
ECE 755 - Digital communications
Final

Please provide clear and complete answers.

PART I: Questions -

Q.1. (1 point) Evaluate the approximate probability of error of the convolutional code
characterized by the generator G(D) = [1 ⊕ D 1 ⊕ D2] as a function of E/N0 (E is the
energy per 2-dim) assuming 4-QAM transmission. What is the gain with respect to the
corresponding uncoded system (with the same spectral efficiency)?

Sol.: The transition diagram is given by the following table (first column: starting state,
second column: ending state, third column: input and output bits)

00 00 (0, 00)
00 10 (1, 11)
10 01 (0, 10)
10 11 (1, 01)
01 00 (0, 01)
01 10 (1, 10)
11 11 (1, 00)
11 01 (0, 11)

it easily follows that the minimum-Hamming weight error event is (00, 10, 01, 00), whose
Hamming weight is 4. Therefore, the Euclidean distance is 4 · 4c2 = 16c2 (assuming Gray
mapping) and the approximate probability of error (for both sequence and symbol) is (E =
2c2)

Pe ' KQ

Ãs
16c2

2N0

!
= KQ

Ãr
4E

N0

!
.

The corresponding uncoded system is BPSK, whose probability of error is

Pe = Q

Ãr
2E

N0

!
,

so that the gain is 3dB.

Q.2. (1 point) Compare the performance at the point above with the approximate proba-
bility of error for the recursive convolutional code G(D) = [1 1⊕D2

1⊕D ] (you are free to choose
the tail bits) when the bit sequence of all ones is transmitted.

Sol.: The two codes are equivalent. Moreover, since the code is linear, any two codewords
have the same conditional probability of error. It follows that the requested approximate
probability of error is the same as at the previous point.
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Q3. (1 point) Consider an analog PLL with loop filter

L(s) = K0
s+ 1

s+K
.

a. We are interested in obtaining a lock-in range of 0.5kHz and a bandwidth of 50Hz. Find
reasonable values for K0 and K to satisfy these constraints.
b. Assume that the input is θ(t) = 2πf0t+ θ. Find the asymptotic phase error.

Sol.: a. For the lock-in range:

|f0| ≤ |L(0)|
2

= 0.5kHz

=⇒ K0

K
= 1000

while the bandwidth is well approximated by
√
K0/2π so that

K0 = (2π · 50)2 = π2 · 104

It follows that
K = π2 · 10.

It can be checked from the transfer function

Φ(s)

Θ(s)
=

L(s)

L(s) + s
=

K0(s+ 1)

s2 + (π2 · 10 + π2 · 104)s+ π2 · 104

that the PLL is stable.
b. Using the final value theorem, we have (recall that the Laplace transform of the input is
Θ(s) = 2πf0/s

2 + θ/s

lim
t→∞

e(t) = lim
s→0

sE(s)

= lim
s→0

s

µ
2πf0
s2

+
θ

s

¶
s(s+K)

s2 + (K +K0)s+K0
,

where we have used the fact that the transfer function for the error is

1

1 + L(s)/s
=

s(s+K)

s2 + (K +K0)s+K0
.

Following the calculations above, we get

lim
t→∞

e(t) =
2πf0K

K0
=
2πf0
1000

.

Q4. (1 point) Consider the linear code characterized by the generator matrix G =[1 1 1]
with BPSK modulation. Assume that the received signal is [1.2− 0.01 2.1], the energy per
2 dim is E = 1 and the noise power per dimension is σ2 = 3. Run the message passing
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algorithm until convergence (do you expect it to converge?) and find the corresponding
log-likelihoods at the bit nodes.

Sol.: See class notes for the steps of the algorithm. The log-likelihoods at the check nodes
after convergence coincide with the real values (due to the fact that the Tanner graph has
no cycles) and are equal to

λi =
2
√
E

σ2
(r1 + r2 + r3)

=
2

3
(1.2− 0.01 + 2.1)

= 2.19.

PART II: Problems -

P.1. (2 points) Two symbols a0, a1 ∈ A = {−1, 1} are transmitted over an ISI channel that
is described by the transfer functionM(z) = 1−0.2z−1. The a priori probabilities of the two
bits are pA0(−1) = 1/2 and pA1(−1) = 1/4. We would like to obtain reliability information
about the transmitted symbols in the form of log-likelihood ratios given that the received
signal is z =[0.2 0.1 −0.3] and knowing that the noise power is σ2 = No/2 = 0.2 (and that
we have ak = −1 for k < 0 and k ≥ 2).
a. Draw the trellis describing the possible transmitted sequences with appropriate branch
metrics γk(p, q) for the BCJR algorithm.
b. Perform the BCJR algorithm and find the a posteriori probabilities of the transmitted
symbols (pAk

(a|z)). What are the log-likelihood ratios for the three symbols? Which symbol
can be decided on with the highest confidence?

Sol.: a. The branch metrics γk(p, q) can be written as

γk(p, q) = pAk
(a)f(zk|Ψk = p,Ψk+1 = p)

= pAk
(a) exp(−(zk − s(p,q))/(2σ2))

= pAk
(a) exp(−(zk − s(p,q))/(0.4))

where we have used standard notation and have dropped the constant 1/
√
2πσ2 since it is

common to all terms and thus immaterial for the algorithm. The pair of transmitted symbol
ak and received signals s(p,q) corresponding to state transition (p, q) can be easily found, and
so can the branch metrics γk(p, q), see solutions from previous year or class notes.

P.2. (2 points) The equivalent discrete-time ISI channel experienced by a given communica-
tion system is given by H(z) = 1+4z−1 with noise power spectral density Sn(z) = N0 = 0.8.

a. Design the ZF-LE. Can the equalizer be realized? Find the numerical value of the
corresponding probability of error for a BPSK constellation assuming energy per bit Eb =
1/4.

b. Repeat the point above for the ZF-DFE.
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c. Consider implementing the ZF-DFE filter at the point above via transmitter precoding.
Draw the block diagram of the corresponding system assuming 4-PAM transmission (with
alphabet {−3,−1, 1, 3}). Moreover, find the transmitted sequence xk (k = 0, 1, 2, 3) given
the input symbols a = [3,−3, 3, 1].

a. The channel H(z) = 1 + 4z−1 can be written as

H(z) = 4z−1(1 + 0.25z) = z−1Ho ·Hmax(z).

The term z−1 only implies a delay of one unit time in the decision and is thus not further
accounted for below: we set without loss of generality H(z) = Ho ·Hmax(z) with Ho = 4 and
Hmax(z) = (1 + 0.25z). The ZF-LE is defined by the filter

C(z) =
1

Ho ·Hmax(z)
=

1

4(1 + 0.25z)
,

which is clearly anti-causal stable (not realizable) having a pole in z = −4.
The probability of error is obtained by deriving the noise power at the output of the equalizer:

ε2ZF−LE =<
N0

16|1 + 0.25eiω|2 >A,(−π,π)=
N0

16

∞X
k=0

(0.25)2k =
N0

16

1

1− 1
16

=
N0

15
=
0.8

15
,

and then using the expression for the probability of error with BPSK:

Pe,ZF−LE = Q

Ãs
2Eb

ε2ZF−LE/2

!
= Q

Ãr
1/2

0.4
15

!
= 7 · 10−6.

b. The pre-cursor equalizer is given by the all-pass filter

1

H0

H∗
max(1/z

∗)

Hmax(z)
=
1

4

1 + 0.25z−1

1 + 0.25z
,

which is clearly anti-causal stable (not realizable). The feedback filter is instead given by

H∗
max(1/z

∗)− 1 = 0.25z−1.
The noise power at the input of the decision device is:

ε2ZF−DFE =<
N0

16|1 + 0.25eiω|2 >G,(−π,π)=
N0

16
= 0.05,

so that

Pe,ZF−DFE = Q

Ãs
1/2

0.05/2

!
= Q

³√
20
´
= 3 · 10−6.

c. The block diagram can be found in the textbook: it consists of the feedback loop moved
to the transmitter side with the addition of a mod-8 operation in lieu of the decision device
in the loop. The transmitted sequence is given by:

x0 = mod8(a0) = 3

x1 = mod8(a1 − 0.25x0) = mod8(−3.75) = −3.75
x2 = mod8(a2 − 0.25x1) = mod8(3.94) = 3.94
x3 = mod8(a3 − 0.25x2) = mod8(0.015) = 0.015.
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P.3. You need to design a system that transmits 4Mbits/s over a bandwidth of 1.2MHz
and with a roll-off factor of α = 0.2 by using TCM codes. The goal is obtaining an overall
gain of about 3dB (in terms of E/N0) with respect to the corresponding uncoded system
with the same spectral efficiency.
a. Find the necessary spectral efficiency and constellation size (you can use "cross-constellations"
in case an M-QAM constellation does not exist with the necessary number of points). Also,
specify the number of states and the constraint length you would choose for the convolutional
code.
b. Sketch the block diagram of the proposed TCM code. In particular, how many bits
should be coded? To answer this question, derive the necessary set partitioning and the
corresponding minimum distance that guarantee the requested gain of 3dB.
c. Repeat the problem for a gain of 5dB.

Sol.: a. Spectral efficiency:

ν =
4Mbits/s

1.2MHz
=

4

1.2

and number of bits per 2-dim:
ρ = ν(1 + α) = 4.

Therefore, the constellation size is
2 · 2ρ = 32,

so that we can pick a 32-cross constellation (see textbook and notes).
Following Ungerboeck’s rule of thumb, a gain of about 3dB should be guarantee with a
convolutional encoder with four states and thus constraint length equal to 3.
b. We need to check the level of partitioning of the constellation that is necessary to
guarantee a gain of 3dB. Defining as [0, c] and [c, 0] the vectors generating the lattice on
which the constellation is built, it can be easily checked (see also notes) that the minimum
distance corresponding to the first level of partitioning is 2

√
2c, for the second 4c, for the

third 4
√
2cand for the fourth 4

√
2c. Relating c to the energy per two dimensions E, we

obtain (by calculating the average energy of the constellation assuming equal probability
points):

E = 20c2.

Now, the reference system is uncoded 16QAM for which the minimum distance is

d2min,16QAM = 4c2 = 4E/10 = 2E/5,

where the latter equality follows from the fact that the average energy for 16QAM is E =
10c2. In order to obtain a gain of 3dB, the minim distance should be d2min ≥ 4E/5. Without
coding, the minimum distance squared of the 32-cross constellation would be 8/20E = 2/5E,
which is not enough (not surprisingly). But with TCM and two levels, we obtain 16/20 =
4/5E, which is the desired result. As such, the number of coded bits need to be one.

c. Since we want a gain of 5dB, from Ungerbroeck’s rule, we would need 16 states and thus
a constraint length of 5. Moreover, we need to encode 2 bits, in order to obtain a minimum
distance squared of 32/20E = 8/5E, which provides a gain of 4 = 6dB.
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