
Random signl analysis I (ECE673)
Assignment 9

1) Consider the random process defined as

X[n] = 2U [n]− 4U [n− 1],

where U [n] is a white noise with zero mean and variance σ2 = 1.
(i) Is this process WSS? If so, evalutate, auto-correlation sequence (see previous assignment)
and power spectral density.
(ii) Generate a realization of 1000 samples of X[n] by using MATLAB. Based on this real-
ization, estimate the power spectral density using the periodogram and plot the estimate.
Compare the estimate with the true power spectral density.
(iii) Can you propose a method to improve the estimate at the previous point? Verify
by using MATLAB that the proposed technique improves the performance by plotting the
corresponding estimate.

Solution:
(i) In order to check if the process is WSS, we need to verify the following conditions on the
mean and covariance sequences

μX [n] = μ

cX [n, n+ k] = cX [k]

or equivalently

μX [n] = μ

E[X[n]X[n+ k]] = rX [k].

Let us calculate these moments for the random process at hand

μX [n] = E[2U [n]− 4U [n− 1]] = 0
E[X[n]X[n+ k]] = E[(2U [n]− 4U [n− 1])(2U [n+ k]− 4U [n+ k − 1])] =

= 4E[U [n]U [n+ k]] + 16E[U [n− 1]U [n+ k − 1]]−
−8E[U [n]U [n+ k − 1]]− 8E[U [n− 1]U [n+ k]]

=

⎧⎨⎩ 20 k = 0
−8 k = ±1
0 elsewhere

= 20δ[k]− 8δ[k − 1]− 8δ[k + 1].

It can be concluded that the process is WSS (it is a specific kind of MA process) and we
have mean sequence and correlation function as follows:

μX [n] = 0

rX [k] = 20δ[k]− 8δ[k − 1]− 8δ[k + 1].
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(ii) The true power spectral density is obtained as the Fourier transformation on the auto-
correlation function rX [k]

PX(f) =
∞X

k=−∞
rX [k] exp(−j2πfk) =

= 20− 8(exp(−j2πf) + exp(j2πf)) =
= 20− 16 cos(2πf).

An estimate can be obtained by using the periodiogram, i.e., the magnitude squared of the
Fourier transform of a realization of the random process. A MATLAB code that performs
this operation by employing the command FFT (Fast Fourier Transform) and compares the
estimated to the true power spectral density is as follows:

N=1000;
u=randn(N,1);
for n=1:N
if n==1 x(n)=2*u(n);
else
x(n)=2*u(n)-4*u(n-1);
end
end
f=[0:N-1]./N;%vector of frequencies at which the FFT command computes the Fourier Trans-
form
P=1/N*abs(fft(x)).ˆ2; %periodogram
plot(f-0.5,fftshift(P));
hold on;
plot((f-0.5),20-16*cos(2*pi*(f-0.5)),’—’); %true power spectral density

(iii) One way to improve the estimate is to partition the realization into subsequences, calcu-
late the periodiogram on each subsequence and finally average the periodograms obtained on
all subsequences. The following code partitions the initial realization of N = 1000 samples
into 10 subsequences of 100 samples each.

N=1000;
K=10; %number of subsequences
Ns=N/K; %length of each subsequence
P=0;
u=randn(N,1);
for n=1:N
if n==1 x(n)=2*u(n);
else
x(n)=2*u(n)-4*u(n-1);
end
end
for k=1:K-1 %for each subsequence
xi=x(1+k*Ns:k*Ns+Ns);
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Pi=1/Ns*abs(fft(xi)).ˆ2;
P=P+Pi;
end
P=1/K*P;
f=[0:Ns-1]./Ns; %vector of frequencies at which the FFT command computes the Fourier
Transform (notice that the number of frequencies is the length of the subsequences)
plot(f-0.5,fftshift(P));
hold on;
plot((f-0.5),20-16*cos(2*pi*(f-0.5)),’—’)

2) Let us consider the problem of prediction for the random process studied at the previous
point. In particular, we would like to obtain the optimal linear estimate of X[n + k] given
the observation X[n]:

X̂[n+ k] = aX[n] + b.

(i) Consider at first the prediction at one step, i.e., k = 1. Find the correlation coefficient
between X[n] and X[n+1]. Based on this calculation, do you expect linear prediction to be
effective? Evaluate the optimal predictor X̂[n+1] and the corresponding mean square error.
(ii) Let us now set k = 2. Find the correlation coefficient between X[n] and X[n+2]. Based
on this calculation, do you expect linear prediction to be effective? Evaluate the optimal
predictor X̂[n+ 2] and the corresponding mean square error.
(iii) How would you generalize the results at point (ii) for k > 2?

Solution:
(i) The correlation coefficient between X[n] and X[n+ 1] is

ρX[n],X[n+1] =
cov(X[n], X[n+ 1])p
var(X[n])var(X[n+ 1])

=
rX [1]− μ2

rX [0]
=

rX [1]

rX [0]
=
−8
20
= −2

5
,

therefore linear prediction is expected to be effective. The optimal predictor reads

X̂[n+ 1] = E[X[n+ 1]] +
cov(X[n],X[n+ 1])

var(X[n])
(X[n]−E[X[n]]) =

= −2
5
X[n],

and the mean square error is

mse = var[X[n+ 1]]− cov(X[n], X[n+ 1])2

var(X[n])
= rX [0]−

rX [1]
2

rX [0]
=

= 20− 64
20
=
84

5
= 16.8 < var[X[n+ 1]] = 20.

(ii) In this case, we have

ρX[n],X[n+2] =
cov(X[n],X[n+ 2])p
var(X[n])var(X[n+ 1])

=
rX [2]− μ2

rX [0]
= 0,

therefore linear prediction is not effective and the optimal predictor of X[n+ 2] is simply

X̂[n+ 2] = 0,
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with mean square error
mse = var[X[n+ 2]] = 20.

(iii) The results obtained above for k = 2 generalize to any K > 1. In particular, we have

X̂[n+ k] = 0

mse = var[X[n+ k]] = 20

for any K > 1.
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