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Introducing Information  
Measures via Inference

Information measures, such as the en-
tropy and the Kullback–Leibler (KL) 
divergence, are typically introduced 

using an abstract viewpoint based on a 
notion of “surprise.” Accordingly, the 
entropy of a given random variable (rv) 
is larger if its realization, when revealed, 
is on average more “surprising” (see, 
e.g., [1]–[3]). The goal of this lecture 
note is to describe a principled and 
intuitive introduction to information 
measures that builds on inference, i.e., 
estimation and hypothesis testing. 
Specifically, entropy and conditional 
entropy measures are defined using 
variational characterizations that can 
be interpreted in terms of the minimum 
Bayes risk in an estimation problem. 
Divergence metrics are similarly de-
scribed using variational expressions 
derived via mismatched estimation or 
binary hypothesis testing principles. 
The classical Shannon entropy and the 
KL divergence are recovered as special 
cases of more general families of infor-
mation measures.

Relevance
Information measures are among the 
criteria most commonly used to derive 
pattern recognition and machine-learn-
ing methods, including blind source 
separation and variational inference. An 
understanding of information measures 

in terms of inference principles can clar-
ify their significance and illuminate the 
implications of their adoption for signal 
processing and learning problems.

Prerequisites
This lecture note requires basic knowl-
edge in probability and statistics.

Problem statement
We consider the following three questions.
1) Given an rv X  distributed accord-

ing to a known probabilistic model 
( ),p xX  i.e., ~ ,X pX  how can we mea-

sure the information associated with 
its observation? Addressing this 
question leads to the definition of 
generalized entropy as the minimum 
average loss, or Bayes risk, attain-
able on the estimate of X  based 
only on the knowledge of the proba-
bilistic model pX  [4].

2) Given two rvs X  and Y  jointly dis-
tributed according to a known 
probabilistic model ( , ),p x yXY  i.e., 
( , )~ ,X Y pXY  how can we measure the 
information associated with the ob-
servation of X  when Y  is already 
known? This leads to the definition of 
the generalized conditional entropy as 
the minimum average loss, or Bayes 
risk, attainable on the estimate of X  
given the knowledge of Y  and of the 
probabilistic model pXY  [4].

3) Given two probabilistic models pX
and qX  defined over the same alpha-
bet ,X  how can we quantify how 

“different” they are? Tackling this 
question leads to the definition of 
divergence measures, such as the 
KL divergence, based on the infer-
ence problems of mismatched esti-
mation [4] and binary hypothesis 
testing [5], [6].
Throughout this lecture note, we 

focus on the case of discrete rvs tak-
ing values in finite alphabets indicated 
by calligraphic letters, as in X X!  for 
an rv .X  For extensions to more general 
alphabets, we refer to the bibliography. 
We will denote the probability mass 
function (pmf) of a discrete rv X  as .pX  
The conditional pmf of X  given the 
observation Y y=  of a jointly distrib-
uted rv Y  is indicated as ,p |X Y y=  so that 
p |X Y  is a random pmf indexed by .Y  The 
notation E [·]~X pX  indicates the expecta-
tion of the argument with respect to the 
rv ~ ,X pX  and the conditional expecta-
tion is defined in a similar way. ( )var $  
represents the variance of the argument 
pmf. The notation log represents the 
logarithm in base two.

Solution

Generalized entropy
As proposed by Claude Shannon, 
the amount of information received 
from the observation of a discrete rv 
~X pX  defined over a finite alphabet X  

should be measured by the amount of 
uncertainty about its value prior to its 
measurement [7]. This is typically done 
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by introducing the “surprise” associated 
with the occurrence of an outcome x  as 

( ).logp xX-  According to intuition, this 
is an increasing function of ( ) :p xX

1-  the 
more unlikely x  is, the larger is its asso-
ciated surprise. The average surprise is 
the Shannon entropy

 ( ) E [ ( )] .logH X p X~X p XX= -  (1)

The logarithmic surprise measure  
( )logp xX-  can be justified based on engi-

neering arguments as well as by using an 
axiomatic approach (see [3] for a review).

Taking a step back, we would like to 
outline a more direct approach for quan-
tifying the information associated with 
the observation of an rv .X  To this end, 
we consider the problem of estimating 
the value of X  when one only knows the 
probabilistic model .pX  The key idea is 
that the observation of an rv X  is more 
informative if its value is more difficult 
to predict a priori, that is, based only on 
the knowledge of .pX

To formalize this notion, we need to 
specify 1) the type of estimate that one 
is allowed to make on the value of ;X  
and 2) the loss function ,  that is used to 
measure the accuracy of the estimate. We 
will proceed by considering two types 
of estimates: point estimates, whereby 
one needs to commit to a specific value 
x X!t  as the estimate of ;X  and distri-
butional estimates, in which instead we 
are allowed to produce a pmf pXt  over 
alphabet ,X  hence defining a profile of 
“beliefs” over the possible values of .X

Point estimate
Given a point estimate x X!t  and an ob-
served value ,x X!  the estimation error 
can be measured by a nonnegative loss 
function ( , ) .x x, t  Examples include the 
qu a dratic loss function ( , )x x2, =t  
( ) ,x x 2- t  and the 0–1 loss function, 
or detection error, ( , ) | | ,x x x x0 0, = -t t  
where | |a 00 =  if a 0=  and | |a 10 =  
otherwise. For any given loss function ,,  
based on the aforementioned discussion, 
we can measure the information accrued 
by the observation of rv ~X pX  by evalu-
ating the average loss that is incurred by 
the best possible a priori estimate of .X  
This leads to the definition of generalized 
entropy [4]

( ) ( ) E [ ( , )],minH X H p X x~X
x

X pX ,= =, , t
t

 (2)

where the estimate xt  is generally not 
constrained to lie in the alphabet .X  As 
highlighted by the notation ( ),H pX,  the 
generalized entropy depends on the pmf 
pX  and on the loss function .,  The notion 
of generalized entropy (2) coincides with 
that of minimum Bayes risk for the given 
loss function .,

Let us consider the examples of the 
quadratic and 0–1 loss functions. For the 
former, the generalized entropy can be 
computed as

 ( ) var( ),H p pX X2 =,  (3)

where we have imposed the optimal-
ity condition dE[( ) ] /dX x x 02- =t t  to 
conclude that the optimal point estimate 
is the mean E [ ] .x X~X pX=t  Under the 
quadratic loss function, the generalized 
entropy is hence simply the variance of 
the distribution. As for the 0–1 loss, we 
can write
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since the optimal estimate is the mode, 
i.e., the value xt  with the largest probabil-
ity ( ) .p xX t  The generalized entropy (4) 
equals the minimum probability of error 
for the detection of .X

Distributional estimate
We now consider a different type of esti-
mation problem in which we are permit-
ted to choose a pmf pXt  on the alphabet 
X  as the estimate for the outcome of vari-
able .X  To ease intuition, we can imagine 

( )p xXt  to represent the fraction of one’s 
wager that is invested on the outcome of 
X  being a specific value .x  Note that it 
may not be necessarily optimal to put all 
of one’s money on one value !x  In fact, 
this depends on how we measure the 
reward, or conversely the cost obtained 
when a value x  is realized.

To this end, we define a nonnegative  
loss function ( , )x pX, t  representing the 
loss, or the “negative gain,” suffered 
when the value x  is observed. This loss 
should sensibly be a decreasing function 
of ( )p xXt —we register a smaller loss or, 

conversely, a larger gain, when we have 
wagered more on the actual outcome .x  
As a fairly general class of loss functions, 
we can hence define

 ( , ) ( ( )),x p f p xX X, =t t  (5)

where f  is a decreasing function. Note 
that a more general class of loss functions 
can be defined based on the notion of 
scoring rule [3].

Denote as ( )XD  the simplex of pmfs 
defined over alphabet .X  The general-
ized entropy can now be defined in a way 
that is formally equivalent to (2), with the 
only difference being the optimization 
over pmf pXt  rather than over the point 
estimate :xt
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A key example of loss function ( ,x,   
)pXt  in class (5) is the log-loss ( , )x pX, =t  

( ) .logp xX- t  The log-loss has a strong 
motivation in terms of lossless compres-
sion. In fact, by Kraft’s inequality [1], it 
is possible to design a prefix-free—and 
hence decodable without delay—loss-
less compression scheme that uses 

( )logp xX- t^ h bits to represent value .x  
As a result, the choice of a pmf pXt  is 
akin to the selection of a prefix-free loss-
less compression scheme that requires a 
description of around ( )logp xX- t  bits 
to represent value .x  The expectation in 
(6) measures the corresponding average 
number of bits required for lossless com-
pression by the given scheme.

Using the log-loss in (2), we obtain

( ) E [ ( )],min logH p p x
(

~
)

X
p

X p X
XX

X= -
!D

t
t

 (7)

where ( )H pX  is the Shannon entropy (1). 
In fact, imposing the optimality condition 
on the right-hand side of (7) yields the 
optimal pmf ( )p xXt  as ( ) ( ) .p x p xX X=t  
Equation (7) reveals that the entropy (1) 
is the minimum average log-loss when 
optimizing over all possible pmfs .pXt  As 
a note, when the alphabet X  has more 
than two elements, it can be proved that 
the log-loss is the only loss function of 
the form (5) for which ( ) ( )p x p xX X=t  is 
optimal, up to multiplicative and additive 
constants [8, Th. 1].
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Remark
When pX  is the empirical distribution 
of the data and the optimization over the 
pmf pXt  is constrained to lie in a given set 
of parameterized pmfs, the cost function 
in (7) is typically referred to as the cross-
entropy loss and the resulting problem 
coincides with the maximum likelihood 
(ML) estimation of the parameterized 
model pXt  [2].

Remark 
The generalized entropy ( )H pX,  can 
be proved to be a concave function 
of .pX  This implies that a variable 
~ ( )X p q1X Xm m+ -  distributed accord-

ing to the mixture of two distributions is 
more “random,” i.e., is more difficult to 
estimate, than both constituent variables 
~X pX  and ~ .Y qX

Generalized conditional entropy  
and mutual information
Given two rvs X  and Y  jointly distrib-
uted according to a known probabilis    -
tic model ( , ),p x yXY  i.e., ( , )~ ,X Y pXY  we  
now discuss how to quantify the infor-
mation that the observation of one vari-
able, say ,Y  brings about the other, i.e., 
.X  Following the same approach adopted 

previously, we can distinguish two infer-
ential scenarios for this purpose: in the 
first, a point estimate ( )x yt  of X  needs 
to be produced based on the observation 
of a value Y y=  and the knowledge of 
the joint pmf ;pXY  while, in the second, 
we are allowed to choose a pmf p |X Y y=t  
as the estimate of X  given the observa-
tion .Y y=

Point estimate
Assuming point estimates and given a 
loss function ( , ),x x, t  the generalized con-
ditional entropy for an observation Y y=  
is defined as the minimum average loss 
as shown in (8) in the box at the bottom 
of the page.

Note that this definition is consistent 
with (2) as applied to the conditional 
pmf .p |X Y y=  Averaging over the distri-
bution of the observation Y  yields the 
generalized conditional entropy

 ( | ) E [ ( )] .H X Y H p~ |Y p X YY=, ,  (9)

It is emphasized that the generalized con-
ditional entropy depends on the joint dis-
tribution ,pXY  while (8) depends only on 
the conditional pmf .p |X Y y=

For the squared error, the general-
ized conditional entropy can be eas-
ily seen to be the average conditional 
variance ( | ) E [var( )],H X Y p~ |Y p X YY2 =,  
since the a posteriori mean ( )x y =t

E [ | ]X Y y~X p |X Y y ==  is the optimal esti-
mate. For the 0–1 loss, the generalized 
conditional entropy ( | )H X Y0,  is instead 
equal to the minimum probability of 
error for the detection of X  given ,Y  
and the maximum a posteriori estimate 
( ) ( | )argmaxx y p x y|x X YX= !t tt  is optimal.

Distributional estimate
Assume now that we are allowed to 
choose a pmf p |X Y y=t  as the estimate of 
X  given the observation ,Y y=  and that 
we measure the estimation loss via a 
function ( , )x pX, t  as in (5). The definition 
of generalized conditional entropy for 
a given value of Y y=  follows directly 
from the aforementioned arguments and 
is given as ( ),H p |X Y y, =  while the gen-
eralized conditional entropy is (9). With 
the log-loss function, generalized condi-
tional entropy can be again seen to coin-
cide with Shannon conditional entropy 
( | ) E [ ( | )].logH X Y p X Y, ~ |X Y p X Y,X Y= -

Remark
If X  and Y  are independent, we have 
the equality ( | ) ( ).H X Y H X=, ,  Fur-
thermore, since in (8) we can always 
choose estimates that are independent 
of ,Y  we generally have the inequal-
ity ( | ) ( ):H X Y H X#, ,  observing ,Y  on 
average, can only decrease the entropy. 
Note, however, that it is not true that 

( )H p |X Y y, =  is necessarily smaller than 
( )H X,  [1, Ch. 2].

Remark 
Assume that pXY  is the empirical dis -
tribution of the data, typically partitioned 
into as domain variables X  and labels 
,Y  and that the optimization over the 

conditional pmf p |X Yt  is constrained to 
lie in a given set of parameterized pmfs. 
In this case, the cost function E , ~X Y pXY  
[ ( | )]logp X Y|X Y- t  is again de  fined as the 
cross-entropy loss, and the resulting prob-
lem coincides with the ML supervised 
learning of the parameterized model 

,p |X Yt  as in, e.g., logistic regression [2].

Mutual information
The inequality ( | ) ( )H X Y H X#, ,  justi-
fies the definition of generalized mutual 
information with respect to the given loss 
function ,  as

 ( ; ) ( ) ( | ) .I X Y H X H X Y= -, , ,  (10)

The mutual information measures the 
decrease in average loss that is obtained 
by observing Y  as compared to having 
only prior information about .pX  This 
notion of mutual information is in line 
with the concept of statistical informa-
tion proposed by DeGroot [10]. With 
the log-loss, the generalized mutual 
information (10) reduces to Shannon’s 
mutual information.

Divergence measures
Here we discuss how to quantify the 
“difference” between two given proba-
bilistic models pX  and qX  defined over 
the same alphabet .X  We will take two 
different inferential viewpoints that will 
lead to different definitions of divergence 
between two distributions. The first is 
based on mismatched inference and natu-
rally follows the approach used previously 
to define generalized entropy, conditional 
entropy, and mutual information. In con-
trast, the second is based on the conceptu-
ally distinct inferential scenario of binary 
hypothesis testing.

Mismatched inference
Assume that the correct probabilistic 
model ,pX  from which the observation 
~X pX  is drawn, is not known, but only 

an approximation qX  is available. The 
point estimate xt  can hence depend only 
on ,qX  and is selected by minimizing the 
mismatched average loss as

 E [ ( , )] .argminx X x( )
~

q

x
X q

X
X ,=t t

t
 (11)

In a similar manner, for the distributional 
estimate ,pXt  we have the mismatched 

(8)( ) E [ ( , ( )) | ].minH p X x y Y y|
( )

~X Y y
x y

X p |X Y y ,= =, = =
t

t
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estimate Eargminp( )
( ~)X

q
p X qX

X
X X= !Dt t  

[ ( , )] .X pX, t  The difference between the  
average loss obtained with the mismat-
ched estimate and the minimum loss 

( )H X,  can be adopted as a measure of the 
divergence between the two distributions.

For a given loss function ,,  this ap    -
proach yields the following definition of 
divergence between two distributions

 
E [ ( , )]

( )

D p q X x

H p

~
( )

X X X p
q

X

X
X,=

-

,

,

t^ h
 

(12)

in the case of point estimates, and

 
E [ ( , )]

( )

D p q X p

H p

~
( )

X X X p X
q

X

X
X,=

-

,

,

t^ h
 

(13)

for distributional inference. It is noted that 
the divergence D p qX X, ^ h equals zero 
if and only if the mismatched estimate 
performs as well as the optimal estimate 
in terms of average loss.

For the quadratic loss, the divergen -
ce is given as (E [ ]D p q X~X X X pX2 =, ^ h
E [ ]) ,X~X q

2
X-  which measures the dif-

ference in the means of the two pmfs. 
In the special case of log-loss, the defini-
tion (12) coincides with the conventional 
KL divergence

 E
( )
( )

.logD p q
q X
p X

~X X X p
X

X
X=^ h ; E  (14)

By comparing (12) and (13) with the 
definition of mutual information (10), it 
can be seen that the following general 
relationship holds between the general-
ized mutual information and the diver-
gence (12), (13)

 ( ; ) E .I X Y D p p~ |Y p X Y XY=, , ^ h6 @  (15)

Hence, the generalized mutual infor-
mation measures the average divergence 
between the conditional pmf p |X Y y=  and 
the marginal pmf .pX

Binary hypothesis testing
We now consider the different inferen-
tial set-up of binary hypothesis testing: 
given an observation ,X  decide whether 
X  was generated from pmf pX  or from 
pmf .qX  To proceed, we define a decision 
rule ( ),T x  which should increase with the 
confidence that a value x  is generated 
from pX  rather than .qX  In this way, in 
practice, one may impose a threshold on 
the rule ( )T x  so that, for ( )T x  larger than 

the threshold, a decision is made that X  
was generated from .pX

To design the decision rule ( ),T x  
we again minimize a loss function or, 
equivalently, maximize a merit function. 
For convenience, here we take the lat-
ter approach, and define the problem of 
maximizing the merit function

 E [ ( )] E [ ( ( ))]T X g T X~ ~X p X qX X-  (16)

over the rule ( ),T x  where g is a convex 
increasing function. This criterion can be 
motivated as follows: 1) the expression 
(16) increases if ( )T x  is large, on average, 
for values of X  generated from ;pX  and 
2) it decreases if, upon expectation, ( )T x  
is large for values of X  generated from 

.qX  The function g can be used to define 
the relative importance of errors made in 
favor of one distribution or the other. We 
note that the merit function (16) can also 
be formally related to the error probabil-
ity of binary hypothesis testing [11].

From this discussion, the optimal 
value of (16) can be taken to be a measure 
of the distance between the two pmfs. 
This yields the following definition of 
divergence between two pmfs:

E [ ( )]

E [ ( ( ))],

maxD p q T X

g T X
( )

~

~

f X X
T x

X p

X q

X

X

=

-

^ h
 

(17)

where the subscript f  will be justi-
fied next.

Under suitable differentiability 
assumptions on function g  (see [6] 
for generalizations), taking the de-
rivative with respect to ( )T x  for all 
x X!  yields the optimality condition 
( ( )) ( ) / ( ) .g T x p x q xX X=l  This relation-

ship reveals the connection between the 
optimal detector ( )T x  and the likelihood 
ratio ( ) / ( ) .p x q xX X  Plugging this result 
into (17), it can be directly checked that 
the following equality holds [5]:

E
( )
( )

,D p q f
q X
p X

~f X X X q
X

X
X=^ ch m; E  (18)

where the function ( ) ( )*f x g x=  is the  
convex conjugate of ( ),g t  which is 
de  fined as ( ) ( ) .* supg x xt g tt= -^ h  
Note that the convex conjugate is a con-
vex function.

Under the additional constraint 
( ) ,f 1 0=  definition (18) describes a  

large class of divergence measures 
parameterized by the convex function 
,f  which are known as f-divergences or 

Ali–Silvey distance measures [9]. The 
constraint ( )f 1 0=  ensures that the 
divergence is zero when the pmfs pX  
and qX  are identical. Among their key 
properties, f-divergences satisfy the 
data processing inequality [1], [9].

As a specific example, the choice 
( ) ( ),expg t t 1= -  wh ich g ives the 

con   vex conjugate ( ) ,logf x x x=  yields 
the optimal detector ( ) logT x 1= +

( ( ) / ( ))p x q xX X  and the corresponding 
divergence measure (18) is the stan-
dard KL divergence KL p qX X^ h in 
(14). Another instance of f-divergence, 
obtained with ( ) ( ( ))log expg t t2=- -  
and the optimal detector ( )T x =

( ( ) / ( ) ( )),log p x p x q x2 X X X+  is the 
 Jensen–Shannon divergence. Further 
examples include the class of a -diver-
gences [6], [9].

We finally mention the related di-
vergence class of integral probability 
metrics, which measure the difference 
E [ ( )] E [ ( )]f X f X~ ~X p X qX X-  upon maxi-
mization over all functions f within a 
given class. This leads, among other 
metrics, to the maximum mean discrep-
ancy measure, and to the Wasserstein 
(or Earth mover) divergence based on 
optimal transport theory [12].

Remark
When pX  is the empirical distribu-
tion of the data, qX  is the (explicit or 
implicit) distribution of a model to be 
learned and ( )T x  is a parametric detec-
tor, problem (17) is a key step of genera-
tive adversarial networks [6].

Conclusions
In this lecture note, we have presented 
an introduction of information measures 
in terms of inferential problems—es -
timation for entropy and conditional 
entropy, and mismatched estimation 
and binary hypothesis testing for diver-
gence metrics. This approach allows the 
definition of general classes of infor-
mation measures including, as special 
cases, Shannon’s entropy and KL diver-
gence, in an intuitive way that reveals 
their operational significance. The 
variational formulations that define the 
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information measures as optimal infer-
ence problems can be used to derive 
learning algorithms, such as in [6], as 
well as estimates of information mea-
sures [5], [11].

Author
Osvaldo Simeone (osvaldo.simeone@
kcl.ac.uk) received his M.Sc. degree 
(with honors) and his Ph.D. degree, 
both in information engineering, from 
Politecnico di Milano, Italy, in 2001 
and 2005, respectively. He is a profes-
sor of information engineering with 
the Centre for Telecommunications 
Research in the Department of In -
formatics of King’s College London. 
From 2006 to 2017, he was a faculty 
member with the Electrical and Computer 
Engineering Department at the New 
Jersey Institute of Technology. His 
research interests include wireless com-

munications, information theory, opti-
mization, and machine learning. He is 
a corecipient of the 2017 JCN Best 
Paper Award, the 2015 IEEE Com -
munication Society Best Tutorial 
Pa per Award, and the Best Paper 
Awards of IEEE SPAWC 2007 and 
IEEE WRECOM 2007. He was award-
ed a European Research Council Con -
solidator Grant in 2016. He is a Fellow 
of the IEEE. 

References
[1] T. M. Cover and J. A. Thomas, Elements of 
Information Theory. Hoboken, NJ: Wiley, 2012.

[2] C. M. Bishop, Pattern Recognition and Machine 
Learning. New York: Springer, 2006.

[3] I. Csiszár, “Axiomatic characterizations of infor-
mation measures,” Entropy, vol. 10, no. 3, pp. 261–
273, Sept. 2008.

[4] P. Grünwald and P. Dawid, “Game theory, maxi-
mum entropy, minimum discrepancy and robust 
Bayesian decision theory,” Ann. Statist., vol. 32, no. 
4, pp. 1367–1433, 2004.

[5] X. Nguyen, M. J. Wainwright, and M. I. Jordan, 
“Estimating divergence functionals and the likelihood 
ratio by convex risk minimization,” IEEE Trans. 
Inform. Theory, vol. 56, no. 11, pp. 5847–5861, Nov. 
2010.

[6] S. Nowozin, B. Cseke, and R. Tomioka, “f-GAN: 
Training generative neural samplers using varia-
tional divergence minimization,” in Proc. Neural 
Information Processing Systems Conf., Barcelona, 
Spain, 2016, pp. 4240–4248.

[7] C. E. Shannon, “A mathematical theory of com-
munication,” Bell Syst. Tech. J., vol. 27, no. 3, pp. 
379–423, July 1948.

[8] J. Jiao, T. A. Courtade, A. No, K. Venkat, and T. 
Weissman, “Information measures: The curious case 
of the binary alphabet,” IEEE Trans. Inform. Theory, 
vol. 60, no. 12, pp. 7616–7626, Dec. 2014.

[9] J. C. Duchi, Lecture Notes for Statistics 311/
Electrical Engineering 377. Stanford, CA. 

[10] M. H. DeGroot, “Changes in utility as informa-
tion,” Theory Decis., vol. 17, no. 3, pp. 287–303, Nov. 
1994.

[11] V. Berisha, A. Wisler, A. Hero, and A. Spanias, 
“Empirically estimable classification bounds based on 
a nonparametric divergence measure,” IEEE Trans. 
Signal Proc., vol. 64, no. 3, pp. 580–591, Feb. 2016.

[12] M. Arjovsky, S. Chintala, and L. Bottou, 
“Wasserstein GAN,” arXiv Preprint, arXiv:1701.07875, 
Jan. 2017.

 SP

objective of creating content that can 
be used to promote the wealth of signal 
processing applications in lower-level 
undergraduate courses. I believe such 
articles would provide additional motiva-
tion for students and professors in signal 
processing. Content from industry will 
enhance the offerings of SPM, making 
it more valuable to the readership and 
enhancing the underlying industrial sup-
port of contributors.

Standards and commercialization are 
important in many areas of signal pro-
cessing, which are not covered extensive-
ly in SPM. For example, communication 
standards are driving the development 
of fifth-generation signal processing 
algorithms while the commercializa-
tion of virtual reality by several firms is 
encouraging further development in low-

power multimedia signal processing for 
consumers. I envision more columns or 
articles where the authors provide a top-
level view of the standards development 
including what is being standardized, 
the time line, how the meetings are con-
ducted, and where information is shared. 
This will be of great value for anyone not 
attending the meetings. In terms of com-
mercialization, I foresee contributions 
related to emerging consumer products 
(explaining the signal processing connec-
tion, not just blanket marketing) or high-
lights of different technology start-ups. 
Content in these new areas will enhance 
the appeal of the magazine.

Signal processing can be funny. Many 
graduate students remember Ph.D. com-
ics or the cartoons in signal processing 
books about the terrors on convolution. 

I will work to develop some lighthearted 
content in SPM, composed of contribu-
tions from the readership. These could 
take the form of short articles or car-
toons, including plays on words, the trials 
of graduate school, or even fun puzzles. 
Such contributions will provide a hook 
that will keep readers looking through 
every issue and will help create a fun cul-
ture that brings people together. 

SPM is a magazine for all of us. I look 
forward to your feedback and ideas.
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from the editor (continued from page 4)


