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Abstract—In lossy source coding with side information at the de-
coder (i.e., the Wyner–Ziv problem), the estimate of the source ob-
tained at the decoder cannot be generally reproduced at the en-
coder, due to its dependence on the side information. In some ap-
plications, this may be undesirable, and a common reconstruction
(CR) requirement, whereby one imposes that the encoder and de-
coder be able to agree on the decoder’s estimate, may be instead
in order. The rate-distortion function under the CR constraint has
been derived recently for a point-to-point (Wyner–Ziv) problem.
In this paper, this result is extended to three multiterminal settings
with three nodes, namely the Heegard–Berger (HB) problem, its
variant with cooperating decoders, and the cascade source coding
problem. The HB problem consists of an encoder broadcasting to
two decoders with respective side information. The cascade source
coding problem is characterized by a two-hop system with side in-
formation available at the intermediate and final nodes. For the
HB problem with the CR constraint, the rate-distortion function is
derived under the assumption that the side information sequences
are (stochastically) degraded. The rate-distortion function is also
calculated explicitly for three examples, namely Gaussian source
and side information with quadratic distortion metric, and binary
source and side information with erasure and Hamming distortion
metrics. The rate-distortion function is then characterized for the
HB problem with cooperating decoders and (physically) degraded
side information. For the cascade problem with the CR constraint,
the rate-distortion region is obtained under the assumption that
side information at the final node is physically degraded with re-
spect to that at the intermediate node. For the latter two cases, it
is worth emphasizing that the corresponding problem without the
CR constraint is still open. Outer and inner bounds on the rate-dis-
tortion region are also obtained for the cascade problem under the
assumption that the side information at the intermediate node is
physically degraded with respect to that at the final node. For the
three examples mentioned above, the bounds are shown to coin-
cide. Finally, for the HB problem, the rate-distortion function is
obtained under the more general requirement of constrained re-
construction, whereby the decoder’s estimate must be recovered
at the encoder only within some distortion.
Index Terms—Cascade source coding, common reconstruction

(CR), Heegard–Berger (HB) problem, source coding with side in-
formation.
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I. INTRODUCTION

S OURCE coding problems with side information at the de-
coder(s) model a large number of scenarios of practical in-

terest, including video streaming [1] and wireless sensor net-
works [2]. From an information-theoretic perspective, the base-
line setting for this class of problems is one in which a mem-
oryless source is to be communicated by
an encoder at a rate bits per source symbol to a decoder that
has available a correlated sequence that is related to via
a memoryless channel (see Fig. 11). Under the require-
ment of asymptotically lossless reconstruction of the source

at the decoder, the minimum required rate was obtained by
Slepian and Wolf [3]. Later, the more general optimal tradeoff
between rate and the distortion between the source and
reconstruction was obtained by Wyner and Ziv [4] for any
given distortion metric . It was shown to be given by the
rate-distortion function

(1)

where the minimum is taken over all probability mass func-
tions (pmfs) and deterministic function such that

.

A. Heegard–Berger and Cascade Source Coding Problems

In applications such as the ones discussed above, the point-to-
point setting of Fig. 1 does not fully capture the main features
of the source coding problem. For instance, in video streaming,
a transmitter typically broadcasts information to a number of
decoders. As another example, in sensor networks, data are typ-
ically routed overmultiple hops toward the destination. Amodel
that accounts for the aspect of broadcasting to multiple de-
coders is the Heegard–Berger (HB) setup shown in Fig. 2. In
this model, the link of rate bits per source symbol is used
to communicate to two receivers having different side informa-
tion sequences, and , which are related to the source
via a memoryless channel . The set of the achievable
triples ( ) for this model, where and are the
distortion levels at Decoders 1 and 2, respectively, was derived
in [6] and [7] under the assumption that the side information
sequences are (stochastically) degraded versions of the source
. In a variation of this model shown in Fig. 3, decoder coop-

eration is enabled by a limited capacity link from one decoder
(Decoder 1) to the other (Decoder 2). Inner and outer bounds
on the rate-distortion region for this problem are obtained in [8]
under the assumption that the side information of Decoder 2 is
(physically) degraded with respect to that of Decoder 1.
As for multihopping, a basic model that captures some of the

key design issues is shown in Fig. 4. In this cascade setup, an

1The presence of the function at the encoder will be explained later.
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Fig. 1. Point-to-point source coding with common reconstruction [5].

Fig. 2. HB source coding problem with common reconstruction.

Fig. 3. HB source coding problem with common reconstruction and decoder
cooperation.

encoder (Node 1) communicates with rate to an intermediate
node (Node 2), which has side information , and in turn com-
municates with rate to a final node (Node 3) with side infor-
mation . Both Nodes 2 and 3 act as decoders, similar to the
HB problem of Fig. 2, in the sense that they reconstruct a local
estimate of the source . The rate-distortion function for this
problem has been derived for various special cases in [9]–[11]
and [12] (see [12, Table I] for an overview). Chia et al. [11] de-
rive the set of all achievable quadruples , i.e.,
the rate-distortion region, for the case in which is also avail-
able at the encoder and is a physically degraded version of

with respect to . Instead, Vasudevan et al. [10] derive
the rate-distortion region under the assumptions that the source
and the side information sequences are jointly Gaussian, that
the distortion metric is quadratic, and that the sequence is
a physically degraded version of with respect to . The
corresponding result for binary source and side information and
Hamming distortion metric was derived in [12].

B. Common Reconstruction Constraint

A key aspect of the optimal strategies identified in [4], [6],
[7], [10], and [11] is that the side information sequences are,
in general, used in two different ways: (i) as a means to reduce

Fig. 4. Cascade source coding problem with common reconstruction.

the rate required for communication between encoder and de-
coders via binning; and (ii) as an additional observation that the
decoder can leverage, along with the bits received from the en-
coder, in order to improve its local estimate. For instance, for
the point-to-point system of Fig. 1, the Wyner–Ziv result (1) re-
flects point (i) of the discussion above in the conditioning on
side information , which reduces the rate, and point (ii) in the
fact that the reconstruction is a function of the signal
received from the encoder and the side information .
Leveraging the side information as per point (ii), while ad-

vantageous in terms of rate-distortion tradeoff, may have unac-
ceptable consequences for some applications. In fact, this use
of side information entails that the reconstruction of the de-
coder cannot be reproduced at the encoder. In other words, the
encoder and decoder cannot agree on the specific reconstruction
obtained at the receiver side, but only on the average distor-

tion level . In applications such as transmission of sensitive
medical, military or financial data, this may not be desirable.
Instead, one may want to add the constraint that the reconstruc-
tion at the decoder be reproducible by the encoder [5]. This idea,
referred to as the common reconstruction (CR) constraint, was
first proposed in [5], where it is shown for the point-to-point
setting of Fig. 12 that the rate-distortion function under the CR
constraint is given by

(2)

where the minimum is taken over all pmfs such that
. Comparing (2) with the Wyner–Ziv rate-dis-

tortion (1), it can be seen that the additional CR constraint pre-
vents the decoder from using the side information as a means to
improve its estimate (see point (ii) above).
The original work of Steinberg [5] has been recently extended

in [13], where a relaxed CR constraint is imposed in which only
a distortion constraint is imposed between the decoder’s recon-
struction and its reproduction at the encoder.We refer to this set-
ting as imposing a constrained reconstruction (ConR) require-
ment.

C. Main Contributions

In this paper, we study the HB source coding problem (see
Fig. 2) and the cascade source coding problem (see Fig. 4) under
the CR requirement. The consideredmodels are thus relevant for
the transmission of sensitive information, which is constrained
by CR, via broadcast or multihop links—a common occurrence

2The function at the encoder calculates the estimate of the encoder re-
garding the decoder’s reconstruction.
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in, e.g., medical, military, or financial applications (e.g., for in-
tranets of hospitals or financial institutions). Specifically, our
main contributions are the following.
1) For the HB problem with the CR constraint (see Fig. 2),
we derive the rate-distortion function under the assumption
that the side information sequences are (stochastically) de-
graded. We also calculate this function explicitly for three
examples, namely Gaussian source and side information
with quadratic distortion metric, and binary source and era-
sure side information with erasure and Hamming distortion
metrics (see Section II).

2) For the HB problem with the CR constraint and decoder
cooperation (see Fig. 3), we derive the rate-distortion re-
gion under the assumption that the side information se-
quences are (physically) degraded in either direction (see
Sections III-A and III-B). We emphasize that the corre-
sponding problem without the CR constraint is still open
as per the discussion above.

3) For the cascade problem with the CR constraint (see
Fig. 4), we obtain the rate-distortion region under the as-
sumption that side information is physically degraded
with respect to (see Section IV-B). We emphasize that
the corresponding problem without the CR constraint is
still open as per the discussion above.

4) For the cascade problem with CR constraint (see Fig. 4),
we obtain outer and inner bounds on the rate-distortion
region under the assumption that the side information
is physically degraded with respect to . Moreover, for
the three examples mentioned above in the context of the
HB problem, we show that the bounds coincide and we
evaluate the corresponding rate-distortion region explicitly
(see Section IV-C).

5) For the HB problem, we finally derive the rate-distortion
function under the more general requirement of ConR and
under the assumption that side information is physically
degraded with respect to (Sec.V).

Notation: For and integer with , we define
as the interval and we use to denote the se-
quence . We will also write for for simplicity.
Upper case, lower case, and calligraphic letters denote random
variables, specific values of random variables and their alpha-
bets, respectively. Given discrete random variables, or more
generally vectors, and , we will use the notation
or for , and or for

, where the latter notations are used when the meaning
is clear from the context. Given a set , we denoted by
the -fold Cartesian product of . For random variables and
, we denote by the (average) conditional variance of

given , i.e., . We adopt the notation
convention in [14], in which represents any function such
that as . We define the binary entropy func-
tion . Finally, we define

.

II. HB PROBLEM WITH CR

In this section, we first detail the system model for the HB
source coding problem in Fig. 2 with CR in Section II-A. Next,
the characterization of the corresponding rate-distortion per-

formance is derived under the assumption that one of the two
side information sequences is a stochastically degraded version
of the other in the sense of [6] [see (10)]. Finally, three spe-
cific examples are worked out, namely Gaussian sources under
quadratic distortion (see Section II-C), and binary sources with
side information sequences subject to erasures under Hamming
or erasure distortion (see Section II-D).

A. System Model

In this section, the systemmodel for the HB problem with CR
is detailed. The system is defined by the pmf
and discrete alphabets , and as follows. The
source sequence and side information sequences and
, with , , and , are such that

the tuples for are independent and iden-
tically distributed (i.i.d.) with joint pmf . The
encoder measures a sequence and encodes it into a message
of bits, which is delivered to the decoders. Decoders 1

and 2 wish to reconstruct the source sequence within given
distortion requirements, to be discussed below, as
and , respectively. The estimated sequence is
obtained as a function of the message and the side informa-
tion sequence for . The estimates are constrained to
satisfy distortion constraints defined by per-symbol distortion
metrics with .
Based on the given distortion metrics, the overall distortion for
the estimated sequences and is defined as

(3)

The reconstructions and are also required to satisfy the
CR constraints, as formalized below.

Definition 1: An code for the HB problem
with CR consists of an encoding function

(4)

which maps the source sequence into a message ; a de-
coding function for Decoder 1

(5)

which maps the message and the side information into the
estimated sequence ; a decoding function for Decoder 2

(6)

which maps message and the side information into the
estimated sequence ; and two reconstruction functions

(7a)

(7b)

which map the source sequence into the estimated sequences at
the encoder, namely and , respectively, such
that the distortion constraints are satisfied, i.e.,

(8)
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and the CR requirements hold, namely

(9)

Given distortion pairs , a rate pair is said
to be achievable if, for any and sufficiently
large , there exists an code.
The rate-distortion function is defined as

.

B. Rate-Distortion Function

In this section, a single-letter characterization of the rate-dis-
tortion function for the HB problem with CR is derived, under
the assumption that the joint pmf is such that there
exists a conditional pmf for which

(10)

In other words, the side information is a stochastically de-
graded version of .

Proposition 1: If the side information is stochastically
degraded with respect to , the rate-distortion function for the
HB problem with CR is given by

(11)

where the mutual information terms are evaluated with respect
to the joint pmf

(12)

and minimization is performed with respect to the conditional
pmf under the constraints

(13)

The proof of the converse can be found in Appendix A.
Achievability follows as a special case of [6, Th. 3] and can
be easily shown using standard arguments. In particular, the
encoder randomly generates a standard lossy source code
for the source with rate bits per source symbol.
Random binning is used to reduce the rate to .
By the Wyner–Ziv theorem [14, p. 280], this guarantees that
both Decoders 1 and 2 are able to recover (since is a
degraded version of ). The encoder then maps the source
into the reconstruction sequence using a codebook that is
generated conditional on with rate bits per
source symbol. Random binning is again used to reduce the rate
to . From the Wyner–Ziv theorem, and the fact
that Decoder 2 knows the sequence , it follows that Decoder
2 can recover the reconstruction as well. Note that, since
the reconstruction sequences and are generated by the
encoder, functions and that guarantee the CR constraints
(9) exist by construction.

Remark 1: Under the physical degradedness assumption that
the Markov chain condition holds, (11) can be
rewritten as

(14)

with the minimization defined as in (11). This expression quan-
tifies by the additional rate that is required with
respect to the ideal case in which both decoders have the better
side information .

Remark 2: If we remove the CR constraint, then the rate-dis-
tortion function under the assumption of Proposition 1 is given
by [6]

(15)

where the mutual information terms are evaluated with respect
to the joint pmf

(16)

and minimization is performed with respect to the conditional
pmf and the deterministic functions , for

, such that distortion constraints (13) are satisfied. Com-
parison of (11) with (15) reveals that, similar to the discussion
around (1) and (2), the CR constraint permits the use of side in-
formation only to reduce the rate via binning, but not to improve
the decoder’s estimates via the use of the auxiliary codebooks
represented by variables and , and functions ,
for , in (16).

Remark 3: Consider the case in which the side information
sequences are available in a causal fashion in the sense of
[16], that is, the decoding functions (5)–(6) are modified as

, for and , respec-
tively. Following similar steps as in the proof of Proposition 2
and in [16], it can be concluded that, under the CR constraint,
the rate-distortion function in this case is the same as if the two
side information sequences were not available at the decoders
and is thus given by (11) upon removing the conditioning on
the side information. Note that this is true irrespective of the
joint pmf , and hence, it holds also for nondegraded
side information. This result can be explained by noting that, as
explained in [16], causal side information prevents the possi-
bility of reducing the rate via binning. Since the CR constraint
also prevents the side information from being used to improve
the decoders’ estimates, it follows that the side information is
useless in terms of rate-distortion performance, if used causally
under the CR constraint.
On a similar note, if only side information is causally

available, while can still be used in the conventional non-
causal fashion, then it can be proved that can be neglected
without loss of optimality. Therefore, the rate-distortion func-
tion follows from (11) by removing the conditioning on .

Remark 4: In [19], a related model is studied in which the
source is given as and each decoder is interested
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in reconstructing a lossy version of the side information avail-
able at the other decoder. The CR constraint is imposed in a
different way by requiring that each decoder be able to repro-
duce the estimate reconstructed at the other decoder.

C. Gaussian Sources and Quadratic Distortion

In this section, we highlight the result of Proposition 1 by
considering a zero-mean Gaussian source , with
side information variables

(17a)

(17b)

where and are in-
dependent of each other and of and . Note that the joint
distribution of satisfies the stochastic degradedness
condition. We focus on the quadratic distortion

for . By leveraging standard arguments
that allow us to apply Proposition 1 to Gaussian sources under
mean-square-error constraint (see [14, pp. 50–51] and [15]), we
obtain a characterization of the rate-distortion function for the
given distortion and metrics.
We first recall that for the point-to-point setup in Fig. 1 with

and side information , with
independent of , the rate-distortion function with CR

under quadratic distortion is given by [5]

for

for
(18)

where we have made explicit dependence on of the function
for convenience. The rate-distortion function (18)

for is obtained from (2) by choosing the distribution
such that , where is indepen-

dent of .

Proposition 2: The rate-distortion function for the HB
problem with CR for Gaussian sources (17) and quadratic
distortion is given by

if and
if and
if and
if

(19)

where is defined in (18) and

(20)

Remark 5: The rate-distortion function for the HB problem
for Gaussian sources (17) without the CR constraint can be

Fig. 5. Illustration of the distortion regions in the rate-distortion function (19)
for Gaussian sources and quadratic distortion.

found in [6]. Comparison with (19) confirms the performance
loss discussed in Remark 2.
Definition of the rate-distortion function (19) requires dif-

ferent consideration for the four subregions of the
plane sketched in Fig. 5. In fact, for ,
the required rate is zero, since the distortion constraints are triv-
ially met by setting in the achievable rate (11).
For the case , it is sufficient to cater
only to Decoder 2 by setting and , with

independent of , in the achievable rate (11).
That this rate cannot be improved upon follows from the trivial
converse

(21)
which follows by cut-set arguments. The same converse suffices
also for the regime . For
this case, achievability follows by setting and

in (11), where is independent of
. In the remaining case, namely , the rate-

distortion function does not follow from the point-to-point result
(18) as for the regimes discussed thus far. The analysis of this
case requires use of the entropy-power inequality (EPI) and can
be found in Appendix B
Fig. 6 depicts the rate in (19) versus for

different values of with , , and .
As discussed above, for , which is larger than ,

becomes zero for values of larger than
, while this is not the case for values .

D. Binary Source With Erased Side Information and Hamming
or Erasure Distortion

In this section, we consider a binary source
with erased side information sequences and . The source
is an erased version of the source with erasure proba-

bility and is an erased version of with erasure prob-
ability . This means that , where represents
an erasure, with probability and with probability

. Note that, with these assumptions, the side informa-
tion is stochastically degraded with respect to . In fact,
we have the factorization (10), where additional distributions

and are illustrated in Fig. 7. As seen in Fig. 7,
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Fig. 6. Rate-distortion function in (19) versus distortion
for different values of distortion and for , , and .

Fig. 7. Illustration of the pmfs in the factorization (10) of the joint distribu-
tion for a binary source and erased side information sequences

.

the pmf is characterized by the probability that sat-
isfies the equality . We focus on Ham-
ming and erasure distortions. For Hamming distortion, the re-
construction alphabets are binary, , and we
have if and otherwise for

. Instead, for the erasure distortion, the reconstruction
alphabets are , and we have for :

for
for
otherwise.

(22)

In Appendix C, we prove that for the point-to-point setup in
Fig. 1 with and erased side information , with
erasure probability , the rate-distortion function with CR under
Hamming distortion is given by

for
for

(23)
where we have made explicit the dependence on of the func-
tion for convenience. The rate-distortion function
(23) for is obtained from (2) by choosing the distri-
bution such that , where is
independent of . Following the same steps as in Appendix C,
it can be also proved that for the point-to-point setup in Fig. 1
with and erased side information , with erasure
probability , the rate-distortion function with CR under erasure
distortion is given by

(24)

The rate-distortion function (24) is obtained from (2) by
choosing the distribution such that with proba-
bility and with probability .

Remark 6: The rate-distortion function with erased side in-
formation and Hamming distortion without the CR constraint
is derived in [17] (see also [18]). Comparison with (23) shows
again the limitation imposed by the CR constraint on the use of
side information (see Remark 2).

Proposition 3: The rate-distortion function for the HB
problem with CR for the binary source with the stochastically
degraded erased side information sequences illustrated in Fig. 7
under Hamming distortion is given by

if and
if and
if and
if

(25)

where is defined in (23) and

(26)

Moreover, for the same source under erasure distortion, the rate-
distortion function is given by (25) by substituting
with as defined in (24) for and by substi-
tuting (26) with

(27)

Similar to the Gaussian example, the characterization of the
rate-distortion function (25) requires different considerations
for the four subregions of the plane sketched in Fig. 8.
In fact, for , the required rate is
zero, since the distortion constraints are trivially met by setting

in the achievable rate (11). For the case
, it is sufficient to cater only to Decoder 2 by

setting and , with inde-
pendent of , in the achievable rate (11). That this rate cannot
be improved upon is a consequence from the trivial converse

(28)

which follows by cut-set arguments. The same converse suffices
also for the regime . For
this case, achievability follows by setting and

in (11), where is independent of
. In the remaining case, namely , the rate-

distortion function does not follow from the point-to-point result
(23) as for the regimes discussed thus far. The analysis of this
case can be found in Appendix D. Similar arguments apply also
for the erasure distortion metric.
We now compare the rate-distortion function for the binary

source with erased side information under Ham-
ming distortion for three settings. In the first setting, known as
the Kaspi model [7], the encoder knows the side information
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Fig. 8. Illustration of the distortion regions in the rate-distortion function (25)
for a binary source with degraded erased side information and Hamming distor-
tion.

Fig. 9. Rate-distortion functions [17], [12]
and (25) for a binary source under erased side information
versus distortion ( , , , and ).

and thus the position of the erasures. For this case, the rate-dis-
tortion function for the example at hand was
calculated in [17]. Note that in the Kaspi model, the CR con-
straint does not affect the rate-distortion performance since the
encoder has all the information available at the decoders. The
second model of interest is the standard HB setting with no CR
constraint, whose rate-distortion function for the
example at hand was derived in [12]. The third model is the HB
setup with CR studied here. We clearly have the inequalities

(29)

where the first inequality in (29) accounts for the impact of the
availability of the side information at the encoder, while the
second reflects the potential performance loss due to the CR
constraint.
Fig. 9 shows the aforementioned rate-distortion functions

with and , which corresponds to the case
where Decoder 1 has no side information, for two values of the
distortion versus the distortion . For ,
the given settings reduce to one in which the encoder needs to
communicate information only to Decoder 1. Since Decoder 1
has no side information, the Kaspi and HB settings yield equal

performance, i.e., . More-
over, if is sufficiently smaller than , the operation of the
encoder is limited by the distortion requirements of Decoder
1. In this case, Decoder 2 can in fact reconstruct as
while still satisfying its distortion constraints. Therefore, we
obtain the same performance in all of the three settings, i.e.,

. We also
note the general performance loss due to the CR constraint,
unless, as discussed above, distortion is sufficiently smaller
than .

III. HB PROBLEM WITH COOPERATIVE DECODERS

The system model for the HB problem with CR and decoder
cooperation is similar to the one provided in Section II-A with
the following differences. Here, in addition to the encoding
function given in (4) which maps the source sequence into
a message of bits, there is an encoder at Decoder 1
given by

(30)

which maps message and the source sequence into a mes-
sage .Moreover, instead of the decoding function given in (5),
we have the decoding function for Decoder 2

(31)

which maps the messages and and the side information
into the estimated sequence .

A. Rate-Distortion Region for

In this section, a single-letter characterization of the rate-dis-
tortion region is derived under the assumption that the joint pmf

is such that theMarkov chain condition
holds.3

Proposition 4: The rate-distortion region for
the HB source coding problem with CR and cooperative de-
coders under the assumption is given by the union
of all rate pairs that satisfy the conditions

(32a)

(32b)

where the mutual information terms are evaluated with respect
to the joint pmf

(33)

for some pmf such that the constraints (13) are sat-
isfied.
The proof of the converse can be easily established following

cut-set arguments for bound (32a), while the bound (32b) on the
sum-rate can be proved following the same step as in
Appendix A and substituting with . As for the achiev-

3Note that, unlike the conventional HB problem studied in Section II, the rate-
distortion region with cooperative decoders depends on the joint distribution of
the variables ( ), and thus, stochastic and physical degradedness of the
side information sequences lead to different results.
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ability, it follows as a straightforward extension of [8, Sec. III]
to the setup at hand where Decoder 2 has side information as
well. It is worth emphasizing that the reconstruction for the
Decoder 2, which has degraded side information, is conveyed
by using both the direct link from the Encoder, of rate , and
the path Encoder-Decoder 1-Decoder 2. The latter path lever-
ages the better side information at Decoder 1 and the coopera-
tive link of rate .

Remark 7: If we remove the CR constraint, the problem of
determining the rate-distortion region for the setting of Fig. 3
under the Markov assumption is still open. In
[8], inner and outer bounds are obtained to the rate-distortion
region, for the case in which the side information is absent.
The bounds were shown to coincide for the case in which De-
coder 1 wishes to recover losslessly (i.e., ) and also
for certain distortion regimes in the quadratic Gaussian case.
Moreover, the rate-distortion tradeoff is completely character-
ized in [8] for the case in which the encoder also has access
to the side information. We note that, as per the discussion in
Section II-D, these latter results immediately carry over to the
case with the CR constraint since the encoder is informed about
the side information.

Remark 8: To understand why imposing the CR constraint
simplifies the problem of obtaining a single-letter characteriza-
tion of the rate-distortion function, let us consider the degrees of
freedom available at Decoder 1 in Fig. 3 for the use of the link
of rate . In general, Decoder 1 can follow two possible strate-
gies: the first is forwarding, wherebyDecoder 1 simply forwards
some of the bits received from the encoder to Decoder 2; while
the second is recompression, whereby the data received from the
encoder are combined with the available side information ,
compressed to at most bits per symbol, and then sent to De-
coder 2. It is the interplay and contrast between these two strate-
gies that makes the general problem hard to solve. In particular,
while the strategies of forwarding/recompression and combina-
tions thereof appear to be natural candidates for the problem,
finding a matching converse when both such degrees of freedom
are permissible at the decoder is difficult (see, e.g., [20]). How-
ever, under the CR constraint, the strategy of recompression be-
comes irrelevant, since any information about the side informa-
tion that is not also available at the encoder cannot be lever-
aged by Decoder 2 without violating the CR constraint. This
restriction in the set of available strategies for Decoder 1 makes
the problem easier to address under the CR constraint.

B. Rate-Distortion Region for

In this section, a single-letter characterization of the rate-dis-
tortion region is derived under the assumption that the joint pmf

is such that the Markov chain relationship
holds.

Proposition 5: The rate-distortion region for
the HB source coding problem with CR and cooperative de-
coders under the assumption of the Markov chain relationship

is given by the union of all rate pairs that
satisfy the conditions

(34a)

(34b)

where the mutual information terms are evaluated with respect
to the joint pmf

(35)

for some pmf such that the constraints (13) are sat-
isfied.
The proof of achievability follows immediately by neglecting

the link of rate and using rate as per the HB scheme of
Proposition 1. The converse follows by considering an enhanced
system in which Decoder 2 is provided with the side information
of Decoder 1. In this system, link becomes useless since
Decoder 2 possesses all the information available at Decoder
1. It follows that the system reduces to the HB problem with
degraded sources studied in the previous section and the bound
(34a) follows immediately from Proposition 1.

Remark 9: In the case without CR, the rate-distortion func-
tion is given similarly to (34), but with the HB rate-distortion
function (15) in lieu of the rate-distortion function of the HB
problem with CR in (34a).

IV. CASCADE SOURCE CODING WITH CR

In this section, we first detail the system model in Fig. 4 of
cascade source coding with CR. As mentioned in Section I,
the motivation for studying this class of models comes from
multihop applications. Next, the characterization of the corre-
sponding rate-distortion performance is presented under the as-
sumption that one of the two side information sequences is a de-
graded version of the other. Finally, following the previous sec-
tion, three specific examples are worked out, namely Gaussian
sources under quadratic distortion (see Section IV-C1), and bi-
nary sources with side information subject to erasures under
Hamming or erasure distortion (see Section IV-C2).

A. System Model

In this section, the system model for the cascade source
coding problem with CR is detailed similar to Section II-A.
The problem is defined by the pmf and
discrete alphabets , and as follows. The
source sequence and side information sequences and
, with , , and , are such

that the tuples for are i.i.d. with joint
pmf . Node 1 measures a sequence and
encodes it into a message of bits, which is delivered to
Node 2. Node 2 estimates a sequence within given
distortion requirements. Node 2 also encodes the message
received from Node 1 and the sequence into a message
of bits, which is delivered to Node 3. Node 3 estimates
a sequence within given distortion requirements.
Distortion and CR requirements are defined as in Section II-A,
leading to the following definition.
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Definition 2: An code for the cascade
source coding problem with CR consists an encoding function
for Node 1

(36)

which maps the source sequence into a message ; an en-
coding function for Node 2

(37)

which maps the source sequence and message into a mes-
sage ; a decoding function for Node 2

(38)

which maps message and the side information into the
estimated sequence ; a decoding function for Node 3

(39)

which maps message and the side information into the
estimated sequence ; and two encoder reconstruction func-
tions as in (7), which map the source sequence into estimated
sequences and at Node 1; such that the distor-
tion constraints (8) and (9) are satisfied.
Given a distortion pair , a rate pair is said

to be achievable if, for any and sufficiently large , there
exists an code. The rate-distor-
tion region is defined as the closure of all rate pairs

that are achievable given the distortion pair .

B. Rate-Distortion Region for

In this section, a single-letter characterization of the rate-dis-
tortion region is derived under the assumption that the joint pmf

is such that the Markov chain relationship
holds.4

Proposition 6: The rate-distortion region for
the cascade source coding problem with CR is given by the
union of all rate pairs that satisfy the conditions

(40a)

(40b)

where the mutual information terms are evaluated with respect
to the joint pmf

(41)

for some pmf such that the constraints (13) are sat-
isfied.
The proof of the converse is easily established following

cut-set arguments. To prove achievability, it is sufficient to
consider a scheme based on binning at Node 1 and decode and

4As for the HB problem with cooperative decoders studied in Section III,
the rate-distortion region of the cascade source coding problem depends on the
joint distribution of the variables ( ), and thus, stochastic and physical
degradedness of the side information sequences lead to different results.

rebin at Node 2 (see [11]). Specifically, Node 1 randomly gen-
erates a standard lossy source code for the source with
rate bits per source symbol. Random binning is used
to reduce the rate to . Node 1 then maps the source

into the reconstruction sequence using a codebook that
is generated conditional on with rate bits
per source symbol. Using the side information available
at Node 2, random binning is again used to reduce the rate
to . The codebook of is also randomly
binned to the rate . Node 2, having recovered ,
forwards the corresponding bin index to Node 3. The latter, by
choice of the binning rate, is able to obtain . Note that, since
the reconstruction sequences and are generated by the
encoder, functions and that guarantee the CR constraints
(9) exist by construction.

Remark 10: If we remove the CR constraint, the problem of
determining the rate-distortion region for the setting of Fig. 4
under the Markov condition is still open. In the
special case in which the problem has been solved in
[10] for Gaussian sources under quadratic distortion and in [12]
for binary sources with erased side information under Hamming
distortion.

Remark 11: Following Remark 3, if both side information
sequences are causal, it can be shown that they have no im-
pact on the rate-distortion function (40). Therefore, the rate-dis-
tortion region follows immediately from the results in (40) by
removing both of the side information terms. Note that with
causal side information sequences, the rate-distortion function
holds for any joint pmf with no degradedness re-
quirements. Moreover, if only the side information is causal,
while is still observed noncausally, then the side information
can be neglected without loss of optimality, and the rate-dis-

tortion region follows from (40) by removing the conditioning
on .

C. Bounds on the Rate-Distortion Region for

In this section, outer and inner bounds are derived for
the rate-distortion region under the assumption that the joint
pmf is such that the Markov chain relationship

holds. The bounds are then shown to coincide in
Section IV-C1 for Gaussian sources and in Section IV-C2 for
binary sources with erased side information.

Proposition 7 (Outer Bound): The rate-distortion region
for the cascade source coding problem with CR

is contained in the region , which is given by the
set of all rate pairs that satisfy the conditions

(42a)

(42b)

where is defined in (11) and we have
, where the minimiza-

tion is performed with respect to the conditional pmf
under the distortion constraints (13) for .
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Proposition 8 (Inner Bound): The rate-distortion region
for the cascade source coding problem with CR

contains the region , which is given by the union
of all rate pairs that satisfy the conditions

(43a)

(43b)

(43c)

where the mutual information terms are evaluated with respect
to the joint pmf

(44)

for some pmf such that the distortion constraints
(13) are satisfied.
The outer bound in Proposition 7 follows immediately from

cut-set arguments similar to those in [10] and [12]. As for the
inner bound of Proposition 19, the strategy works as follows.
Node 1 sends the description to Node 2 using binning with
rate . It also maps the sequence into the se-
quence using a conditional codebook with respect to ,
which is binned in order to leverage the side information at
Node 3 with rate . Node 2 recovers , whose
codebook is then binned to rate . Then, it forwards
the so obtained bin index for and the bin index for the code-
book of produced by Node 1 to Node 3. By the choice of
the rates, the latter can recover both and . Since both
descriptions are produced by Node 1, the CR constraint is auto-
matically satisfied.
The inner and outer bounds defined above do not coincide in

general. However, in the next sections, we provide two exam-
ples in which they coincide and thus characterize the rate-dis-
tortion region of the corresponding settings.

Remark 12: Without the CR constraint, the problem of de-
riving the rate-distortion region for the setting at hand under the
Markov chain condition is open. The problem has
been solved in [10] for Gaussian sources under quadratic distor-
tion and in [12] for binary sources with erased side information
under Hamming distortion for .
1) Gaussian Sources and Quadratic Distortion: In this sec-

tion, we assume the Gaussian sources in (17) and the quadratic
distortion as in Section II-C and derive the rate-distortion region
for the cascade source coding problem with CR.

Proposition 9: The rate-distortion region for
the cascade source coding problem with CR for the Gaussian
sources in (17) and quadratic distortion is given by (42) with

in (19) and [see
(18)].
The proof is given in Appendix E.
2) Binary Sources With Erased Side Information and Ham-

ming Distortion: In this section, we assume the binary sources
in Fig. 7 and Hamming distortion, as in Section II-D, and derive
the rate-distortion region for the cascade source coding problem
with CR.

Proposition 10: The rate-distortion region
for the cascade source coding problem with CR for the binary

sources in Fig. 7 and Hamming distortion is given by (42) with
in (25) and [see

(23)].
The proof is given in Appendix F.

V. HB PROBLEM WITH CONR

In this section, we revisit the HB problem and relax the CR
constraint to the ConR constraint of [13]. This implies that we
still adopt the code as per Definition 1, but we substitute (9) with
the less stringent constraint

(45)

where is a per-symbol
distortion metric and we have used , for
, to denote the th letter of the vector

.

Definition 3: Given a distortion tuple ,
a rate is said to be achievable if, for any and sufficiently
large , there a exists an

code. The rate-distortion function
is defined as : the tuple

is achievable .
Note that, by setting , and let-

ting be the Hamming distortion metric (i.e.,
if and if ),

we obtain a relaxed CR constraint in which the average
per-symbol, rather than per-block, error probability criterion is
adopted.

Remark 13: The problem at hand reduces to the one studied
in [13] by setting and .

Proposition 11: If the side information is stochastically
degraded with respect to , the rate-distortion function for the
HB problem with ConR is given by

(46a)

(46b)

where the mutual information terms are evaluated with respect
to the joint pmf

(47)

and minimization is performed with respect to the conditional
pmf and the deterministic functions

and for ,
such that the distortion constraints
for , and the ConR requirements

(48)
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are satisfied. Finally, are auxiliary random variables
whose alphabet cardinalities can be constrained as
and .
The proof is given in Appendix G.

Remark 14: Proposition 11 reduces to [13, Th. 2] when set-
ting and .

Remark 15: Similar to [13, Th. 2], it can be proved that,
by setting and letting be the Ham-
ming distortion for , the rate-distortion function (46),

, reduces to the rate-distortion function
with CR (11).

Remark 16: Similar to Remark 15, if and
, the rate-distortion function (46) is given by

(49)

where the mutual information terms are evaluated with respect
to the joint pmf

(50)

and minimization is performed with respect to the con-
ditional pmf and the deterministic functions

and ,
such that the distortion constraints
and and the ConR requirement

are satisfied. It can
be proved that this is also the rate-distortion function under the
partial CR requirement that there exists a function
such that (9) holds for only. Similar conclusions apply
symmetrically to the case where CR and ConR requirements
are imposed only on the reconstruction of Decoder 2.

Remark 17: If both side information sequences are causally
available at the decoders, it can be proved that they have no
impact on the rate-distortion function (46). In this case, the rate-
distortion function follows immediately from the results in (46)
by removing conditioning on both side information sequences.
Moreover, the result can be simplified by introducing a single
auxiliary random variable. Similarly, if only side information
is causal, then it can be neglected with no loss of optimality,

and the results follow from (46) by removing the conditioning
on .

Remark 18: We note that the ConR formulation studied in
this section is more general than the conventional formulation
with distortion constraints for the decoders only. Therefore,
problems that are open with the conventional formulation, such
as HB with cooperative decoders (see Section III) and cascade
source coding (see Section IV), are a fortiori also open in the
ConR setup.

VI. CONCLUDING REMARKS

The CR requirement [5] and its generalization in [13] sub-
stantially modify the problem of source coding in the presence

of side information at the decoders. From a practical standpoint,
in various applications, such as transmission of medical records,
CR is a design constraint. In these cases, evaluation of the rate-
distortion performance under CR thus reveals the cost, in terms
of transmission resources, associated with this additional re-
quirement. From a theoretical perspective, adding the CR con-
straint to standard source coding problems with decoder side
information proves instrumental in concluding about the opti-
mality of various known strategies in settings in which the more
general problem, without the CR constraint, is open [5]. This
paper has extended these considerations from a point-to-point
setting to three baseline multiterminal settings, namely the HB
problem, the HB problem with cooperating decoders and the
cascade problems. The optimal rate-distortion tradeoff has been
derived in a number of cases and explicitly evaluated in various
examples.
A general subject of theoretical interest is identifying those

models for which the CR requirements enable a solution of
problems that have otherwise resisted solutions. Examples in-
clude the HB and cascade source coding problems with no as-
sumptions on side information degradedness and the one-helper
lossy source coding problem.

APPENDIX A
PROOF OF PROPOSITION 1

We first observe that from Definition 1, distortion and CR
constraints (8) and (9) depend only on the marginal pmfs

and , and so does the rate-distortion function.
Therefore, in the proof, we can assume, without loss of gener-
ality, that the joint pmf satisfies the Markov chain
condition so that it factors as [cf., (10)]

(51)

Consider an code, whose existence
is required for achievability by Definition 1. By the CR require-
ments (9), we first observe that we have the Fano inequalities

(52)

for sufficiently large, where log . More-
over, we can write

(53a)

(53b)

where ( ) follows by the definition of mutual information. From
now on, to simplify notation, we do not make explicit the de-
pendence of , , and on and , respectively.
We also define as the th symbol of the sequence so that

.
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The first term in (53b), , can be treated as in [5,
Sec. V.A.], or, more simply, we can proceed as follows:

(54a)

(54b)

(54c)

(54d)

(54e)

(54f)

(54g)

where ( ) follows because is a function of ; ( ) follows
since and are functions of and , respec-
tively; ( ) follows by using the Markov chain relationship

; ( ) follows by the chain rule of mu-
tual information and since mutual information is nonnegative;
( ) follows by (52) and since entropy is nonnegative; and ( )
follows by the chain rule for entropy, since and are
i.i.d., and due to the fact that conditioning decreases entropy.
Similarly, the second term in (53b), namely, ,

leads to

(55a)

(55b)

(55c)

(55d)

(55e)

where ( ) follows because is a function of and ; ( )
follows by the chain rule of mutual information and since mu-
tual information is nonnegative; ( ) follows by (52) and since
entropy is nonnegative; and ( ) follows by the chain rule for
entropy, since and are i.i.d., and due to the fact that con-
ditioning decreases entropy. From (53b), (54g), and (55e), we
then have

(56a)

(56b)

where ( ) follows because of the Markov chain relationship
, for . By defining

with and , the proof is con-
cluded as in [5].

APPENDIX B
PROOF OF PROPOSITION 2

As explained in the text, we need to focus only on the case in
which . As per the discussion in Appendix A,
we can assume, without loss of generality, that theMarkov chain
relationship holds, so that

(57a)

(57b)

where is independent of .
We first prove a converse. Calculating the rate-distortion

function in (14) requires minimization over the pmf
under the constraint (13). A minimizing exists by
the Weierstrass theorem due to the continuity of the mutual in-
formation and the compactness of the set of pmfs defined by the
constraint (13) [21]. Fixing one such optimizing ,
the rate-distortion function (14) can be written as

(58)

The first term in (58), i.e., , can be easily bounded
using the approach in [5, p. 5007]. Specifically, we have

(59)

where ( ) follows because conditioning decreases entropy; and
( ) follows from the maximum conditional entropy lemma [14,
p. 21], which implies that

with . In fact, we have that ,

since the conditional variance is upper bounded by the
linear minimum mean square error of the estimate of given

. This mean square error is given by , since we

have and since is independent of due to the
factorization (12) and to the independence of and . For the
second term in (58), we instead have the following:

(60)
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Moreover, we can evaluate

(61)

where follows because is independent of and of ,
due to the factorization (12) and due to the independence of
and . Next, we obtain a lower bound on the term

in (61) as a function of by using the EPI [14,
p. 22]. Specifically, by using the conditional version of the EPI
[14, p. 22], we have

(62)

where follows because is independent of as explained
above. The first two terms in (61) can thus be bounded as

(63)

where (a) follows because is

an increasing function of and
, as can be proved by using the same ap-

proach used for the bounds and in (59). By substituting
(63) into (61), and using the result in (60), we obtain

(64)

Finally, by substituting (59) and (64) into (58), we obtain the
lower bound

(65)

For achievability, we calculate (14) with and
, where and

are independent of each other and of .
This leads to the upper bound

(66)

where ( ) follows using ,

for and being independent Gaussian sources with
and . By comparing (80) with (66),

we complete the proof.

APPENDIX C
PROOF OF (23)

Here, we prove that (2) equals (23) for the given sources. For
the converse, we have that

(67)

where ( ) follows because conditioning decreases entropy.
Achievability follows by calculating (2) with
where .
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APPENDIX D
PROOF OF PROPOSITION 3

As explained in the text, we need to focus only on the case in
which . As for Appendixes A and B, we can as-
sume, without loss of generality, that the joint pmf of
factorizes as (51), as shown Fig. 7. We first prove a converse.
Similar to (58), we can write the rate-distortion function (14) as

(68)

where the mutual information terms are calculated with a
distribution minimizing (14) under the constraint
(13). The first term in (68), i.e., , can be easily
bounded by following the same steps used in the derivation of
(67), leading to

(69)

For the second term in (68), we instead have the following:

(70)

(71)

(72)

where ( ) follows because of the Markov chain condition
. The second term in the right-hand side of (72) can be

evaluated as

(73)

where ( ) follows because . The fourth term
in the right-hand side of (72) can similarly be evaluated as

(74)

Substituting (73) and (74) into (72), we obtain

(75)

where ( ) follows since and
and due to the inequality

. Substituting (75) and (69) into (68), we
obtain

(76)

For achievability, we calculate (14) with and
, where and

are independent of each other and of where
for . This leads to the upper bound

(77)

where ( ) follows because

; ( ) follows because
and

; ( ) follows by using the

inverse test channels and ; and
( ) follows because and .
By comparing (76) with (77), we complete the proof.

APPENDIX E
PROOF OF PROPOSITION 9

Here, we provide the proof of Proposition 9. To this end, we
prove that for any pair , there exists a joint distribution

such that (13) is satisfied and the conditions (43a)
and (43b) coincide with (42a) and (42b), respectively. This re-
quires that the inner and outer bounds of Propositions 7 and 8
coincide.
We distinguish the four regions in the plane de-

picted in Fig. 5. If , it is enough to
set in (43) to prove. For
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, we instead set and
in (43), where is independent of . Fol-
lowing the discussion in Section II-C, it is easy to see that this
choice is such that (43) coincides with (42). Next, in the sub-
region where and , we select
and in (43), where is in-
dependent of . Finally, for the region in Fig. 5, for which

, we choose and ,
where and are inde-
pendent of each other and of . With this choice,
following the derivations in Appendix B, we conclude that con-
dition (43a) coincides with (42a). As for (43b), we proceed as
follows:

(78)

which concludes the proof.

APPENDIX F
PROOF OF PROPOSITION 10

Here, we provide the proof of Proposition 10. Following sim-
ilar steps as in Appendix E, we prove that for any pair ,
there exists a joint distribution such that (13) is sat-
isfied and the conditions (43a) and (43b) coincide with (42a)
and (42b), respectively. This requires that the inner and outer
bounds of Propositions 7 and 8 coincide.

We distinguish the four region in the plane depicted
in Fig. 8. If and , it is enough to set

in (43) to prove the desired result. For
and , we instead set and

in (43), where is independent
of . Following the discussion in Section II-D, it is easy to
see that this choice is such that (43) coincides with (42). Next,
in the subregion where and , we select

and in (43), where is
independent of . Finally, for the region in Fig. 8, for which

, we choose and ,
where and are independent
of each other and of . With this choice, following
the derivations in Appendix D, we conclude that condition (43a)
coincides with (42a). As for (43b), we proceed as follows:

(79)

where ( ) follows by the Markov chain relationship
. This completes the proof.

APPENDIX G
PROOF OF PROPOSITION 11

The proof of the achievability follows from standard argu-
ments, similar to [6]. For the converse, following the proof of [6,
Th. 3] we have that for any
code, the following inequality holds:

(80)

(81a)

(81b)

(81c)

(81d)

(81e)

(81f)

(81g)
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with the definitions , for , with

. Note that with the given definition
of , we have that the th element of the decoding func-
tions (5)–(6) can be written as
for all and . Now, defining

, we have the chain
of inequalities [see (81a)–(81g) at the bottom of the previous
page] for the code at hand and : where ( ) follows by
using the definition of random variables ; ( )
follows by selecting as shown by the equation
at the top of the page, and ( ) follows from the Markov chain
relationship and from the definition

. Let be a uniform
random variable over the interval and independent of
the variables and

define the random variables , , ,

, and for . Moreover, note
that is a deterministic function of and , and
is a deterministic function of and for . The
proof is completed by using (45) and the fact that the term

in (80) is convex with respect
to the pmf , using standard steps (see, e.g., [11]).
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