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Distributed and Cascade Lossy Source Coding
With a Side Information “Vending Machine”
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Abstract—Source coding with a side information “vending ma-
chine” is a recently proposed framework in which the statistical
relationship between the side information and the source, instead
of being given and fixed as in the classical Wyner–Ziv problem,
can be controlled by the decoder. This control action is selected
by the decoder based on the message encoded by the source node.
Unlike conventional settings, the message can thus carry not only
information about the source to be reproduced at the decoder,
but also control information aimed at improving the quality of
the side information. In this paper, the analysis of the tradeoffs
between rate, distortion, and cost associated with the control ac-
tions is extended from the previously studied point-to-point setup
to two basic multiterminal models. First, a distributed source
coding model is studied, in which two encoders communicate
over rate-limited links to a decoder, whose side information can
be controlled. The control actions are selected by the decoder
based on the messages encoded by both source nodes. For this
setup, inner bounds are derived on the rate-distortion-cost region
for both cases in which the side information is available causally
and noncausally at the decoder. These bounds are shown to be
tight under specific assumptions, including the scenario in which
the sequence observed by one of the nodes is a function of the
source observed by the other and the side information is avail-
able causally at the decoder. Then, a cascade scenario in which
three nodes are connected in a cascade and the last node has
controllable side information is also investigated. For this model,
the rate-distortion-cost region is derived for general distortion
requirements and under the assumption of causal availability of
side information at the last node.

Index Terms—Cascade source coding, distributed source coding,
observation costs, rate-distortion theory, side information, side in-
formation vending machine.

I. INTRODUCTION

P ermuter and Weissman [1] introduced the notion of a side
information “vending machine.” To illustrate the idea,

consider the setting in Fig. 1, as studied in [1]. Here, unlike
the conventional Wyner–Ziv setup (see, e.g., [2, Ch. 12]), the
joint distribution of the side information available at the
decoder (Node 2) and of the source observed at the encoder
(Node 1) is not given. Instead, it can be controlled through
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the selection of an “action” , so that, for a given action
and source symbol , the side information is distributed
according to a given conditional distribution . Action

is selected by the decoder based on the message , of
bits per source symbol, received from the encoder, and is

subject to a cost constraint. The latter limits the “quality” of the
side information that can be collected by the decoder.
The source coding problem with a vending machine provides

a useful model for scenarios in which acquiring data as side in-
formation is costly and thus should be done effectively. Exam-
ples include computer networks, in which data must be obtained
from remote data bases, and sensor networks, where data are ac-
quired via measurements. The key aspect of this model is that
the message produced by the encoder plays a double role.
In fact, on the one hand, it needs to carry the description of the
source itself, as in, e.g., the standard Wyner–Ziv model. On
the other hand, it can also carry control information aimed at
enabling the decoder to make an appropriate selection of action
. The goal of such a selection is to obtain a side information
that is better suited to provide partial information about the

source to the decoder. This in turn can potentially reduce
the rate necessary for the decoder to reconstruct source
at a given distortion level (or, vice versa, to reduce the distortion
level for a given rate ).
The performance of the system in Fig. 1 is expressed in terms

of the interplay among three metrics, namely the rate , the cost
budget on the action , and the distortion of the recon-
struction at the decoder. This tradeoff is summarized by
the rate-distortion-cost function . This function char-
acterizes the infimum of all rates for which a distortion level
can be achieved under an action cost budget , by allowing

encoding of an arbitrary number of source symbols
. This function is derived in [1] for both cases in

which the side information is available “noncausally” to the
decoder, as in the standard Wyner–Ziv model, or “causally,” as
introduced in [3]. In the former case [see Fig. 1(a)], the esti-
mated sequence is a function of mes-
sage and of the entire side information sequence

, while, in the latter [see Fig. 1(b)], each estimated
sample is a function of message and the side informa-
tion as received up to time , i.e., for

. We note that the model with causal side information
is appropriate, for instance, when there are delay constraints on
the reproduction at the decoder or when the decoder operates
by filtering the side information sequence. We refer to [3, Sec.
I] for an extensive discussion on these points.
Following [1], recent works [4] and [5] generalized the char-

acterization of the rate-distortion-cost function for the models
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Fig. 1. Source coding with a vending machine at the decoder [1] with (a) “non-
causal” side information and (b) “causal” side information.

Fig. 2. Distributed source coding with a side information vending machine at
the decoder.

in Fig. 1 to a setup analogous to the so-called Kaspi–Hee-
gard–Berger problem [6], [7], in which the side information
vending machine may or may not be available at the decoder.
This entails the presence of two decoders, rather than only
one as in Fig. 1, one with access to the vending machine and
one without any side information. In [4] and [5], the authors
also solved the more general case in which both decoders
have access to the same vending machine, and either the side
informations produced by the vending machine at the two
decoders satisfy a degradedness condition, or lossless source
reconstructions are required at the decoders. The papers [8], [9]
studied the setting of Fig. 1 but under the additional constraints
of common reconstruction, in the sense of [10], in [8], and
of secrecy with respect to an “eavesdropping” node in [9],
providing characterizations of the corresponding achievable
performance. The impact of actions that adapt to the previously
measured samples of the side information is studied in [11].
Finally, real-time constraints are investigated in [12].

A. Contributions and Overview

In this paper, we study two multiterminal extensions of the
setup in Fig. 1, namely the distributed source coding setting of
Fig. 2, and the cascade model of Fig. 3. The analysis of these
scenarios is motivated by the observation that they constitute
key components of computer and sensor networks. In fact, as
discussed above, an important aspect of these networks is the
need to effectively acquire side information data, which can be
modeled by including a side information vending machine. We
overview the two extensions and the corresponding main results
below.
1) Distributed Source Coding With a Side Information

Vending Machine (see Section II): In the distributed source

Fig. 3. Cascade source coding with a side information vending machine. Side
information is assumed to be available “causally” to the decoder.

coding setting of Fig. 2, two encoders (Node 1 and Node
2), which measure correlated sources and , respec-
tively, communicate over rate-limited links, of rates and
, respectively, to a single decoder (Node 3). The decoder

has side information on sources and , which can
be controlled through an action . The action sequence is
selected by the decoder based on the messages and
received from Nodes 1 and 2, respectively, and needs to sat-
isfy a cost constraint of . Inner bounds are derived to the
rate-distortion-cost region under noncausal and
causal side information by combining the strategies proposed
in [1] with the Berger–Tung strategy [13] and its extension
to the Wyner–Ziv setup [14]. These bounds are shown to be
tight under specific assumptions, including the scenario where
the sequence observed by one of the nodes is a function of
the source observed by the other and the side information is
available causally at the decoder.
2) Cascade Source Coding With a Side Information Vending

Machine (see Section III): In the cascade model of Fig. 3, Node
1 is connected via a rate-limited link, of rate , to Node
2, which is in turn communicates with Node 3 with rate .
Source is measured by Node 1 and the correlated source

by both Nodes 1 and 2. Similarly to the distributed coding
setting described above, Node 3 has side information on
sources and , which can be controlled via an action .
Action is selected by Node 3 based on the message received
from Node 2 and needs to satisfy a cost constraint of . We de-
rive the set of all achievable rates ( ) for
given distortion constraints ( ) on the reconstructions
and at Nodes 2 and 3, respectively, and for cost constraint .
This characterization is obtained under the assumption that the
side information is available causally at Node 3. It is men-
tioned that, following the submission of this paper, the analysis
of the case with noncausal side information at Node 3 was car-
ried out in [15].
Notation: For integer with , we define as

the interval and ; if instead
, we set and . We will also write for

for simplicity of notation. Random variables are denoted with
capital letters and corresponding values with lowercase letters.
Given random variables, or more generally vectors, and ,
we will use the notation or for , and

or for , where the latter
notations are used when the meaning is clear from the context.
Given set , we define as the -fold Cartesian product of
. Function represents the Kronecker delta function, i.e.,

if and otherwise.
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II. DISTRIBUTED SOURCE CODING WITH A SIDE INFORMATION
VENDING MACHINE

In this section, we first detail the system model for the
problem of distributed source coding with a side information
vending machine in Section II-A. Then, we propose an achiev-
able strategy in Section II-B for both the cases with noncausal
and causal side information at the decoder. In Sections II-C
and II-D, scenarios are discussed in which the achievable
strategies match given outer bounds. A numerical example is
then developed in Section II-E.

A. System Model

The problem of distributed lossy source coding with a
vending machine and noncausal side information is illustrated
in Fig. 2. It is defined by the probability mass functions (pmfs)

and and discrete alpha-
bets as follows. The source sequences

and with and , respectively, are
such that the tuples for are independent
identically distributed (i.i.d.) with joint pmf .
Node 1 measures sequences and encodes it into message

of bits, while Node 2 measures sequences and
encodes it into message of bits. Node 3 wishes to re-
construct the two sources within given distortion requirements,
to be discussed below, as and .
To this end, Node 3 selects an action sequence , where

, based on the messages and received from
Nodes 1 and 2, respectively. The side information sequence
is then realized as the output of a memoryless channel with in-
puts ( ). Specifically, given , , and , the
sequence is distributed as

(1)

The overall cost of an action sequence is defined by a per-
symbol cost function : with ,
as

(2)

The estimated sequences and are obtained as a func-
tion of both messages and and of the side information
. The estimates and are constrained to satisfy distor-

tion constraints defined by two per-symbol distortion measures,
namely : for

with . Based on such scalar measures,
the overall distortion for the estimated sequences and is
defined as

(3)
Note that, based on (3), the estimate can be
required to be a lossy version of an arbitrary (per-letter) func-
tion of both sources and and of the side information se-
quence . A formal description of the operations at encoders
and decoder, and of cost and distortion constraints, is presented

below for both the cases in which the side information is avail-
able causally or noncausally at the decoder.
Definition 1: An code for the case of

noncasual side information at Node 3 consists of two source
encoders

(4)

which map the sequences and into messages and
at Node 1 and Node 2, respectively; an “action” function

(5)

which maps the message into an action sequence
at Node 3; and two decoding functions

(6)

(7)

which map the messages and , and the side information
sequence into the estimated sequences and at Node
3, such that the action cost constraint is satisfied as

(8)

and the distortion constraints and hold, namely

(9)

Definition 2: An code for the case of
causal side information at Node 3 is as in Definition 1 with the
only difference that, in lieu of (6) and (7), we have the sequence
of decoding functions

(10)

(11)

for , which map the message and
the measured sequence into the th estimated symbol

for at Node 3.
Definition 3: Given a distortion-cost tuple , a rate

pair is said to be achievable for the case with noncausal
or causal side information if, for any and sufficiently large
, there exists a corresponding
code.
Definition 4: The rate-distortion-cost region

is defined as the closure of all rate
pairs that are achievable with noncausal side
information given the distortion-cost tuple . The
rate-distortion-cost region is similarly defined
for the case of casual side information.

B. Achievable Strategies

In this section, we obtain inner bounds to the rate-distor-
tion-cost regions for the cases with noncausal and causal side
information.
Proposition 1: The rate-distortion-cost region with non-

causal side information at Node 3 satisfies the inclusion
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, where the region
is given by the union of the set of all of rate

tuples that satisfy the inequalities

(12a)

(12b)

(12c)

for some joint pmfs that factorizes as

(13)

with pmfs and and and de-
terministic functions ,

for , such that the action and the distortion
constraints

(14a)

(14b)

hold. Finally, any extreme point of the region
can be obtained by limiting the cardinalities of the random vari-
ables as and
, for .
Remark 1: If we set , so that the

side information is action-independent, Proposition 1 reduces to
the extension of the Berger–Tung scheme [13] to theWyner–Ziv
setup studied in [14, Th. 2]. Moreover, in the special case in
which there is only one encoder, the achievable rate coincides
with that derived in [1, Th. 1].
The proof of Proposition 1 follows easily from standard argu-

ments, and thus, it is only briefly discussed here. The proposed
scheme combines the Berger–Tung distributed source coding
strategy [13] and the distributed Wyner–Ziv approach proposed
in [14, Th. II] with the layered two-stage coding scheme that is
proved to be optimal in [1] for the special case of a single en-
coder. Throughout the discussion, we neglect the time-sharing
variable for simplicity. This can be handled in the standard
way (see, e.g., [2, Sec. 4.5.3]). The encoding scheme at Nodes
1 and 2 multiplexes two descriptions, which are obtained in
two encoding stages. In the first encoding stage, the distributed
source coding strategy of [13], conventionally referred to as the
Berger–Tung scheme, is adopted by Nodes 1 and 2 to convey
descriptions and , respectively, to Node 3. In order for
the decoder to be able to recover these descriptions, the rates
and allocated by Nodes 1 and 2 have to satisfy the con-

ditions [2], [13, Ch. 13]

(15a)

(15b)

(15c)

Having decoded the descriptions , Node 3 se-
lects the action sequence as the per-symbol function

for . Node 3 thus measures the
side information sequence . The sequences
can then be regarded as side information available at the de-
coder. Therefore, in the second encoding stage, the distributed
Wyner–Ziv scheme proposed in [14, Th. 2] is used to convey
the descriptions and by Nodes 1 and 2, respectively,
to Node 3. Note that the fact that sequences are
not i.i.d. does not affect the achievability of the rate region
derived in [14]. This is because, as shown in [2, Lemma 3.1],
the packing lemma leveraged to ensure the correctness of the
decoding process applies for an arbitrary distribution of the
sequences . In order for the decoder to correctly
retrieve the descriptions and , the rates and
allocated by Nodes 1 and 2 must satisfy the inequalities [14]

(16a)

(16b)

(16c)

Nodes 1 and 2 multiplex the source indices obtained in the two
phases, and hence, the overall rates are and

. Using these equalities, along with (15) and (16),
leads to (12). Finally, the decoder estimates with
sample by sample as a function of and . The proof of
the cardinality bounds follows from standard arguments and is
sketched in Appendix A.1 We now turn to a similar achievable
strategy for the case with causal side information.
Proposition 2: The rate-distortion-cost region with

causal side information at Node 3 satisfies the inclusion
, where the region

is given by the union of the set of all of
rate tuples that satisfy the inequalities

(17a)

(17b)

(17c)

for some joint pmfs that factorize as

(18)

with pmfs , and and deterministic
functions and
for , such that the action and the distortion constraints
(14a) and (14b) hold, respectively. Finally, any extreme point in
the region can be obtained by constraining the
cardinalities of random variables as
and .

1It is noted that, using the approach of [16], it may be possible to improve the
cardinality bounds. This aspect is not further explored here.
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The proof follows by similar arguments as the ones in the
proof of Proposition 1 with the only difference that only one
stage of encoding is sufficient. Specifically, as in Proposition
1, Berger–Tung coding is adopted to convey the descriptions

and to Node 3. Note that, with causal side information,
there is no advantage in having a second encoding stage, since
the side information sequence cannot be leveraged for binning
in contrast to the case with noncausal side information [2], [3,
Ch. 12]. The cardinality bounds follow from arguments similar
to Appendix A.

C. Degraded Source Sets and Causal Side Information

In this section, we consider the special case in which the se-
quence observed by Node 2 is a symbol-by-symbol function of
the source observed at Node 1 [17, Sec. V.] (see also [18]). In
other words, we can write for ,
where is an i.i.d. sequence independent of . We refer to
this setup as having degraded source sets. Moreover, we assume
that the side information is available causally at Node 3. The
next proposition proves that the achievable strategy of Proposi-
tion 2 is optimal in this case.
Proposition 3: The rate-distortion-cost region

for the setup with degraded source sets
and with causal side information at Node 3 satisfies

.
For the proof of converse, we refer the reader to Appendix B.
Remark 2: Proposition 3 generalizes to the case with action-

dependent side information the result in [17, Sec. V] for the case
with no side information.

D. One-Distortion Criterion and Noncausal Side Information

In this section, we consider a variation on the setup of source
coding with action-dependent noncausal side information de-
scribed in Definition 1. Specifically, Node 3 selects the action
sequence based only on the message received from
Node 1. In other words, the action function (5) is modified to

(19)

which maps the message into an action sequence at
Node 3. This may be the case in scenarios in which there is
a hierarchy between Nodes 1 and 2, e.g., in a sensor network,
and the functionality of remote control of the side information
is assigned solely to Node 1. The next proposition character-
izes the rate-distortion-cost function under the
mentioned assumption when Hamming distortion is selected
for . That is, we choose the distortion measure
as if and other-
wise. This implies that we impose the constraint of vanishingly
small per-symbol Hamming distortion between source and

estimate , or equivalently the constraint

for . We will refer to this assumption by
saying that source sequence must be recovered losslessly at
the decoder.
Proposition 4: If the action function is given by (19) and

must be recovered losslessly at Node 3, the rate-distortion-cost

region is given by union of the set of all of rate
tuples that satisfy the inequalities

(20a)

(20b)

(20c)

for some joint pmfs that factorizes as

(21)

with pmfs and and deterministic func-
tion , such that the action and the distortion
constraints

(22a)

(22b)

hold. Finally, and are auxiliary random variables whose
alphabet cardinality can be constrained as and

without loss of optimality.
Remark 3: In the case in which there is no side information,

Proposition 4 reduces to [19, Th. 1].
For the proof of converse, we refer the reader to Appendix C.

The achievability follows from Proposition 1 by setting ,
, and .

Remark 4: Extension of the result in proposition to an arbi-
trary number of encoders can be found in [20].

E. Binary Example

We now focus on a specific numerical example in order to
illustrate the result derived in Propositions 1 and 4 and the ad-
vantage of selecting actions at Node 3 based on the message
received from one of the nodes. Specifically, we assume that all
alphabets are binary and that ( is a doubly symmetric
binary source (DSBS) characterized by probability , with

, so that for
and . Moreover, we adopt Hamming distor-
tion for both sources to reconstruct both and losslessly
in the sense discussed above. Note that this implies that we set

and . The side informa-
tion is such that

if
if ,

(23)

where is a deterministic function to be speci-
fied. Therefore, when action is selected, then

is measured at the receiver, while with
no useful information is collected by the decoder.

The action sequence must satisfy the cost constraint (8),
where the cost function is defined as if
and if . It follows that, given (23), a cost
implies that the decoder can observe only for at
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Fig. 4. Sum-rates versus for sum and product side informations ( ).

most symbols. As for the function , we consider
two cases, namely , where is the binary
sum and , where is the binary product.
We assume that the side information is available noncausally
at the decoder.
To start with, observe that the sum-rate is a nonincreasing

function of the action cost , and hence, the minimum sum-rate
is obtained when . With , it is clearly optimal
to set , irrespective of the value of . In this case,
from the Slepian–Wolf theorem, the sum rate equals

. Specifically, with sum side information, we get

(24)

since we have
, where the second equality follows from the

chain rule and the third from the crypto-lemma [21, Lemma 2].
Instead, with product side information, we obtain

(25)

where we have used the definition
. Equation (25) follows since

(26)

where the second equality is a consequence of the fact that
implies that and . Sum-rate

(25) is then obtained by evaluating (26) for the DSBS at hand.
Fig. 4 shows the sum-rates (24) and (25), demonstrating that, if
is sufficiently small, namely if , we have

, and thus, product side information is more informa-
tive than the sum, while for , the opposite is true (and
for , they are equally informative).
Considering a general cost budget , in order to

emphasize the role of both data and control information for the

Fig. 5. Sum-rates versus the action cost for product side information (
).

system performance, we now evaluate the sum-rate attainable
by imposing that the action be selected by Node 3 a priori,
that is, without any control from Node 1. This can be easily seen
to be given by [1]

(27)

This sum-rate will be compared below with the performance of
the scheme in Proposition 1, in which the actions are selected
based on both messages , and that of Proposition 4, in
which the actions are selected based only on message .
Fig. 5 depicts the mentioned sum-rates2 versus the action

cost for and product side information. It can be
seen that the greedy approach suffers from a significant per-
formance loss with respect to the approaches in which actions
are selected based on the messages received from one encoder
or both encoders. It can also be observed that no gains are ob-
tained by selecting the actions based on both messages. The fact
that choosing the action based on the message received from
Node 1 provides performance benefits can be explained as fol-
lows. If , the value of the side information is always

irrespective of the value of . Therefore, if
, the side information is less informative than if ,

and hence, it may be advantageous to save on the action cost by
setting . Consequently, choosing actions based on the
message received from Node 1 can result in a lower sum-rate.
The scenario with sum side information is considered in Fig. 6

for . A first observation is that, as proved in Appendix D,
choosing the action based only on cannot improve the sum-
rate with respect to the greedy case. This contrasts with the
product side information case, and is due to the fact that
is independent of the side information . Instead, choosing the

2The sum-rate from Proposition 1 is calculated by assuming binary auxiliary
variables and and performing global optimization.
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Fig. 6. Sum-rates versus the action cost for sum side information ( ).

actions based on both messages allows us to save on the neces-
sary communication sum-rate.

III. CASCADE SOURCE CODING WITH A SIDE INFORMATION
VENDING MACHINE

In this section, we first describe the system model for the set-
ting of Fig. 3 of cascade source coding with a side information
vending machine. We recall that side information is here as-
sumed to be available causally at the decoder (Node 3). The cor-
responding model with noncausal side information is studied in
[15]. We then present the characterization of the corresponding
rate-distortion-cost performance in Section III-B.

A. System Model

The problem of cascade lossy computing with causal obser-
vation costs at second user, illustrated in Fig. 3, is defined by
the pmfs and and dis-
crete alphabets , as follows. The source
sequences and with and , re-
spectively, are such that the pairs for
are i.i.d. with joint pmf . Node 1 measures se-
quences and and encodes them in a message of

bits, which is delivered to Node 2. Node 2 estimates a se-
quence within given distortion requirements to be
discussed below. Moreover, Node 2 encodes the message ,
received from Node 1, and the locally available sequence in
a message of bits, which is delivered to node 3. Node
3 wishes to estimate a sequence within given distor-
tion requirements to be discussed. To this end, Node 3 receives
message and, based on this, selects an action sequence ,
where . The action sequence affects the quality of the
measurement of sequence and obtained at the Node
3. Specifically, given , , and , the sequence is dis-
tributed as in (1). The cost of the action sequence is defined by a
cost function : with , as in (2).
The estimated sequence with is then obtained as
a function of and .
Estimated sequences for must satisfy distortion

constraints defined by functions :

with for ,
respectively. A formal description of the operations at encoder
and decoder follows.
Definition 5: An code for the setup

of Fig. 3 consists of two source encoders, namely

(28)

which maps the sequences and into a message

(29)

which maps the sequence and message into a message
an “action” function

(30)

which maps the message into an action sequence a
decoding function

(31)

which maps the message and the measured sequence
into the estimated sequence and a sequence of decoding
functions

(32)

for whichmaps themessage and themeasured se-
quence into the th estimated symbol
such that the action cost constraint and distortion constraints
for are satisfied, i.e.,

(33)

(34)

respectively.
Definition 6: Given a distortion-cost tuple , a rate

tuple is said to be achievable if, for any , and
sufficiently large , there exists a

code.
Definition 7: The rate-distortion-cost region

is defined as the closure of all rate tuples that are
achievable given the distortion-cost tuple .
Remark 5: For side information independent of the action
given and , i.e., for , the

rate-distortion region has been derived in [22].

B. Rate-Distortion-Cost Region

We have the following characterization of the rate-distortion-
cost region.
Proposition 5: The rate-distortion-cost region

for the setup of Fig. 3 is given by the union of all rate pairs
( ) satisfying the inequalities

(35a)

(35b)
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for some joint pmfs that factorize as

(36)

with pmf and deterministic function ,
such that the action and the distortion constraints

(37)

(38)

respectively, hold. Finally, is an auxiliary random vari-
able whose alphabet cardinality can be constrained as

, without loss of optimality.
Remark 6: If , Proposition 5

reduces to [22, Th. 1].
The proof of converse is provided in Appendix E. The

coding strategy that proves achievability is a combination
of the techniques proposed in [1] and [22, Th. 1]. Here, we
briefly outline the main ideas, since the technical details follow
from standard arguments. In the scheme at hand, Node 1 first
maps sequences and into the action sequence and
an auxiliary codeword using the standard joint typicality
criterion. This mapping operation requires a codebook of
rate (see, e.g., [2, Ch. 3]). Then, given the
so-obtained sequences and , source sequences
and are further mapped into the estimate for Node
2 so that the sequences are jointly
typical. This requires rate [2, Ch. 3].
Leveraging the side information available at Node 2,
conveying the codewords and to Node 2 requires
rate
[2, Ch. 12], which equals the right-hand side of (35a). Node
2 conveys and to Node 3 by simply forwarding the
index received from Node 1 (of rate ). Finally,
Node 3 estimates through a symbol-by-symbol function as

for .

IV. CONCLUDING REMARKS

In the setting of source coding with a side information
vending machine introduced in [1], the decoder can control
the quality of the side information through a control, or action,
sequence that is selected based on the message encoded by the
source node. Since this message must also carry information
directly related to the source to be reproduced at the decoder, a
key aspect of the model is the interplay between encoding data
and control information.
In this study, we have generalized the original work [1]

to two standard multiterminal scenarios, namely distributed
source coding and cascade source coding. For the former, we
obtained inner bounds to the rate-distortion-cost regions for
the cases with noncausal and causal side information at the
decoder. These bounds have been found to be tight in two
special cases. We have also provided some numerical example
to shed some light on the advantages of an optimized tradeoff
between data and control transmission. As for the cascade
source coding problem, a single-letter characterizations of

achievable rate-distortion-cost tradeoffs has been derived under
the assumption of causal side information at the decoder.
A number of open problems have been left unsolved by this

study, including the identification of more general conditions
under which the inner bounds of Propositions 1 and 2 are tight.
The technical challenges that we have faced in this task are re-
lated to the well-known issues that arise when identifying aux-
iliary random variables that satisfy the desired Markov chain
conditions in distributed source coding problems (see, e.g., [2,
Ch. 13]).

APPENDIX A

Using standard inequalities, it can be seen that the rate re-
gion (12) evaluated with a constant is a contra-polymatroid,
as the Berger–Tung region (17) (see e.g., [23]). Moreover, the
role of the variable is that of performing the convexifica-
tion of the union of all regions of tuples
that satisfy (12) and (14) for some fixed . It follows from
[23] that every extreme point of region of achievable tuples

satisfies the equations

(39a)

(39b)

along with (14), where both relationships are satisfied with
equality, or

(40a)

(40b)

along with (14) satisfied with equality. Applying the
Fenchel–Eggleston–Caratheodory theorem to the right-hand
side of the equations above and to (14) concludes the proof
(See [2, Appendix C] and [13]).

APPENDIX B
PROOF OF THE CONVERSE FOR PROPOSITION 3

In this section, the proof of converse for Proposition 3 is
given. For any code, we have
the following inequalities:



AHMADI AND SIMEONE: DISTRIBUTED AND CASCADE LOSSY SOURCE CODING WITH A SIDE INFORMATION “VENDING MACHINE” 6815

where follows because is a function of
given that is a function of by assumption; ( )
follows since
forms a Markov chain; ( ) follows by the fact that con-
ditioning decreases entropy; and follows by defining

for . We also have
a similar chain of inequalities for . As for the sum-rate

, we have

where follows because are
functions of ; ( ) follows since

forms a Markov
chain; and ( ) follows using the definition of for .
Next, let be a uniform random variable over the interval

and independent of and define
, for , , ,

. Note that is a function of and for
. Moreover, from (8) and (9), we have

(41)

(42)

APPENDIX C
PROOF OF THE CONVERSE FOR PROPOSITION 4

In this section, the proof of converse for Proposition 4 is
given. Fix a code for an , whose
existence for all sufficiently large is required by the definition
of achievability.
From the distortion constraint for , we have the inequality

(43)

where we have defined , and fol-
lows from the definition of the metric as the Ham-

ming distortion.Moreover, we also have the following chain of
inequalities:

(44)

where follows by conditioning reduces entropy; follows
by Fano’s inequality; follows by Jensen’s inequality; and

follows by (43), where as . Note that, in
the following, we use the convention in [2, Ch. 3] of defining as

any function such that as .
For rate , we then have the following series of inequalities:

(45)

where follows because is a function of and fol-
lows because entropy is nonnegative and conditioning decreases
entropy. For the first three terms in (45), we have

(46)
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where follows by the chain rule for entropy and
the fact that are i.i.d. and follows since
— — forms a

Markov chain, by the definition of problem, and since condi-
tioning reduces entropy.
Combining (45) and (46), and defining

, we obtain

(47)

where follows by the chain rule for entropy; follows be-
cause mutual information is nonnegative and due to the fact that
conditioning decreases entropy; and follows by the defini-
tion of mutual information and definition of .
Next, we consider the rate . We have

(48)

where follows because from (44),
,

given that is a function of and and ( ) follows
using the definition of and due to the fact that conditioning
decreases entropy. For the sum-rate , we also have the
following series of inequalities:

(49)

where follows because is a function of ; and fol-
lows as in ( ) of (48). For the first three terms in (49), we have

(50)

where follows from the chain rule for entropy
and by the chain rule for entropy and the fact
that are i.i.d.; and follows since
— — forms a

Markov chain, by the definition of problem, and since
conditioning reduces entropy. Combining (49) and (50), and
using the definition of , we obtain

(51)

where follows by the chain rule for entropy; follows be-
cause mutual information is nonnegative and due to the fact that
conditioning decreases entropy; and follows by the defini-
tion of mutual information and definition of and the fact that
conditioning decreases entropy.
Moreover, forms aMarkov chain.

This can be seen by using the principle of -separation [24, Sec.
A.9] from Fig. 7, which represents the joint distribution of all
the variables at hand.
Let be a uniform random variable over the interval

and independent of and define
, , , , ,
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Fig. 7. Bayesian network representing the joint pmf of variables
( ) for the model in Fig. 2.

and . Note that is a function of , , and .
Moreover, from (8) and (9), we have

(52)

Finally, since (47), (48), and (51) are convex with respect to
for fixed , , and , we

have that inequalities (20) hold, which completes the proof of
(20a) and (22b). The cardinality bounds are proved by using the
Fenchel–Eggleston–Caratheodory theorem in the standard way.

APPENDIX D
GREEDY ACTIONS ARE OPTIMALWITH SUM SIDE INFORMATION

Here, we prove equality

(53)

which shows that no gain is accrued by choosing the actions
based only on message with the sum side information. Fix
the pmf that achieves the minimum in the sum-rate ob-
tained from (20c), namely

where the mutual information is calculated with respect to the
distribution

(54)

and the minimum is taken over all distributions such
that . Note that for such a pmf ,

we have , as it can be easily seen. We then
have the following series of equalities:

where follows by the definition (27); follows using the
chain rule for entropy and from the definition of conditional
entropy; follows by the crypto-lemma [21, Lemma 2]; and

follows from the fact that forms a Markov
chain.

APPENDIX E
PROOF OF THE CONVERSE FOR PROPOSITION 5

In this section, we provide the proof of converse for Proposi-
tion 5. For any code, we
have the following inequalities:

(55)
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where follows because is a function of ( , );
follows by definition of mutual information and since

and are functions of and ; follows because
and are i.i.d and since is a function of fol-
lows because forms
a Markov chain and since is a function of and ; and
follows by defining

and since conditioning decreases entropy.
We also have the inequalities

(56)

where follows because is a function of and ;
follows by the definition of mutual information and the chain
rule for entropy and since and are i.i.d; follows
because is a function of ; follows because

forms a Markov chain;
and follows by the definition of .
Let be a uniform random variable over and indepen-

dent of and define ,
, , , , , and
. Note that is a function of and . Moreover,

from (33) and (34), we have

(57)

(58)

Finally, since (55) and (56) are convex with respect to
for fixed and , we

have from (55) and (56) that inequalities (35) hold. The
cardinality bounds are proved by using the Fenchel–Eggle-
ston–Caratheodory theorem in the standard way.
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