
ECE 788 - Optimization for wireless networks
Final

Please provide clear and complete answers.

1. (4 points) Consider the optimization problems P1, P2, P3 and P4 below, where fo(x) is
the cost function and f1(x) defines the inequality constraint (i.e., the problem is "minimize
fo(x) s.t. f1(x) ≤ 0"):
P1. fo(x) = x, f1(x) = |x| with domain D = R;
P2. fo(x) = x

3, f1(x) = −x+ 1 with domain D = R;
P3. fo(x) = x

3, f1(x) = −x+ 1 with domain D = R+;

P4. fo(x) = x, f1(x) =






−x− 2 for x ≤ −1
x for − 1 ≤ x ≤ 1

−x+ 2 for x ≥ 1
with domain D = R.

a. For all the problems above, state whether the problem is convex and, if so, whether
Slater’s condition holds.
b. For all the problems above, derive and plot the perturbation function p(u), and identify
p∗, d∗ along with x∗ and λ∗ if they exist (please provide all the necessary details).

Sol.:
P1. a. The problem is convex, and Slater’s condition does not hold.
b. The perturbation function is p(u) = −u with domp = {u : u ≥ 0}. We thus have
p∗ = d∗ = 0 with x∗ = 0 and λ∗ = 1 (more precisely, any λ∗ ≥ 1 is dual optimal).

P2. a. The problem is not convex.
b. The perturbation function is p(u) = (1− u)3 with domp = R. We thus have p∗ = 1, while
d∗ = −∞, with x∗ = 1 (the value of d∗ can of course also double checked by solving the dual
problem).

P3. a. The problem is convex and Slater’s condition is satisfied.
b. The perturbation function is p(u) = (1− u)3 for u ≤ 1 and p(u) = 0 for u > 1. We thus
have p∗ = 1, while d∗ = 1, with x∗ = 1 and λ∗ = −dp(0)/du = 3.

P4. a. The problem is not convex.
b. The perturbation function is p(u) = −2 − u with domp = {u : u ≥ −1}. We thus have
p∗ = d∗ = −2, with x∗ = −2 and λ∗ = 1.

2. (2 points) Consider the following problem

minimize ||Ax− b||22
s.t. Gx = h

,

with x ∈ Rn and A ∈ Rm×n with rank(A) = n and G ∈ Rp×n with rank(G) = p.
a. Calculate the dual function.
b. Write the KKT conditions. Do you expect to be able to find a solution?
c. Find the optimal multiplier vector and the optimal solution as a function of the optimal
multiplier.

1



Sol.: a. The Lagrangian function is

L(x, ν) = ||Ax− b||22 + ν
T (Gx− h)

= xATAx+ (GTν − 2AT b)Tx− νTh,

and the dual function is thus obtained by minimizing the above strictly convex function,
obtaining

g(ν) = −
1

4
(GTν − 2AT b)T (ATA)−1(GTν − 2AT b)− νTh.

b. The KKT conditions are

2AT (Ax∗ − b) +GTν∗ = 0

Gx∗ = h.

Since the problem is convex and satisfies Slater’s conditions (it is feasible), an optimal point
exists if and only if the KKT have a solution. From Weierstrass theorem, an optimal solution
exists, and therefore the KKT must have a solution.
c. From the first KKT condition, we calculate

x∗ = (ATA)−1(AT b− (1/2)GTν∗),

which gives us from the second equation:

ν∗ = −2(G(ATA)−1GT )−1(h−G(ATA)−1AT b).

3. (2 points) Consider a convex problem characterized by cost function fo(x), inequality
constraints fi(x) ≤ 0, i = 1, ...,m and equality constraints hi(x) = 0, i = 1, ..., p. Prove
that the perturbation function p(u, v) = inf fo(x), where the infimum is taken under the
constraints fi(x) ≤ ui and hi(x) = vi (u = (u1, ..., um), v = (v1, ..., vp)), is a convex function.
Recall that you have to prove also that the domain is a convex set.

Sol.: Consider the following function

g(x, u, v) =





f̃o(x)

if fi(x) ≤ ui
and hi(x) = vi

∞ otherwise
,

where f̃o(x) is the extended value extension of fo(x). The function g(x, u, v) is convex in
x, u, v, as it can be shown from the definition of convex function. To see this, define y =
(x, u, v). Now consider any y1, y2 and a convex combination y = θy1+ (1− θ)y2 (0 ≤ θ ≤ 1).
We need to show that

g(y) ≤ θg(y1) + (1− θ)g(y2).

There are two cases. 1) If g(y) = ∞, then necessarily we must have g(y1) = ∞ and/or
g(y2) = ∞. In fact, if g(y1) and g(y2) were finite, then, by the convexity of f̃o(x) and fi(x)
and the fact that hi(x) is affine, g(y) would be finite too. 2) If g(y) is finite, then we have
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two subcases. 2.a) g(y1) = ∞ and/or g(y2) = ∞: in this case, the inequality is apparent;
2.b) g(y1) and g(y2) are finite: in this case, we have

g(y) = fo(x) ≤ θfo(x1) + (1− θ)fo(x2) = θg(y1) + (1− θ)g(y2),

which concludes the proof.
Finally, by infimizing over x we thus obtain a convex function.

4. (2 points) Consider the multiobjective optimization problem (with respect to cone R2+)
with objective function fo(x) = [F1(x) F2(x)]

T where F1(x) = x
2
1+x

2
2 and F2(x) = (2x1+3)

2.
a. Evaluate all the Pareto optimal values and points via scalarization (give explicit expres-
sions for both values and points). I
b. Solve the scalarization problems with either weight equal to zero. For both cases, are the
solutions of the scalar problem also Pareto optimal?

Sol.: Since the problem is convex, we know that all Pareto optimal points can be obtained
via scalarization with some weight vector λ � 0. We now fix some λ ≻ 0 and solve the
problem

minimize λ1(x
2

1 + x
2

2) + λ2(2x1 + 3)
2,

which is equivalent to

minimize (λ1 + 4λ2)x
2
1 + λ1x

2
2 + 12λ2x1 + 9λ2.

Any solution to this problem will give us a Pareto optimal point and value. Since the cost
function is stictly convex, the corresponding Pareto optimal point is given as

x∗(λ1, λ2) =

[
−6λ2
λ1+4λ2

0

]
,

which can be also restated in terms of µ = λ2/λ1 as

x∗(µ) =

[
−6µ

1+4µ

0

]
,

and the value is obtained by substituting the above into fo(x), which yields

F ∗1 (µ) =

(
−6µ

1 + 4µ

)2

F ∗2 (µ) =

(
−12µ

1 + 4µ
+ 3

)2
.

To calculate the remaining Pareto optimal points and values, we need to let µ → 0 and
µ→∞. With µ→ 0, we obtain x∗ = 0 and f ∗o = (0, 9), which corresponds to minimization
of the norm only. This point can also be obtained with λ2 = 0 and λ1 = 1. With µ→∞, we
obtain x∗ = (−3/2, 0)T and f ∗o = (9/4, 0), which corresponds to minimizing the error with
the solution with minimum norm. Note that if we solved the scalarization problem with
λ2 = 1 and λ1 = 0, any point with x1 = −3/2 is a solution, but is not necessarily a Pareto
optimal point.
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5. (2 points) Consider the game described by the payoff matrix below

1, 2 0, 1
2, 1 1, 0

a. Identify the Pareto optimal points, and the Nash equilibria in pure strategies.
b. Calculate all Nash equilibria in mixed strategies.

Sol.: a. Pareto optimal values are (1,2) and (2,1), and the Nash equilibrium in pure strategy
is (2,1).
b. Considering mixed strategies, the average utilities are

Ū1(p1, p2) = p1p2 + (1− p1)(2p2 + (1− p2))

= p1p2 + (1− p1)(p2 + 1)

= −p1 + (p2 + 1)

Ū2(p1, p2) = p2(2p1 + (1− p1)) + (1− p2)p1

= p2(p1 + 1) + (1− p2)p1

= p2 + p1.

This shows that player 1 always chooses p1 = 0, irrespective of the action of player 2, and
player 2 chooses always action p2 = 1 irrespective of the action of player 1. This is also clear
from the payoff matrix. Therefore, there are no mixed strategy equilibria, but only pure
strategy equilibria.
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