
ECE 788 - Optimization for wireless networks
Final

Please provide clear and complete answers.

PART I: Questions -
Q.1. Discuss an iterative algorithm that converges to the solution of the problem

minimize
x

fo(x)

s.t. Ax = b
,

where fo(x) is a strictly convex function in Rn. Specify the algorithm by explicitly writing
down the updating equations.

Sol.: A convenient choice is Newton’s algorithm for equality-constrained problems, which is
described by

x(k+1) = x(k) + t(k)∆x(k),

where the search direction ∆x(k) satisfies the linear system (along with the multipliers ν)∙ ∇2fo(x(k)) AT

A 0

¸ ∙
∆x(k)

ν

¸
=

∙ −∇fo(x(k))
0

¸
,

and t(k) are appropriately chosen step sizes (e.g., obtained via backtracking line search).

Q.2. You are given the following problem:

minimize
x,y

aTx+ bTy

s.t.

⎧⎨⎩ Cx ¹ d
Ey ¹ f

Gx+Hy ¹ p
where x,y are optimization variables in Rn. In order to ease the solution, you are asked to
distribute the optimization task over two subprocessors coordinated by a master processor.
Propose both a primal and a dual decomposition solution to accomplish this task.

Sol.: Primal decomposition:

minimize
z

inf
x∈Cx

(aTx)+ inf
y∈Cy

(bTy),

with Cx = {x: Cx ¹ d, Gx ¹ z} and Cy = {y: Ey ¹ f , Hy ¹ p− z}.
Dual decomposition:

maximize
λ

inf
x∈C0x

(aTx+ λTGx)+ inf
y∈C0x

(bTy + λTHy)− λTp,

with C0x = {x: Cx ¹ d} and C0y = {y: Ey ¹ f}.
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Q.3. Consider the strategic game defined by the following utility matrix:

2, 2 0, 1
1, 0 1, 1

.

Find Pareto-optimal points and Nash equilibria. Repeat for the game defined by the utility
matrix:

3, 3 1, 4
4, 1 0, 0

.

Sol.: First game: Pareto-optimal point: (2, 2); Nash equilibria: {(2, 2), (1, 1)}.
Second game: Pareto-optimal points: {(3, 3), (1, 4), (4, 1)}; Nash equilibria: {(1, 4), (4, 1)}

Q.4. Consider the paper-rock-scissor game defined by the utility matrix

P R S
P 0, 0 1,−1 −1, 1
R −1, 1 0, 0 1,−1
S 1,−1 −1, 1 0, 0

Is there a Nash equilibrium in mixed strategies? If so, calculate it.

Sol.: For any finite- and discrete- strategy game there is at least a NE. It can be calculated
via the indifference principle (denoting by pij the probability that player i chooses the option
j)

Ep[U1(x)|x1 = P] = Ep[U1(x)|x1 = R] = Ep[U1(x)|x1 = S]
→ p22 − (1− p21 − p22) = −p21 + (1− p21 − p22) = p21 − p22

→ p2j = 1/3

and the same can be done for the utility of the second player obtaining p1j = 1/3.

PART II: Problems -

P.1. For each of the following three problems: (a) solve the primal problem (i.e., give p∗

and Xopt); (b) solve the dual problem (i.e., give d∗ and the optimal multipliers); (c) are
Slater’s conditions satisfied?; (d) does strong duality hold?; (e) is there a solution to the
KKT conditions?
1.

minimize
x

x

s.t. x2 ≤ 1

Sol.: Primal:
p∗ = −1, Xopt = {−1}
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Dual:

L(x, λ) = x+ λ(x2 − 1)
→

x=− 1
2λ

g(λ) = − 1
4λ
− λ with dom g = {λ 6= 0}

The solution of the dual problemmaximize
λ>0

− 1
4λ
−λ can be easily found by setting∇g(λ) = 0,

which leads to λ∗ = 1/2 and d∗ = −1. Slater’s conditions are satisfied (consider for instance
x = 0 for which x2 < 1), so that we know that strong duality holds and the dual problem
is attained. KKT conditions: since the KKT conditions are necessary and sufficient for
optimality, the only solution is (x∗, λ∗) = (−1, 1/2).
2.

minimize
x

x

s.t. x2 ≤ 0

Sol.: Primal:
p∗ = 0, Xopt = {0} = C,

where C represents the feasible set.
Dual:

L(x, λ) = x+ λx2

→
x=− 1

2λ

g(λ) = − 1
4λ
with dom g = {λ 6= 0}

The solution of the dual problem maximize
λ>0

− 1
4λ
is clearly d∗ = 0 which is not attained.

Slater’s conditions are not satisfied (C = {0} for which x2 = 0). Strong duality holds since
p∗ = d∗. KKT conditions: since Slater’s conditions are not satisfied but the problem is
convex, the KKT conditions are necessary and sufficient for (x, λ) to be primal-dual optimal
with zero duality gap. Since here we know that there is no such (x, λ) (the dual problem is
not attained), then the KKT have no solution.

3.

minimize
x

x

s.t. |x| ≤ 0

Sol.: Primal:
p∗ = 0, Xopt = {0} = C,

where C represents the feasible set.
Dual:

L(x, λ) = x+ λ|x|
→
x=0

g(λ) = 0 with dom g = {λ > 1}
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We have d∗ = 0 and the set of optimal values for λ is {λ > 1}. Slater’s conditions are not
satisfied (C = {0} for which |x| = 0). Strong duality holds since p∗ = d∗. KKT conditions:
the constraint is not differentiable so that we cannot write the KKT conditions.

P.2. In the multihop network in the figure below, each ith link has capacity Ci (in bits/

sec) and it is operated for a fraction 0 ≤ xi ≤ 1 of the total time (
MX
i=1

xi = 1). The effective

rate on the ith link is then xiCi. Moreover, the end-to-end rate from node 1 to node M + 1
is easily shown to be mini=1,2,...,M{xiCi}, that is, it is limited by the worst link.

1C 2C
3C MC…

1 2 3 4 M+1

Figure 1:

(a) Write the problem of maximizing the end-to-end rate (mini=1,2,...,M{xiCi}) over the frac-
tion of times x. Is this problem convex? Does it satisfy Slater’s conditions?

Sol.: The problem is
maximize

x
mini=1,2,...,M{xiCi}

s.t. xi ≤ 1, − xi ≤ 0,
MX
i=1

xi = 1

which is easily shown to be convex since the constraints are affine and the objective is concave
(the pointwise minimum of affine functions is concave). Moreover, since all the constraints
are affine and the problem is feasible, it satisfies Slater’s conditions.

(b) Write the problem as LP and the corresponding KKT conditions. Verify that the only
solution of the KKT conditions is xj =

1/Cj
M
i=1

1
Ci

for all j = 1, ...,M. (Hint : can an optimal

solution have xi = 0 for some i?) Finally, can we have optimal solutions for the problem at
hand other than xj =

1/Cj
M
i=1

1
Ci

? Why?

Sol.: The equivalent LP problem is

minimize
x,t

− t

s.t.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
t− xiCi ≤ 0
MX
i=1

xi = 1

−xi ≤ 0
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Noticing that the optimal solution must have xi > 0 (otherwise the end-to-end rate would
be zero), we can write the Lagrangian as

L(t,x,λ,ν) = −t+
MX
i=1

λi(t− xiCi) + ν

Ã
1−

MX
i=1

xi

!
The KKT conditions are:

1−
MX
i=1

λi = 0 (1a)

λiCi + ν = 0 (1b)
MX
i=1

xi = 1 (1c)

t− xiCi ≤ 0 (1d)

xi > 0 (1e)

λi(xiCi − t) = 0 (1f)

λi ≥ 0 (1g)

From (1b) and (1a) we have ν = 1
M
i=1

1
Ci

and λi =
ν
Ci

> 0. Since λi > 0, from (1f) and (1c),

we obtain t = 1
M
i=1

1
Ci

and xi =
1/Ci
M
j=1

1
Cj

. Since the problem satisfies the Slater’s conditions,

KKT conditions are necessary and sufficient for optimality, so that no other optimal solutions
can be found.

(c) Consider now an alternative scenario where Ci is not a constant but depends on xi as

Ci(xi) = log

µ
1 +

P

Nxi

¶
, (2)

where signal (P ) and noise (N) powers are given and fixed. Equation (2) accounts for
the fact that if a link is operated for less time it can employ more power (P/xi) without
violating the long-term power constraint of P . Is the problem of maximizing the capacity
mini=1,2,...,M{xiCi(xi)} convex?
Sol.: Yes, since xiCi(xi) is concave (it can be proved by taking the second derivative or using
the fact that it is the perspective function of log

¡
1 + P

N

¢
, which is concave).

P.3. Two nodes transmit packets at rates x1 and x2 respectively on a given wired network.
Node 1 has a greater need of bandwidth so that the utilities of the two nodes are U1(x1) = 2x1
and U2(x2) = x2, respectively. Moreover, the finite capacity of the links in the network poses
the following constraints on x1 ≥ 0 and x2 ≥ 0:

2x1 + x2 ≤ 1 (3a)

x1 + 2x2 ≤ 1. (3b)

(a) Plot the region of achievable utility values θ, and identify the Pareto optimal points.
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Sol.: The region θ of achievable utility values is given by the equations (U1 ≥ 0 and U2 ≥ 0):

U1 + U2 ≤ 1
U1
2
+ 2U2 ≤ 1,

from the problem constraints and the definitions of the utility functions. It follows that region
θ is a polytope with vertices (0, 0), (1, 0), (2/3, 1/3), (0, 1/2). The Pareto optimal points are
easily shown to be given by the equations:

U2 =
1

2
− U1
4
for 0 ≤ U1 ≤ 2/3

U2 = 1− U1 for 2/3 ≤ U1 ≤ 1.

(b) Consider the scalarization method for finding the Pareto-optimal points. Are all the
Pareto-optimal points solutions of a scalar problem? If so, give the corresponding values of
the weights α that provide the Pareto-optimal points.

Sol.: Since the problem is convex (utilities and constraints are linear), all the Pareto optimal
points are solutions of the scalar problem

maximize
x

α1U1(x) + α2U2(x)

s.t.
x1 ≥ 0, x2 ≥ 0
2x1 + x2 ≤ 1
x1 + 2x2 ≤ 1.

for some α º 0. In particular, it is clear that by choosing α = [1 1]T and α = [1/2 2]T (or
scalar multiples of these vectors), we obtain all the Pareto-optimal points.

(c) Formulate this scenario as a strategic game, where the strategy set is defined by all the
x1 ≥ 0 and x2 ≥ 0 that satisfy (3). Is there at least a Nash equilibrium? If so, find the Nash
equilibria.

Sol.: The game at hand is < {1, 2}, C, {Ui(x)}i=1,2 >, where the set of strategy C = {x ∈R2+:
2x1 + x2 ≤ 1, x1 + 2x2 ≤ 1}. Since the set of strategies is compact and the utility Ui(x)
is quasiconcave in xi and continuous in x, we know that the game has at least one Nash
equilibrium. From the definition of Nash equilibrium, it is easy to see that all the Pareto
optimal points of the problem at hand are also Nash equilibria.

6


