to out of nodes as shown in Fig. 1. A server can
complete a single task per slot and it can be assigned to one node per
time interval. The tasks are generated at the nodes by stochastically
symmetric, independent and memoryless random processes. The tasks
are stored by each node in a finite-capacity task queue, and they are
time-sensitive in the sense that at each slot there is a non-zero proba-
bility that a task expires before being successfully completed. It is as-
sumed that the CC has no direct access to the node queues, and thus it is
not fully informed of their actual states. For instance, partial informa-
tion is relevant in systems such as wireless sensor networks in which
the nodes are physically separated by the CC, and their queues (which,
e.g., collect data packets or energy) are either not accessible by the CC
or could be accessed at some additional cost. Instead, the scheduling
decisions at the CC are based on the outcomes of previous scheduling
commands, and on the statistical knowledge of the task generation and
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Fig. 1. Centralized controller (CC) assigns resources (servers) to out of
nodes to complete their tasks in each slot in a limited resource scenario

( ). The tasks of node at slot are stored in a task queue .

expiration processes. If a server is assigned to a node with an empty
queue, it remains idle for the whole slot. The purpose here is thus to
pair servers to nodes so as to maximize the average number of success-
fully completed tasks within either a finite or infinite number of slots
(horizon), which we refer to as task-throughput, or simply throughput.

A. Markov Formulation

We now introduce the stochastic model that describes the evolution
of the task queues across slots. We consider task queues of capacity
one (see [4] for a discussion with queues of arbitrary capacity), where

denotes the number of tasks in the queue of node ,
for . The stochastic evolution of queue is shown
in Fig. 2 as a function of the scheduling decision , which consists
in the assignment at each slot of the servers to a subset

of nodes, with .
At each slot, node can be either scheduled ( ) or not

( ). If is not scheduled (see Fig. 2(a)) and there is a task in
its queue (i.e., ), then the queue will be empty in the next slot
with probability (w.p.)

, i.e., the current task expires while no new task enters the queue,
whereas the queue will remain full w.p. . Instead, if node
is scheduled (see Fig. 2(b)) and , its task is completed

successfully and its queue in the next slot is either empty or full w.p.
and ,

respectively. Probability accounts for the possible arrival of a new
task. If the probabilities of receiving a new task when is
not scheduled and scheduled are

and ,
respectively, while the probabilities of receiving no task are

and , respectively.

B. Related Work and Contributions

In this workwe assume that the CC has no direct access to the state of
the task queues , while it knows the transition prob-
abilities , with , and the outcomes of previously
scheduled tasks. The scheduling problem is thus formalized as a par-
tially observable Markov decision process (POMDP) [5], and then cast
into a restless multi-armed bandit (RMAB) problem [6]. A RMAB is
constituted by a set of arms (the queues in our model), a subset of which
needs to be activated (or scheduled) in each slot by the controller.
To elaborate, we assume that the transition probabilities of the

Markov chains in Fig. 2, the number of nodes and servers are
such that

(1a)

(1b)

Assumption (1a) states that the ratio between the numbers
of nodes and of servers is an integer, which generalizes the single-

0018-9286 © 2013 IEEE



2422 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 58, NO. 9, SEPTEMBER 2013

Fig. 2. Markov model for the evolution of the state of the task queue
, when the node : (a) is not scheduled in slot (i.e., ); (b) is

scheduled in slot (i.e., ).

server case ( ).Whereas, proving the results in this technical note
for the case of non-integer remains an open problem. Inequalities
(1b) are motivated as follows1. The inequality imposes that
the probability that a new task arriveswhen the task queue is full and the
node is scheduled ( ) is no larger than when the task queue is empty
( ). This applies, e.g., when the arrival of a new task is independent
on the queue’s state and scheduling decisions (i.e., ), or
when a new task is not accepted when the queue is full, i.e., .
Inequality applies, e.g., when the task generation process
does not depend on the queue’s state and on the scheduling decisions,
so that , or when a new task cannot be accepted while the
node is scheduled even if the queue is empty ( ). Inequality

indicates that, when a node is not scheduled, the probability
that its task queue is full in the next slot, given that it is currently

empty, is smaller than the probability that the task queue is full in
the next slot given that it is currently full. This applies, e.g., when the
task generation and expiration processes are independent of each other.
1) Main Contributions: When the task queues are of capacity one,

and under assumptions (1), we show that the myopic policy (MP) for
the RMAB at hand is a round robin (RR) strategy that: i) re-numbers
the nodes in a decreasing order according to the initial probability that
their respective task queue is full; and ii) schedules the nodes periodi-
cally in group of leveraging the initial ordering. The MP is proved
to be throughput-optimal. Note that, the results in this technical note
represent a rare case in which the optimal policy for a RMAB can be
found explicitly [6].
2) Related Work: The work in this technical note is related to the

works [7], [8], in which a similar RMAB problem is addressed. How-
ever, the main difference between our RMAB and the one in [7], [8] is
the evolution of the arms across slots. In particular, in our RMAB, each
arm evolves across a slot depending on the scheduling decision taken
by the CC, while in [7], [8], the evolution of the arms is independent
on the scheduling decision. The transition probabilities for the RMAB
in [7], [8] are thus equivalent to setting and
in the Markov chains of Fig. 2. For instance, our model applies to sce-
narios in which the arms are, e.g., data queues, where each arm draws a
data packet from its queue only when scheduled. Instead, the model in
[7], [8] applies to scenarios in which the arms are, e.g., communication
channels, whose quality evolves across slots regardless whether they
are selected for transmission or not.
In [7] it is shown that the MP is optimal for
with while [8] extends this result to an arbitrary The

work [7] also proves that the MP in not generally optimal in the case
. We emphasize that neither our model nor

the one in [7], [8] subsumes the other, and the results here and in [7],
[8] are thus complementary.
Notation: Given a vector and a set

of cardinality we define
vector . A scalar function of is also

1Assumption (1b) holds, e.g., in the relevant setting in which the task gen-
eration process is independent of the queue’s state, the task expiration process
and the scheduling command. To see this, let be the probability that a new
task is generated in each slot and let be the probability that a task expires
while the queue is full and the node is not scheduled. It immediately follows
that , , and , and thus
inequalities (1b) hold for any and .

denoted as or as for some
, or similar notations depending on the context. Given a

set and a subset represents the complement of in .

II. PROBLEM FORMULATION

Here we formalize the scheduling problem of Section I (see Fig.
1), in which the task generation and expiration processes are modeled,
independently at each node, by the Markov models of Section I-A with
queues of capacity one.

A. Problem Definition

The scheduling problem at the CC is addressed in a finite-horizon
scenario over slots . Let
be the vector collecting the states of the task queue at slot . At
slot the CC is only aware of the initial probability distri-
bution of , whose th entry is

. Thus, the subset of
nodes scheduled at slot is chosen as a function of the initial
distribution only. For any node scheduled at slot , an
observation is made available to the CC at the end of the slot, while
no observations are available for non-scheduled nodes .
Specifically, if and , the task of is served
within slot , and the CC observes that . Conversely, if

and , no tasks are completed and thus the CC
observes that . We define
as the set of (new) observations made available at the CC at the
end of slot . At time the CC hence knows the history of all
decisions and previous observations and the initial distribution ,
where ,
with .
Since the CC has only partial information about the system state
, through , the scheduling problem at hand can be modeled as

a POMDP. It is well-known that a sufficient statistics for taking deci-
sions in such POMDP is given by the probability distribution of
conditioned on the history [9], referred to as belief, and repre-
sented by the vector , with th entry given
by

(2)

Since the belief fully summarizes the entire history
of past actions and observations [9], a scheduling policy

is defined as a collection of functions
that map the belief to a subset of nodes,
i.e., : . We will refer to as the subset of
scheduled nodes, even though, strictly speaking, it is the mapping
function defined above. The transition probabilities over the belief
space are derived in Section II-B.
The immediate reward , accrued by the CC when the belief

vector is and action is taken, measures the average number of tasks
completed within the current slot, and it is

(3)

Notice that, since there are only servers we have .
The throughput measures the average number of tasks completed

over the slots that, by exploiting (3) and under policy , is
given by

(4)

In (4), the expectation , under policy for initial belief
, is intended with respect to the distribution of the Markov process
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, as obtained from the transition probabilities to be derived in Sec-
tion II-B. For generality, the definition (4) includes a discount factor

[7], while the infinite horizon scenario (i.e., ) will
be discussed in Section III-C.
The goal is to find a policy that maxi-

mizes the throughput (4) so that

(5)

B. Transition Probabilities

The belief transition probabilities, given decision and
, are

(6)

where , while the distribution of entry
is (see Fig. 2)

if and
if and
if and

(7)

where we have defined the deterministic function

(8)

to indicate the next slot’s belief when is not scheduled ( ),
with due to inequalities (1b). Equation (8) follows
from Fig. 2(a)), since the next slot’s belief is either if
(w.p. ) or if (w.p. ).
Under assumptions (1b), it is easy to verify that function (8) satisfies

the inequalities

(9)

(10)

The inequalities in (9) guarantee that the belief of a non-scheduled node
is always larger than that of a scheduled one, while the inequality (10)
says that the belief ordering of two non-scheduled nodes is maintained
across a slot. These inequalities play a crucial role in the analysis below.

C. Optimality Equations

The dynamic programming (DP) formulation of problem (5) (see
e.g., [10]) allows to express the throughput recursively over the horizon

, under policy and initial belief , as

(11)

where for . The DP optimality conditions (or Bellman
equations) are then expressed in terms of the value function

, which represents the optimal throughput in the interval
, and it is given by

(12)

Note that, since the nodes are stochastically equivalent, the value func-
tion (12) only depends on the numerical values of the entries of the
belief vector regardless of the way it is ordered. Finally, an optimal
policy (see (5)) is such that attains
the maximum in the condition (12) for .

III. OPTIMALITY OF THE MYOPIC POLICY

We now define the myopic policy (MP) and show that, under as-
sumptions (1), it is a round-robin (RR) policy that schedules the nodes
periodically and that it is optimal for problem (5).

A. The Myopic Policy is Round-Robin

The MP , with throughput
, is the greedy policy that schedules at each slot the nodes

with the largest beliefs so as to maximize the immediate reward (3),
that is, we have

(13)

Proposition 1: Under assumptions (1), the MP (13), given an initial
belief , is a RR policy that operates as follows: 1) Sort vector

in a decreasing order to obtain such
that . Re-number the nodes so that has
belief ; 2) Divide the nodes into groups of nodes each, so
that the th group , , contains all nodes such
that , namely:

and so on; 3) Schedule the groups in a RR fashion
with period slots, so that groups are sequentially
scheduled at slot and so on.

Proof: According to (13), the first scheduled set is
. The beliefs are then updated through (7).

Recalling (9), the scheduled nodes, in , have their belief updated
to either or , which are both smaller than the belief of any
non-scheduled node in . Moreover, the ordering of
the non-scheduled nodes’ beliefs is preserved due to (10). Hence, the
second scheduled group is , the third is ,
and so on. This proves that the MP, upon an initial ordering of the
beliefs, is a RR policy.
We emphasize that the MP sorts the beliefs of the nodes only at the

first slot in which it is operated, and then it keeps scheduling the groups
of nodes according to their initial ordering, without requiring to recal-
culate the beliefs.

B. Optimality of the Myopic Policy

We now prove the optimality of the MP by showing that it satis-
fies the Bellman (12). To start with, let us consider a RR policy
that operates according to steps 2) and 3) of Proposition 1 only (i.e.,
without re-ordering the nodes according to their initial belief), and let
its throughput (11) be denoted by . Note that, when the ini-
tial belief is ordered so that , then

. Based on backward induction arguments similarly to [7],
[8], the following lemma establishes a sufficient condition for the op-
timality of the MP.
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Lemma 1: Assume that the MP is optimal at slot , i.e., it
satisfies (12). To show that theMP is optimal also at slot it is sufficient
to prove the inequality

(14)

and all sets of elements, with the elements in
decreasingly ordered.

Proof: Since the MP is optimal from onward by assump-
tion, it is sufficient to show that scheduling nodes with arbitrary
beliefs at slot and then following the MP from slot on is no
better than following the MP immediately at slot . The performance of
the former policy is given by the left-hand side (LHS) of (14). In fact

, for any set , represents the throughput of a policy
that schedules the nodes with beliefs at slot , and then operates
as the MP from onward, since beliefs in are decreasingly
ordered. The MP’s performance is instead given by the right-hand side
(RHS) of (14). Note that, for , it is immediate to verify that the
MP is optimal. This concludes the proof.
Theorem 1: Under assumptions (1) the MP is optimal for problem

(5), so that .
Proof: To start with, we first prove in Appendix A that the in-

equality

(15)

holds for any , with , and for all
and beliefs (not necessarily ordered), with
. Inequality (15) for is intended as

. If (15) holds, then
inequality (14) is satisfied for all and all subsets

of elements, with elements in decreasingly
ordered. In fact, (15) states that the throughput of the RR policy
never increases when, for any pair of adjacent nodes, the one with the
smallest belief of the pair is scheduled first. Hence, by starting from
the LHS of (14) (i.e., ) and by applying a convenient
number of successive switchings between pair of adjacent elements
of vector to achieve , we can obtain a
cascade of inequalities as (15) (one for each switching), which guar-
antees that (14) holds. The successive switchings can be done, e.g., by
using the bubble sort algorithm (see e.g., [11]), which repeatedly steps
through the list to be sorted, comparing each pair of adjacent elements
and swapping them if they are not decreasingly ordered. Accordingly,
by Lemma 1 this is sufficient to prove that the MP is optimal, since
inequality (14) holds for any arbitrary .

C. Extension to the Infinite-Horizon Case

We now briefly describe the extension of problem (5) to the infinite-
horizon case, for which the throughput under policy and its optimal
value are given by (see e.g., [7])

(16)

where the optimal policy is and
. From standard DP theory [10], the optimal policy

is stationary, so that the optimal decision is a function
of the current state only, independently of slot [10]. By fol-
lowing the same reasoning as in [7, Theorem 3], it can be shown
that the optimality of the MP for the finite-horizon setting implies

the optimality also for the infinite-horizon scenario, and similarly to
[12] it can be proved that the MP, under certain conditions on the
transitions probabilities , with , coincides with the
Whittle index policy for the RMAB at hand (see [4] for full details).
Moreover, by following [7, Theorem 4] it can be shown that the MP
is optimal also for the undiscounted average reward criterion (i.e.,

).

IV. CONCLUSION

This technical note considers a centralized scheduling problem for
independent, symmetric and time-sensitive tasks under resources con-
straints. The problem is to assign a finite number of resources to a
larger number of nodes that may have tasks to be completed in their
task queue. It is assumed that the central controller can not directly
monitor the state of the queue of each node. Based on a Markovian
modeling of the task generation and expiration processes, the sched-
uling problem is formulated as a partially observable Markov deci-
sion process (POMDP), and then cast into the framework of restless
multi-armed bandit (RMAB) problems. Under the assumption that the
task queues are of capacity one, a greedy, or myopic policy (MP), op-
erating in the space of the a posteriori probabilities (beliefs) of the
number of tasks in the queues, is proved to be optimal for both finite
and infinite-horizon throughput criteria. TheMP selects at each slot the
nodes with the largest probability of having a task to be completed. It
is shown that the MP is round-robin as it schedules the nodes period-
ically. When the task queues have capacities larger than one, the MP
is generally suboptimal and finding optimal scheduling policies is still
an open problem [4].
Overall, this technical note proposes a general framework for re-

source allocation that finds applications in several areas of current in-
terest including communication networks and distributed computing.

APPENDIX
PROOF OF THEOREM 1

The proof is divided into two steps. In the first step we derive the
throughput of the RR policy in closed form, and then we show that
inequality (15) holds.
As for the first step, the throughput for the RR policy (and thus of the

MP) can be calculated as the sum of the contribution of each node sep-
arately (due to the round robin structure). To elaborate, let us focus on
node , with initial belief , and assume that . Nodes in
group are scheduled at slots , for .
Let be the average re-
ward accrued by the CC from node only, when scheduling it for the
th time at slot (see the RHS of (3)) (i.e., when
operating the RR policy). At slot we have .
To calculate we first derive the average value of the belief
(see (7)) after the slot of activity in as

, where with (cf.

(8)). We then account for the slots of passivity by exploiting
(8), so that ,
where we have set with

and , and
where indicates the belief of a node after
slots of passivity when the initial belief is (i.e., is obtained

recursively by applying to itself times). In general, we can
obtain , for , by
iterating the procedure above by applying to itself
times. After a little algebra we get

, so that ,
where we set . The reasoning above can be applied when
starting from any arbitrary slot .
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Finally, the total reward accrued by the CC from a node that is
scheduled times, when its belief at the first slot in which it is
scheduled is , can be calculated by summing up the average reward

during each slot in which the node is scheduled (see definition
above), as

(17)

Note that, for a node , for and with belief equal to at
, the first slot in which the node is scheduled is , and thus

its belief at time becomes (i.e., after slots
of passivity while other groups are scheduled). Therefore, for a node

, with initial belief , the total contribution to the throughput

is given by .
Let us now focus on the second step, i.e., proving the inequality

(15). At , it is easily seen to hold due to (3) and (11). We
then need to show that (15) also holds at . To do so, let us denote
as and the RR policies whose throughputs are given by the
LHS and RHS of (15) respectively. The differences between and
are the positions of the nodes with belief and in the initial

belief vectors. Therefore, some of the groups created by the
two policies might have different nodes (see the RR operations in
Proposition 1). To simplify, we refer to the node with belief ( )
as node ( ). Let us assume that nodes and belong to groups

and under policy , respectively, while they belong to
groups and under policy , respectively, with , and

. If , then the two policies coincide and
(15) holds with equality. If (nodes are adjacent but do
not belong to the same group), the only difference between policies
and is the scheduling order of nodes and .
To verify that inequality (15) holds, we need to prove that

scheduling node in group and node in group is
no better than doing the opposite for any . To elabo-
rate, let and be the number
of times that node (or ) is scheduled under policy (or
) and node (or ) is scheduled under policy (or )
in the horizon , respectively. By recalling
(17) and the discount factor , the contribution generated by
node and under policy is
and respectively, and similarly
under policy we have and

. Note that, in the argument of function
, we have considered that the nodes in group are scheduled

for the first time at slot , and thus the belief must be updated

through function , and similarly for nodes in the first
slot is . Moreover, the discount factor is is common to
all the nodes in group , and so is for group .
By recalling that all the nodes, except and , are scheduled at

the same slot under the two policies and (thus giving the same
contribution to the throughput), the inequality (15) can thus be reduced
to

which must hold for all admissible and
and all , with . There are two

cases: 1) , that
is, nodes and are scheduled the same number of times within the
horizon of interest under the two policies and ; 2)

, and , for , namely, node
(or ) is scheduled one time more than node (or ) under policy
(or ). By exploiting the RHS of (17), after a little algebra, one can

verify that the inequality above holds in both cases, which concludes
the proof of Theorem 1.
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