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Abstract—A source communicates with a remote destination via
a number of distributed relays. Communication from source to re-
lays takes place over a (discrete or Gaussian) broadcast channel,
while the relays are connected to the receiver via orthogonal fi-
nite-capacity links. Unbeknownst to the source and relays, link fail-
ures may occur between any subset of relays and the destination in
a nonergodic fashion. Upper and lower bounds are derived on av-
erage achievable rates with respect to the prior distribution of the
link failures, assuming the relays to be oblivious to the source code-
book. The lower bounds are obtained by proposing strategies that
combine the broadcast coding approach, previously investigated
for quasi-static fading channels, and different robust distributed
compression techniques. Numerical results show that lower and
upper bounds are quite close over most operating regimes, and pro-
vide insight into optimal transmission design choices for the sce-
nario at hand. Extension to the case of nonoblivious relays is also
discussed.

Index Terms—Broadcast coding, distributed source coding, era-
sure channel, relay channel, robust channel coding.

I. INTRODUCTION

W IRELESS or wired link failures are of a nonergodic na-
ture whenever the delay tolerated by the application at

hand is smaller than, or of the same order of magnitude of, the
link outage duration. Such failures are often unpredictable to the
transmitter, typically because of the absence of sufficiently fast
feedback signaling, to simplify transmitter design, or simply be-
cause packet losses may be caused by remote events such as net-
work congestion, see, e.g., [1]. In these situations, conventional
channel coding is not effective in coping with link failures.

In the context of wireless channels, where outage is caused
by poor fading conditions, a standard approach considers
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fixed-rate transmission, for a given signal-to-noise-ratio (SNR),
and evaluates the best possible tradeoff between rate and
reliability (outage) [2]. However, in a number of important
applications, one may accept variable-rate data delivery, as in
the case of video broadcasting: the receiver will simply experi-
ence variable reception quality according to the current channel
state, and benefit from potentially good fading conditions
[3]–[7]. As first proposed in [6], such variable-rate delivery can
be achieved, without channel state information, by layering a
number of transmission streams via superposition coding. This
strategy is referred to as the broadcast (BC) coding approach.
Layering can then be optimized in terms of average achievable
rate with respect to a given prior distribution over the fading
gains [6].

The issue of nonergodic link failures has also been widely
studied in the context of wired networks, especially in recent
years in the field of network coding, see, e.g., [9]. When the
wired network is used for conveying information regarding cor-
related sources, the problem of transmission in the presence
of (unpredictable) link failures is one of robust source coding,
which has been studied in [10] and [11] for the case of a single
encoder and in [12] and [13] for multiple distributed encoders.
These works show that it is generally advantageous to make pro-
vision for the entire range of possible link conditions in order to
fully exploit the available tradeoffs in the reconstruction quality
at the receiver. This conclusion and approach are apparently
synergic with the BC coding strategy of [6]. Such a synergy,
also exploited in [3]–[7], and references therein in a different
context, discussed later, motivates this paper.

We consider a scenario in which a single source communi-
cates with a remote destination via a number of relays, also re-
ferred to as agents in related literature. Communication between
source and agents is over a broadcast channel, either discrete or
Gaussian, while the agents are connected to the destination via
orthogonal limited-capacity channels. The scenario can be seen
as a special case of a multirelay channel, without a direct link be-
tween source and destination, and with no multiaccess interfer-
ence at the destination. In this sense, it is related to the “diamond
network” of [14], to “Aref networks” [15], where the broadcast
channel is deterministic, and to primitive relay channels [16],
where one relay is available and there is a broadcast channel
from source to relay and destination. In [17] the multirelay net-
work described above was studied under the assumption that
the relays are oblivious to the codebook used by the source; that
is, processing at the relays cannot depend on the specific code-
book selected by the source, as in, e.g., compress-and-forward
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Fig. 1. Single transmitter (encoder) communicates to a remote receiver (decoder) via� relays connected to the destination through unreliable finite-capacity
links. The number of functioning links� is unknown to source and relays (uninformed source and relays) and satisfies� �� �� . Links are on or off for
the entire duration of the codeword (nonergodic scenario). Agents may also be oblivious to the codebook used by the source (oblivious agents) as in [17].

or amplify-and-forward achievable strategies. This assumption
is of particular relevance for nomadic applications, in which no
signalling is in place to exchange information regarding mod-
ulation and coding used at the source, or in networks with in-
expensive relays whose processing cannot adapt to the specific
source operation.

In this paper, we consider the multirelay channel of Fig. 1.
Unlike the works considered above, we assume that the links
between the relays and the destination are unreliable, suffering
from nonergodic failures, and the current state of the links is
unknown to the encoders (source and relays). This assumption
complicates significantly the problem and calls for the adoption
of robust coding technique at both the source and the relays.

A related model with unreliable (nonergodic) connectivity
was studied in [12] and [13] in the context of distributed source
compression. In these works, a number of agents measure sam-
ples of a source process, independent and identically distributed,
i.i.d., over time, via independent white Gaussian noise chan-
nels. A description of the measurements is provided via separate
encoding by each agent to the destination over finite-capacity
links, so as to enable the receiver to reconstruct an estimate of
the source (the CEO problem [18]). Unbeknownst to the agents,
the links to the destination may not be functioning, and robust
distributed compression strategies must be devised to cope with
the different possible connectivity conditions. Notice that, un-
like the model of interest in the current work, the goal of [12]
and [13] is to reconstruct a given fixed source and not to design
the source coding strategy for reliable communications. There-
fore, our model combines both issues related to robust source
coding as in [12] and [13], but also of channel coding.

The basic idea behind our approach to the analysis of the
system in Fig. 1 is to exploit the synergy between the BC coding
approach of [6] at the source, which allows for variable-data
delivery to the destination depending on the current connec-
tivity conditions, and the robust distributed compression strate-
gies of [12] and [13]. It is noted that a related idea was put
forth in [3]–[5], in which the BC coding approach was com-
bined with successive-description compression techniques for
transmission of a Gaussian source over a slowly fading channel
without channel state information.

The organization of the paper and its main contributions are
as follows. We formalize the problem in Section II and derive
upper bounds on the average achievable rate, in the sense of [6]
and [7], for the system in Fig. 1 in Section III. Average achiev-
able rates based on BC coding and robust compression are de-
rived in Section IV, which are shown via numerical results in
Section V to perform close to the derived outer bounds and to

provide relevant gains with respect to conventional strategies.
Finally, we study the case of nonoblivious agents in Section VI.

Notation: The notation with integers represents the
interval , with the convention that if
then . Similarly, the subscript notation de-
notes the vector with the same convention that,
if . In general, lower-case letters represent
instances of the random variables denoted by the corresponding
upper-case letters. Moreover, using standard notation, we will
sometimes use superscripts to denote index bounds in sequences
as in . The use of the superscript will be made
clear by the context. Probability distributions are identified by
their arguments, e.g., . We use
standard definitions for information measures as defined in [19].

II. SYSTEM MODEL

We consider the decentralized communication scenario of
Fig. 1, in which a source communicates to a destination via

“agents” or relays, connected to the receiver via orthog-
onal finite-capacity (backhaul) links of capacity . No direct
connection from the source to the destination is available. The
channel from source to relays is memoryless and either discrete
or Gaussian. For the former case, the signal received
by the agent at time instant is the output
of a symmetric memoryless channel defined by the conditional
distribution , with input and block
length . Symmetric here means that the observations for
different are statistically exchangeable, see, e.g., [10]–[12].
For the Gaussian case, we similarly have the input-output re-
lationship

(1)

with being the th transmitted symbol and the noise
being i.i.d. over both and . We assume an average

input power constraint of : . In describing the

model below, we will use the notation for the discrete model,
but it is understood that the extension to the Gaussian model (1)
is immediate.

To account for a nomadic scenario and/or to simplify the oper-
ations at the relays, we assume, as in [17], that the relays are not
informed about the codebooks used by the transmitter (obliv-
ious agents). As formalized in Section II-A, this condition can
be modelled by assuming that the channel codebook is gener-
ated at the source based on a random key that is not available
at the relays, but is available at the destination. For reference,
Section VI also considers the case of nonoblivious agents.
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The model described above coincides with the one studied in
[17] . Here, however, we are interested in investigating the sce-
nario in which the backhaul links from the relays to the destina-
tion are affected by nonergodic failures. Specifically, following
[12], we assume that only a number of links are func-
tioning in a given coding block, while the remaining
are erased, e.g., in outage, for the entire duration of the current
transmission, i.e., this is a nonergodic scenario. As in [12], we
assume that the number of functioning links is always guar-
anteed to be larger than a minimum value so that

with probability one. Moreover, we define
the probability that as and collect the probabili-
ties in a vector . Notice that, according
to the discussion above, this probability is zero for .
We remark that, by the symmetry of (discrete
model) and (1) (Gaussian model), the system configuration for
a given depends only on the number of active links ac-
tive and not on which links are active. Finally, in keeping with
the models for distributed source coding of [12] and [13], we
are interested in scenarios in which no instantaneous informa-
tion regarding the current state of the unreliable links, i.e., the
value of , is available a priori to the source and the agents
(uninformed source and agents). More precisely, the only in-
formation that is available at the source and the relays is the
probability mass function , which represents the a priori state
of knowledge of the source and agents on the state of the unre-
liable links. This assumption is appropriate in scenarios where
feedback is not available or the outage events are difficult to pre-
dict, e.g., when the channel has a short coherence time.

We are interested in average achievable rates, where the av-
erage is taken with respect to the a priori connectivity proba-
bility vector . Specifically, we consider a degraded message
structure in which the overall source message of rate [bits/
channel use] is split into submessages

of rates , respectively, i.e.,
. When links are active, with ,

the receiver decodes messages of total rate
. Notice that the more links are active the more bits

(and messages) are decoded. An average rate

(2)

is said to be achievable if all rates are simultaneously achiev-
able, in the sense that, when links are active, the given
code guarantees decoding of with vanishingly small
probability of error for all . We remark that, as
in [6], the average rate (2) does not have the operational sig-
nificance of an ergodic rate, since the channel is nonergodic. It
is instead a measure of the rate that could be accrued with re-
peated and independent transmission blocks, or of the expected
rate. The analysis presented below can also accommodate dif-
ferent criteria, such as the outage capacity, in which a zero rate
is tolerated with a given probability. We refer also to [7] and [8]
for further discussion on capacity definitions for “nonergodic”
scenarios. The setting is formalized in the following.

A. Formal Setting

Denoting by the size of each coding block, a code for the
channel in Fig. 1 with oblivious1 relays is defined by the fol-
lowing elements:

• The encoder performs a (stochastic) mapping from
the messages to a codeword , namely

with

(3)

The codebook is indexed by a random key

, which runs over all possible codebooks of
size . The key is chosen randomly at the
beginning of the communication session, and is revealed to
the destination, but not to the relays. Notice that this model,
in which coding is stochastic due to the random key , is
merely a way of formalizing the fact that the relays have
no prior knowledge of the codebook, and it does not entail
any real overhead. To elaborate, as in [17], the probability

of choosing a codebook indexed by key
depends on a measure over the space of the

codewords as

(4)

where the product is taken over the message sets
for . More-

over, the measure is assumed to factor as

for a given single-letter proba-

bility distribution . Reference [17] shows that, in
the absence of information regarding , i.e., at the relays,
the signal transmitted by the source is distributed i.i.d.

according to a distribution and,

similarly, the received signals appear i.i.d., see [17,
Lemma 1]. The source does not know the current number

of active links.
• Each th relay , unaware of the codebook

(oblivious relays), maps the received sequence
into an index via a given mapping

as . Notice that this map-
ping does not depend on the current state of the link or the
number of active links. We remark that in Section VI,
we consider a scenario in which the relays are aware of the
source codebook.

• When links are active, the decoder decodes
messages based on its
knowledge of the codebook key and the received in-
dices over the active links. These can be assumed by
symmetry to be . The decoding function can be
written as

(5)

1The nonoblivious case will be treated in Section VI.
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The probability of error when links are active, which
is averaged over , is defined as

(6)

An average rate (2) is achievable if there exists a sequence of
codes such that all rates for
are achievable, i.e., as . The av-
erage capacity is the supremum of all average achievable
rates (2).2

III. REFERENCE RESULTS

In this section, we start the study of the system presented
above by deriving an upper bound on the capacity . It is
emphasized that the upper bound is valid under the given as-
sumption of oblivious relays. Moreover, it is noted that, as in
[17], for the Gaussian model, we restrict the input distribution
to be Gaussian with no claim of optimality. We refer to [17]
for further discussion on the suboptimality of the Gaussian dis-
tribution. The upper bound below also motivates the use of a
BC coding approach at the source and of compress-and-forward
(CF) at the relays, as exploited in the transmission strategies
considered in the rest of the paper, see Remark 3.1.

Proposition 3.1: (Cooperative Relays): The following is
an upper bound on the average capacity for the discrete
model:

(7)

where the rates

(8a)

(8b)

(8c)

are calculated with respect to a joint distribution

(9)

and the maximization is taken with respect to the marginals
and that factor as

(10a)

2The average capacity can be seen as identifying the hyperplane tangent to
the region of all achievable rates � � � � � � � in the direction specified by
vector �.

and satisfy

(11)

Moreover, for the Gaussian model, (7) is an upper bound, under
the constraint that the input distribution is Gaussian, with

(12)

for , where the maximization is taken with re-
spect to parameters with

and .

Remark 3.1: As discussed in the sketch of the proof below,
the upper bounds of Proposition 3.1 are obtained by assuming
that all of the relays that are connected to the corresponding
active links can fully cooperate in processing their received sig-
nals. Notice that this implies that they are also informed of
which links are active. The upper bounds can then be interpreted
as stating that, under this assumption, the best way to operate at
the source is to use a standard BC code characterized by aux-
iliary random variables , for the dis-
crete case or powers for the Gaussian
case. Such variables or powers correspond to the transmission
of message to be decoded at the receiver when .
Notice that the variables satisfy the Markov chain condi-
tion (10a), or equivalently as for
a regular degraded broadcast channel [24]. Moreover, the re-
sult in Proposition 3.1 also proves that fully cooperative relays
can employ CF techniques without loss of optimality to com-
municate to the receiver: The auxiliary variables account
for the quantization codebook used by the cooperating
relays when the active number of links is and param-
eter is the corresponding compression noise power for the
Gaussian case. In fact, from standard rate-distortion consider-
ations, (11) is easily interpreted in this sense as necessary and
sufficient to guarantee successful compression for all (see the
proof below). Notice that the optimality of CF in this context is
a consequence of the obliviousness assumption, as detailed in
the proof in Appendix A. Finally, we remark that the optimiza-
tion problem in (7) for the Gaussian case (12) corresponds to the
maximization of the weighted sum-rate of a broadcast channel,
which can be solved using standard techniques [21]. We will use
this intuition regarding the appropriateness of BC coding and
CF when designing transmission strategies in the next section.
We also notice that a similar conclusion regarding optimality of
BC coding for a different setting was presented in [7].

Proof: (Sketch): Here we provide a simple proof for the
bound (7), (12) for the Gaussian channel, as the derivation is
more direct. The discrete model is discussed later and proved
in Appendix A. Assume that the relays are perfectly cooper-
ating so that, when links are active, they can be seen as
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a unique compound agent with measurements , since
the signals are statistically equivalent, there is no loss in gener-
ality in this choice of . It is easy to see that the compound
agent can be equivalently considered as having scalar measure-

ments: , because there is no performance

loss in projecting the received signal over the signal space, since
the noise in (1) is uncorrelated over the agents. As aforemen-
tioned, we limit the analysis, as in [17], to random coding with
Gaussian inputs at the source. From [17], it is known that the op-
timal operation at the compound agent, which is clearly aware
of the capacity toward the destination, is to quantize to a
rate bits/source symbol the received signal via a Gaussian
test channel with inde-
pendent of . From standard arguments in rate-distortion
theory, in order to have vanishing probability of error in the
quantization process, as the block size increases, we can set

[cf. (11)], thus obtaining
. As a result, since the source is not informed

about the current value of , the equivalent channel can be
seen as a degraded Gaussian broadcast channel, in which the

destinations observe received signals with
equivalent noise variances for . No-
tice that such variances are clearly decreasing with . Recalling
the capacity region for the Gaussian broadcast channel, bound
(12) then easily follows. As a final remark, it is noted that (7)
and (12) for the Gaussian channel can also be obtained from
the corresponding discrete result of Proposition 3.1, proved in
Appendix A, by setting auxiliary variables
independent for and

, and as discussed earlier.

IV. ACHIEVABLE RATES

In the following, motivated by the upper bound of Propo-
sition 3.1 , we propose achievable schemes based on the BC
coding strategy of [6] and CF at the relays. In [6], a BC strategy
was proposed to deal with uncertain fading conditions. The
basic idea is that of treating all the possible channel fading
states that might occur as distinct users, thus effectively con-
verting the fading channel into a degraded broadcast channel.
In this paper, the same principle is leveraged to operate over
the channel at hand, which presents unknown connectivity con-
ditions from the relays to the receiver. Specifically, the source
transmits a superposition of codewords of rates

for . When , the receiver decodes
. As far as the operation at the relays is concerned,

due to the fact that codebook information, i.e., the key of
Section II-A, is not available at the relays, here we will as-
sume that CF relaying is implemented. Notice that this coin-
cides exactly with the strategy that was proved to be optimal
for the setting of Proposition 3.1, see Remark 3.1. The dif-
ferent techniques proposed in the following differ in the way
the CF strategy is implemented in terms of compression at the
agents and decompression/decoding at the receiver, and entail
increasing levels of complexity.

A. Broadcast Coding and Single-Description Compression
(BC-SD)

In this section, we consider a transmission strategy based on
BC coding and single-description (SD) compression at the re-
lays. In other words, each relay sends over the backhaul link a
single index (description), which is a function of the received
signal. Moreover, we consider first separate decompression/de-
coding at the decoder, and then a potentially more effective, but
more complex, joint decompression/decoding approach. A per-
formance comparison that shows the performance-complexity
tradeoff of these schemes is provided via numerical results in
Section V for the Gaussian model.

1) Separate Decompression/Decoding (BC-SD-S): Here we
propose a strategy based on separate (S) decompression/de-
coding. The compression/decompression scheme is inspired by
the technique used in [12], see also [10], for robust distributed
source coding in a CEO problem. The technique works by
performing random binning at the agents, as is standard in dis-
tributed compression, see, e.g., [20]. Moreover, the binning rate
is selected so that the receiver can recover with high probability
the compressed signals on the active links irrespective of
the realized value of as long as , as guaranteed by
assumption. In other words, design of the compression scheme
targets the worst-case scenario of . Notice that,
should more than links be active , the corre-
sponding compressed signals would also be recoverable at the
receiver, since, by design of the binning rate, any subset of
descriptions can be decompressed [12]. After decompression is
performed, the receiver uses all the signals obtained from
the relays to decode the codewords up to the th layer, that is,
the layers with rates with .

Proposition 4.1: (BC-SD-S): The average rate (2) is achiev-
able for the discrete model with

(13a)

(13b)

(13c)

where the variables at hand satisfy the joint distribution

(14)

with being the same for every , and the
condition

(15)
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Moreover, for the Gaussian model, the average rate (2) is achiev-
able with

(16)

and satisfying

(17)

for any power allocation with
.

Proof: See Appendix B.

Remark 4.1: Similar to the discussion around Proposition
3.1, the auxiliary random variable for the discrete case and
power for the Gaussian case, , repre-
sents the codebook used for the transmission of the th layer to
be decoded at the receiver when . Moreover, the variable

represents the compression codebook used at each agent
. Notice that by symmetry the same distribution is se-

lected for all . Conditions (15) for the discrete case
and (17) for the Gaussian case are shown in [12] to guarantee
that the decoder is able to decompress the signals corresponding
to any set of agents, see also proof in Appendix B. We fi-
nally notice that the only difference between the achievable rate
of Proposition 4.1 obtained with BC-SD-S and the upper bound
of Proposition 3.1 is related to the variables used for com-
pression, and in the Gaussian case to the power of the equiva-
lent compression noise [compare (16) with (12)]. Specifically,
for the upper bound of Proposition 3.1, variables are se-
lected jointly by the cooperative relays when the number of
active links is , whereas each in the achievable rate
of Proposition 4.1 is selected independently by each th relay,
irrespective of the value of .

Remark 4.2: For (fully reliable links), the achiev-
able rate of Proposition 4.1 coincides with the one presented in
[17, Theorem 1].

Remark 4.3: With separate decompression/decoding, one
could in principle target successful decompression for a value
of larger than . While this would in general imply

, the average rate (2) could be
better in some cases. A simple example of this is the case in

which the number of guaranteed links is . Under this
assumption, BC-SD-S, in which the binning rate is designed
for the worst-case scenario , clearly cannot
achieve a nonzero average rate. In contrast, one could design
the binning rate for a and be able to achieve a nonzero
average rate.

2) Joint Decompression/Decoding (BC-SD-J): Here we look
at a potentially more efficient, but also more complex, imple-
mentation of a system working with BC coding and SD com-
pression. Specifically, rather than performing separate decom-
pression and decoding as in the scheme considered above, here,
inspired by [17], we look at joint (J) decompression/decoding
for each layer of the broadcast codebook to be decoded. It is
noted that, since no separate decompression is performed, with
the joint approach, there is no need to select the compression
rate so that decompression is always possible with vanishing
error whenever , or more generally , see
Remark 4.3. This is because here we can allow for errors in de-
compression as long as decoding is correct, see Remark 4.4. The
performance gains of this scheme will be assessed in Section V.

Proposition 4.2: (BC-SD-J): The average rate (2) is achiev-
able for the discrete model with (18)–(19) as shown at the
bottom of the page, with variables factorizing as in (14), with
equal for every . Moreover, for the Gaussian model,
the average rate (2) is achievable with (20)-(21), as shown at
the bottom of the next page, for any .

Proof: See Appendix C.

Remark 4.4: The strategy (BC-SD-J) that achieves the rate
defined above is characterized by the same BC coding scheme
considered for Proposition 4.1. The agents also operate via CF
in the same way, by producing an SD obtained by compressing
the received signals into codewords and then binning the
corresponding codebooks to bits/symbol. The only differ-
ence is that here the decoder performs decoding of the mes-
sages jointly with the decompression of the codewords

from the indices received over the active links. This is
different from BC-SD-S, in which the decoder first recovers
the compression-codebook codewords and then, if decom-
pression is successful, performs decoding (Proposition 4.1). In
other words, with the separate strategy BC-SD-S, an error is de-
clared whenever the decoder fails at the first step (decompres-
sion of the codewords ) or, if the first step is successful, it
fails at the second (decoding). In contrast, with the joint ap-
proach BC-SD-J, an error is declared only when decoding fails,
irrespective of whether some of the compression codewords

(18a)

(18b)

(19)
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might have been erroneously decompressed. It follows that, in
BC-SD-J, there is no need to force the binning rate to guarantee
error-free decompression for all , or more generally

, see Remark 4.3, as in BC-SD-S, that is, to impose the
constraint (15) on the quantization defined by . Because
of the larger set of compression strategies allowed by
BC-SD-J, it follows that the latter scheme generally achieves
larger achievable rate than BC-SD-S of Proposition 4.1.3

Remark 4.5: The rates in Proposition 4.2 are defined
in terms of a minimization over a parameter . In
other words, rates , must be smaller than or equal to the
right-hand side of the inequalities at hand for every . As de-
tailed in Appendix C, the parameter runs over all the pos-
sible error events at the decoder. Specifically, in the th error
event for the th layer , the receiver decodes incorrectly
the message and compression codewords , where we
can choose without loss of generality. The rate expres-
sions (18a) can then be interpreted accordingly by noticing that:
(i) The term is the mutual information
between the input for the th layer and the correctly
decoded compression codewords represented by (ii)
The second term accounts for the extra capacity
available on the links over which decompression is not suc-
cessful, when one removes the rate wasted to convey
either channel noise or other information that is nuisance for
the th layer, i.e., the layers (see also [17]).

Remark 4.6: If (fully reliable links), the results
of Proposition 4.2 reduce to the achievable rate derived in [17 ,
Corollary 1] for the discrete case and the capacity result of [17,
Theorem 5] for the Gaussian case, assuming Gaussian inputs.4

B. Broadcast Coding and Multidescription Robust
Compression (BC-MD)

In this section, we propose to couple the BC coding approach
considered throughout the paper with multidescription (MD),
rather than SD, compression at the agents. The idea follows the

3More rigorously, this fact can be seen as follows. Choose a distribution
��� �� � that satisfies (15), as required by BC-SD-S. This guarantees that
decompression is always successful for all � � � (a similar argument
could be used for the case � � �� of Remark 4.3). It can be now seen with
some algebra that, with this choice, the rate region (13) of BC-SD-S coincides
with the rate region (18) of BC-SD-J (that is, the minimum in (18) is obtained
for � � �). However, BC-SD-J allows for more general distributions ��� �� �
than the ones satisfying (15) and thus it achieves potentially larger rates.

4The result in [17] is recovered by setting � � ��� �	
�� � ��� �.

work in [13], which focused on the CEO problem, see also [11].
Accordingly, each relay shares the bits it can convey to the
destination between multiple descriptions of the received signal
to the decoder. The basic idea is that different descriptions are
designed to be recoverable only if certain connectivity condi-
tions are met, that is, if the number of functioning links is suf-
ficiently large. This adds flexibility and robustness to the com-
pression strategy.

To simplify the presentation, here we focus on the two-agent
case . Dealing with the more general setup requires
a somewhat more cumbersome notation, but is conceptually
a straightforward extension (see [11] for related discussion).
Moreover, without loss of generality, we assume or

, since with the system coincides
with the system with fully reliable links studied in [17]. The
two agents send two descriptions: a basic one to be used at
the receiver in case the number of active links turns out to be

and a “refined” one that will be used only if
. It is also noted that for the scheme at hand the

only difference between the cases and is in
the prior , where in the former case, unlike the
latter, we have .

Proposition 4.3: (BC-MD): For or
, the average rate (2) is achievable for the discrete model for

(22a)

(22b)

with joint distribution

(23)

where is the same for , satisfying the
constraint

(24)

Moreover, for or and the Gaussian
model, the average rate (2) is achievable for

(25a)

(25b)

(20)

(21)
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with any power allocation , and any and such
that [see (26) at the bottom of the page].

Remark 4.7: In the MD scheme achieving the rate above,
each transmitter divides its capacity into two parts, say with
a fraction devoted to the first and
to the second description. Auxiliary variables in
(22) represent the quantization codebooks corresponding to the

th description of the th terminal . As ex-
plained above, the binning rate of the th description is selected
so that the description is recoverable at the destination whenever

. To ensure this, it is sufficient to impose the condition
for from standard rate-distortion theo-

retic arguments, and
for , from distributed lossy distortion theory, see, e.g.,
[13]. Notice that the latter inequality exploits the fact that the
first descriptions and have been correctly decompressed
at the decoder when , and thus provide side informa-
tion (see also [25]). In the Gaussian model, variances and

in (25)–(26) account for the compression noises for the first
and second description, respectively, and (26) corresponds to
(24). The auxiliary random variable in the discrete model and
powers represent, as in the rest of the paper, the
BC code.

Remark 4.8: Following the discussion in the previous section,
one could employ joint decompression/decoding for the second
description, rather than separate processing as done in Proposi-
tion 4.3. We do not further pursue this option here, but the result
can be derived similarly to the proof of Proposition 4.2.

Remark 4.9: Setting and to be constant for the dis-
crete model or letting for the Gaussian model, Propo-
sition 4.3 reduces to Proposition 4.1 for or .

Proof: The proof for the discrete model follows easily from
the discussion above and the capacity of a degraded Gaussian
channel, see the proof of Proposition 4.1 for similar arguments.
For the Gaussian model, the rate bounds (25) are obtained from
(22), and (26) from (24), by setting and

with and inde-
pendent for .5 Moreover, we set with

and independent. The
proof is then concluded with some algebra.

V. NUMERICAL RESULTS

In this section, we provide some numerical examples to illus-
trate the performance of the proposed BC-based strategies for
the system in Fig. 1. Consider a two-agent system
with guaranteed functioning links. We compare the per-
formance of the schemes described above, with single descrip-
tion (SD) and either separate (S) or joint (J) decompression/de-
coding, or multidescription (MD) compression. As a reference,

5This choice is referred to as the “joint decoder first” approach in [26],

we consider the upper bound (12) corresponding to cooperative
relays, labelled as “cooperative.” To assess the impact of non-
ergodic link outage, we also show the performance of a system
in which the link outages occur in an ergodic fashion so that
the agents effectively see a link capacity equal to the average

, labelled “ergodic.” This rate clearly sets
another upper bound on the average capacity, and can be found
from [17] to be

(27)

Finally, the rate of a baseline single-layer (SL), or nonbroadcast,
transmission in which the source sends only one information
layer to be decoded in the worst case scenario and the
relays perform SD compression, is shown for reference. The rate
of this SL-SD scheme is easily seen to be

(28)

with . It is recalled that the upper
bounds considered here are valid only when the restriction on
Gaussian inputs is taken into account: Better performance could
be generally achieved by considering more general distributions
as discussed in [17].

Fig. 2 shows the average rates of the proposed schemes for
dB and versus the probability

of having active links (rather than the minimum guar-
anteed ). The rates are optimized numerically over the
parameters at hand, i.e., the compression noise variances and
power allocation . It can be seen that the BC coding strategy
provides relevant advantages over SL as long as the probability

is sufficiently large, since it offers the possibility of exploiting
better connectivity conditions when they arise. Moreover, MD
compression clearly outperforms SD-based approaches for all
values of for which BC coding is advantageous, due to the
added flexibility in allocating part of the backhaul link rate for
the case of full connectivity . In particular, BC-MD
performs very close to the upper bound of cooperative relays
and for achieves the capacity for of
[17], that is, (27) with . It is also noted that joint decom-
pression/decoding (BC-SD-J) enables slightly better rates than
separate decompression/decoding for sufficiently large.

The achievable rates and bounds are shown in Fig. 3 versus
the power for and . MD compression
is again seen to have almost optimal performance, with a rate
gain over SD that increases with . For sufficiently large

, the capacity with ergodic failures (27) tends to
, and the achievable rate (28) with SL-SD to , whereas

(26)
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Fig. 2. Average achievable rates (2) for the proposed BC-based schemes with single description (SD) and either separate (S) or joint (J) decompression/ decoding,
or multidescription (MD) compression, versus the probability � � � � � of having � � � active links. For reference, the upper bound (12) achievable
with cooperative relay, the upper bound (27) corresponding to ergodic link failures and the rate (28) of single-layer (SL), or nonbroadcast, transmission with SD
compression are also shown (� � �� dB and � � ����.

Fig. 3. Same rates as in Fig. 2 versus the power � for � � ��� and � � ���.

the proposed schemes attain intermediate rates. Finally, we re-
mark that, in general, joint decompression/decoding (BC-SD-J)
is to be preferred to the separate approach (BC-SD-S) only for
sufficiently large .

Finally, Fig. 4 shows the rates at hand for dB and
versus the link capacity . Here, for large the ca-

pacity with ergodic failures (27) tends to
[17], while the baseline strategy SL-SD achieves the single-

user rate . The proposed schemes attain
intermediate rates between these two cases. Moreover, as in-
creases, all the proposed techniques perform very close to the
upper bound of cooperative relays. This implies that, when the

backhaul capacity is large enough, there is no need for more
sophisticated MD techniques.

VI. NONOBLIVIOUS AGENTS

In this section, we consider the model in which the agents
are informed about the codebook used at the source, that is,
equivalently, about the key (nonoblivious agents, recall
Section II-A). A similar model was considered in [17] for the
case of fully reliable links, . We limit the analysis to
the Gaussian model, but extension to the discrete model follows
along the same lines.
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Fig. 4. Same rates as in Fig. 2 versus the link capacity � for � � �� dB and � � ���.

We first consider a simple upper bound on the capacity, i.e.,
the maximum average achievable rate, that is a direct conse-
quence of cut-set arguments [19]. Specifically, it can be seen
that the average capacity for the setup at hand is upper bounded
by

(29)

where the first term in the follows by considering the
cut between source and agents (agents not connected to the des-
tination cannot contribute to the rate) and the second depends
on the cut from agents to destination.

As for an achievable strategy, we propose the following
scheme that generalizes the BC-SD strategy considered in
the previous section. We remark that an MD-based approach
could also in principle be devised. However, this extension
is conceptually rather straightforward and will not be further
pursued here. In the proposed scheme, the source uses BC
coding with Gaussian codebooks as considered throughout the
rest of the paper. However, on top of the layers
assumed in the schemes described in Section IV here the source
superimposes a further layer carrying a common message,
say , with rate , to be decoded by all agents (recall that
in our model all agents are statistically equivalent) and then
forwarded to the destination. We would like the destination to
be able to recover such a message at all times, that is, as long
as the number of active link satisfies . This is akin
to the SD approach to compression studied in Section IV-A.
Towards this goal, each agent reserves a rate of on its
outgoing links to send an index computed as a random function
of the decoded . It can be easily seen that, even though the
agents are unaware of which links are currently active (but
only that , the receiver will be able to recover
with vanishing probability of error as (this is a special
case of the Slepian-Wolf problem). The extra layer carrying

is decoded first by the agents and cancelled, and the rest
of coding/decoding takes place as for the BC-SD-S scheme
of Section IV-A with the caveat that now the remaining link
capacity to forward compression indices is .

Proposition 6.1: The average rate (2) is achievable in the
presence of nonoblivious relays for the Gaussian model with

(30a)

(30b)

(31)

with rates satisfying the inequalities in (16), and
satisfying

(32)

for any power allocation with
.

Proof: This result follows easily from the proof of Propo-
sition 4.1 and the description of the scheme provided above.

Remark 6.1: The parameter in (31)–(32) represents the
amount of power spent for transmission of message . More-
over, if , the rate of the proposition above reduces to the
BC-SD-S scheme of Proposition 4.1.

To gain some insight into the performance of the scheme pro-
posed above, Fig. 5 shows the average achievable rate for a
two-agent system versus capacity with ,
for different values of (probability of ) and

dB. The rates are compared with the upper bound (29) drawn
for two representative values of , namely and . From (29)
and the proposition above, it is noted that the cut-set bound for
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Fig. 5. Average achievable rate (30) with nonoblivious agents versus capacity � , for different values of � and � � �� dB. (� � � with � � ��. Also
shown is the cut-set bound (29) for � � � and � � �.

coincides with the rate achievable by sending only the
message , that is, by setting for in
(30). Therefore, for , the proposed scheme is optimal for
any value of , and there is no need for compression of the re-
ceived signal. Considering then the other limiting case, ,
it is seen that the proposed scheme achieves the cut-set bound,
and specifically the fully cooperative rate , for

sufficiently large. Moreover, this result is achieved by setting
or equivalently , that is, by not exploiting the

decoding capability of the agents. This fact is immediate if one
notices that for large and , the two received signals can
be sent by two agents with full reliability to the destination via
quantization (see also [17]). Increasing , the proposed scheme
does not achieve the cut-set bound (not shown), even though the
loss is rather limited. Furthermore, in general, for one
can gain by using the backhaul links to send “soft” (quantiza-
tion) information, along with the “hard” information on , as
is clear by comparing the performance with the cut-set bound
with (see discussion above). In the example at hand, for

such gain vanishes.

VII. CONCLUDING REMARKS

In modern packet data networks serving delay-sensitive
applications, link failures are often appropriately modelled as
being unpredictable and nonergodic. The conventional design
choice is to target worst-case scenarios by transmitting at a
judiciously selected constant rate that guarantees an acceptable
outage probability. However, it is often possible, and desir-
able, to deploy transmission strategies that are able to provide
variable-rate data delivery depending on the current state of
the involved links. Moreover, data communication networks
typically include distributed nodes, whose operation is decen-
tralized. In this paper, we have considered a baseline model
for communication networks that include these two basic ele-
ments of nonergodic link failures and decentralized operation.
Focusing on a multirelay network with one transmitter-receiver

pair and unreliable orthogonal link between each relay and
the destination, we have exploited the synergy between the
broadcast coding approach of [6] and the distributed source
coding techniques of [12] and [13] to propose a number of
robust communication strategies. Via comparison with perfor-
mance upper bounds, we have shown that the combination of
broadcast encoding and robust multidescription compression is
almost optimal for the model in which the relays are oblivious
to the source codebooks. This work opens a number of possible
avenues for future research, such as the extension to multiuser
scenarios with more than one source.6

APPENDIX A
PROOF OF PROPOSITION 3.1

The part of Proposition 3.1 regarding the Gaussian model was
proved in the text. Here we concentrate on the statement re-
garding the discrete model. Given the symmetry of the signals
received by the relays, one can assume without loss of generality
that in state relays indexed by are ac-
tive, as discussed in Section II. Moreover, we define as with
a little abuse of notation, the signal sent by the compound relay
to the destination in state , which is a collection of the signals
sent by the active relays . Now notice that

(33)

and that is a function of . We also have from the Fano
inequality and the definition of achievability that for all

(34)

where for . Notice that (34) accounts for the
fact that decoding is based on the codebook key . For any ,

6A scenario with interference and a single relay was recently studied in [28].
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using (34), we have , and
thus the following conditions:

(35)

(36)

(37)

(38)

(39)

where (35) follows because of the independence of variables
and . Define variables for

and and notice that is a function of
. Continuing from (39) we obtain for

(40a)

(40b)

(40c)

(40d)

(40e)

where in (40c) we have used the fact that conditioning reduces
the entropy and we have defined .
We consider separately the remaining cases and

. For from (39) we can write

(41a)

(41b)

(41c)

where (41c) follows from the definition of . Finally, for
, we can obtain similarly starting from (34)

(42a)

(42b)

(42c)

(42d)

where (42c) follows from the fact that is a function
of .

Overall, from the inequalities above, defining a time-sharing
variable uniformly distributed in and independent of all
other variables, we get for from (42)

where the last inequality follows from the concavity of the mu-
tual information with respect to the input distribution; for

, from (40)

and finally for from (41)

Now, we define ,
and . With these

definitions, we obtain (8). Moreover, the distribution of the vari-
ables at hand factorizes as (9). It remains to prove (11). This is
obtained as follows:

where in first line we have use the functional dependence
on , and the third line follows from the fact that, without
knowledge of the key , sequences are i.i.d. (see [17,
Lemma 1]). This concludes the proof.

APPENDIX B
PROOF OF PROPOSITION 4.1

We start with the discrete model.
Codeword generation and encoding (transmitter): The

source employs random coding based on BC “inner” code-
books for and codewords generated
according to the distribution (10a) [24]. Specifically, the
transmitter randomly generates auxiliary codewords
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for , i.i.d. according to distri-
bution . Then, for each , it generates
codewords with ,
independently for each symbol according to distribution

. The process continues similarly for
all , gener-
ating codewords . Finally, the transmitter
generates codewords with

, independently for each symbol ac-
cording to distribution .
Encoding takes place via the mapping from messages to code-
words implied by the notation used above.

Codeword generation, compression and binning (agents):
Each th agent compresses the received signal using a
randomly generated quantization codebook of codewords

. Quantization takes place via joint typicality according to
the test channel . Specifically, each th agent generates

codewords by choosing i.i.d. every symbol with prob-
ability obtained by marginalizing (14). Compression at
the agents takes place via joint typicality according to the test
channel . Random binning is performed by associating
(with uniform probability) a random index to
each codeword .

Separate Decompression/Decoding: When , we
can assume without loss of generality that the indices for

are received. Based on the received , the receiver
first looks for an -tuple of codewords , such
that the codewords are jointly (strongly) typical (see, e.g., [19])
according to distribution , obtained by marginalizing
(14), and they belong to the received bins, . If
such a tuple cannot be found or more than one such tuple is
found, an error is declared. After decompression, the decoder
looks sequentially for messages such
that the corresponding codewords are
jointly typical with the decompressed vectors [24] [19].

Analysis of the probability of error (sketch):
Compression/Decompression: It can be shown via standard

rate-distortion theoretic arguments that quantization at each
agent is successful with high probability (as grows large) if

[19]. Moreover, as shown in [12], as long as con-
dition (15) is satisfied, the receiver, upon reception of any subset
of indices , is able to decompress the corresponding
quantized codewords with vanishingly small probability as

. An “ -free” sketch of the proof of this fact is reported
here for completeness. We need to show that the probability
that a given an -tuple of codewords , different from

the correct one, happens to satisfy (i.e., to be
within the received bins) and to be jointly typical vanishes with
large . The number of jointly typical -tuples of sequences

is approximately , while the number of
-tuples of sequences that are obtained by generating

each sequence i.i.d. and independently from the others is about
. Therefore, according to the codeword generation

described above, the probability that a -tuples of codewords
, different from the correct one, happens to be jointly

typical, is around . The total number of
codewords within each bin is , so that the probability

that an -tuples of codewords is jointly typical and
within the received bins is upper bounded by

(43)

Recalling that , we obtain that condition (15) is
sufficient to drive the probability (43) to zero.

Decoding: Decoding takes place based on codewords
decompressed with vanishing probability of error (as shown
above) over the active links. It is clear that, by symmetry,
signals received when links are active can be consid-
ered to be and that we have the following Markov chain
condition

(44)

Therefore, the channel between and for
can be seen as a degraded broadcast channel and the

rate region (13) easily follows from [24].
For the Gaussian channel, the same reasoning applies and

we set the variables at hand as independent
for and .
Moreover, the test channel is selected as , where

independent of all other variables.

APPENDIX C
PROOF OF PROPOSITION 4.2

Codeword generation, encoding and compression take place
as discussed in Appendix B. However, joint decompression/de-
coding is applied at the receiver.

Joint decompression/decoding: The receiver, when
active links are available, say

without loss of generality, performs joint decompression and
decoding by looking for messages such that there exist
codewords for for which (

) are jointly typical according to the
distribution (14) and (that is, codewords
belong to the bins indexed via the backhaul link by ) and no
other satisfies these properties. A similar procedure
applies for .

Analysis of probability of error (sketch): When consid-
ering the th layer , corresponding
to message of rate , we can assume, in deriving the
conditions for vanishing probability of error, that the layers

have been correctly decoded, due to the Markov
condition (44). Moreover, errors in the quantization process
have arbitrarily small probability due to the choice of rate

. Therefore, given the transmission of a given set of mes-
sages and the compression to a set of codewords

, an error event at the th layer occurs if the
decoder can find a , with , and

sequences such that the
set of sequences (

) are jointly typical according to the
distribution (14) and for
(i.e., codewords are in the same bin as . Notice that due
to symmetry there is no loss of generality in considering only
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events with erroneous as selected here. Similar to [17], the
probability of any of the set of sequences of
the type above to be jointly typical is upper bounded by

so that, to drive the probability of error to zero with large , we
need (recall that ) (see the top equation at the top
of the page).

One can then repeat similar arguments for the last layer
, and thus conclude the proof for the discrete case.

For the Gaussian case, we assume Gaussian channel
codebooks by setting auxiliary variables
independent for and

. Moreover, we set Gaussian quantization
codebooks with indepen-
dent of all other variables. Extension of the rates derived
above to the Gaussian case then requires to substitute dif-
ferential entropies for entropies in (18)–(19) and evaluate
the corresponding information measures for the distribu-
tions given earlier. We have that

, but
, since,

conditioned on , variables are independent of with
and of all . Moreover, we have

and the first term reads, defining

(see the center equation at the top of the page), while the second
is (see the bottom equation at the top of the page). This con-
cludes the proof.
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