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Energy Management Policies for
Energy-Neutral Source-Channel Coding

P. Castiglione, O. Simeone, E. Erkip, and T. Zemen

Abstract—In cyber-physical systems where sensors measure
the temporal evolution of a given phenomenon of interest and
radio communication takes place over short distances, the energy
spent for source acquisition and compression may be comparable
with that used for transmission. Additionally, in order to avoid
limited lifetime issues, sensors may be powered via energy
harvesting and thus collect all the energy they need from
the environment. This work addresses the problem of energy
allocation over source acquisition/compression and transmission
for energy-harvesting sensors. At first, focusing on a single-sensor,
energy management policies are identified that guarantee a
minimum average distortion while at the same time ensuring the
stability of the queue connecting source and channel encoders. It
is shown that the identified class of policies is optimal in the sense
that it stabilizes the queue whenever this is feasible by any other
technique that satisfies the same average distortion constraint.
Moreover, this class of policies performs an independent resource
optimization for the source and channel encoders. Suboptimal
strategies that do not use the energy buffer (battery) or use
it only for adapting either source or channel encoder energy
allocation are also studied for performance comparison. The
problem of optimizing the desired trade-off between average
distortion and backlog size is then formulated and solved via
dynamic programming tools. Finally, a system with multiple
sensors is considered and time-division scheduling strategies are
derived that are able to maintain the stability of all data queues
and to meet the average distortion constraints at all sensors
whenever it is feasible.

Index Terms—Wireless sensor networks, energy harvesting,
source/channel coding, power control.

I. INTRODUCTION

IN the “smart world”, wireless sensor networks (WSNs)
play a central role in bridging the real and the digital worlds

[1]. WSNs are typically designed under the assumptions that
communication resources are limited by the energy available
in the battery and that the most significant source of energy
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Fig. 1. An energy-harvesting sensor composed of a cascade of a source and
a channel encoder powered by a resource manager that allocates the energy
available in the buffer (e.g., battery or capacitor).

expenditure is radio transmission. However, modern cyber-
physical systems are expected to operate over a virtually
infinite lifetime. This can only be achieved by overcoming
the limitations of battery-powered sensors and allowing the
sensors to harvest the energy needed for their operation from
the environment, e.g., in the form of solar, vibrational or
radio energy [2], [3]. The regime of operation in which the
system operates in a fully self-powered fashion is referred
to as energy neutral [4]. Moreover, when sensors are tasked
with acquiring complex measures, such as long time sequences
of given phenomena of interest, and when transmission takes
place over small distances, the energy cost of running the
source acquisition system (sensing, sampling, compression)
may be comparable with that of radio transmission [5], [6].

Based on the discussion above, in this paper, we address
the problem of energy management for a WSN in which
sensors are powered via energy harvesting and in which
source acquisition and radio transmission have comparable
energy requirements. We first focus on a system with a
single sensor communicating to a single receiver, as shown
in Fig. 1, in order to concentrate on the main aspects of
the problem. The sensor is equipped with a battery in which
the harvested energy is stored. In each time slot, the sensor
acquires a time sequence for the phenomenon of interest,
which is characterized by a measurement signal-to-noise ratio
(SNR) and autocorrelation. The resulting bits are stored into
a data queue after possible compression. At the same time,
the sensor transmits a number of bits from the data queue to
the fusion center over a fading channel with an instantaneous
channel SNR. Based on the statistics of the energy harvesting
process, and based on the current states of the measurement
quality, of channel SNR, and of the data queue, the energy
management unit must perform energy allocation between
source acquisition and data transmission so as to optimally
balance competing requirements such as distortion of the
reconstruction at the receiver, queue stability and delay. This
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optimization problem is the main subject of this work. We
further extend our analysis to the problem of scheduling
multiple sensors that are communicating to the same receiver.

The model at hand is inspired by the work in [5], [6]
and [7]. In [7], the energy-harvesting sensor allocates power
to data transmission over different channel SNRs, since the
bit arrival process is assumed to be given and not subject
to optimization. This is unlike our work in which a key
problem is that of allocating resources between transmission
and source compression in order to guarantee given constraints
such as distortion and queue stability. The problem of energy
allocation between source compression and transmission was
instead first studied in [6], but in power-limited systems with
no energy-harvesting capabilities. Other experimental studies
[5], [8] have shown the practical gains that can be obtained
in real platforms by implementing energy-aware policies for
resource allocation over compression and transmission.

Other related works pertain to the study of energy-
harvesting WSNs. This is a growing field with recent sig-
nificant contributions. Here we only point to the works that
are most related to ours, besides the ones already mentioned
above. An information-theoretic analysis of a single-sensor
system with energy-harvesting is presented in [9], [10], where
it is shown that energy-harvesting does not affect the capacity
of the channel, as long as one assumes that the battery has
an arbitrarily large storage capacity. An optimal strategy for
a single-sensor system that can control both the “acceptance
rate” of the arriving bits and the power allocation with the
aim of maximizing the throughput under stability constraints
is developed in [11]. Optimal scheduling is instead studied
in [12]–[14]. The effect of a finite battery is studied in
[15], where the trade-off between achievable rate and battery
discharge probability is characterized. It is noted that all these
works do not model the aspect of source acquisition and
processing.

The main contributions of this work are summarized as
follows. (i) We propose a simple, but general, model for
an energy-harvesting sensor operating over a time-varying
channel (Sec. II). (ii) For a single-sensor system, we design
a novel class of distortion-optimal energy-neutral resource
allocation policies that are able to stabilize the data queue
and, simultaneously, to meet an average distortion constraint,
whenever it is feasible by any policy (Sec. III-A). For the
case where multiple sensors access the same uplink channel in
time division, we identify a distortion-optimal energy-neutral
class of scheduling policies (Sec. V). (iii) We compare the
performance of the optimal policies with a number of less
complex strategies, such as policies that do not make use of
the battery at one or both encoders (Sec. III-B) and fixed time
division multiple access (TDMA) scheduling strategies (Sec.
V-A). (iv) Finally, we formulate the problem of optimizing a
desired trade-off between average backlog size and distortion,
which is solved via dynamic programming tools (Sec. IV).

II. SYSTEM MODEL

In this section, we introduce the system model, main
assumptions and problem definition.

We consider a system in which a single sensor communi-
cates with a single receiver as depicted in Fig. 1. The extension

of this system to the case of multiple sensors and a single
receiver is studied in Sec. V. We assume that the sensor
performs separate source and channel coding, as described
in the following. We do not consider the energy costs due
to channel encoding, as they are typically negligible with
respect to transmit energy and compression energy. Also, our
system model does not account for decoding complexity at
the receiver nor for channel state information acquisition and
feedback, which are beyond the scope of the present paper
and subject to future work.

Time is slotted. The energy Ek ∈ R+, measured in “energy
unit”, is harvested in time-slot k is stored in an “energy
buffer”, also referred to as battery, with infinite size. For
convenience, the energy Ek is normalized to the number N
of channel discrete-time symbols available for communication
in each time slot, also referred to as channel uses. The energy
arrival Ek is assumed to be a stationary ergodic process. The
probability density function (pdf) of Ek is pE (e). The energy
Ẽk+1 available for use at slot k+1 is the residual energy from
the previous slot plus the energy arrival at time-slot k+1. This
evolves as

Ẽk+1 =
[
Ẽk − (Ts,k + Tt,k)

]+
+ Ek+1, (1)

where Ts,k and Tt,k account for the energy spent in slot k per
channel use for source acquisition and data transmission, re-
spectively, as discussed below. Notice that the energy arriving
at time slot k+1 is immediately available for use in that slot.

The sensor measures M samples of a given source during
each slot. The quality of such observation in slot k depends
on a parameter Qk ∈ Q, which is assumed to be a stationary
ergodic process over the time slots k. For instance, the sensor
may perform measurements of the phenomenon of interest
whose SNR Qk changes across blocks k due to source
movement or environmental factors affecting the measurement
quality. The set Q is assumed to be discrete and finite, and the
(stationary) probability mass function (pmf) for Qk is given
by Pr(q) = Pr(Qk = q), for q ∈ Q. The sensor acquires
the source in a lossy fashion. The loss, due to sampling,
analog-to-digital conversion and compression, is characterized
by distortion Dk ∈ R

+, as measured with respect to some
distortion metric such as the mean square error (MSE).

The number of bits generated by the source encoder at
the sensor at slot k is Xk = f(Dk, Ts,k, Qk), where f is
a given function of the distortion level Dk, of the energy
per channel use allocated to the source encoder Ts,k and on
the observation state Qk. The resulting bit stream is buffered
in a first-input-first-output (FIFO) data queue with queue
length X̃k. The function f(Dk, Ts,k, Qk) is assumed to be
separately continuous convex and non-increasing in Dk and
Ts,k. For simplicity, we will denote such functions also as
f q(Dk, Ts,k) = f(Dk, Ts,k, Qk = q). Some examples for
function f will be provided below in Sec. II-A.

The fading channel between sensor and destination is char-
acterized by a process Hk, assumed to be stationary ergodic,
where Hk ∈ H, with set H being discrete and finite in
order to ease the numerical evaluations. We assume a slowly
time-variant scenario. The pmf of Hk is given by Pr(h) =
Pr(Hk = h), for h ∈ H. The channel encoder uses the chan-
nel N times per slot, and the transmission requires Tt,k energy
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per channel use. A maximum number g (Hk, Tt,k) of bits
per slot can be delivered successfully to the destination. The
channel rate function g (Hk, Tt,k) is assumed to be continuous,
concave, non-decreasing in Tt,k, and g (Hk, 0) = 0. We also
use the notation gh (Tt,k) = g (Hk = h, Tt,k). An example is
the Shannon capacity on the complex additive white Gaussian
noise (AWGN) channel gh (Tt,k) = N × log(1 + hTt,k) [16].
We remark that adopting the Shannon capacity implies the
use of rate-adaptive schemes with sufficiently long codewords
so that the block error probability becomes negligible. Note
that, however, function g can be also specified by the rate
of channel codes with a non-zero gap to Shannon capacity
and a negligible probability of error. For the given function
g(Hk, Tt,k), the channel encoder takes min[X̃k, g (Hk, Tt,k)]
bits from the data buffer, using the selected transmission
energy Tt,k.

Based on the discussion above, the data queue evolves as

X̃k+1 =
[
X̃k − g (Hk, Tt,k)

]+
+ f (Dk, Ts,k, Qk) . (2)

To illustrate the trade-offs involved in the energy allocation
between Tt,k and Ts,k, we remark that, by providing more
energy Ts,k to the source encoder, one is able, for the same
distortion level Dk, to reduce the number f (Dk, Ts,k, Qk) of
bits to be stored in the data buffer. At the same time, less
energy Tt,k is left for transmission, so that the data buffer is
emptied at a lower rate g (Hk, Tt,k). Vice versa, one could use
less energy to the source encoder, thus producing more bits
f (Dk, Ts,k, Qk), so that more energy would be available to
empty the data buffer.

A. Rate-Distortion-Energy Trade-Off

In the following, we present some examples for function
f q (Dk, Ts,k), as available in the literature. Recall that this
function provides the trade-off between the distortion Dk, the
energy consumption Ts,k and the number of bits produced by
the source encoder.

Example 1. Consider the observation model Rk,i =√
QkUk,i + Zk,i, where M samples of the random process

Uk,i, for i ∈ {1, . . . ,M}, are measured during the slot k
and each measurement Rk,i is affected by Additive White
Gaussian Noise (AWGN) Zk with unitary variance. Parameter
Qk represents the observation SNR in slot k. From [5], an ap-
proximated and analytically tractable model for f q (Dk, Ts,k)
is

f q (Dk, Ts,k) =
N

b
× f q

1 (Dk)× f2 (Ts,k) , (3)

where b = N/M is the bandwidth ratio and f2 (Ts,k) =

ζ ×max[(bTs,k/T
max
s )

−1/η
, 1] models the rate-energy trade-

off at the source encoder. The parameter ζ > 1 is related to the
efficiency of the encoder, the coefficient 1 ≤ η ≤ 3 is specified
by the given processor [17] and parameter Tmax

s upper bounds
the energy Ts,k that can be used by the source encoder.
Function f q

1 (Dk) is a classical rate-distortion function [16].
For the model described in this example, assuming that the
source is independent identically distributed (i.i.d) in time with
Uk,i ∼ N (0, dmax) , the rate-distortion trade-off is given by

f q
1 (Dk) =

(
log

dmax − dmmse

Dk − dmmse

)+

, (4)

where dmmse = (1/dmax + q)−1, is the estimation minimum
MSE (MMSE) for the estimate of Uk,i given Rk,i [18]. Notice
that the distortion Dk is upper bounded by dmax and lower
bounded by dmmse.

Example 2. The sensor observes M sam-
ples of a first-order Gaussian Markov source
[Uk,1, Uk,2, ..., Uk,M ] ∈ R

M with correlation function given
by E[UkUk+j ] = dmaxQ

|j|
k , where parameter 0 ≤ Qk ≤ 1 is

the correlation coefficient between the samples measured in
slot k. Notice that the larger Qk is, the easier it is for the
compressor to reduce the bit rate for a given distortion due
to the increased correlation. Adapting results from [6], if the
source encoder uses a transform encoder [19], the optimal
compressor produces a number of bits equal to

f q (Dk, Ts,k) =
N

b
× [f1 (Dk) + f q

2 (Ts,k)]
+
, (5)

with f1 (Dk) = log ζdmax

Dk
, where parameter ζ ≥ 1 depends

on the type of quantizer, and

f q
2 (Ts,k) = log

(
1− q2

)× Ts,k − ν/b

Ts,k
, (6)

with given parameter ν, which sets a lower bound on the
energy Ts,k as Ts,k ≥ ν/b. Equations (5)-(6) are obtained
by assuming, similar to [6], that the energy required for
source compression is proportional to the size of the transform
encoder. Finally, notice that, since the compression rate must

be positive, Dk is upper bounded by ζdmax

(
1− q2

)Ts,k−ν/b

Ts,k

.

B. Problem Definition

At each time slot k, a resource manager must determine
the distortion Dk and the energies Ts,k and Tt,k to be
allocated to the source and channel encoder, respectively.
The decision is taken according to a policy π := {πk}k≥1,
where πk :=

{
Dk

(
Sk

)
, Ts,k

(
Sk

)
, Tt,k

(
Sk

)}
determines

parameters (Dk, Ts,k, Tt,k) as functions of the present and
past states Sk = {S1, . . . , Sk} of the system, where the
Si = {Ẽi, X̃i, Qi, Hi} accounts for the state of the available
energy Ẽi , for the data buffer X̃i , for the the source
observation state Qi and the channel state Hi. We define the
set of all policies as Π. Policies can be optimized according
to different criteria. In Sec. III we adopt stability under
an average distortion criterion as criterion of interest, while
Sec. IV addresses the optimization of the trade-off between
distortion and backlog size.

III. STABILITY UNDER A DISTORTION CONSTRAINT

In this section, we adopt as performance criterion the stabil-
ity of the data queue connecting source and channel encoders.
We also impose the constraint that the policy guarantees the
following condition on the long-term distortion:

lim sup
n→∞

1

n

n∑
k=1

E [Dk] ≤ D̄ (7)

for a fixed maximum average distortion level D̄ tolerated by
the system. We define a policy as D̄-feasible if it guarantees
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the stability of the data queue connecting source and channel
encoders under the average distortion constraint (7). Recall
that stability of the data queue holds if the distribution of X̃k is
asymptotically stationary and proper, i.e., Pr(X̃k = ∞) → 0
[20].

A. Distortion-Optimal Energy-Neutral Class of Policies

For a given distortion D̄, our objective in this section is
to identify a class of policies that is able to stabilize the data
queue and satisfy the distortion constraint (7) as long as this is
possible. We refer to this class of policies as distortion-optimal
energy-neutral. Notice that this definition generalizes that of
“throughput optimal” policies [21] considered in related works
such as [7], where only the stability constraint is imposed. By
definition, a distortion-optimal energy-neutral class of policies
Πdo ⊆ Π contains at least one D̄-feasible policy. For instance,
the set Π of all policies is clearly distortion-optimal energy-
neutral. However, this is a rather unsatisfying solution to the
problem. In fact, it does not help in any way to identify a
D̄-feasible policy for a given system setup. Instead, we want
to identify a smaller class Πdo, which is parametrized in a
way that makes it easy to evaluate a D̄-feasible policy. The
propositions below identify a distortion-optimal energy-neutral
class of policies for the separate source and channel encoders
model depicted in Fig. 1 and described in Sec. II.

Proposition 1. For a given distortion D̄, a necessary condi-
tion for the existence of a D̄-feasible policy is the existence
of a set of parameters Dq ≥ 0, T q

s ≥ 0 for q ∈ Q, T h
t ≥ 0

for h ∈ H, and 0 < α < 1 such that∑
q

Pr(q)f q (Dq, T q
s ) <

∑
h

Pr(h)gh
(
T h
t

)
, (8)

∑
q

Pr(q)Dq ≤ D̄, (9)

∑
q

Pr(q)T q
s ≤ (1− α)E [Ek] , (10)

and
∑
h

Pr(h)T h
t ≤ αE [Ek] . (11)

Remark 1. Parameters Dq , T q
s , T h

t and α, whose existence is
necessary for the existence of a D̄-feasible policy according
to Proposition 1, have a simple interpretation. In particular,
T q
s and Dq can be read as the average energy and distortion

that the source encoder selects when the observation state
is Qk = q, whereas T h

t can be seen as the average energy
that channel encoder draws from the available energy for
transmission when the channel state is Hk = h. Moreover,
condition (8)is necessary for the stability of the data queue,
condition (9) is necessary to satisfy the constraint (7), and
conditions (10)-(11) are necessary for energy neutrality. This
interpretation will be used below to derive a class of distortion-
optimal energy-neutral policies.

Proof: The processes f (Dk, Ts,k, Qk) and g (Hk, Tt,k)
must be asymptotically stationary ergodic for queue (2) to be
asymptotically stationary. Hence, the policy π must be asymp-
totically stationary. Under this assumption, the necessary con-
dition for the distribution of X̃k to be asymptotically proper

is Eπ [f (Dk, Ts,k, Qk)] < Eπ [g (Hk, Tt,k)] from standard
results on G/G/1 queues (see any reference on queuing theory,
e.g.,[20, Ch.3]). Notice that the average Eπ is taken with re-
spect to the given policy π that is in general history dependent.
From this condition, since f is separately convex in Dk, Ts,k

and g is concave in Tt,k, we have the following necessary con-
dition

∑
q Pr(q)f

q (Eπ [Dk | Qk = q] ,Eπ [Ts,k | Qk = q]) <∑
h Pr(h)g

h (Eπ [Tt,k | Hk = h]), where we have used Jensen
inequality on both sides. Defining Dq = Eπ [Dk | Qk = q],
T q
s = Eπ [Ts,k | Qk = q], and T h

t = Eπ [Tt,k | Hk = h],
the condition (8) is then proved. As for (10)-(11), we con-
sider that, from (1), we must have 1

K

∑K
k=1 (Ts,k + Tt,k) ≤

1
K

∑K
k=1 Ek + Ẽ0

K , for K ≥ 1, and the initial state of the
energy buffer Ẽ0. Then, for a stationary ergodic policy π, we
get Eπ [Ts,k] + Eπ [Tt,k] ≤ E [Ek], where 1

K

∑K
k=1 Ts,k →

Eπ [Ts,k], 1
K

∑K
k=1 Tt,k → Eπ [Tt,k], and 1

K

∑K
k=1 Ek +

Ẽ0

K → E [Ek]. Given the definitions and the inequality above,
(10)-(11) are proved, having set α = Eπ [Tt,k] /E [Ek]. To
conclude, for (9), we observe that the distortion constraint (7)
is satisfied.

We now look for a distortion-optimal energy-neutral class
of policies. To this end, based on Proposition 1, it is enough
to exhibit a class of policies such that it contains a D̄-feasible
policy as long as the necessary conditions (8)-(11) are satisfied
for some set of parameters Dq , T q

s , T h
t and α. Proposition

1 suggests that it is possible to find D̄-feasible policies that
select Dk and Ts,k based on the observation state Qk only,
whereas the selection of Tt,k depends on the channel state
Hk only. Based on this consideration, let us define the class
of policies Πdo

Πdo =

⎧⎪⎪⎨
⎪⎪⎩
Dk = Dq, for Qk = q

Ts,k = min
[
(1− α) Ẽk, T

q
s

]
for Qk = q

Tt,k = min
[
αẼk, T

h
t

]
for Hk = h

(12)

where Dq ≥ 0, T q
s ≥ 0 for q ∈ Q, T h

t ≥ 0 for h ∈ H, and
0 < α < 1 are fixed design parameters.

Proposition 2. A policy in Πdo is D̄-feasible if conditions
(8)-(9) hold, along with∑

q

Pr(q)T q
s ≤ (1− α)E [Ek]− ε, (13)

and
∑
q

Pr(q)T h
t ≤ αE [Ek]− ε (14)

where ε > 0 is arbitrarily small.

Remark 2. The sufficient conditions in Proposition 2 for the
policies in Πdo to be D̄-feasible coincide, for ε → 0, with
the necessary conditions derived in Proposition 1. Therefore
Πdo contains a D̄-feasible policy any time the necessary con-
ditions of Proposition 1 hold. As discussed above, this implies
that the set Πdo is a distortion-optimal energy-neutral class.
Moreover, it should be noted that the class Πdo, given (12), is
parametrized by a small number of parameters and the policies
in Πdo perform separate resource allocation optimizations for
the source and channel encoders. In particular, the energy
allocated to the source encoder Ts,k only depends on the
observation state Qk, and not on the channel quality Hk,
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whereas the energy Tt,k for the channel encoder only depends
on Hk, and not on Qk. The energy allocation between the
two encoders is governed by a single parameter 0 < α < 1.
This entails that, once this parameter is fixed, and thus the
energy budget available at the two encoders is fixed, resource
allocation at the two encoders can be done separately without
loss of optimality.

Proof: For 0 < α < 1 such that
∑

q Pr(q)T
q
s ≤

(1− α)E [Ek] − ε and
∑

q Pr(q)T
h
t ≤ αE [Ek] − ε, with

ε small, we obtain that Pr(Ẽk = ∞) = 1 asymptotically.
This is true since E [Ts,k + Tt,k] < E [Ek] in the system
(1), so that the energy harvested is larger than the energy
consumed on average and the energy queue is not stable
[20, Ch.3] (see also [7] for the same argument). This leads
to the asymptotically infinite size of the stored energy, as
the buffer capacity is assumed infinite. Therefore we have,
Ts,k (Qk = q) → T q

s and Tt,k (Hk = h) → T h
t from (12).

Notice that this argument shows that in (12) one can sub-
stitute α for any number between 0 and 1 leading to the
same sufficient conditions (8)-(9) and (13)-(14). Due to the
stationarity and ergodicity of the processes Qk and Hk,
f (Dk, Ts,k, Qk) and g (Hk, Tt,k) are stationary ergodic, and∑

q Pr(q)f
q (Dq, T q

s ) <
∑

h Pr(h)g
h
(
T h
t

)
is the sufficient

condition for the stability of the queue X̃k [20, Ch.3]. Be-
ing limn→∞ 1

n

∑n
k=1 Dk =

∑
q Pr(q)D

q , for Dq such that∑
q Pr(q)D

q ≤ D̄ the class of policies Πdo satisfies the
constraint (7).

Remark 3. A problem of interest is to find the minimal
distortion D̄ for which the set of distortion-optimal energy-
neutral policies Πdo is not empty. In other words, assessing
the minimal distortion that can be supported without causing
the data queue to be unstable. Given the separate nature of the
source and channel energy allocations, it can be seen that one
should optimize both terms in (8) separately, once the optimal
value for α has been found. In particular, when g (Hk, Tt,k)
is the Shannon capacity, the policy Tt,k that minimizes D̄ is
the water-filling [16].

Remark 4. In this section, we have considered the average dis-
tortion constraint (7) as performance metric, as done routinely
in the literature (see, e.g., [22]). It is noted that this criterion
allows policies that switch from low levels of distortion to
significant ones. However, in some applications, it may be
preferable to guarantee a maximum fixed level of distortion
per slot

Dk ≤ D̄. (15)

With this additional constraint, following the same approach
above, we can show that a distortion-optimal energy-neutral
class of policies is obtained as in (12), with the additional
constraint Dq ≤ D̄.

B. Suboptimal Classes of Policies

In Sec. III-A, a distortion-optimal energy-neutral class Πdo

has been identified. This class of policies, as made clear by
the proof of Proposition 2 requires infinite energy storage
capabilities at the sensor node. Let us instead consider the
class of greedy policies Πsub1 that do not use the energy buffer
but allocates all the energy arrival Ek to source and channel

coding according to a fraction 0 ≤ αq,h ≤ 1 that depends on
both source Qk = q and channel Hk = h states:

Πsub1 =

{
Dk = Dq,h, Ts,k = αq,hEk,

Tt,k = (1− αq,h)Ek,
(16)

where the distortion Dq,h ≥ 0 also depends on both source and
channel states. Notice that this is unlike the class of distortion-
optimal energy-neutral policies (12) in which, as explained
in Remark 2, energy allocation is done independently for
source (only based on Qk) and channel decoder (only based
on Hk). Here, parameters αq,h, Dq,h are selected on the basis
of both channel and source states Qk and Hk to partially
compensate for the loss due to the greedy approach. For
further reference, we also consider the subclass of policies
Πsub2 := Πsub1|αq,h=α for all (q, h), for which the power
allocation is not adapted to the channel and observation states.

Proposition 3. Policies in Πsub1 are D̄-feasible if the follow-
ing conditions hold:∑

q

∑
h

Pr(q) Pr(h)E
[
f q

(
Dq,h, αq,hEk

)]
<

<
∑
q

∑
h

Pr(q) Pr(h)E
[
gh

(
(1− αq,h)Ek

)]
, (17)

and
∑
q

∑
h

Pr(q) Pr(h)Dq,h ≤ D̄, (18)

where the expectation E in (17) is over the energy harvesting
process Ek.

Remark 5. In general, the set of policies Πsub1 is not guar-
anteed to be a distortion-optimal energy-neutral class, since
the necessary conditions of Proposition 1 could hold where
the sufficient conditions of Proposition 3 do not. This is also
confirmed via numerical simulations in Sec. III-C. However,
for constant observation and channel states, i.e., Hk = h0

and Qk = q0 for all k, and for f and g linear in Ts,k

and Tt,k, respectively, the class Πsub1 is distortion-optimal
energy-neutral. In fact, under these assumptions, the suffi-
cient condition (17) becomes f q0

(
Dq0,h0 , αq0,h0E [Ek]

)
<

gh0
((
1− αq0,h0

)
E [Ek]

)
. Defining T q

s = αq0,h0E [Ek], T h
t =(

1− αq0,h0
)
E [Ek] and Dq = Dq0,h0 , conditions (17)-(18)

correspond to (8)-(9). Thus, the class of policies Πsub1 is
distortion-optimal energy-neutral.

Proof: Due to the stationarity and ergodicity of the
processes Qk and Hk, the parameters Dk, Ts,k and Tt,k,
are also stationary ergodic and (17) is a sufficient condi-
tion for the stability of the queue X̃k [20, Ch.3]. Since
limn→∞ 1

n

∑n
k=1 Dk =

∑
q

∑
h Pr(q) Pr(h)D

q,h, for Dq,h

such that
∑

q

∑
h Pr(q) Pr(h)D

q,h ≤ D̄ the class of policies
Πsub1 satisfies the constraint (7).

The greedy policies introduced above do not make use
of the energy buffer at all, whereas the distortion-optimal
energy-neutral class of policies Πdo does. For comparison
purposes, it is interesting to consider hybrid policies that differ
from those in Πdo as the energy buffer is used only either
for compression or for transmission. The first policies Πhyb1

require an energy buffer for the channel encoder only in order
to adapt the transmission power to the channel state, i.e.,
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unit/channel use; D̄ = 0.8; compression model (3), with Tmax

s = 1 energy
unit/source sample, ζ = 1, η = 1.5, maximum distortion dmax=1).

Tt,k = min[αẼk, T
h
t ] for Hk = h. The energy allocated to the

source encoder is instead independent of the observation state,
i.e., Ts,k = (1− α)Ek. Vice versa, the second policies Πhyb2

are adapted to the observation state instead of the channel
state, and require an energy buffer only for the source encoder,
i.e., Ts,k = min[(1− α) Ẽk, T

q
s ] for Qk = q and Tt,k = αEk .

Remark 6. Policies in Πhyb1 are D̄-feasible
if conditions (9) and (14) hold, along with∑

q Pr(q)E [f q (Dq, (1− α)Ek)] <
∑

h Pr(h)g
h
(
T h
t

)
.

Similarly, policies Πhyb2 are D̄-feasible if conditions
(9) and (13) hold, along with

∑
q Pr(q)f

q (Dq, T q
s ) <

<
∑

h Pr(h)E
[
gh (αEk)

]
.

Proof: Proof follows from the proofs of Propositions 2
and 3.

C. Numerical Results

In this section we compare numerically the performance
of the optimal and suboptimal source-channel coding policies
presented so far.

Consider first a scenario where the observation and channel
states are constant, i.e., Qk = q and Hk = h for all k. The
energy arrival Ek has mean 1 energy unit/channel use and
uniform pdf between 0 and 2 energy unit/channel use. The
distribution pE (e) is chosen arbitrarily as the modeling of the
energy source is beyond the scope of this work. We consider
the compression model (3) with Tmax

s = 1 energy unit/source
sample, efficiency parameters ζ = 1 and η = 1.5 for the source
encoder, and the complex AWGN channel Shannon capacity
gh (Tt,k) = N × log(1 + hTt,k). In Fig. 2, we identify the
values of source and channel SNRs (q, h) for which different
policies are able to stabilize the data queue and guarantee
average distortion D̄ = 0.8. We refer to these regions as
“achievable regions”. Achievable regions are given in Fig. 2
by the area above the corresponding lines. We use standard
tools of convex optimization for their numerical evaluation.

In Fig. 2, we can further observe that the achievable
regions of the distortion-optimal energy-neutral class (12) are
significantly larger than those of the greedy policies (16)
due to possibility to store energy and thus allocate resources
more effectively. Moreover, by considering also the hybrid
policies Πhyb1 and Πhyb2 , we can see that most of the
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Fig. 3. Achievable regions (regions below the curves) of the digital policies
Πdo (12), Πsub1 (16), and Πsub2, with two channel and observation SNR
states, respectively. (Ek ∼ U (0, 2), with mean 1 energy unit/channel use;
D̄ = 0.8; compression model (3), with Tmax

s = 1 energy unit/source sample,
ζ = 1, η = 1.5, bandwidth ratio b = 1, maximum distortion dmax=1).

gains are obtained, in this example, by exploiting the energy
buffer in order to allocate energy over time to the source
encoder, whereas the gains accrued by using the battery for
data transmission are less significant. This is observed by
noticing that the achievable region of the class Πdo is close
to that obtained by hybrid policies Πhyb2, but much larger
than that obtained by hybrid class of policies Πhyb1. The
relative comparison between the two hybrid policies, and thus
between the use of the battery for source or channel encoding,
depends on the functions f (Dk, Ts,k, Qk) and g (Hk, Tt,k).
For instance, setting a lower Tmax

s would change the presented
results by penalizing more the strategies that are not using the
energy buffer for channel transmission. By comparing the plots
(a), (b) and (c) in Fig. 2, we also notice that the achievable
regions get significantly larger for all policies by increasing
the bandwidth ratio, as expected.

We now look at the scenario where source and channel
states are not constant but vary with two possible states,
namely Q =

{
10−1, 102

}
(Fig. 3(a) or Q =

{
10−0.2, 1

}
(Fig. 3(b) for source SNR, and H =

(
10−1, 102

)
(Fig. 3(a)

or H = (3.5, 7) (Fig. 3(b) for channel SNR. The worst-case
observation SNR (e.g., Qk = 10−1 for Fig. 3(a) and the
worst-case channel SNR (e.g., Hk = 10−1 for Fig. 3(a) have
probabilities pqw and phw, respectively. The energy arrival Ek

exhibits a uniform pdf between 0 and 2 energy unit/channel
use. In Fig. 3, achievability regions are the sets of probability
values (pqw, p

h
w) for which different policies guarantee queue

stability and average distortion D̄ = 0.8. In particular, the
regions are identified as the area below the corresponding
curves. The results emphasize the importance of jointly adapt-
ing the resource allocation to both source and channel states in
case of a greedy policy that does not employ the battery. This
is seen by comparing the performance of the greedy schemes
Πsub1 (16), which adapts the policy to the current states, and
Πsub2, which does not. Moreover, comparing Fig. 3(b) with
Fig. 3(a, it is seen that the better “worst-case” state allows
the distortion-optimal energy-neutral policy to satisfy stability
and average distortion constraints for larger values of the
probabilities (pqw, p

h
w). On the contrary, the greedy policies

suffer from the worse “best-case” state (q, h) = (1, 7) of
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Fig. 3(b), as this corresponds to operating critically close to the
border of their achievable regions (see the achievable region
of Πsub1 in Fig. 2(b).

To assess the role of the energy buffer management, Fig. 4
shows the minimum long-term average distortion constraint D̄
for which there exists at least one D̄-feasible policy within the
different classes of policies. The distribution of the harvested
energy pE (e) is Beta with mean E[Ek] = 0.5. The selected
distribution pE (e) allows us to assess the performance de-
pendence from the degree of randomness of the harvested
energy (measured by the variance of pE (e)) without changing
its average value. Observation and communication channel
SNRs vary with two possible states, namely Q = {1, 10}
and H = {1, 10} independently and with equal probability.
We have parameters b = 1, maximum distortion dmax = 1,
Tmax
s = 1 energy unit/source sample, ζ = 1, η = 1.5 in

Fig. 4(a), and η = 3 in Fig. 4(b). The advantages of the optimal
policies with respect to the strategies that do not fully leverage
the energy buffer are clear. Moreover, it is seen that, even using
the energy buffer for either source (Πhyb2) or channel encoder
(Πhyb1) leads to relevant gains. With η = 1.5 in Fig. 4(a),
function (3) has a more pronounced convexity as a function
of Ts,k than in η = 3 in Fig. 4(b). By Jensen’s inequality, a
more convex function (3) implies a larger performance loss in
case the encoder is not able to operate at the average energy
level. This can be seen by observing the performance loss
of the hybrid policy Πhyb1 in Fig. 4(a) as the variance of
pE (e) increases. Another interesting aspect is the relative
performance of joint or separate adaptation to source and
channel SNRs. As seen, with full use of the energy buffer, a
separate approach is optimal. Fig. 4(b) shows instead that the
distortion achieved with no energy buffer but with adaptation

to the joint state of both source and channel SNRs (Πsub1)
has relevant performance gains with respect to the policy with
no adaptation (Πsub2), especially in the scenario of Fig. 4(b)
with a function (3) with more pronounced convexity.

IV. BACKLOG-DISTORTION OPTIMIZATION

The stability criterion considered in Sec. III does not
provide any guarantee on the size of the queue connecting the
source encoder to the channel encoder. This in turn generally
entails arbitrary delays experienced by the reconstruction of
the source in a certain time-slot. In this section, we address
the trade-off between distortion and backlog (i.e., size of the
queue) by adopting as performance criterion the weighted sum
of the distortion and the data buffer length. In particular, we
propose to minimize the expected total discounted cost [23]

lim
n→∞

n∑
k=0

λk
[
γDk + (1− γ) X̃k

]
, (19)

where 0 ≤ λ < 1 is the discount factor and 0 ≤ γ ≤ 1.
The latter parameter weights the importance of the distortion
versus the size of the backlog in the optimization criterion.
We note that metric (19) is related to the standard criterion
based on the weighted sum of codeword length and distortion
used in the design of variable-length encoders (see [24] and
follow-up works).

In order to tackle the minimization of (19) over the policies
π defined in Sec. III, we assume that: (i) The data and
energy buffers are finite; (ii) The set of possible decisions
πk := {Dk, Ts,k, Tt,k} is discrete; (iii) The energy arrival
Ek, the state of the observation Qk, and the state of the
channel Hk are Markov processes and take values in discrete
and finite sets; (iv) The sets of values assumed by rates
f (Dk, Ts,k, Qk), g (Hk, Tt,k), and by the queue length X̃k

are discrete. Following standard theory [23, Ch. 6], these
assumptions entail that the optimal policy is deterministic and
stationary (Markovian). In other words, {Dk, Ts,k, Tt,k} are
functions of the present state Sk = {Ẽk, X̃k, Qk, Hk} only.
Therefore, the solution can be found via value iteration [23].
Notice that, due to (i), data buffer overflow may happen, in
which case the compression bits are lost and a maximum
distortion dmax is accrued for the current slot.

While in general the optimal policy allocates resources
to source and channel encoder through parameters T q,h

t as
a function of both source Qk = q and channel Hk = h
states, the class of policies Πdo (12) performs such allocation
independently for source and channel encoders. For compar-
ison purposes, we evaluate also the performance in terms of
criterion (19) of a class of policies that optimize separately
the source encoder parameters {Dk, Ts,k} as a function of
Qk, and the channel encoder parameter {Tt,k} as a function
of Hk. As for the distortion-optimal energy-neutral class of
policies, the energy resources are split between the encoders,
such that the source encoder makes use of a fraction α of the
energy, whereas the rest is utilized by the channel encoder.
Specifically, the energy-buffer is divided into two buffers, that
are used independently by the encoders: the source encoder
buffer is charged by αEk , while the channel encoder buffer
absorbs the remaining quantity of energy arrival (1− α)Ek.
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Ek ∈ {1, 2} energy unit/sample; source correlation values: Q = {0.1, 0.5};
channel SNR values: H = (0.5, 10); distortion values: Dk ∈ {0.1, 0.55, 1}).

The source encoder policy {Dk, Ts,k} is optimized via value
iteration with respect to the criterion (19) by assuming a
constant transmission rate g (Hk, Tt,k) = ḡ. On the other
hand, the channel encoder policy {Tt,k} is optimized via value
iteration with respect to criterion (19) with weight γ = 0 (since
it cannot optimize its policy with respect to the distortion), by
assuming a constant source rate f (Dk, Ts,k, Qk) = f̄ . The
best “separable” policy is finally obtained by selecting the
values

(
α, ḡ, f̄

)
that achieve the best backlog-distortion trade-

off.

A. Numerical Results

In this section we compute numerically the trade-off be-
tween backlog size and distortion by minimizing (19) for
different values of γ. Specifically, for each γ, we evaluate
the average backlog size and average distortion. The optimal
policies are computed via value iteration [23] and so are the
suboptimal policies corresponding to separate optimization of
source and channel encoders.

In Fig. 5 the backlog-distortion trade-off is shown both for
the optimal policies and for the “separable” ones discussed
above. The discount factor is λ = 0.5. The compression model
is (5), with minimum required energy per sample ν = 0.1
energy unit/sample and bandwidth ratio b = 1. The quantities
of interest are discretized as follows: X̃k ∈ {0, . . . , 5} is
expressed in multiples of the codeword length M = N ; The
energy buffer size is Ẽk − Ek ∈ {0, 1, 2} and Ek ∈ {1, 2} is
iid with pew being the probability that Ek = 1 (worst case);
The source correlation Qk ∈ Q = {0.1, 0.5}and channel
SNR Hk ∈ H = (0.5, 10) are iid, with probabilities pqw
and phw for Qk = 0.1 and Hk = 0.5 (worst cases); The
distortion takes values as Dk ∈ {0.1, 0.55, 1} and dmax = 1;
The source-encoder rate f (Dk, Ts,k, Qk) /M is rounded to

the smallest following integer, while the channel-encoder rate
g (Hk, Tt,k) /N is rounded to the largest previous integer.

In Fig. 5 we observe that the optimal policies obtain a
remarkably better backlog-distortion trade-off compared to
the separable policies, both for low and large worst-case
probabilities, i.e., pew = pqw = phw = pw = 0.1 and 0.9. This
demonstrates the importance of a joint resource allocation over
the encoders whenever the backlog size is also of interest. Note
that for increasing average buffer length, since the buffer size
is finite, it becomes more crucial to adopt a joint resource
allocation. This is because the separate approach is not able to
prevent buffer overflow as the source encoder operates without
channel state information.

V. MULTIPLE ACCESS

In this section, we briefly discuss an extension of the
analysis to a scenario in which L sensors access a single
access point employing TDMA. Random access protocols and
multi-hop scenarios will be considered in future work. For
instance, extensions to multi-hop networks with distributed
source-coding are discussed in [25]. An analysis of random
access with exogenous bit arrivals, and thus no source encoder,
is proposed in [14]. A multi-hop network is considered in [26],
where an algorithm is proposed that is able to perform close
to optimal for the case of lossless compression.

Each sensor is here modeled as described in Sec.
II, and we assume that observation qualities Qk =
[Q1,k, . . . , QL,k]

T ∈ QL = [Q1, . . . ,QL], channel qualities
Hk = [H1,k, . . . , HL,k]

T ∈ HL = [H1, . . . ,HL], and the
energy arrivals Ek ∈ R

L
+ are jointly stationary and ergodic.

We tackle the problem of designing policies defined, extending
Sec. II-B, as the tuple υ := {τk,πk}k≥1 that consists
of the scheduling policy τk ∈ {1, . . . , L}, which reserves
the slot k to one sensor l ∈ {1, . . . , L}, and of the joint
resource allocation policy πk = [π1,k, . . . , πL,k]

T , where
each entry πl,k is defined as in Sec. II-B and corresponds
to the distortion and energy allocation for the lth sensor.
Recall that {τk,πk} generally depends on the whole history
of past and current states (see Sec. II-B). Note that time-
slot k is exclusively assigned to sensor l, i.e., Tt,l,k = 0 if
τk 
= l. We define a policy υ as D̄-feasible if it guarantees
the stability of all data queues and average distortion con-
straints limn→∞ 1

n

∑n
k=1 Dk,l ≤ D̄l, collected for notational

convenience in vector D̄ =
[
D̄1, . . . , D̄L

]T
. As for the single

sensor scenario, we are interested in finding a distortion-
optimal energy-neutral class of policies Υdo ⊆ Υ, i.e., a subset
of all possible scheduling policies Υ that contains at least one
D̄-feasible policy.

In the following we state a necessary condition for the
existence of a D̄-feasible policy υ.

Proposition 4. For a set of distortion constraints D̄, a
necessary condition for the existence of a D̄-feasible policy
υ is the existence of the set of parameters Dql

l ≥ 0, T ql
s,l ≥ 0

for ql ∈ Ql, T
hl

t,l ≥ 0 for hl ∈ Hl, 0 < βh
l < 1 , for h ∈ HL,
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and 0 < αl < 1, such that∑
ql∈Ql

Pr(ql)f
ql
(
Dql

l , T ql
s,l

)
<

<
∑

hl∈Hl

⎛
⎝ ∑

h∈HL:h(l)=hl

Pr(h)βh
l

⎞
⎠ ghl

(
T hl

t,l

)
, (20)

L∑
l=1

βh
l = 1 for all h, (21)

∑
ql∈Ql

Pr(ql)D
ql
l ≤ D̄l, (22)

∑
ql∈Ql

Pr(ql)T
ql
s,l ≤ (1− αl)E [El,k] , (23)

and
∑

hl∈Hl

⎛
⎝ ∑

h∈HL:h(l)=hl

Pr(h)βh
l

⎞
⎠T hl

t,l ≤ αlE [El,k] .

(24)

Remark 7. The interpretation of Proposition 4 is similar to
the one of Proposition 1 given in Remark 1. The additional
parameters βh

l can be interpreted as the fraction of the subset
of time slots with joint channel state equal to h for which the
sensor l is scheduled.

Proof: Follows similar to Proposition 1 . Specif-
ically, condition (20) is obtained by defining Dql

l =
Eυ [Dl,k | Ql,k = ql], T ql

s,l = Eυ [Ts,l,k | Ql,k = ql], βh
l =

Prυ (τk = l|Hk = h), T hl

t,l = Eυ [Tt,l,k|τk = l, Hl,k = hl],
and by applying Jensen inequality at both sides of the
necessary condition for the stability of the lth queue
Eυ [f (Dl,k, Ts,l,k, Ql,k)] < Eυ [g (Hl,k, Tt,l,k)] [20]. Condi-
tions (22)-(24) are proved in a similar way as for (9)-(11),
respectively, where αl = Eυ [Tt,l,k] /E [El,k].

In order to define a distortion-optimal energy-neutral class
of policies, Proposition 4 suggests to consider a class of
scheduling policies Υdo in which scheduling is done op-
portunistically based on the channel states h of all sensors
according to a probability distribution βh

l : if the channels are
equal to h, then sensor l is selected with probability βh

l . Notice
that scheduling is independent of the observation qualities in a
given slot. Moreover, energy and distortion allocations at each
sensor are similar to the policies πk in the class Πdo (12), and,
thus, in particular perform separate resource allocation over
source and channel encoders. It can be shown that, similar to
Proposition 2, the so defined class of policies Υdo is distortion-
optimal energy-neutral in Υ.

A. Numerical Results

In this section we assess numerically the performance of the
distortion-optimal energy-neutral class of scheduling policies
Υdo. For comparison purposes, we introduce the suboptimal
class of policies Υsub, that schedules each sensor according
to a fixed probability βl = Pr (τk = l), independently of
the current channel conditions. We consider L = 2 sensors,
which are modeled as in Fig. 3(b) (see Sec. III-C). For sensor
2, the probabilities (pq2w , ph2

w ) of the worst observation and
channel states are fixed, whereas, for sensor 1, (pq1w , ph1

w ) are
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Fig. 6. Achievable regions (regions below the curves) of the scheduling
policies Υdo (dashed lines) and Υsub (dot-dashed lines). The solid line
corresponds to the optimal policies when the second sensor l = 2 is not
present (El,k ∼ U (0, 2), with mean 1 energy unit/channel use; D̄l = 0.8;
compression model (3), with, for both sensors, Tmax

s = 1 energy unit/source
sample, ζ = 1, η = 1.5, bandwidth ratio b = 1, maximum distortion
dmax=1).

varied. Fig. 6 shows the corresponding achievability region,
defined, as in Sec. III-C, as the set of (pq1w , ph1

w ) for which the
given policy is able to stabilize the data queues and guarantee
the given average distortions. For further comparison, Fig. 6
also shows the outer bound to the achievability region given
by the case where only sensor 1 is present. The numerical
results confirm that the achievability region of the optimal
class of strategies Υdo (dashed lines) is larger than that of
the suboptimal class Υsub (dot-dashed lines). Moreover, note
that the achievability regions shrink if the worst case states
probabilities (pq2w , ph2

w ) of the second sensor get larger, since
sensor 2 requires more transmission resources to compensate
for both the worst observation and channel conditions. It is
further interesting to observe that, for ph2

w = 0.1 and ph1
w = 1,

the achievability regions of Υdo and Υsub, in terms of pq1w ,
are practically the same (circle marker). This is due to the
fact that the variations of channels Hk are not large enough
to enable gains by adapting parameters βh

l .

VI. CONCLUSIONS

We studied energy management for a system consisting of
a single sensor whose task is that of reporting the measure
of a phenomenon to a receiver. The main problem is that
of allocating energy between the source and the channel
encoders based on the current amount of available energy,
state of the data queue, quality of the measurement and of
the wireless channel. We first looked for a distortion-optimal
energy-neutral subset of all policies, that contains at least
one policy able to stabilize the data queue and to satisfy a
maximum average distortion constraint. We found that optimal
policies according to this criterion operate a separate energy
allocation of source and channel encoder. Instead, we showed
that a joint energy management over source and channel
encoder is required to achieve the desired trade-off between
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backlog size and distortion. Finally, we considered a system
with multiple sensors and obtained TDMA scheduling policies
that guarantee the stability of all data queues, whenever the
distortion constraints are feasible. Overall, our results, which
also include further comparisons with a number of suboptimal
policies, shed light on the challenges and design issues that
characterize modern cyber-physical systems. In particular, we
believe that the obtained results offer relevant insights for the
development of biomedical, industrial/agricultural, environ-
mental monitoring applications, where the recent impressive
advances in the design of energy-harvesting wireless sensor
systems [27]–[29] demand novel paradigms for optimal re-
source allocation in energy-neutral operations.
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