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1. Introduction

1 Introduction

Some de�nitions

• Pattern recognition (engineering) - automatic discovery of regularities in data for decision/prediction/data
mining.

• Machine learning (computer science) - development of e�cient algorithms to learn models from data.

• Information theory - quanti�cation of informational relationships among data ⇒ performance criteria for
learning

• Learning is useful when it is too di�cult or too costly to design an algorithm that solves a speci�c problem
based on domain knowledge.

• Remark: Information theory also provides a conceptual framework to derive learning algorithms, namely
Minimum Description Length (MDL), to be discussed.

Learning tasks

1. Supervised learning: Inference of function t = y(x) from a set of training examples {xn, tn}Nn=1with the goal of
minimizing the generalization error (error over new data points), see Fig. 1. There are two types of supervised
learning:

• Classi�cation (t discrete)

• Regression (t continuous).

2 Unsupervised learning: Inference of a function y(x) or generating mechanism from training examples {xn}Nn=1with
the goal of discovering hidden structure in the data, see Fig. 2. We can distinguish the following tasks:

• Clustering - group similar examples

• Density estimation - determine data distribution

• Dimensionality reduction - describe data in a smaller space

3 Reinforcement Learning: Inference of optimal on-line action based on rewards/punishment obtained as a
result of previous actions.

Figure 1: Illustration of supervised learning. The dependent variable, or label, t is to be predicted based on the
domain variable x.
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Additional category of learning tasks

• Passive vs. active learning: a passive learner is given the training example; an active learner can choose these
(e.g. choosing songs and asking experts to clarify them).

• O�ine vs. online learning: Supervised or unsupervised learning can also be formulated as online learning in
contrast to batch learning (see Fig. 3).

Figure 2: Illustration of unsupervised learning for clustering or dimensionality reduction.

Figure 3: Illustration of online supervised learning.

2 Example: Regression (Supervised Learning)

Figure 4: Example of a training set (blue points). The green line corresponds to the mean of the �true�, and
unknown, distribution po(x, t) used to generate the data set (from [1]).

• Training set D: x = (x1, ...., xN )T domain points or instances and t = (t1, ...., tN ) labels (Fig. 4)

• Each training data point (xn, tn) is statistically equivalent and drawn from the �true� (and unknown) distri-
bution p0(x, t):

(xn, tn) ∼
i.i.d.

p0(x, t), i = 1, ..., N. (1)

• We would like to learn a machine that predicts t from x for a new pair (x, t) ∼ p0(x, t), which is independent
of the training set.
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• Learning = Conversion of experience into expertise or knowledge 6=Memorizing.

• Learning is clearly impossible without making further assumptions (No free lunch theorem).

• Assumption: Data comes from some parameterized class of models (hypothesis class).

• Goal of learning : Find best model in the hypothesis class in terms of generalization error, i.e., error on a new
independent pair (x, t) ∼ p0(x, t).

• This is the nature of the scienti�c method: Theories should be able to provide predictions under generalized
conditions as compared to the available data.

• For this example, we choose the following probabilistic discriminative model (Fig. 5):

t = y(x,w) + z, where z ∼ N (0, β−1) (2)

and y(x,w) =

M∑
j=0

wjx
j (3)

• Model parameters: (w, β) for any �xed model order M .

Figure 5: Illustration of the probabilistic discriminative class of models p(t|x,w, β) selected for the regression
example (from [1]).

• Conditional pdf of each value of the label t given the domain point x according to the model:

p(t|x,w, β) = N (t|y(x,w), β−1) =

√
β

2π
exp

(
−(t− y(x,w))2

2β−1

)
. (4)

• Conditional pdf of the labels t given the domain points x in the training data set D = {x, t}:

p(t|x,w, β) =
N∏
n=1

N (tn|xn,w, β−1) likelihood function of (w, β) (5)

or

ln p(t|x,w, β) =
N∑
n=1

lnN (tn|xn,w, β−1) log-likelihood function of (w, β)

= -
β

2

N∑
n=1

(y(xn,w)− tn)2 +
N

2
ln

β

2π
. (6)

• Goal of learning: Find the �best� model (w, β) so that it �generalizes� over unobserved examples (x, t) ∼
p0(x, t).
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Remarks

• The "true" model does not have to be included in the family of assumed models.

• Choosing the wrong family of models may cause failure to learn ("inductive bias" problem).

• Example: B.F. Skinner's experiment on pigeons:

- serve food at regular intervals, irrespective of pigeon's behavior;

- pigeons learned to keep repeating the action they were doing the �rst time food was served (wrong model!).

• The choice of the model depends on many factors including ethical considerations. For instance, including as
independent variables in x the ZIP code of an individual seeking credit at a bank may discriminate against
immigrants or minorities [9].

3 Maximum Likelihood (ML) Approach

• Maximize the probability of the training set (trust the data!):

minimize -
w,β

1

N

N∑
n=1

ln p(tn|xn,w, β)︸ ︷︷ ︸
⇒ML estimate of w and β : wML, βML

. (7)

• Predictive distribution for new observation (x, t): p(t|x,wML, βML)

• Using the assumed probabilistic discriminative model, the ML problem is:

minimize
w,β

β
1

N

N∑
n=1

(y(xn,w)− tn)2︸ ︷︷ ︸
L(w): mean squared loss

− ln
β

2π
(8)

• The squared loss `(y, t) = (y − t)2 measures the squares of the green segments seen in Fig. 6.

Figure 6: Illustration of the error terms |tn − yn| (from [1]).

• ML estimates: {
wML ← min

w
L(w)

1
βML

= 1
NL(wML)

(9)

4



• wML is the solution of a least squares problem and can be found in closed form as discussed in Problem 1
(see, e.g., [3]).

• Predictive distribution for new observation (x, t), see Fig. 7:

p(t|x,wML, βML) = N (t|y(x,wML), β
−1
ML). (10)

Figure 7: Illustration of a predictive distribution for a new observation (this is actually obtained via the Bayesian
approach to be discussed below) (from [1]).

• ML tries only to �t the data by minimizing L(w) = 1
N

∑N
n=1(y(xn,w)− tn)2, which is counterproductive for

learning if N is not very large (as compared to the model order M). Therefore, ML may lead to over�tting,
see Fig. 8.

• Over�tting = "Remembering but not learning".

• Learning aims at minimizing the error over unseen examples and hence at minimizing the generalization error
(also known as true error or true/generalization/average risk/loss)

L0(w) = E(x,t)∼p0(x,t)[(y(x,w)− t)2], (11)

which is averaged over the unknown �true� distribution p0(x, t), while ML learning only minimizes the empirical
error over the training set. Note that in some references the generalization error is de�ned as the di�erence
between the training error L(w) and the generalization error L0(w).

• Over�tting occurs when the generalization error is signi�cantly larger than the training error L(w).
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Figure 8: A large M can cause over�tting with the ML approach (from [1]).

• To solve this problem, we can use model selection: If, for instance, M=3 is selected in Fig. 8, over�tting is
avoided. Model selection requires validation (or, more generally, cross validation), which is illustrated in Fig.
9.

Figure 9: (Hold-out validation: A hold-out, or test, data set of Ntest samples is used to estimate the generalization
error (11).

• In validation, the hold-out, or test, data set allows us to estimate the generalization error by means of the
test error:

Ltest(w) =
1

Ntest

Ntest∑
n=1

(tn − y(xn,w))2 (12)

where (xn, tn) are the samples in the test set.

• The model orderM should be selected so as to minimize the test error, which is a proxy for the generalization
error, see Fig. 10.
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Figure 10: A larger M always reduces the training error given that the model has more degrees of freedom to �t
the data points (memorizing). However, a larger M may lead to a poor generalization error, as measured by the
test error (from [1]).

• The over�tting problem depends on the size of the data set N , see Fig. 11.

• More generally, one can use cross-validation:

� (From Wikipedia) In k-fold cross-validation, the original sample is randomly partitioned into k equal
sized subsamples. Of the k subsamples, a single subsample is retained as the validation data for testing
the model, and the remaining k − 1 subsamples are used as training data. The cross-validation process
is then repeated k times (the folds), with each of the k subsamples used exactly once as the validation
data. The k results from the folds can then be averaged to produce a single estimation. The advantage
of this method over repeated random sub-sampling (see below) is that all observations are used for both
training and validation, and each observation is used for validation exactly once. 10-fold cross-validation
is commonly used. When k = N (the number of observations), the k-fold cross-validation is known as
leave-one-out cross-validation.

Figure 11: When N is large enough as compared to M , the training error becomes close to the generalization error
and the over�tting problem is less pronounced (from [1]).

Maximum A Posteriori (MAP) Approach

• As seen, the ML estimate su�ers from over�tting. Experiments reveal that over�tting is typically manifested
by large values of w (see Fig. 12).
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Figure 12: Large values of w indicate that over�tting problem is taking place. This a priori information is exploited
by the MAP approach (from [1]).

• Inductive bias: use the a priori information that w tends to be not too large in the absence of over�tting.

• A priori distribution:

p(w) = N (w|0, α−1
↑

hyperparameter

I) =

M∏
m=0

N (wm|0, α−1). (13)

• The a priori distribution encodes our degree of uncertainty or belief on w.

• Rather than maximizing the probability of the data p(t|x,w, β) =
∏N
n=1 p(tn|xn,w, β) as in ML, we maximize

the joint probability of the data and of w, namely

p(t,w|x, β) = p(w)

N∏
n=1

p(tn|xn,w, β) (14)

• Note that a prior probability can also be assumed for β, but in this example we leave β as a parameter with
no prior distribution.

• This yields the Maximum a Posteriori (MAP) estimates:

minimize
w,β

− 1

N

N∑
n=1

ln p(tn|xn,w, β)−
1

N
ln p(w)

⇒ minimize
w,β

β
1

N

N∑
n=1

(y(xn,w)− tn)2︸ ︷︷ ︸
L(w)

− ln
β

2π
+
α

N
‖w‖2 (15)

⇒


wMAP = arg min

w
L(w) +

λ

N
‖w2‖︸ ︷︷ ︸

quadratic regularization

βMAP = βML

(16)

• The solution of the regularized least squares problem (or ridge regression) can be found in closed form (see
Problem 3).

• The modi�ed error yields smaller values of w (see Fig. 13), and is hence referred to in statistics as shrinkage.

• Predictive distribution for new observations (x, t):
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p(t|x,wMAP , βMAP ) = N (t|y(x,wMAP ), β
−1
MAP ) (17)

Figure 13: Impact of the regularization parameter λ on the MAP estimates for the model parameter w.

• But how to choose the hyperparameter λ (or α) ?

• Increasing λ reduces over�tting but may create a large bias. Increasing λ is hence akin to reducing M in the
ML approach, see Fig. 14.

Figure 14: Adverse a�ects of too much regularization: increasing λ has a similar e�ect as reducing M in the ML
approach (from [1]).

• Choosing λ (or α) hence generally requires validation, see Fig. 15, in a manner similar to ML.

• However, if one has good reasons (e.g., from domain knowledge) to choose a given λ, model selection can

be directly performed by selecting the model order M that maximizes
∑N
n=1 ln p(tn|xn,wMAP , βMAP ) +

ln p(wMAP ). In fact, the prior term ln p(wMAP ) generally penalizes large orders M , since with large M , due

to over�tting, ln p(wMAP ) will tend to be large. The criterion
∑N
n=1 ln p(tn|xn,wMAP , βMAP ) + ln p(wMAP )

can be seen as an example of the principle of Minimum Description Length (MDL), as further discussed below
[8].
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Figure 15: A lower λ always reduces the training error given that the objective function of MAP tends to the ML
criterion L(w) of minimizing the training error. However, a small λ may lead to a poor generalization error, as
measured by the test error (from [1]).

Remark Validation for both ML and MAP can be in principle avoided via Structural Risk Minimization (SRM),
which minimizes the analytical bound on the generalization error (see Chapter 4). The key idea is to add a penalty
term to the empirical risk that accounts for the model size and for the number of observations. The Bayesian
approach, to be discussed below, can also theoretically operate without validation, although, as MP, it depends on
the choice of a speci�c prior.

4 Bayesian Approach

• The frequentist approach adopted so far follows the steps:

1. Obtain point estimates of the model parameters (w, β) via ML or MAP;

2. Compute the predictive distribution p(t|x,w, β) as an approximation of the "true" distribution.

• The Bayesian approach instead treats parameters, data set labels t and new label t as as jointly distributed
random variables and use the rules of probability to determine the predictive probability p(t|D)

• Note that we don't need to postulate the existence of a "true" distribution.

• Assume β known for simplicity in the following.

• Joint distribution assumed in Bayesian approach:

p(t,w, t|x, x) = p(w)︸ ︷︷ ︸
a priori distribution

p(t|w,x)︸ ︷︷ ︸
likelihood

p(t|w, x)︸ ︷︷ ︸
distribution of new data

(18)

• It is often useful to drop the dependence on the domain points x and x since they are �xed parameters to
write only the joint distribution of the random variables in the model as

p(t,w, t) = p(w)︸ ︷︷ ︸
a priori distribution

p(t|w)︸ ︷︷ ︸
likelihood

p(t|w)︸ ︷︷ ︸
distribution of new data

(19)

• A graphical representation in terms of a Bayesian network (to be discussed) can be found in Fig. 16.
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Figure 16: Bayesian network describing the joint distribution (19) used in the Bayesian approach.

• Apply rules of probability to calculate the predictive distribution p(t|t) from the joint distribution (19)

p(t|t) = p(t, t)

p(t)

=

r
p(w)p(t|w)p(t|w)dw

p(t)

=
w p(w)p(t|w)

p(t)
p(t|w)dw

=
w
p(w|t)p(t|w)dw. (20)

• Putting back the dependence on the domain variables, we get (recall that D = {(x, t)})

p(t|x,D) =
∫

p(w|D)︸ ︷︷ ︸
posterior distribution of w

p(t|x,w)︸ ︷︷ ︸
N (t|y(x,w),β−1)

dw (21)

• In summary, the Bayesian approach operates as follows:

1. calculate the posterior distribution of the parameters, namely p(w|D);

2. calculate the predictive distribution using (21).

• See Fig. 17 for an illustration of how the posterior probability depends on the size of the data set.

• For the problem at hand, as shown on p. 31 in [1], the predictive distribution obtained under the Bayesian
approach is

p(t|x,D) = N (t|y(x,wMAP ), s
2(x)), (22)

where the expression for the variance s2(x) can be found in [1, p. 31]. Interestingly, the variance of the
predictive distribution depends on x: values of x closer to the existing points in the training sets generally
exhibit a smaller variance (see Fig. 7).

• The Bayesian approach in principle allows model selection to be performed without validation (see Appendix
B). In fact, when averaging over the posterior distribution, one gets �vague� predictions, rather than �t to the
training data, due to the fact that large portions of the parameter space have signi�cant posterior probability.

• Optimization over the hyperparameters can be carried out using Bayesian optimization (although this requires
also setting hyperparameters!) [7].

• In a sense, the Bayesian approach uni�es the problems of inference model, selection and predictions into the
Bayesian inference problem of computing posterior probabilities.
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Figure 17: Illustration of the variation of the posterior distribution of w as a function of the size N of the data set:
for N = 0, the posterior equal the prior distribution, while for large N the posterior tends to be centered around
the ML estimate (from [1]).

5 Minimum Description Length (MDL)

• A conceptually di�erent approach from both the frequentist viewpoint, which is based on the idea that there
exists a �true� model, and the Bayesian model, which allows the data to be explained by more than one models
as weighted by the posterior distribution, is MDL.

• MDL is based on the following idea: Choose the model that allows one to compress the data the most. The
MDL framework hence does not assume neither the existence of a �true� model nor prior distributions on the
models. It instead relies on the information-theoretic concept of universal compression.

• As proved via information-theoretic tools, given a probabilistic model p(x), it is possible to design a (decodable)
compression scheme for which the value x is described by (approximately) − log2 p(x) bits. Therefore, we can

interpret, e.g., the quantity −
∑N
n=1 log2p(tn|xn,wMAP , β)−log2p(wMAP ) seen above for MAP as the number

of bits needed to compress the model wMAP and the data t (assuming that β is known) using the model
learned by MAP. This shows that MAP can be interpreted as a particular instance of MDL (based on so-called
two-part codes).

• Details can be found in [6]. Limited additional discussion will be provided in the rest of the notes about MDL.

6 From Inference to Optimal Decision

• From the discussed inference (or model learning) step, we obtain a predictive distribution p(t|x) for either
frequentist or Bayesian approaches.

• We can then take p(t|x) as a �soft" prediction of t given x (see Fig. 7).

• However, we often need a single value of t = y(x). In fact, in the regression problem studied above, we have
taken as prediction the mean of the predictive distribution, i.e.,

t = y(x,w) = Ep(t|x)[t|x], (23)
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where w is either the ML or MAP estimate. But why was this choice made?

• For instance, suppose that, for a certain problem, we get p(t|x) = 0.5N (t|3x, 1) + 0.5N (t| − 3x, 1). What
should be the predictive function t = y(x).

• The answer is that it depends on the adopted loss function. In particular, once a loss function `(t, y) has been
selected, one should solve for the optimal decision

y(x)← min
y

∫
`(t, y)p(t|x)dt︸ ︷︷ ︸

average loss (given x)

(24)

• Examples of choices for the loss function include the `q loss `(t, y) = (t − y)q with q ≥0 (see Fig. 18). For
instance, with q = 2, we get the quadratic loss considered above.

• The optimal decision in (24) is given as

� q = 2⇒ mean

� q = 1⇒median

� q = 0 ⇒mode (maximum)

• To prove that with `q the optimal decision is the mean of the predictive distribution, it is su�cient to set the
derivative in (24) to zero:

dE[`|x]
dy

= 2

∫
(t− y)p(t|x)dt = 0

⇒ y(x) =

∫
tp(t|x)dt = E[t|x]. (25)

• See Problem 4 for an example.

Figure 18: Illustration of `q loss functions (from [1]).

• Finally, we recall that the generalization error is de�ned as

Ep0(x, t)︸ ︷︷ ︸
unknown

[`(t, y(x))]. (26)
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7 The Learning Cycle

• To summarize the discussion above, learning generally consists of the following steps:

� Choice of a model class (see below for classi�cation)

� Learning (under a probabilistic model):

∗ Inference: Learn the probabilistic model p(t|x);
∗ Optimal decision (prediction): Use (24)

∗ Validation or cross-validation: Estimate the generalization error (26)

∗ Go back to inference by adapting model order or hyperparameters if validation or cross-validation
not satisfactory

� Go back to choice of a model class if learning not satisfactory

8 Discriminative vs. Generative Models

Figure 19: Summary of machine learning models.

• In the example above, we have used a probabilistic discriminative model. A taxonomy of machine learning
models for supervised learning can be seen in Fig. 19.

• As opposed to discriminative models, generative models require making stronger assumptions, modeling also
the data distribution p(x): if model is incorrect, this may lead to bias problems. However, there are potential
advantages:

� Generative models allow to deal with missing data, i.e., with cases in which some entries of X may be
missing in some data points.

� Generative models enable some supervised learning, where some of the labels t are avoidable.

D :

{
{(xn, tn)}N

′

n=1

{xn}N”
n=1 ← useful to learn p(x) : yields information on p(t|x)

(27)

� See p. 268 of for additional discussion.

• A note on terminology: In some literature, particularly concerning probabilistic graphical models (see [4]),
the inference step as de�ned here (that is, the identi�cation of a probabilistic model with desired features) is
de�ned as �learning�, while the optimal prediction/decision step (that is, the decision, possibly Bayesian, one
one set of variables given another) is known as �inference�.
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9 An Information Theoretic Interpretation of ML

• Here, we revisit ML and point out an interesting connection to an information-theoretic metric, namely the
KL divergence, which is extensively used in machine learning.

• ML solves

minimize
w,β

− 1

N

N∑
n=1

ln p(tn|xn,w, β)︸ ︷︷ ︸
log-loss

(28)

• When N is large, we have by the law of large numbers:

minimize
w,β

Ep0(t,x)

[
ln

1

p(t|x,w, β)

]
⇐⇒ minimize

w,β

∫
p0(x)

(∫
p0(t|x) ln

1

p(t|x,w, β)
dt

)
dx

⇐⇒ minimize
w,β

∫
p0(x)

(∫
p0(t|x) ln

p0(t|x)
p(t|x,w, β)

dt

)
︸ ︷︷ ︸

KL(p0(t|x)‖p(t|x,w,β))

dx. (29)

• The relative entropy or Kullback-Leibler (KL) divergence

KL(p‖q) =
∫
p(x) ln

p(x)

q(x)
dx (30)

measures the �distance� between two distributions p and q.

• Ex.: With p(x) = N (x|µ1, σ
2
1), q(x) = N (x|µ2, σ

2
2), we have

KL(p‖q) = 1

2

(
σ2
1

σ2
2

+
(µ2 − µ1)

2

σ2
2

− 1 + ln
σ2
2

σ2
1

)
(31)

With σ2
1 = σ2

2

KL(p‖q) = (µ2 − µ1)
2

σ2
(32)

• It measures the error in the test X ∼ p(x) vs. X ∼ q(x) (see Appendix A for a more precise statement).

• It measures the overhead in describing X ∼ p(x) if the compression algorithm is based on q(x).

• Some properties:

� KL(p‖q) 6= KL(q‖p)
� KL(p‖q) ≥ 0 with equality i� p(x) = q(x)

� See other properties on pp. 55-58 of [1].

• From the interpretation given above of the KL divergence, ML tries to make the model distribution p(t|x,w, β) ≈
p0(t|x) when N is large. In particular, when N is large, the ML consistently estimates the true distribution
if the latter is part of the model class.

• For �nite N , ML tries to minimize the empirical approximation (28).

• Remarks:

� In machine learning, the notation KL(p‖q) is used even when q is unnormalized (i.e.,
∫
q(x)dx 6= 1 but

q(x) ≥ 0).

� We can write

KL(p‖q) = −
∫
p(x) ln q(x)dx︸ ︷︷ ︸

cross-entropy H(p,q)

− (−
∫
p(x) ln p(x)dx)︸ ︷︷ ︸

entropy H(p)

(33)

� A related learning criterion that is based on information theoretic measures is that of the information
bottleneck.
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10 Appendix A: An Interpretation of the KL Divergence via Hypothesis
Testing

• Consider the test between the hypotheses H0 : X ∼ p(x) and H1 : X ∼ q(x).

• Assume that Pr(H0) = Pr(H1) =
1
2 .

• A test is characterized by an �acceptance� region A ⊆ X such that X ∈ A ⇒ H0; X ∈ Ac ⇒ H1.

• The probability of error is given as

Perror =
1

2
p(Ac) + 1

2
q(A)

=
1

2
− 1

2
(p(A)− q(A)).

• The minimum probability of error over the tests is given as

⇒ min
{test}

Perror =
1

2
(1− max

A
(p(A)− q(A))︸ ︷︷ ︸

= 1
2

∑
x
|p(x)−q(x)|=‖p(x)−q(x)‖TV variational distance

)

=
1

2
(1− ‖p(x)− q(x)‖TV︸ ︷︷ ︸

≤ 1√
2

√
KL(p‖q) Pinsker inequality

)

≥ 1

2
(1− 1√

2

√
KL(p‖q)). (34)

11 Appendix B: Model Selection in the Bayesian Approach

• Under the Bayesian approach, model selection can be performed by choosing the model that maximizes the
marginal likelihood

p(t|x) =
∫
p(w)

N∏
n=1

p(tn|xn,w)dw, (35)

which is computed on the training set. Note that the above holds for any probabilistic model with parameter
vector w.

• Removing the dependence on x to simplify the notation, this can be evaluated as

p(t) =

N∏
n=1

p(tn|t1, ..., tn−1), (36)

where

p(tn|t1, ..., tn−1) =
∫
p(w|Dn−1)p(tn|xn,w)dw, (37)

with Dn−1 = {(xi, ti)}n−1i=1 . Note that (37) follows in a similar way as (21) and can hence be computed for the
example at hand using (22).

• Looking at (37), we observe that the approach can be seen as a form of Bayesian cross-validation in which
the data set Dn−1 is used to train a predictor for the label tn.

• It can be seen that the marginal likelihood is generally not an increasing function ofM and that it consistently
estimates the correct model order [4].
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12 Problems

1. Consider the regression problem studied above with the discriminative model

t =

M∑
m=0

wmx
m+z, with z∼ N (z|0, β−1).

Given a training set D ={(xn, tn)}Nn=1, �nd an analytical expression for the ML estimate wML as a function of the
N × 1 column vector t = [t1, ..., tN ]T (the superscript T represents matrix transpose) and of the N ×M matrix

X = [1 x x2...xM ],

where 1 is an N × 1 column vector of all ones, x = [x1, ..., xN ]T and xm = x = [xm1 , ..., x
m
N ]T . To do this, write

the optimization problem that yields wML as the minimization of the expression ||t−Xw||2, where ||a||2 =
∑
i a

2
i

is the (quadratic) norm of a vector a = [a1, ..., aN ]T . (Hint: Show that ||t −Xw||2 =
∑N
n=1(tn −

∑M
m=0 wmx

m
n )2.

Then, recognize that this is a least square problem and look up the solution in a textbook.)

2. Load in MATLAB the data that you can download from here, which includes training variables x and t.
You can do this by using the line load hw1data (the folder in which the data is stored should be in the MATLAB
search path) or by using the button �Import data�. Note that we have N = 20 training points.

a. Plot t versus x. You can do this by using: plot(t,x,'o').
b. ForM = 5, obtainwML using the equation derived at point 1 (which should be: w=pinv(X)*t or equivalently

w=inv(X'*X+lambda*eye(M+1))*X'*t). Plot the resulting function y(x,w) =
∑M
m=0 wmx

m with w = wML on top
of the training set (Hint: Use hold on).

c. Repeat the point above forM between 1 and 6. For each value ofM compute the training root mean squared
error

√
L(w) = 1/

√
N ||t−Xw|| and plot it as a function of M in a second �gure. Why does the error decrease as

a function of M?
d. As we have seen, if M is large, however, over�tting may occur. To estimate the amount of over�tting and

select a proper value for M , we now evaluate the error on the hold-out or test set variables xtest and ttest, which
you can �nd in your workspace. This can be done by computing the root mean squared loss obtained with the ML
estimate on this set. Plot the test error on the same �gure. Which value of M would you choose?

e. Estimate the precision β and plot at point b above
∑M
m=0 wmx

m ± β−1.
f. Plot the training and test errors versus N with M = 7 by using the training variable vectors x1 and t1 in the

workspace. Can you interpret the results?

3. Continuing the problem above, we would like to compare the performance of ML and MAP. To this end,
load the same data set and follow the steps below.

a. Plot t versus x. You can do this by using: plot(t,x,'o').
b. For M = 6, consider ten possible values for λ, namely λ = exp(v) with v = lnλ taking one of ten equally

spaced values between -30 and 10 (You can generate such vector as linspace(-30,10,Nlambda)). For each value
of λ, compute the MAP estimate of the model parameters, which is given as

wMAP = (λI+XTX)−1XT t,

with the de�nitions given in the previous assignment. Note that, when λ = 0, we obtain the ML solution (why?).

Plot the resulting functions y(x,w) =
∑M
m=0 wmx

m with w = wMAP on top of the training set.

c. For each value of λ compute the training root mean squared error
√
L(w) = 1/

√
N ||t−Xw|| and plot it as

a function of lnλ in a second �gure. Why does the error decrease as λ decreases?
d. If λ is small, however, over�tting may occur. To estimate the amount of over�tting and select a proper value

for λ, we now evaluate the error on the hold-out or test set variables xtest and ttest, which you can �nd in your
workspace. This can be done by computing the root mean squared error obtained with the MAP estimate on this
set. Plot the test error on the same �gure. Which value of λ would you choose?

4. Assume that, as a result of inference (using ML, MAP or a Bayesian approach), you obtain the following
predictive distribution for a given value of x

p(t) = 0.5N (t|3, 1) + 0.5N (t| − 3, 1).

Consider the family of loss functions `q with `(t− y) = |t− y|q.
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a. What is the optimal prediction y under the quadradic, or `2, loss?
b. What is the optimal prediction y under the `1 loss?
c. What is the optimal prediction y under the `0 loss?

5. [5]You are asked to design a learning algorithm to predict whether patients are going to su�er a heart attack.
Relevant patient features the algorithm has access to include blood pressure (BP), body-mass index (BMI), age
(A), level of physical activity (P), and income (I). You have to choose between two classi�cation algorithms � the
�rst picks only the features BP and BMI, while the other considers all the features. Explain the pros and cons of
each choice and how the number of available labeled training samples will a�ect your choice.

References

[1] C. Bishop, Pattern recognition and Machine Learning, Springer, 2006.

[2] K. P. Murphy, Machine learning: a probabilistic perspective, MIT press, 2012.

[3] I. Selesnick, �Least Squares with Examples in Signal Processing,� Lecture Notes (link).

[4] D. Koller and N. Friedman. Probabilistic graphical models: principles and techniques, MIT press, 2009.

[5] S. Shalev-Shwartz and S. Ben-David, Understanding machine learning: From theory to algorithms, Cambridge
University Press, 2014.

[6] P. D. Grünwald, The minimum description length principle, MIT press, 2007.

[7] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. de Freitas, �Taking the human out of the loop: A
review of Bayesian optimization,� Proceedings of the IEEE, vol. 104, no. 1, pp. 148-175, Jan. 2016.

[8] A. Honkela and H. Valpola, �Variational learning and bits-back coding: an information-theoretic view to Bayesian
learning,� IEEE Transactions on Neural Networks, vol. 15, no. 4, pp. 800-810, Jul. 2004.

[9] C. O'Neil, Weapons of math destruction: How big data increases inequality and threatens democracy. Crown
Publishing Group, 2016.

18

http://eeweb.poly.edu/iselesni/lecture_notes/least_squares/least_squares_SP.pdf


2. Learning and Probabilistic Models

1 Introduction

• As discussed, probabilistic models (frequentist or Bayesian) play a key role in machine learning.

• In this section, we review some key results on typical probabilistic models and corresponding ML/MAP and posterior
probability calculation.

• We speci�cally cover a general class of probabilistic models known as the linear exponential family and provide general
results concerning learning, both frequentist and Bayesian, that enable the adoption of a large set of probabilistic models.

• We start by considering unsupervised learning scenarios in which the goal is the inference task of learning the distribution
of the observations

xn ∼
i.i.d.

p (x) , n = 1, . . . , N (1)

• We will see later how to de�ne models suitable for supervised learning via Generalized Linear Models (GLMs).

2 The (Linear) Exponential Family

• The linear exponential family contains probabilistic models of the form

p(x|η) = 1

Z(η)
exp

(∑
k

ηkuk(x)

)
m(x)

=
1

Z(η)
exp

(
ηTu(x)

)
m(x),

(2)

where

� x discrete or continuous

� η =

[
η1
...

]
natural parameters (de�ned on a convex set)

� u (x) =

[
u1 (x)

...

]
su�cient statistics

� Z (η) =
∫
exp

(
ηTu (x)

)
m (x)dx partition function

� m (x) base measure (independent of η)

• Ex: Gaussian distribution

x ∼ N
(
x|µ, σ2

)
=

1

(2πσ2)
1/2

exp

(
− x2

2σ2
+

µ

σ2
x− µ2

2σ2

)
(3)

1



Figure 1: One-to-one mapping between natural parameters and mean parameters.

η =

[
µ/σ2

−1/2σ2

]
u(x) =

[
x
x2

]
Z(η) =

(
1

(2πσ2)1/2
exp

(
− 1

2σ2
µ2

))−1
m(x) = 1

• There is a one-to-one mapping between natural parameters η =

[
η1
η2

]
=

[
µ/σ2

−1/2σ2

]
∈ (R, R−) and mean parameters

[
E[u1(x)] = E[x] = µ = −η1/2η2
E[u2(x)] = E[x2] = σ2 + µ2 = −1/2η2 + (η1/2η2)

2

]
,

and hence we can learn either η or µ (see Fig. 1).

• It is useful to write (2) as
ln p (x|η) = ηTu (x)−A (η) + lnm (x) (4)

where A (η) = lnZ (η) is the log-partition function, which can be proved to be convex (∪) in η.

• It follows that
ln p (x|η) = linear (η) + concave (η) + constant, (5)

and hence ln p (x|η) is a concave (∩) function of η.

• Concave functions are easy to optimize, and hence learning via ML is easy.

• Ex: From (3), for the Gaussian distribution, we have

ln N
(
x|µ, σ2

)
= − x2

2σ2
+

µ

σ2
x− µ2

2σ2 −
1

2
ln
(
2πσ2

)
(6)

µ =

[
E[u1(x)] = µ
E[u2(x)] = σ2 + µ2

]
A(η) =

µ2

2σ2
+

1

2
ln(2πσ2)

• The one-to-one correspondence between µ and η stems from the following property of the exponential family:

� The exponential family solves the maximum entropy problem (see Appendix for a brief introduction to entropy)

2



∗ For discrete random variables

maximize
p(x)

H (x) = −
∑
x

p (x) ln p (x) entropy

s.t. E [uk (x)] = µk for all k

∗ For continuous random variables

maximize
p(x)

h (x) = −
∫
p (x) ln p (x) dx di�erential entropy

s.t. E [uk (x)] = µk for all k

� The natural parameters can be interpreted as Lagrange multipliers (see [2, Ch. 6-7]).

• Ex: Bernoulli distribution

x ∼ Bern (x|µ) = µx (1− µ)1−x with µ = E [x] = Pr (x = 1) (7)

� Taking the logarithm of (7), we have

lnBern (x|µ) = ln

(
µ

1− µ

)
x+ ln (1− µ) (8)

and hence

u(x) = x

η = ln

(
µ

1− µ

)
∈ R

µ =
1

1 + e−η
= σ(η) logistic sigmoid function

A(η) = −ln(1− µ) = ln(1 + eη)

m(x) = 1

• Ex: Categorical or Multinoulli distribution
x ∼ Cat (x|µ) (9)

where µk = Pr [x = k] , k = 1, . . .M − 1 with
M−1∑
k=0

µk = 1, and

Cat (x|µ) =
M−1∏
k=1

µ
1(x=k)
k · µ

1−
M−1∑
k=1

1(x=k)

0 (10)

where 1 (·) is the indication function

1 (x) =

{
1

0

if x is true

otherwise
.

� Taking the logarithm of (10), we have

lnCat (x|µ) =
M−1∑
k=1

1 (x = k) ln
µk
µ0

+ lnµ0 =

M−1∑
k=1

1 (x = k) ln

 µk

1−
M−1∑
j=1

µj

+ ln

1−
M−1∑
j=1

µj

 (11)
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Figure 2: Distributions in the exponential family (see full list at https://en.wikipedia.org/wiki/Exponential_family).

u(x) =

 1(x = 1)
...

1(x =M − 1)



η =


ln

(
µ1

1−
∑M−1
j=1 µj

)
...

ln

(
µM−1

1−
∑M−1
j=1 µj

)
 ∈ RM−1 natural parameters

µ =


eη1

1+
∑M−1
k=1 eηk

...
eηM−1

1+
∑M−1
k=1 eηk

 mean parameters (softmax function)

A(η) = −ln

(
1−

M−1∑
k=1

µk

)
= ln(1 +

M−1∑
k=1

eηk)

� A categorical variable can also be represented as an M × 1 vector u (x) (one-hot encoding).

• Other examples: Multinomial, binomial, Beta, Dirichlet, Poisson, ... (see Fig. 2)

• �Non-examples�: Not in the exponential family: uniform, student t, ...

3 Maximum Likelihood Estimation for Models in the Exponential Family

• Consider N observations
X = {x1, . . . ,xN} ∼

i.i.d
p (x|η) (exponential family) (12)
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lnp(X|η) =
N∑
n=1

lnp(xn|η)

= −NA(η) + ηT
N∑
n=1

u(xn) + (independent of η)

= −NA(η) +
∑
k

ηk

(
N∑
n=1

uk(xn)

)
+ (independent of η)

(13)

• A key advantage of the exponential family is that computing the gradient of the log-likelihood is easy:

∂

∂ηk
ln p (X|η) = −N ∂

∂ηk
A (η)+

N∑
n=1

uk (xn) , (14)

but, as it can be veri�ed, we have
∂

∂ηk
A (η) = E [uk (x)] = µk (15)

so

1

N

∂

∂ηk
ln p (X|η) = 1

N

N∑
n=1

uk (xn)− µk. (16)

• In vector form:

∇ηln p (X|η) =
N∑
n=1

u (xn)−N∇ηA (η) (17)

but
∇ηA(η) = E [u(x)] = µ, (18)

so

∇ηln p(X|η) =
N∑
n=1

u(xn)−Nµ (19)

or

1

N
∇ηln p(X|η) =

1

N

N∑
n=1

u(xn)− µ. (20)

• Due to concavity, the ML estimate ηML is obtained (assuming no constrains on η) by seeing the equation

∇ηln p(X|η) = 0. (21)

• This gives

µML =
1

N

N∑
n=1

u(xn) (moment matching). (22)

• From µML, we can also compute ηML if needed due to the one-to-one mapping between µML and ηML.

Examples:

• a) ML estimate of
(
µ, σ2

)
for Gaussian model:

µML =
1

N

N∑
n=1

xn (23)

σ2
ML =

1

N

N∑
n=1

x2n − µ2
ML (24)

5



• b) ML estimate of µ for Bernoulli model:

E[u(x)] = E[x] = µ (25)

µML =
1

N

N∑
n=1

xn =
N [1]

N
(26)

where N [1] measures the number of observations equal to 1, i.e.,

N [1] = |{n : xn = 1}|.

• c) ML estimate of µ for Categorical model:

E[u(x)] =

 E[1(x = 1)]
...

E[1(x =M − 1)]

 =

 µ1

...
µM−1

 (27)

µk,ML =
1

N

N∑
n=1

1(xn = k) =
N [k]

N
, (28)

where
N [k] = |{n : xn = k}|.

Remark: The �black swan paradox� or zero-count problem: if we don't observe something (e.g., black swans for Europeans
before 17thcentury), we assign it zero probability with ML.

Remark: (Log-partition function and Fisher information [2, Ch. 8])

• We have seen that ∇ηA(η) = E[u(x)]

• The Hessian also has a special meaning, yielding the Fisher information matrix

∇2
ηA(η) = E

[
(∇ηlnp(X|η)) (∇ηlnp(X|η))T

]
= −E

[
∇2

ηlnp(X|η)
]
= Jη

(29)

• Furthermore, we have the relationship

KL (p(x|η1)||p(x|η2)) = A(η2)−A(η1)−∇A(η1)
T (η2 − η1)

=
1

N
(η1 − η2)

TJη1
(η1 − η2) +O

(
||η1 − η2||3

) (30)

• See also J. Duchi's notes, Ch. 8, and De Bruijn's identity.

4 Computation of Posterior and Predictive Distributions for the Exponential
Family

• As we saw, in a Bayesian approach, we need to compute the posterior probability

p(µ|X,α)

given a prior probability p(µ|α) and the likelihood p(X|µ).

• We have

p(µ|X,α) = p(µ,X|α)
p(X|α)

∝ p(µ|α)p(X|µ). (31)

• How to choose the prior?

� Conjugate prior: choose prior p(µ|α) so that posterior p(µ|X,α) has the same distribution type as p(µ|α) .
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Figure 3: Plots of the Beta distribution as a function of µ for various values of the hyperparameters a and b (from [1]).

� Non informative prior: �let the data speak for itself� (see [1, pp. 117-120])

• Exponential distributions have conjugate priors in the exponential family, as seen in the next example.

3.1. Beta-binomial Model

• Estimation of µ for Bernoulli model:

� Likelihood:

p(x|µ) =
N∏
n=1

µxn(1− µ)1−xn = µN [1](1− µ)N [0] (32)

� Conjugate prior:

p(µ|a, b) ∝ µa−1(1− µ)b−1 a, b hyperparameters (Fig. 3)

= Beta(µ|a, b) Beta distribution
(33)

E[µ] =
a

a+ b
(34)

mode =
a− 1

a+ b− 2
(if a, b > 1) (35)

� Posterior distribution:

p(µ|x, a, b) ∝ µ
∑N
n=1 xn+a−1(1− µ)n−

∑N
n=1 xn+b−1

= Beta

(
µ|a+

N∑
n=1

xn, b+N −
N∑
n=1

xn

)
(Fig. 4) (36)

7



Figure 4: Illustration of the computation of the posterior distribution using (36) (from [1]).
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Figure 5: Bayesian network describing the joint distribution of parameter µ, data set {xn} and new observation x for the
Beta-binomial model.

� By (36), the hyperparameter a and b can be interpreted as counts obtained from prior measurements.

� MAP estimate (if both parameters >1)

µMAP =
a+

∑N
n=1 xn − 1

a+ b+N − 2
=

a+N [1]− 1

a+ b+N − 2
−→
N→∞

µML (37)

� Predictive distribution for Bayesian approach (see Fig. 5)

p(x = 1|x, a, b) =
∫
p(µ|x, a, b)p(x = 1|µ)dµ

= Ep(µ|x,a,b)[µ] =
N [1] + a

N + a+ b

(38)

� If N is small, p(x = 1|x, a, b) ≈ a
a+b

� If N is large, p(x = 1|x, a, b) ≈ N [1]
N

Ex: On amazon.com you have two sellers selling a product at the same price. The �rst has 90 positive reviews and 10
negative reviews, which the second has 2 positive reviews and 0 negative reviews. Which one to choose? We can
compute the probability that the next review is positive via the predictive distribution, see Fig. 6.

3.2. Dirichlet-multinomial Model

• Estimation of µ for multinoulli distribution:

� Likelihood:

p(x|µ) =
M−1∏
k=0

µ
N [k]
k (39)

� Conjugate prior:

p(µ|α) ∝
M−1∏
k=0

µαk−1k Dirichlet distribution

= Dir(µ|α)

(40)

where αk is the hyperparameter representing the number of �prior� observations equal to k

9



Figure 6: Probability that the next review is positive using the predictive distribution (38) for the example in Sec. 3.1.

E[µk] =
αk∑M−1
j=0 αj

(41)

mode =
αk − 1∑M−1

j=0 αj −M
(if α > 1) (42)

� Posterior:

p(µ|x,α) ∝
M−1∏
k=0

µ
N [k]+αk
k = Dir(µ|α+N) (43)

where N = [N [0], · · · , N [M − 1]].

� MAP estimate:

µk,MAP =
αk +N [k]− 1∑M−1
j=0 αj +N −M

(44)

� Predictive distribution for Bayesian approach:

p(x = k|x,α) = N [k] + αk

N +
∑M−1
j=0 αj

(45)

If N is small, p(x = k|x,α) ≈ αk/
∑M−1
j=0 αj .

If N is large, p(x = k|x,α) ≈ N [k]/N .

3.3. Gaussian-Gaussian Model

• Estimate of µ for a Gaussian distribution with σ2 known:

� Likelihood:

p(x|µ) ∝ exp

(
− 1

2σ2

N∑
n=1

(xn − µ)2
)

(46)

� Conjugate prior:

p(µ|µ0, σ
2
0) = N (µ|µ0, σ

2
0) ∝ exp

(
− (µ− µ0)

2

2σ2
0

)
(47)

� Posterior:

p(µ|x, µ0, σ
2
0) ∝ exp

(
− 1

2σ2

N∑
n=1

(xn − µ)2 −
1

2σ2
0

(µ− µ0)
2

)

∝ exp

(
− 1

2σ2
N

(µ− µMAP)2
) (48)
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Figure 7: Posterior distribution for the Gaussian-Gaussian model with di�erent values of N (from [1]).

where

µMAP =
σ2/N

σ2
0 + σ2/N

µ0 +
σ2
0

σ2
0 + σ2/N

µML (49)

1

σ2
N

=
1

σ2
0

+
N

σ2
(50)

If N is large, µN ≈ µML and σ2
N ≈ 0 (see Fig. 7).

� Predictive distribution for Bayesian approach

p(x|x, µ0, σ
2
0) = N

(
x|µMAP, σ2 + σ2

N

)
(51)

� For other examples of pairs of likelihood and conjugate prior, see Fig. 8 and Fig. 9.

5 Generalized linear model (GLM)

• Generalized linear models are popular probabilistic discriminative models for supervised learning.

• In GLMs with canonical link function, we have

p(t|x,W) ∈ exponential family with η = Wx

Ex:

� Linear regression

p(t|x,W) = N (t|µ = wTx, σ2) (52)

(η = µ/σ2) (53)

where η = µ/σ2.
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Figure 8: Table of conjugate prior for discrete distributions (see full table at https://en.wikipedia.org/wiki/Conjugate_prior )

Figure 9: Table of conjugate prior for continuous distributions (see full table at https://en.wikipedia.org/wiki/Conjugate_prior
)
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� Logistic regression (to be studied)

� Problem 2.

• Learning GLM can be done by means of gradient descent using (20) and the chain rule (see Problem 2).

6 Log-Linear Models and Boltzmann Machines

• These are �undirect� models based belonging to the exponential family that are typically used for unsupervised learning, as
discussed in Chapter 5.

7 Energy-based Models

• An generalization of the exponential family is given by models of the form

p(x|θ) = 1

Z(θ)
exp

(
−
∑
k

Ek(x|θ)

)
, (54)

where Ek(x|θk) are energy functions that identify patterns x of implausible variable con�gurations (i.e., values of x with
high energy) as and Z(θ) is the partition function. The energy functions may depend in a more general way on variables
x and parameters θ with respect to the exponential family. For instance, we may have

Ek(x|θ) = αi ln
(
1 + (θkx)

2
)
, (55)

with αi > 0, which corresponds to using a Student-t model.

• Energy-based models are typically represented via the graphical formalism of Markov networks.

• With energy-based models, the formula (20) generalizes as

− 1

N
∇θln p(θ) =

1

N

N∑
n=1

∑
k

∇θEk(xn|θ)−
∑
k

Ex∼p(x|θ)[∇θEk(x|θ)]. (56)

• The �rst term in (56) pushes down the energy of the observed samples xn while the second term pushes up the energy of
the �virtual� observations obtained from the model. The application of the �rst term is typically referred to as the positive
phase, while the second is referred to as the negative phase (by some authors taken to model the working of the brain
during dreams!).

• Note that, for the linear exponential family, the expectation for the negative phase readily yields the mean parameters,
while, for more general models, the evaluation of this term is generally prohibitive and requires approximations.

8 Problems

1. Consider the exponential distribution
p(x) = λ exp(−λx)

for x ≥ 0 and p(x) = 0 otherwise.
a. Show that it belongs to the exponential family by identifying su�cient statistic, mean and natural parameters.
b. Compute the ML estimate of the mean parameter 1/λ.
c. Show that the derivative of the log-partition function equals the mean of the su�cient statistic.

2. Consider a regression problem in which we would like to learn a model relating a positive quantity t, representing, e.g.,
the time of the next update on a social network, with a vector of potentially correlated quantities x ∈ RD. To this end, we focus
on a probabilistic discriminative model given as

p(t|x,w) = λ(x,w) exp(−λ(x,w)t)
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for t ≥ 0 and p(t|x,w) = 0 otherwise, where λ(x,w) = wTx with w ∈ RD. This is an example of a Generalized Linear Model
(GLM), which is a class of models in which p(t|x,w) belongs to the exponential family and the natural parameters are linear
functions of x.

a. Compute the gradient ∇w log p(t|x,w) of the log-likelihood log p(t|x,w). (Hint: Remember the chain rule for di�erentia-
tion.)

We now would like to develop an algorithm to obtain the ML estimate of w given an i.i.d. dataset D = {(xn, tn)}Nn=1 . To
this end, we use the stochastic gradient method. Accordingly, at each iteration of the algorithm, one sample (xn, tn) is selected
from D, e.g., uniformly with replacement. Then, we update the current estimate of w as

w(i+1) = w(i) + γ∇w log p(tn|xn,w(i)),

where i is the iteration index and γ is a parameter known as learning rate.
b. Set w = [1 4]T . Using MATLAB, generate N = 100 samples xn with D = 2, in which the two entries are independent and

uniformly distributed in the interval [0,1]. Then, generate the corresponding labels tn using the given model with w = [1 4]T .
c. Implement the stochastic gradient algorithm and plot the estimates w(i) as a function of i = 1, 2, ..., 500 (Set w(0) = [2 2]T

and γ = 0.1.) Plot also the negative log-likelihood of w(i) for the entire data set D as a function of i in a separate �gure. Note
that the negative log-likelihood can be taken as a measure of the training error and hence it should be decreasing with i if the
learning rate is properly selected.

3. In an English text of 2000 letters, we observe the letter 'e' 260 times. Using a Dirichlet-multinomial model in which the
hyperparameters of the Dirichlet prior are αk = 10 for k = 1, ..., 27 (there are 26 Roman letter plus the space character), compute
the predictive probability that the next letter is 'e'.

4. We wish the use the Gaussian-Gaussian model to estimate the mean of a Gaussian distribution. To this end, assume a
prior distribution with mean 0 and variance 0.1. Generate N = 10 independent Gaussian random variables xn with mean 0.8
and variance 0.1. Plot in the same �gure the prior distribution and the posterior distribution for N = 1, ..., 10. What happens
when N →∞?

5. Consider the distribution

p(x|b) = 1

2b
exp

(
−|x− µ|

b

)
,

where the mean µ is a known number, while b ≥ 0 is unknown and needs to be learned.
a. Show that p(x|b) belongs to the exponential family by identifying su�cient statistic, natural parameters and log-partition

function.
b. Compute the ML estimate of the mean parameter b (Note that the mean parameter is not the same as the mean of the

random variable X ∼ p(x) and that we have
∫∞
−∞ |x− µ|p(x)dx = b).

c. Derive a stochastic gradient algorithm to obtain the ML estimate of the mean parameter b.
d. Describe how to obtain the posterior p(b|x) based on observations x = (x1, ..., xN ) ∼i.i.d. p(x) under a Gaussian prior

distribution on b with zero mean and variance σ2 (known). What is the main complication in computing p(b|x)?

9 Appendix: Entropy and Di�erential Entropy

• The entropy H (x) of a discrete random variable x ∼ p (x) taking values over a �nite alphabet is de�ned as

H(x) = −
∑
x

p (x) lnp (x) (57)

and measures the �randomness� or �unpredictability� of x.

• Some properties:

� H (x) ≥ 0 with equality i� x is deterministic.

� H (x) ≤ ln (cardinality of x) with equality i� x is uniform (maximum entropy).

• One can think of H(x) as measuring the logarithm of the �e�ective� number of possible realizations for x.

• The di�erential entropy h (x) of a continuous random variable x ∼ p (x) is de�ned as

h(x) = −
∫
p (x) lnp (x) dx (58)

and measures the �randomness� or �unpredictability� of x.
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• Unlike the entropy, h(x) can be negative. One can think of h(x) as measuring the logarithm of the �e�ective� support of
the pdf of x.
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3. Linear Models for Classi�cation

1 Introduction

• Classi�cation is a supervised learning problem characterized as:

� Given: A training set D = {(xn, tn)}, where (xn, tn) ∼
i.i.d.

p0 (x, t) and

p0 (x, t) true (unknown) distribution
(x1, . . . ,xN )

(
xn ∈ RD

)
domain variables

(t1, . . . , tN ) labels, where tn indicates the class Ck, with k = 1, ...,K, to which xn belongs.

� Goal: Assign a new vector x to a class Ck, (see Fig. 1)

𝑥1

𝑥2

?

𝐶1

𝐶2

Figure 1: De�nition of the classi�cation problem (D = 2 in this �gure).

• For two classes (K = 2), e.g., for spam detection, the mapping between class and label is given as

C0 →t = 0 or = −1
C1 →t = 1

• For multiple classes, e.g., for credit scoring, text classi�cation, we instead typically use one-hot encoding

Ck → t =



0
...
1
...
0

 ,

where the 1 element corresponds to position k + 1.

• In this chapter, we focus on K = 2. The extension to K > 2 will be shortly discussed in Sec. 5.
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• Three modeling approaches:

� Deterministic (discriminative) model:

∗ t = y (x,w)

� Probabilistic discriminative model:

∗ p (Ck|x)
� Probabilistic generative model:

∗ p (Ck) and p (x|Ck)

2 Deterministic Discriminative Model

2.1 Model

• De�nition:

t = y (x, w̃) = f

(
D∑
d=1

wdxd + w0

)
= f

(
wTx + w0

)
= f

(
w̃T x̃

)
(1)

where

t ∈ {±1}
f(·) activation function

f(a) =

{
1 if a > 0

−1 if a < 0
= sign(a)

a (x, w̃) = wTx + w0 activation

w̃ =

[
w0

w

]
x̃ =

[
1
x

]
• Interpretations:

� Project x into direction w and then apply threshold rule

wTx ≷ −w0 (2)

� Hyperplane decision surface (see Fig. 2 with D = 2)

Figure 2: Training data from two classes. The decision hyperplanes are obtained here via the least squares (magenta)
and logistic regression (green) learning rules (to be discussed).
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• Linear deterministic models can be interpreted as deterministic single neuron, or McCulloch�Pitts, models as
illustrated in Fig. 3).

𝑓
t

+
𝛼

𝜔0
𝜔1

𝜔𝐷
⋮

𝑥1

𝑥0 = 1

𝑥𝐷

𝒘𝒙

Figure 3: Deterministic single neuron model.

• Important facts about the geometry of the problem (see Fig. 4):

� a (x, w̃) = 0 de�nes the decision hyperplane (or surface)

� − w0

||w|| = bias of the decision surface in the direction w

� ||a(x,w̃)||
||w|| = distance of x to the decision surface (see )

Figure 4: Geometry of the binary classi�cation problem using deterministic linear models [Bishop, 2006].

• |a (x, w̃)| can be interpreted as a measure of the con�dence with which the model classi�es x in either class.

• In many problems, it is convenient to work with features

φk(x), k = 1, . . . , D′

in lieu of x as inputs to the classi�er. This is, for instance, the case when:

� D is large, and hence learning may be prone to over�tting;
ex.: email spam classi�cation (x = email text, φk(x) = count of a �suspicious� words).

� D changes from sample to sample
ex.: email spam classi�cation.

� p0(x, t) is not well separable by a hyperplane, and hence learning directly using a linear model would
cause bias
ex.: Fig. 5.
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Figure 5: Example of the usefulness of using non-linear features as inputs to a linear classi�er. Here the features
are Gaussian pdfs centered at the green crosses [Bishop, 2006].

• Feature-based model:

t = y (φ(x), w̃) = f

 D′∑
k=1

wkφk(x)

 = f
(
w̃Tφ(x)

)
(3)

where φ0(x) = 1 and w̃ =


w0

w1

...
wD′

. Note that (1) is a special case of (3) with φ(x) =

[
1
x

]
.

• We can have:

� D > D′ over-complete representation

� D < D′ dimensionality reduction

• The feature-base model can be interpreted as a three-layer neural network in which the operation between
the �rst two layers is �xed while the weights between second and third layers needs to be learned (see Fig. 6).

𝑓
t

+
𝛼

𝜔0

𝜔𝐷′

⋮

𝑥1

𝑥𝐷

𝜙0(𝒙)

𝜙𝐷′(𝒙)

⋮

⋮

Hidden layers:
features:Figure 6: Three-layer neural network representing the feature-based model (3).

2.2 Learning

• As seen in Chapter 1, with deterministic discriminative models, inference is done by minimizing directly the
empirical risk:
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minimize
w̃

1

N

N∑
n=1

` (w̃, (xn, tn)) , (4)

This is called empirical risk minimization (ERM) with loss function `(·).

• The empirical loss is an approximation of the average loss

E(x,t)∼p0(x,t) [` (w̃, (x, t))] (5)

• It is also typical to add a regularization term to combat over�tting, yielding regularized ERM

minimize
w̃

1

N

N∑
n=1

` (w̃, (xn, tn)) +R (w̃) (6)

The regularization term is typically convex but possibly not di�erentiable, e.g.,R (w̃) = ||w̃||1.

• Given a sample (xn, tn), we de�ne the following quantities illustrated in Fig. 7:

tna(xn,w̃)
||w|| geometric margin

tna (xn, w̃) functional margin

}
> 0 if correctly classi�ed
< 0 otherwise

𝑥𝑥1

𝑥𝑥2

𝑎𝑎 = 0

geometric margin �> 0 correctly classified
< 0 otherwise

𝒙𝒙𝑛𝑛

Figure 7: Illustration of the geometric margin.

• A natural choice for the loss function would be the 0-1 loss illustrated in Fig. 8:

` (w̃, (x, t)) =

{
0 if t a (x, w̃) > 0

1 otherwise
(7)

𝑡𝑎

ℓ

1

0

Figure 8: The 0-1 loss.

but the direct solution of the ERM problem, or regularized ERM problem, with the 0-1 loss is prohibitively
complex.
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2.3 Learning Algorithms

• We will review the following algorithms:

� Least squares

� Perceptron algorithm

� Support vector machine (SVM)

2.3.1 Least Squares (LS)

• Least Squares (LS) solves the ERM problem with squared error loss ` (w̃, (x, t)) =
(
t− w̃T x̃

)2
:

minimize
w̃

N∑
n=1

(
tn − w̃T x̃n

)2
(8)

⇔minimize
w̃

∣∣∣∣∣∣X̃w̃ − t
∣∣∣∣∣∣2 (9)

where X̃ =

x̃Tn
...

x̃TN

 and t =

 t1...
tN

 (10)

• Solution: Assuming N ≥ D + 1 and full-rank X̃, we have

w̃ =
(
X̃T X̃

)−1
X̃T︸ ︷︷ ︸

pseudoinverse of X̃

t (11)

⇒ a (w̃,x) = tT X̃
(
X̃T X̃

)
−1
[
1
x

]
(12)

• The matrix to be inverted is of size (D + 1)× (D + 1).

• LS is sensitive to outliers: squared error penalizes predictions that are �too correct� as illustrated in Fig. 9
⇒ over�tting

Figure 9: Illustration of the over�tting problem for LS. The data in the bottom right corner represent outliers that
cause the decision region of LS (purple line) to tilt in a way that is likely to a�ect negatively the generalization
error [Bishop, 2006].
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• LS can be interpreted as ML estimation under the model t ∼ N
(
t|w̃T x̃, β−1

)
, which does not even account

for binary nature of t. We can hence think of the limitations of LS as a problem of bias.

• Ridge regression is regularized ERM with quadratic loss and regularization function R (w̃) = λ ||w̃||2, which
yields

w̃ =
(
X̃T X̃ + λI

)−1
X̃T t (13)

⇒ a (w̃,x) = tT X̃
(
X̃T X̃ + λI

)
−1
[
1
x

]
(14)

• Considering a generalized model with features φ (x) requires to substitute X̃ with Φ =

φ (x1)
T

...

φ (xN )
T

 and hence

the LS solution becomes:
a (x, w̃) = tTΦ

(
ΦTΦ

)−1
φ(x) (15)

and with ridge regression we have:

a (x, w̃) = tTΦ
(
ΦTΦ + λ1

)−1
φ(x) (16)

• The matrix to be inverted is of size (D′ + 1)× (D′ + 1).

2.3.2 Kernel Methods

• Equation (16) can also be written as

a (x) = tT
(
ΦΦT + λI

)−1
Φφ(x), (17)

by using the matrix inversion lemma, where we dropped for convenience the dependence on the optimal w̃.

• The matrix to be inverted is of size N × N , making the approach attractive if D + 1 > N , i.e., for high-
dimensional data.

• De�ne

K(x,y) = φ(x)Tφ(y), for x,y ∈ RD (18)

which we will refer to as a Kernel function. Note that K (x,y) measures the correlation of x and y in the
feature space.

• Then, the equation above can be written as a function of the correlation between pairs of training points,
namely K (xn,xm), and between training points and the new data point, namely K (xn,x). In fact, we can
write (17) as

a (x) =

N∑
n=1

αnK (x,xn) (19)

where

α = (K + λI)
−1

t with [K]mn = K (xm,xn) (20)

• When most αn are non-zero, the equation above requires the sum over N terms, which may be expensive.

• The key point, however, is that one can use (19) with any other kernel function, where a kernel function is any
symmetric function measuring the correlation of two data points in some feature space, of possibly in�nite
dimension. This is known as the kernel trick.

• Examples:
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1. The polynomial kernel

K (x,y) =
(
γxTy + r

)M
, where r > 0 (21)

corresponds to a correlation φ(x)Tφ(y) in a high-dimensional space D′. For instance, with M = 2, we
have D′ = 6 with feature vector:

φ(x) =
[
1,
√
2x1,

√
2x2, x

2
1x

2
2,
√
2x1x2

]T
(22)

2. The Gaussian kernel

K (x,y) = e−γ||x−y||
2

(23)

corresponds to an inner product in an in�nite dimensional space!

• The issue of complexity due to the large number of αn > 0 is addressed by sparse kernel machines, such as
SVM.

• Murphy [Murphy, 2012] provides an extensive discussion about kernel methods.

• As a generalization of kernel methods, we can consider learning rules of the form [Friedman et al., 2001]

a (x) =

N∑
n=1

αnKX (x,xn) ,

where the kernel KX (x,xn) depends on X = {xn}Nn=1. An important example is the k-Nearest Neighbor
(k -NN), which chooses a(x) as the average of the labels of the k closest data points, that is αn = tn/k and
KX (x,xn) = 1 if xn is one of the k closest points to x while otherwise we have KX (x,xn) = 0. An example
of decision regions obtained with k-NN is shown in Fig. 10.

• k-NN is an example of a non-parametric learning rule in the sense that, in contrast to the other schemes
studied so far and in the rest of the course, it does not rely on a parametric model of the (probabilistic) rela-
tionship between input and output. Instead, k-NN relies on the assumption that the labels of nearby points x
should be similar, i.e., it assumes that the relationship between x and t is smooth. The non-parametric nature
of k-NN makes it susceptible to the course of dimensionality: the number N of training samples required to
maintain a certain performance level scales exponentially with the data dimension D (or D′ for feature-based
models) [Friedman et al., 2001].

@ Hastie et al ‘16

Figure 10: Illustration of decision regions for the k-NN algorithm [Friedman et al., 2001].
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2.3.3 Perceptron Algorithm

• The perceptron algorithm was invented in 1957 by Frank Rosenblatt at the Cornell Aeronautical Laboratory.
In �gure 11 the �rst implementation in hardware of the "Mark 1 perceptron" is illustrated.

Figure 11: Mark 1 perceptron. The inputs were obtaining using a simple camera shown in the left photograph.
The middle photograph shows the perceptron's patch board for trying di�erent con�gurations of input features.
Racks of adaptive weights, which could be adjusted automatically by the learning algorithm, shown in the right
photograph [Bishop, 2006].

• For generality, we use the feature-base model

a (x, w̃) = w̃Tφ(x) (24)

• The perceptron algorithm is an ERM scheme with perceptron loss de�ned as:

` (w̃, (x, t)) =

{
−t
(
w̃Tφ (x)

)
if t
(
w̃Tφ (x)

)
< 0 (incorrectly classi�ed)

0 if t
(
w̃Tφ (x)

)
≥ 0 (correctly classi�ed)

(25)

= max
(
−t
(
w̃Tφ (x)

)
, 0
)

(26)

and illustrated in Fig. 12 along with the 0-1 loss.

𝑡𝑎

ℓ

1

0

0-1 loss

perceptron loss

Figure 12: Perceptron loss.

• ERM problem:

minimize
w̃

N∑
n=1

max
(
0,−tn

(
w̃Tφ (xn)

))
︸ ︷︷ ︸

sum-functional margin over misclassi�ed examples

(27)

• Non-di�erentiable objective.

• The perceptron algorithm uses a stochastic gradient approach:

� initialize w̃(0)

� for each training example n (sequentially or randomly selected):

∗ if correctly classi�ed: w̃(n) ← w̃(n−1)
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∗ otherwise

w̃(n) ← w̃(n−1) −∇w̃ ` (w̃, (xn, tn))︸ ︷︷ ︸
−w̃Tφ(xn)tn

= w̃(n−1) + φ (xn) tn (28)

∗ repeat until convergence

• Fig. 13 shows a visualization of the �rst steps of the perceptron algorithm.

Figure 13: Illustration of the operation of the perceptron algorithm: the black arrow is the perpendicular w to the
decision hyperplane [Bishop, 2006].

• At each step, the algorithm reduces the term in the perceptron loss related to training example n.

• It can be proved that, if the training set is linearly separable, then the perceptron algorithm will �nd a n that
separates the two classes in a �nite number of steps.

• Convergence can be slow.

2.3.4 Support Vector Machine (SVM)

• Assume �rst that the data set D is linearly separable in the given feature space.

• In this section, we write the activation as: a(x, w̃) = wTφ(x) + w0 to emphasize o�set w0, where φ(x) = φ1(x)
...

φD′(x)

.
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• By assumption of linear separability, there is hence a w̃ such that the geometric margin satis�es

tn
a(x, w̃)

‖w‖︸ ︷︷ ︸
geometric margin

> 0 for all n (29)

• SVM attempts to maximize the minimum margin

maximize min
n=1,...,N

tn
a(xn, w̃)

‖w‖
(30)

which is not an ERM problem (at least not yet!). This is illustrated in Fig. 14.

Figure 14: The margin is de�ned as the distance between the decision boundary and the closest of the data points.

• We can always choose a value of w̃ such that

min
n=1,...,N

tna(xn, w̃) = 1 (31)

i.e., such that the functional margin equals 1 for the support vectors xn and is larger than 1 for all other
vectors xn. As a result of this choice, we have

min
n=1,...,N

tn
a(xn, w̃)

‖w‖
=

1

‖w‖
. (32)

• The problem (30) can hence be reformulated as

minimize
w,wo

1

2
‖w‖2 (33)

s.t. tn(w
Tφ(xn) + wo) ≥ 1 for n = 1, ..., N

• At an optimum value w̃, there are at least two support vectors as seen in Fig. 15.

• This is a convex quadratic program: it can be solved by means of solvers such as CVX.

• Using Lagrange duality, the Lagrange multipliers associated to the support vectors can be identi�ed because
they are positive.

• The dual problem can be formulated in terms of the kernel function k(x,y) = φ(x)Tφ(y) and is a quadratic
problem ([Bishop, 2006, p. 329]). Furthermore, the resulting classi�er is given as

a(x, w̃) =

N∑
n=1

αnk(x,xn) (34)

where only the αn variables corresponding to support vectors are non-zero: This is a sparse kernel machine.
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Figure 15: Maximizing the minimum margin leads to a decision boundary that is determined by a subset of at least
two data points, known as supporting vectors, which are indicated by the circles.

• For non-linearly separable classes, SVM solves the problem

minimize
w,w0,z

1

2
‖w‖2 + C

N∑
n=1

zn (35)

s.t. tn(w
Tφ(xn) + w0) ≥ 1− zn (36)

zn ≥ 0 for n=1, ..., N (37)

where C is a positive constant and zn is a slack variable for the nth training value.

• If the data set is linearly separable, we have zn = 0 for all n as the optimal solution. Instead, points for
which 0 < zn < 1 are correctly classi�ed but inside the margin and those data points for which zn > 1 are
incorrectly classi�ed as illustrated in Fig. 16.

Figure 16: Illustration of the signi�cance of the slack variables zn in SVM.

• The problem above is equivalent to the regularized ERM:

minimize
w,w0

1

2
‖w‖2 + C

N∑
n=1

`(w̃, (xn, tn)) (38)

where the hinge loss is de�ned as

`(w̃, (x, t)) = max(0, 1− tn(wTφ(x) + wo)). (39)
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• The hinge loss is a convex surrogate of the 0-1-loss as illustrated in Fig. 18.

• C can be set by validation or cross-validation.

• From the discussion above, we can conclude that the restriction to maximum margin classi�ers can be thought
of as a form of regularization, hence reducing over�tting.

3 Probabilistic Discriminating Models

3.1 Model

• Model p(Ck|x) as a function of parameters w, as well as p(w) for MAP and Bayesian approaches.

• Logistic regression:
p(C1|x) = p(t = 1|x) = σ(wTφ(x)) (40)

and p(C0|x) = 1− σ(wTφ(x)) (41)

where

σ(a) =
1

1 + exp(−a)
(42)

is the logistic sigmoid function illustrated in Fig. 15.

Figure 17: Logistic sigmoid function σ(a).

• σ(a) can be thought of as a �soft� version of the threshold function f(a) used by the deterministic models
studied in the previous section.

• More usefully, we can observe that logistic regression is a Generalized Linear Model (GLM) with

t|x,w ∼ Bern(t|η = wTφ(x)) (43)

with t ∈ {0, 1}. We refer to Chapter 2 for discussion on GLMs.

3.2 Learning

• As seen in Chapter 1, for probabilistic models, learning consists of two phases:

1. Inference: Estimate w.

2. Optimal decision: Given a new point x, to minimize the probability of error, the prediction of the class
is:

p(C1|wTφ(x)) = σ(wTφ(x))
C1

≷
C0

1

2
(44)

or wTφ(x)
C1

≷
C0

0 (45)

• Now we focus on inference using ML.
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Figure 18: Plot of the `hinge' error function used in SVM, shown in blue, along with the error function for logistic
regression, rescaled by a factor of 1

ln(2) so that it passes through the point (0, 1), shown in red. Also shown are the

0-1 error in black and the squared error in green [Bishop, 2006].

• Likelihood function:

p(t|X,w) =

N∏
n=1

σ(wTφ(xn))︸ ︷︷ ︸
=̂yn

tn(1− σ(wTφ(xn)︸ ︷︷ ︸
=̂yn

)1−tn (46)

⇒ − ln p(t|X,w) = −
N∑
n=1

{tn ln(yn) + (1− tn) ln(1− yn)} (47)

where equation (47) is the cross entropy.

• The ML problem is convex:

� can be solved via standard solvers, such as CVX;

� or by using iterative methods such as a gradient or Newton (the latter yields iterative reweighed least
square algorithm ([Bishop, 2006, p. 207]).

• The expression of the gradient follows directly from the general formula seen in Chapter 2 for exponential
models and by the chain rule for derivatives:

∇w ln p(t|X,w) = (tn − yn)φ(xn) (48)

• A gradient method for MAP can be implemented in a similar way.

• The Bayesian approach, instead, is generally intractable due to the di�culty in normalizing the posterior

p(w|X, t) ∝ p(w)

N∏
n=1

p(tn|xn,w) (49)

• See [Bishop, 2006, p. 217-220] for an approximate approach based on Laplace approximation.

• As a remark, with t̃ ∈ {−1,+1}, the cross-entropy can be written as

− ln p(t|X,w) =

N∑
n=1

ln(1 + exp(−t̃nwTφ(xn)︸ ︷︷ ︸
functional margin

). (50)

This formulation shows that logistic regression can be thought of as an ERM method with a loss `(w, (x, t)) =
ln(1 + exp(−t̃wTφ(x)). The latter is seen in Fig. 18 to be a convex surrogate loss of the 0-1 loss.
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4 Probabilistic Generative Models

4.1 Model

• Model:

� p(Ck) prior distribution over classes

� p(x|Ck) class-conditional densities

• Typical choice:

� t ∼ Bern(π)

� x|t ∼ p(x|ηt) Exponential family with natural parameters ηt

� The two choices above yield the joint distribution for (x, t)

p(x, t|π, η0, η1) = p(t|π)p(x|ηt).

• Generative models typically have more parameters than discriminative models, and they make more assump-
tions on the model by attempting to learn also the distribution of x. As such, generative models may su�er
from both bias and over�tting. However, the capability to capture the properties of the distribution of x can
improve learning if p(x|t) has signi�cant structure.

4.2 Learning

• As for discriminative models, we have two phases:

1. Inference: Estimate π,η0,η1.

2. Optimal decision: Given a new point x, to minimize the probability of error, the prediction of the class
is:

p(C1|x) =
πp(x|η1)

πp(x|η1) + (1− π)p(x|η0)
C1

≷
C0

1

2
. (51)

• We now focus on ML inference.

Figure 19: Bayesian network representation for the joint distribution p(X, t|π,η0,η1) in the probabilistic generative
model (D=(X, t) is the dataset).

• Log-likelihood function:

ln p(X, t|π,η0,η1) =
N∑
n=1

ln p(tn|π) +
N∑

n=1:
tn=0

ln p(xn|η0) +

N∑
n=1:
tn=1

ln p(xn|η1). (52)

• A graphical representation of the joint distribution of the dataset (X, t) via a Bayesian network is shown in
Fig. 19.

• Given the decomposition of the log-likelihood in (52), we con optimize over π, η0 and η0 via separate ML
estimates.

• As an example, we consider Quadratic Discriminant Analysis (QDA), which chooses the class-dependent
distributions as

x|Ck ∼ N (µk,Σk) (53)
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• From the general rules derived in Chapter 2 for the exponential family, the ML estimates are given as:

πML =
N [1]

N
(54)

µk,ML =
1

N [k]

N∑
n=1:
tn=k

xn (55)

Σk,ML =
1

N [k]

N∑
n=1:
tn=k

(xn − µk)(xn − µk)T (56)

• The resulting predictive distribution for the label of a new sample is

p(C1|x) =
πMLN (x|µ1,ML,Σ1,ML)

πMLN (x|µ1,ML,Σ1,ML) + (1− πML)N (x|µ0,ML,Σ0,ML)
. (57)

• Setting Σk = Σ for k = 1, 2, which is an example of parameter tying or sharing, yields Linear Discriminant
Analysis (LDA).

• Under the assumption of decoupled priors, MAP and Bayesian approaches can be directly derived by using
the same analysis and models discussed in Chapter 2.

Figure 20: Network diagram for a two-layer neural network. The input, hidden, and output variables are represented
by nodes, and the weight parameters are represented by links between the nodes, in which the bias parameters are
denoted by links coming from additional input and hidden variables x0 and z0 . Arrows denote the direction of
information �ow through the network during forward propagation [Bishop, 2006].

5 Extensions

5.1 Multi-class Classi�cation

• Two general strategies can be used to combine binary classi�ers for multiclass classi�cation: one-versus-one
and one-versus-the-rest classi�er [Bishop, 2006].

• The architecture of a one-versus-the-rest solution is shown in Fig. 21 for a deterministic model. Feature-based
models can be similarly de�ned following Fig. 6.
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Figure 21: Linear deterministic model for a multi-class classi�er.

• An illustration of the outcome of learning for a multi-class classi�er for digit classi�cation can be seen in Fig.
22. The image is the input to the classi�er, where the dimension D equals the number of pixels. For each
class k, the �gure shows the learned weights w. Note that there is one weight for each pixel and hence the
weight vector can be represented as an image.

Figure 22: Learned weights for a multi-class classi�er as in Fig. 21 trained for character recognition (@2016 Hinton).

5.2 Non-linear Classi�cation

• Feed-forward multi-layer neural networks are non-linear generalizations of the two-layer models y(x,w) or
p(t|x,w) used in linear models (or three-layer models, with �xed relationship between �rst and second layers
as in Fig. 6), which admit e�cient gradient based learning algorithms.

• As illustrated in Fig. 23, feed-forward multilayer neural networks are characterized by:

� hidden units with non-linear activation functions

zj = h(aj), (58)

where function h is di�erentiable and non-linear and aj the activation of the jth hidden unit. Examples
are

h(a) = σ(a)

h(a) = tanh(a)

h(a) = max(0, a);

� output units de�ned as for the two-layer networks

yk = f(ak) (59)
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where ak is the activation of the kth output unit. Examples are

f(a) = σ(a)

f(a) = sign(a).

• We can think of the intermediate layers as learning the features that are used by the output layer to perform
classi�cation. Multilayer networks are hence particularly useful when good features are hard to derive.

Figure 23: Example of a multi-layer feed-forward neural network [Bishop, 2006].

• There are many variants of neuronal networks such as:

� Deep neural networks (Fig. 24);

Figure 24: Conventional vs. deep neural networks [Olah, 2014b].

� Recursive neuronal networks (Fig. 25);

Figure 25: Recursive neural networks [Olah, 2015].
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� Convolutional neuronal networks (Fig. 26);

Figure 26: Convolutional neuronal network [Olah, 2014a].

� Spiking neuronal networks.
...

19



6 Problems

1. In this problem, we implement and evaluate the performance of the considered binary classi�cation schemes.
We will do so on the dataset datasetiris, which presents N = 80 training examples divided into 40 examples
corresponding to a type of iris �owers called setosa (setosa_tr) and 40 examples corresponding to a di�erent
type known as virginica (virginica_tr). The two variables measured in each example are the sepal length (�rst
variable) and sepal width (second variable). Note that D = 2 and N = 80. There are also Ntest = 40 test examples,
half for setosa and half for virginica families (setosa_test and virginica_test).

a. Make a scatterplot of the training data set. Use di�erent colors for the two classes. (Hint: You can use
scatter(setosa_tr(1,:),setosa_tr(2,:)) hold on; scatter(virginica_tr(1,:),virginica_tr(2,:),'r');

xlabel('sepal length'); ylabel('sepal width').)
b. De�ning the setosa type as class 0, which is encoded as t = −1 and the virginica type as class 1, which is

encoded as t = 1, �nd the separating hyperplane obtained via the least squares solution. (Hint: Format the train-
ing data as X=[ones(N,1) [setosa_tr';virginica_tr']]; t=[-ones(N/2,1);ones(N/2,1)]; and then com-
pute w=pinv(X)*t.)

c. Plot the separating hyperplane obtained at the previous point and compute the corresponding test misclas-
si�cation error, i.e., the fraction of samples in the test set that are incorrectly classi�ed.

d. Implement now the perceptron algorithm. Perform N iterations by selecting one training sample uniformly
at random from the training set. Use w=[-5.5 1 0.01]' as the initial solution. (Hint: You can use the function
randperm.) Plot the obtained separating hyperplane and compute the test misclassi�cation error. Try running the
code again: you will obtain a di�erent hyperplane due to the randomization of the order in which the samples are
used for training.

e. (Optional) Implement SVM by using cvx (http://cvxr.com/cvx/). You can set C = 1. Plot the obtained
separating hyperplane and compute the test misclassi�cation error.

f . Implement logistic regression via the stochastic gradient method. Set the learning rate as η=1; the same
initialization as for the perceptron algorithm; and select samples at each iteration randomly as discussed above. Plot
the contour lines of the predictive distribution (Hint: You can use xaxis=[4:0.01:8.5]; yaxis=[0.5:0.01:4.5];

[Xaxis,Yaxis]=meshgrid(xaxis,yaxis); Plog=log(1./(1+exp(-(w(1)+w(2)*Xaxis+w(3)*Yaxis))));

contour(Xaxis,Yaxis,Plog,[-100:1:0]); ). Evaluate the test misclassi�cation error.
g. Implement Quadratic Discriminant Analysis. Plot the contour lines of the two class-conditioned distributions

and evaluate the error.

2. We consider the following generative model for binary classi�cation

p(t|π) = Bern(t|π)

p(x|t, pt) =
D∏
d=1

Bern(xd|pt)

Note that x ∈ {0, 1}D is a binary vector of dimension D and that the parameters of the model are π, p0, p1.
a. Write the log-likelihood function for a data set {(xn, tn)}, n = 1, ..., N , generated from the model. Use the

notation xn = (x1n, ..., xDn).
b. Show that the ML estimates of π, p0, p1 can be carried out separately and write the ML estimate of these

parameters.
c. Assume now that there is an independent Beta prior for π, p0, p1. Assume for simplicity that the hyperpa-

rameters of the three Beta distributions are the same, namely a > 1 and b > 1. What is the MAP estimate of the
model parameters?

d. Derive the optimal decision t for a new data point x =(x1, ..., xD) as a function of π, p0, p1 and x.
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4. Statistical Learning

1 Introduction

• In supervised learning, we wish to learn a model h from a class H given a dataset

D = {(xn, tn)}Nn=1 ∼
i.i.d.

p0(x, t) (1)

• The learned model D → hD is random due to randomness of the dataset D.

• Ex: For linear regression, we have H = {t = hw(x) = wTφ(x)}, for a given feature vector φ(x) ∈ RD′
, and

hence the model is parametrized by a vector w ∈ RD′
, which is learned from D.

• Goal: Minimize the generalization error

Lp(h) = E(x,t)∼p0(x,t)[`(h, (x, t))], (2)

obtaining an optimal model h∗ ∈ argmin
h∈H

Lp(h) without knowing p0(x, t). Note that there may be multiple

optimal hypotheses, but, to �x the ideas, it may be useful to think of the case in which there is a unique
optimal hypothesis (which is true when the loss is strictly convex).

• Since p0(x, t) is unknown, we can only minimize Lp(h) approximately and with some probability, as illustrated
in Fig.1.

ℎ∗ ℎ𝐷

𝐿𝑝(ℎ)

ℎ

≤ ℰ = 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦

𝑛𝑜𝑡 𝑘𝑛𝑜𝑤𝑛

N

random

Figure 1: The goal of learning is obtaining the minimum generalization error Lp(h
∗), which is, however, unknown.

If learning is successful, Lp(hD) converges to Lp(h
∗) when N increases.

1



• Goal (restated): We wish to �nd a hypothesis h ∈ H that is Probably Approximately Correct (PAC), that
is

Lp(hD) ≈ Lp(h∗) with high probability or, more precisely,

Lp(hD) ≤ Lp(h∗) + ε with probability ≥ 1− δ
where we de�ne ε as the accuracy parameter and δ as the con�dence parameter.

• The key question is: How large should N be to ensure the existence of a learning scheme D → hD such that
hD is ε− accurate with probability 1− δ? See Fig. 2 for an illustration.

• We know that a large |H| implies the need for a larger N to avoid over�tting. In this chapter, we study the
relationship between the �size� of H and N .

NH(ℰ, δ)

𝐿𝑝(ℎ
∗) < ℰ

1 − δ -percentile

N

generalization 
error

𝐿𝑝(ℎ𝐷)

Figure 2: Generalization error Lp(hD) versus the number N of data points for a PAC learnable class H.

2 Empirical Risk Minimization (ERM)

• In this chapter, we focus on deterministic discriminative models (or hypotheses) t = h(x), where x ∈ RD and
h ∈ H, where H is the model (or hypothesis) class.

• As we have seen in the previous chapters, learning is typically done by solving the ERM problem as illustrated
in Fig. 3:

hERMD = argmin
h∈H

LD(h) =
1

N

N∑
n=1

`(h, (xn, tn)) (3)

ℎ∗

𝐿𝑝(ℎ)

ℎ

𝐿𝐷(ℎ)

ℎ𝐷
𝐸𝑅𝑀

Figure 3: Illustration of the ERM solution hERMD .
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• Intuitively, if N is large enough, we should have |LD(h)− Lp(h)| ≈ 0 for all h ∈ H and hence also Lp(h
∗) ≈

Lp(h
ERM
D ).

• An illustration of the typical behavior of Lp(hD) and LD(hD) is shown in Fig. 4 (see also Chapter 1).

𝐿𝑝(ℎ
∗)

N

generalization 
error

𝐿𝑝(ℎ𝐷)

𝐿𝐷(ℎ𝐷)
training
error

overfitting successful
generalization 

Figure 4: Illustration of the typical behavior of Lp(hD) and LD(hD).

• As an example, consider the problem of binary classi�cation using threshold functions, which is de�ned as

� x ∈ R (D = 1)

� H =

{
ha(x) =

{
0, ifx < a

1, ifx ≥ a
= 1(x ≥ a)

}
� `(ha, (x, t)) = 1(ha(x) 6= t) 0-1 loss

• Make the realizability assumption that p0(x, t) = p0(x)1(t = h0(x)) and hence the optimal hypothesis is
h∗ = h0 or a∗ = 0.

• The generalization error and the training error with p0(x) = U([−1, 1]) are shown in Fig. 5.

-1 1

0.5

0.4

0.3

0.2

0.1

a

N=10
𝐿𝐷(𝑎)

𝐿𝑝(𝑎)

𝑎∗

𝑎𝐷
𝐸𝑅𝑀

Figure 5: Generalization error Lp(a) and training error LD(a) for binary classi�cation using threshold functions.
The training error is computed from the data D indicated by the dots on the horizontal axis.
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3 PAC Learnability and Sample Complexity

• De�nition (PAC learnability): A hypothesis class H is PAC learnable under a loss function `(h, (x, t)) if
there exists a function NH(ε, δ) < ∞ and a learning algorithm D → hD ∈ H such that, for any ε, δ ∈ (0, 1)
and for every p0(x, t), we have

PrD ∼
i.i.d.

p0(x,t)(Lp(hD) ≤ Lp(h
∗) + ε) ≥ 1− δ for N ≥ NH(ε, δ). (4)

• Realizability assumption: A less strong de�nition of PAC learnability requires (4) to hold only for every
p0(x, t) such that

p0(x, t) = p0(x)1(t = h0(x)) with h0 ∈ H (5)

under a loss function ` for which Lp(h0) = 0. In other words, under the realizability assumption, the data is
generated from some mechanism that is included in the hypothesis class.

• Not all classes H are PAC learnable!

• Examples:

� 1) The class H = {set of all functions h : RD →{0, 1}} under 0 − 1 loss is not PAC learnable. This
is also known as the no free lunch theorem. Given any amount of data, we can always �nd a distribution
p0(x, t) under which the PAC condition are not satis�ed. Intuitively, even in the realizable case, knowing
t = h∗(x) for any number of x ∈ RD yields us no information on the value of h0 for other values of x.

� 2) The class H = {hw(x) = 1(sin(wx) > 0)}, x ∈ R under 0− 1 loss is not PAC learnable (see Fig. 6)
[2].

… 0 𝜋

𝑤
2𝜋

𝑤

…

1

Figure 6: The class H = {hw(x) = 1(sin(wx) > 0)} is not PAC learnable.

• De�nition (Sample Complexity): The sample complexity N∗H(ε, δ) is the minimal value of NH(ε, δ) that
satis�es the requirements of PAC learning for class H.

• The sample complexity depends on the �size� of H.

• The sample complexity of example 1) and 2) above is N∗ =∞ since they are not PAC learnable.

• PAC learnability can also be de�ned under the additional condition that N∗H(ε, δ) be polynomial in 1/ε, 1/δ,
D and �size� of H (to be discussed).

• A class H is e�ciently PAC learnable if the learning algorithm in the de�nition has polynomial complexity in
the same variables discussed above.

4 PAC Learnability for Finite Hypothesis Classes

• Theorem: If H is a �nite hypothesis class and the loss function is bounded, w.l.o.g. `(h, (x, t)) ≤ 1, then H
is PAC-learnable under ` with sample complexity

N∗H(ε, δ) ≤

⌈
2 ln(2|H|)/δ

ε2

⌉
, NERM

H (ε, δ) (6)

Moreover, the ERM algorithm achieves the upper bound NERM
H (ε, δ).
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• The upper bound NERM
H (ε, δ) in (6) depends on

� the �capacity� of the hypothesis class ln |H| (nats) or log2 |H| (bits): number of bits required to index
the hypothesis in H;

� the logarithm ln(1/δ) of the con�dence parameter;

� the inverse square 1/ε2 of the accuracy parameter.

• The theorem applies only to �nite hypothesis classes. But can in�nite classes be learned? For example, can
we learn a binary linear classi�er H =

{
hw̃(x) = 1(wTx+ w0 > 0)

}
, where w̃ ∈ RD+1 under the 0− 1 loss?

One approach is to try to learn a �quantized� version of H, where each weight is represented by b bits (e.g.,
b = 16). Then, an upper bound on the sample complexity is

NERM
H (ε, δ) =

⌈
2 ln(2b(D+1)/δ)

ε2

⌉
=

⌈
2b(D + 1) ln 2 + 2 ln(1/δ)

ε2

⌉
, (7)

which scale proportionally to the number of parameters D + 1 and to the resolution b. This is known as the
quantization trick.

• The assumption of boundedness of ` is important. For example, the problem of linear regression with squared
loss is generally not PAC learnable (see [2, p. 132]). See also [1, Ch. 4] for extensions.

• From the theorem, we have that if N ≥ 2 ln(2|H|/δ)
ε2 , then we can achieve the accuracy and con�dence levels

(ε, δ) with ERM. This implies that, conversely, with N data points, we can achieve the precision

ε =

√
2 ln(2|H|/δ)

N
�

1√
N
, with probability 1− δ, (8)

that is, with N data points, we can upper bound the generalization error as

Lp(h
ERM
D ) ≤ Lp(h∗) +

√
2 ln |H|/δ

N
(9)

with probability 1− δ.

• It can be inferred from (7) that increasing N brings the generalization error closer to the minimum general-
ization error for �nite hypothesis classes.

• Under the realizability assumption, the theorem can be modi�ed to yield the upper bound

N∗H(ε, δ) ≤

⌈
ln(|H|/δ)

ε

⌉
= NERM

H (ε, δ). (10)

4.1 Proof of Theorem

• Lemma: For any N ≥ NERM
H (ε, δ), we have

PrD ∼
i.i.d.

p0(x,t)

[
|Lp(h)− LD(h)| ≤

ε

2
∀h ∈ H

]
≥ 1− δ (11)

• This lemma says that LD(h) is a uniformly accurate estimate of Lp(h) with high probability. The proof is
given below.
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• Assuming that the Lemma is true, then the Theorem follows because

| Lp(h)− LD(h) |≤
ε

2
∀h ∈ H with probability ≥ 1− δ

=⇒ Lp(h
ERM
D ) ≤

↑
by Lemma

LD(h
ERM
D ) +

ε

2
≤
↑

by defn. of ERM

LD(h
∗) +

ε

2

≤
↑

by Lemma

Lp(h
∗) +

ε

2
+
ε

2︸ ︷︷ ︸
ε

= Lp(h
∗) + ε,

which concludes the proof.

• Now, we only need to prove the Lemma. To do that, we will use Hoe�ding's inequality.

• Hoe�ding's Inequality: For θ1, θ2, · · · , θM ∼
i.i.d.

p(θ) such that E [θi] = µ and Pr (a ≤ θi ≤ b) = 1,

Pr

[∣∣∣∣∣ 1M
M∑
m=1

θm − µ

∣∣∣∣∣ > ε

]
≤ 2 exp

(
− 2Mε2

(b− a)2

)
. (12)

• Proof of Lemma: We have

PrD ∼
i.i.d.

p0(x,t)

[
∃h ∈ H : |Lp(h)− LD(h)| >

ε

2

]
≤ δ

= PrD ∼
i.i.d.

p0(x,t)

[ ⋃
h∈H

{
|Lp(h)− LD(h)| >

ε

2

}]

≤
↑

union bound

∑
h∈H

PrD ∼
i.i.d.

p0(x,t)


∣∣∣∣∣ Lp(h)︸ ︷︷ ︸
E[`(h,(x,t))]

− LD(h)︸ ︷︷ ︸
1
N

∑N
h=1 `(h,(xn,tn))

∣∣∣∣∣ > ε

2


≤
↑

by Hoe�ding

2
∑
h∈H

exp

(
−Nε

2

2

)
= 2|H| exp

(
−Nε

2

2

)

≤ δ if N ≥

⌈
2 ln(2|H|/δ)

ε2

⌉
= NERM

H (ε, δ).

5 Choosing a Model Class Using PAC Learning Theory

• A smaller class leads to a smaller sample complexity, but is it always a good choice to choose a small class?
As we have seen in the previous chapter, the choice depends on a trade-o� between richness of the model and
the estimation error, where the latter can be decreased by increasing N as quanti�ed by PAC learning theory.

• To make this precise, we can write the generalization error of the learned hypothesis hERMD via ERM (or any
other learning scheme) as

Lp(h
ERM
D ) = Lp(h

∗) +
(
Lp(h

ERM
D )− Lp(h∗)

)
,

where:

� the minimum generalization error Lp(h
∗) generally decreases with |H|

� the estimation error
(
Lp(h

ERM
D )− Lp(h∗)

)
is upper bounded by

√
2 ln(2|H|/δ)

N and it generally increases

with |H| and decreases with N .
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• In the previous chapters, we have seen that the estimation error can be evaluated via validation or cross-
validation. Structural Risk Minimization (SRM) is an alternative approach based on the direct minimization
of an upper bound on the generalization error evaluated only on the data set D (and not on test data).
Speci�cally, from the Lemma in the previous section, we have the following bound

Lp(h) ≤ LD(h) +
ε

2
= LD(h) +

√
ln(2|H|/δ)

2N
∀h ∈ H with probability 1− δ. (13)

• SRM minimizes the upper bound on Lp(h) given in (13), which is a pessimistic estimate of the generalization
error, over both the model order and the hypothesis class. The approach hence enables joint model selection
and inference for nested hypothesis classes.

• More practical variants of SRM include AIC and MDL.

6 VC Dimension and Fundamental Theorem of PAC Learning

• We have seen that �nite classes are PAC learnable with sample complexity ∝ ln |H| by using ERM.

• Is this the smallest sample complexity? What about in�nite hypothesis classes?

• As an example, consider the problem of binary classi�cation on the real line using threshold functions, which
is characterized as x ∈ R, H = {ha(x) = 1(x ≥ a)}, and `(ha(x, t)) = 1(ha(x) = t)} 0− 1 loss. If we use the
quantization trick, the sample complexity under the realizability assumption is bounded as

N∗H(ε, δ) ≤ NERM
H (ε, δ) =

⌈
b ln(2/δ)

ε

⌉
, (14)

where b is the number of bits used to quantize a. However, in Appendix A, we show that, under the realizability
assumption, we have

NERM
H (ε, δ) ≤

⌈
ln(2/δ)

ε

⌉
�

⌈
b ln(2/δ)

ε

⌉
(15)

as if the class H had �capacity� log2 |H| = 1 bit. Note that the �capacity� for this model equals the number
of parameters de�ning the hypothesis class.

• In the previous example, the �capacity� of H was 1 bit. How to generalize this concept?

• We focus on binary classi�cation t ∈ {0, 1} with 0− 1 loss.

• De�nition: A hypothesis class H is said to shatter a training set X = {xn}Nn=1 if no matter how the labels

{tn ∈ {0, 1}}Nn=1 are selected, there exist a hypothesis h ∈ H that perfectly separates them (i.e., h(xn) = tn
for all n = 1, . . . , N).

• De�nition (Vapnik-Chervonenkis, or VC, Dimension): VCdim(H) is the size of the largest training
set X that is shattered by H.

• To prove that VCdim(H) = N , we need

� to demonstrate the existence of X with |X | = N , that is shattered by H (easier);

� prove that no set X of dimension N + 1 exists that is shattered by H (more di�cult).

• We will see that the VC dimension is the right de�nition of �capacity� of a hypothesis class H (measured in
bits).

• Examples:

7



� a) Threshold functions: VCdim(H) = 1 since there exists no X with |X | = 2 that is shattered by H, see
Fig. 7. Note that the VC dimension is equal to the number of parameters.

� b) Intervals H = {ha,b(x) = 1 (a ≤ x ≤ b) with a ≤ b}: VCdim(H) = 2, see Fig. 8. Again, the VC
dimension equals the number of parameters.

� c) Axis aligned rectangles H =
{
h(a1,a2,b1,b2)(x) = 1 (a1 ≤ x1 ≤ a2 and b1 ≤ x2 ≤ b2) with a ≤ b

}
(see

Fig. 9): VCdim(H) = 4, as illustrated in Fig. 10 and 11. The VC dimension equal the number of
parameters.

� d) Hyperplanes H =
{
hw̃(x) = 1

(
wTx+ wo > 0

)}
(x ∈ R): VCdim(H) = D + 1, see Fig. 12-13.

� e) Finite classes: VCdim(H) ≤ log2 |H| since |H| hypothesis can create at most 2|H| di�erent label
con�gurations.

� f) There exist hypothesis classes with a �nite number of parameters but in�nite VCdim, such as

H = {hw(x) = 1(sin(wx) > 0)} (16)

� g) Class of hypotheses with margin ≥ m : VCdim ∝ 1
m2 .

N = 1

𝑎1 𝑎2 𝑎1: t = {1} 

𝑎1 𝑎2

shattered

𝑎3
N  = 2

𝑎2: t = {0} 

𝑎1: t = {1,1} 

𝑎2: t = {0,1} 

𝑎3: t = {0,0} 

not 
shattered

Figure 7: Example a.

1 0

shattered

1
not 
shattered

N  = 2

N  = 3

Figure 8: Example b.

• Theorem: (Fundamental Theorem of PAC Learning) For a binary classi�cation problem with 0 − 1
loss, a class H with VCdim(H) = d <∞ is PAC learnable with sample complexity

C1
d+ ln(1/δ)

ε2
≤ N∗H(ε, δ) ≤ C2

d+ ln(1/δ)

ε2
(17)

for some (absolute) constants C1 and C2. Moreover, the ERM algorithm achieves the upper bound above.
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𝑎1 𝑎2

𝑏1

𝑏2

𝑥1

𝑥2

t = 1

Figure 9: Example c: Axis aligned rectangles.

N = 4

shattered

Figure 10: Example c: This training set with N = 4 is shattered.

highest point

𝒙𝟏

𝒙𝟑

𝒙𝟓

𝒙𝟐

𝒙𝟒

remaining point

rightmost point

lowest point

leftmost point

Figure 11: Example c: There is no training set with N = 5 that is shattered. The labeling (1,1,1,1,0) is not
realizable since the rectangle must contain x1, x2, x3, x4 and hence also x5.

𝒙𝟏

𝒙𝟑

𝒙𝟐 since we can find ῶ
such that all eight 
label configurations 
are realized

N = 3
shattered

Figure 12: Example d.
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1

0

N = 4
0

1

Figure 13: Example d.

• The theorem allows us to conclude that the VC dimension is the �right� de�nition for the �capacity� of
hypothesis class H.

• Extensions exist for other learning tasks (loss functions) (see [2, p.48]).

Proof: See [2].

7 Problems

1. Consider the class of binary classi�ers de�ned on a �nite set X

H = {hz(x) = 1(x = z) for all z∈ X}
⋃
{h∅(x) = 0} (18)

and assume the standard 0-1 misclassi�cation loss.

a. Write down the ERM problem. Derive the ERM predictor given a sample D of N training pairs (x, t) from an
unknown true distribution p0(x, t) = p0(x)1(t = h(x)) with h(x) ∈ H. Note that p0(x) and h(x) are both unknown
and that the given restriction on the true distribution p0(x, t) implies that we are in the realizable case.

b. Is this class PAC learnable? If so, obtain an upper bound on the sample complexity.

2. Calculate the VC dimension of the hypothesis class H = {hr(x) = 1(||x|| ≤ r) for r ≥ 0} for x ∈ R2.

3. Compute the VC dimension of the following hypothesis class: H = {ha,b,s(x) ∈ {0, 1} : a ≤ b and s ∈ {0, 1}},
where ha,b,s(x) = s if x ∈ [a, b] and ha,b,s(x) = 1− s if x /∈ [a, b].

References

[1] J. Duchi, Lecture notes, http://stanford.edu/class/stats311/Lectures/full-notes.pdf

[2] S. Shalev-Shwartz and S. Ben-David, Understanding machine learning: from theory to algo-

rithm, Cambridge University Press, 2014.

8 Appendix A: Proof of (15)

• By the realizability assumption, we have (see Fig. 14)

p0(x, t) = p0(x)1(t = 1(x ≥ a∗)) (19)
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𝑝0(𝑥)

x
𝑎∗

t = 0 t = 1

Figure 14: Illustration of a possible data distribution for the example studied in Appendix A.

𝑝0(𝑥)

x
𝑎∗

𝐿𝑝 ℎ𝑎0 = ℰ

𝐿𝑝 ℎ𝑎1 = ℰ

𝑎0 𝑎1

t = 0 t = 1

Figure 15: Illustration of a0 and a1.
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• De�ne a1 = sup {a : Lp(ha) ≤ ε} and a0 = inf {a : Lp(ha) ≤ ε} (see Fig. 15).

• Referring to Fig. 16 and 17, we have

Prx ∼
i.i.d.

p0(x)

[
Lp(a

ERM
D ) ≤ ε

]
≥ Prx ∼

i.i.d.
p0(x)

[{
N⋃

n=1

{xn ∈ (a0, a
∗)}

}⋂{
N⋃

n=1

{xn ∈ (a∗, a1)}

}]

=
↑

De Morgan

1− Prx ∼
i.i.d.

p0(x)

[{
N⋂

n=1

{xn /∈ (ao, a
∗)}

}⋃{
N⋂

n=1

{xn /∈ (a∗, a1)}

}]

≥
union bound

1− Prx ∼
i.i.d.

p0(x)

[
N⋂

n=1

{xn /∈ (a0, a
∗)}

]
− 1− Prx ∼

i.i.d.
p0(x)

[
N⋂

n=1

{xn /∈ (a∗, a1)}

]
= 1− (1− ε)N − (1− ε)N

≥
↑

see Fig. 18

1− 2 exp(−Nε) ≥
↑

N≥ ln(2/δ)
ε

1− 2 exp

(
− ln(2/δ)

ε
ε

)
= 1− δ

x

𝑎∗

𝑎𝐷
𝐸𝑅𝑀 is somewhere in this interval

t = 1t = 0

Figure 16: Illustration of ERM for the example in Appendix A.

𝑎∗

at least 
one 𝑥𝑛 here

𝑎0 𝑎1

at least 
one 𝑥𝑛 here

Figure 17: Illustration of the �rst inequality in the proof in Appendix A.
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ℰ

𝑒−ℰ

1 − ℰ

Figure 18: Graph of 1− ε and e−t.
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5. Unsupervised Learning

1 Introduction

• Unsupervised learning: Given a data set consisting of input data without labeled responses,

D = {xn} ∼
i.i.d.

p0(x),x ∈ RD, (1)

where p0(x) is the true unknown distribution, the goal is to learn the properties of p0(x)

• Applications:

� Density estimation

� Classi�cation

� Dimensionality reduction

� Feature extraction (for supervised learning, search, etc.)

� Generation of new samples from p0(x) (e.g, computer graphics)

� Outlier detection and monitoring

� Compression

2 Type of Models

1. Generative directed: Generative directed models are illustrated in Fig. 1 and are characterized by models of
the form

p(x|θ) =
∑
z

p(z|θ)p(x|z,θ) (2)

where the variables zn known as latent or hidden, identify classes or features that de�ne the data point x.
Directed models capture the cause-e�ect nature of the relationship between z and x.

z Hidden 
or latent
variables

x Data

Figure 1: Generative directed models.
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2. Generative undirected models: Generative undirected models parametrize directly the joint distribution of x
and z as

p(x|z,θ) (3)

Unlike directed models, as sketched in Fig. 2, undirected models capture the a�nity, or compatibility, of
given con�gurations of values for z and x.

z

x

Hidden 
or latent 
variables

Data

Figure 2: Generative undirected models.

3. Autoencoders: Autoencoders are (typically deterministic) machines that convert unsupervised learning prob-
lems into supervised learning problems by using the data xn, de�ne both the domain point and the label.

z

x

x

Code

Ideal label

Data

Figure 3: Autoencoders.

4. Multiple hidden layers: As shown in Fig. 4, there exist multiple layer extensions of all models discussed above.

z1

x

z2

z1

x

z2

z1

x

z2

z1

x

z2

x

(a) (b) (c) (d)

Figure 4: Multiple hidden layer models (a) Helmholtz machine; (b) Deep Boltzmann Machine; (c) Deep Belief
Network; (d) Deep autoencoder.
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• There are also discriminative models, such Regularized Information Maximization (RIM), in which one opti-
mizes p(z|x) .

• Unlike supervised learning, there is no general theoretical framework for unsupervised learning given that it
encompasses a variety of di�erent tasks.

3 Warm-Up: K-Means Clustering

- Dataset D = {xn}, xn∈ RD

- Goal: Assign each vector xn to a class, or a cluster, Ck encoded by a categorical variable zn via one hot
encoding:

� [zn]k = znk =

{
1 if xn belongs to cluster Ck

0 otherwise

Figure 5: Example of a dataset D for D = 2 (from [1]).

- An example of a dataset D is shown in Fig. 5. Note that the labels {zn} are not observed.

- K-means is a heuristic method that assigns each cluster a �prototype� vector µk and aims at solving

maximize
{zn},{µk}

N∑
n=1

K∑
k=1

zn,kd(xn, µk) = f ({zn}, {µk}) (4)

where

d(xn,µk) = ||xn − µk||2 (5)

is the squared Euclidean distance used by the K-means algorithm. A more general distance metric yields the K-
medoids algorithm. It is in fact possible to apply clustering to discrete data as long as the distance d is properly
de�ned (most generally, by a matrix of pairwise dissimilarities).

• The K-means algorithm performs alternatively optimization of {zn} and {µk}:

1. Initialize cluster positions
{
µoldk

}
.
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2. E step: (minimization over {zn}):

znewn,k =

1 k = argmin
j

d(xn,µ
old
j )

0 otherwise
(6)

• Each training point is assigned to the cluster with the closest prototype.

• Requires the computation of K distances for each xn.

3. M step: (minimization over {µk}):

∇µk
f ({znewk }{µk}) = 0 (7)

⇒ µnewk =

∑N
n=1 z

new
n,k xn∑N

n=1 z
new
n,k

(8)

where µnewk is the mean of the
∑N

n=1 z
new
n,k data points assigned to cluster k.

4. If convergence criterion is not satis�ed, set {µoldk } ← {µnewk } and return to 2.

• An example of the evolution of the K-means algorithm is shown in Fig. 6 and the corresponding value of the
objective function in equation (4) is shown in Fig. 7.

• K-means alternates between making inferences {zn} about the hidden variables based on the model {µk} and
updating the model to match data {xn} and the inferred variables {zn}. As a consequence, the objective
function in (4) is non-increasing across the iterations.

• How to choose K?

� Add/remove clusters until certain (heuristic) criteria are satis�ed (e.g., purity of clusters).

� Hierarchical clustering: Build a tree with clusters of increasing sizes moving to the root, see Fig. 7 for a
dendrogram.

� Let K be selected automatically by adopting a non-parametric Bayesian approach: Use a Dirichlet
process prior for p(z) that allows for any number of clusters [2].
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Figure 6: Illustration of three iterations of the K-means algorithm (from [1]).

4 Non-Convexity of Unsupervised Learning

• ML inference in unsupervised learning based on probabilistic models requires the solution of the problem,

maximize
θ

ln p(x|θ) = ln

(∑
z

p(x, z|θ)

)
(9)

where x denotes the data and z the hidden or latent variables.

• In most problems of interest, p(x, z|θ) is from the exponential family and hence, ln(p(x, z|θ)) is concave in θ.
Therefore, the supervised learning problem

5



Figure 7: Evolution of (4) across the iterations of K-means (from [1])

Figure 8: A dendrogram illustrates a number of possible clustering solutions with increasingK, and hence decreasing
similarity within each cluster, as we move towards the root.

maximize
θ

ln p(x|θ) (10)

concave and can be solved as seen in Chapter 2.

• The problem (9) is instead non-convex, see Fig. 9 for an illustration.

• Non-convex problems may be tackled via gradient-based methods or variations thereof. However, unlike
convex problems, gradient-based methods can typically guarantee only convergence to stationary points, that
is, to local minima, maxima or to saddle points. Various tricks exist to ensure that local minima are reached,
see, e.g., [5]. However, these approaches are generic and do not leverage the special structure of problems such
as (9). In the rest of this chapter, we study tools that can potentially outperform general-purpose non-convex
optimizers by exploiting the special structure of the problem. The key idea will be that of performing inference
of the latent variables (as in the E step of K-means) in order to tackle convex problems with fully observed
variables (as in the M step of K-means).
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Figure 9: Illustration of the non-convex nature of ML in unsupervised learning.

5 Tools: ELBO and EM Algorithm

• Many methods to tackle the problem are based on the maximization of the Evidence Lower Bound (ELBO)
(or variational free energy or Helmholtz energy).

• De�nition: For any distribution q(z), the ELBO L(q, θ)is de�ned as

L(q, θ) =Ez∼q(z)[ln p(x, z|θ)]︸ ︷︷ ︸
energy term

+ H(q)︸ ︷︷ ︸
entropy term

(11)

=Ez∼q(z)[ln p(x|z, θ)]− KL (q(z)||p(z|θ))︸ ︷︷ ︸
variational regularization

(12)

=−KL (q(z)||p(x, z|θ)) (13)

• Note that in (12) we have used the convention of de�ning KL(p||q) even when q is not normalized (see Chapter
1). A key property is that L(q, θ) is convex in θ and in q(z) (see Fig. 10 and Fig. 11).

Figure 10: Illustration of the ELBO for two distributions q(z) and q′(z)

• Theorem (ELBO): We have the equality

ln p(x|θ) = L(q, θ)−KL(q(z)||p(z|x, θ)) (14)

7



Figure 11: Example of an ELBO for the log-likelihood in Fig. 9.

and hence the inequality
lnp(x|θ) ≥ L(q, θ) (15)

holds for all θ, with equality at a value θ
′
if and only if q(z) = p(z|x, θ′

).

• The ELBO can be in principle easily optimized over θ, since it is a concave function, and also over q and the
optimal q is p(z|x,θ) (see Fig. 12).

Figure 12: Illustration of a tight ELBO at a parameter value θ = θ
′

• Proof :

ln p(x|θ) = ln
p(x, z|θ)
p(z|x, θ)

for every z (16)

= ln

(
p(x, z|θ)
q(z)

q(z)

p(z|x, θ)

)
for every z (17)

=
∑
z

q(z) ln
p(x, z|θ)
q(z)︸ ︷︷ ︸

L(q,θ)

+
∑
z

q(z) ln
q(z)

p(z|x, θ)︸ ︷︷ ︸
KL(q(z)||p(z|x,θ))

(18)

• Alternative proof:
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ln p(x|θ) = ln

(∑
z

p(x, z|θ)

)
(19)

= ln

(∑
z

q(z)
p(x, z|θ)
q(z)

)
(20)

≥
Jensen's inequality

∑
z

q(z) ln

(
p(x, z|θ)
q(z)

)
= L(q, θ) (21)

• The ELBO can be generalized as the multi-sample ELBO-weighted bound

ln p(x|θ) ≥ Ez ∼
i.i.d

q(z)

[
ln

(
1

K

K∑
k=1

p(x, zk|θ)
q(zk)

)]
(22)

Note that, as K →∞, the inequality becomes tight by the law of large numbers.

• As mentioned, a large number of schemes is based on the maximization of ELBO L(q, θ).

• A classical algorithm is the EM which performs the following alternate optimization (see Fig. 13):

Figure 13: Illustration of the EM algorithm (from [1]).

E step:

maximize
q

L(q, θold)⇒ p(z|x, θold) = qnew(z) (23)

M step:

maximize
θ

L(qnew, θ)→ θnew (24)

• More formally:

EM Algorithm

1. Initialize θold

2. E step: Evaluate p(z|x, θold);

9



3. M step: Solve

maximize
θ

Q(θ, θold) =
∑
z

p(z|x, θold) ln p(x, z|θ) (25)

=Ez∼p(z|x,θold) [ln p(x, z|θ)] (26)

producing θnew.

4. If convergence is not satis�ed, set θold← θnew and return to step 2.

• If {xn,zn} are i.i.d. (given θ), then the E and M steps can be carried out separately for each data point x:

p(z,x|θ) = p(x, z|θ)
p(x|θ)

=

n∏
n=1

p(xn, zn|θ)
p(xn|θ)

(27)

=

n∏
n=1

p(zn|xn,θ) (E step) (28)

and

Ez [ln p(x, z|θ)] =
N∑
n=1

Ezn∼p(zn|xn,θ) [ln p(xn, zn|θ)] (M step). (29)

• An illustration is shown in Fig. 13.

• The EM algorithm is guaranteed to increase ln p(x|θ) at each iteration unless a local maximum is attained.

• Both steps can be approximated when too expensive:

� E step: Instead of the exact posterior p(z|x, θold), a parametrized approximation can be learned instead
(approximate inference, see Chapter 7);

� M step:

∗ The expectation can be approximated via an empirical (Monte Carlo) average (see Chapter 7).

∗ Instead of the exact maximization, one can apply one of more steps from the gradient∇θL
(
p(z|x, θold), θ

)
=

Ez∼p(z|x,θold) [∇θ ln p(x, z|θ)].
∗ The gradient can also be approximated via an empirical (Monte Carlo) average (see Chapter 7).

• For extensions of EM algorithm, see [4, p. 247-248].

• It can be proven that

∇θL
(
p(z|x, θold), θ

)
|θ=θold = ∇θ ln p(x|θ)|θ=θold . (30)

6 Generative Directed Models

6.1 Mixture of Gaussians Model

• Mixture of Gaussians models (Fig. 14):

10



Figure 14: Bayesian network for mixture of Gaussians model (from [1]).

Figure 15: Example of a trained mixture of Gaussians model (from [1]).

• Example of the result of a mixture of Gaussians model whose parameters are selected by means of the EM
algorithm can be found in Fig. 15.

• This model can be thought as the unsupervised version of the QDA model for the fully observed (or supervised)
case studied in Chapter 3.

• Applications: classi�cation, density estimation, etc.

• We have

ln p(xn, zn = k|θ) = lnπk + lnN (xn|µk,Σk) (31)

and

ln p(xn|θ) = ln

(∑
k

πkN (xn|µk,Σk)

)
. (32)

• The ML problem can hence, be formulated as
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maximize
π,µ,Σ

ln p(x|π,µ,Σ) =

N∑
n=1

ln

{
K∑
k=1

πkN (xn|µk,Σk)

}
(33)

which is non-convex.

• Instead, the problem with complete data coincides with QDA:

maximize
π,µ,Σ

ln p (x, z|π,µ,Σ) =

N∑
n=1

K∑
k=1

znk {lnπk + lnN (xn|µk,Σk)} (34)

which yields the ML solutions:

πk =
Nk
N

with Nk =

N∑
n=1

znk (35)

µk =
1

Nk

N∑
n=1

znkxn mean of cluster k (36)

Σk =
1

Nk

N∑
n=1

znk(xn − µn)(xn − µn)T (37)

• EM Algorithm:

� E step:

p(znk = 1|xn,π,µ,Σ) = E [znk|xn,π,µ,Σ] =
πkN (xn|µk,Σk)∑K
j=1 πjN

(
xn|µj ,Σj

) = E [znk] , (38)

also known as responsibility of class k for data in n.

� M step:

Ezn
[ln p(xn, zn|θ)] =

K∑
k=1

E [znk] {lnπk + lnN (xn|µk,Σk)} . (39)

• Therefore, the M step is equivalent to QDA, if we substitute znk ← E[znk]:

πk =
Nk
N

with Nk =

N∑
n=1

E [znk] (40)

µk =
1

Nk

N∑
n=1

E [znk]xn (41)

Σk =
1

Nk

N∑
n=1

E [znk] (xn − µn)(xn − µn)T (42)
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• See Fig. 16 for an example.

Initialization and data E step: colors indicate the responsibilities  M step 

Figure 16: Illustration of EM for the Gaussian mixture model (from [1]).

• Relationship between EM and K-means: Setting Σk = εI as known and letting ε → 0 makes K-means a
special case of EM (see [1, p. 443]).

6.2 Mixture of Bernoulli Model

• Consider a set of N binary images D = {xn} representing handwritten digits as seen in Fig. 17.

Figure 17: Example of a dataset D for handwritten digit classi�cation.

• We wish to cluster images (unsupervised learning) into K classes.

• We use a mixture of Bernoulli model (see Fig. 18):

zn ∼ Cat(π) (43)

xn|zn =k ∼
D∏
i=1

Bern (xni|µki) (44)

θ =(π,µ1, ...,µk) (45)
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D pixels

Figure 18: The mixture of Bernoulli model de�nes a probability µki for each class k and pixel i.

• E step :

p(znk = 1|xn,π,µ) =
πk
∏D
i=1 Bern (xni|µki)∑K

j=1 πj
∏D
i=1 Bern (xni|µji)

= E [znk] (46)

• M step:

Ezn
[ln p(xn, zn|θ)] =

K∑
k=1

E [znk]

(
lnπk +

D∑
i=1

(xni lnµki + (1− xni) ln (1− µki))

)
(47)

and

µk =
1

Nk

N∑
n=1

E [xnk]xn vector of e�ective number of samples with {xni = 1} inclass K (48)

Nk =

N∑
n=1

E [xnk] e�ective number of observations in class K (49)

πk =
Nk
N

(50)

• An illustration is found in Fig. 19.

Figure 19: Illustration of a learned mixture of Bernoulli model (from [1]).
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6.3 Probabilistic Principal Component Analysis

• In the models considered so far, hidden variables indicate the cluster or class for any data point. More
generally, latent variables can identify the features that de�ne each data point.

• Probabilistic PCA uses a linear factor generative model with M < D features (see Fig. 20):

zn ∼ N (0, I) M × 1

xn =Wzn + µ+ ε, ε ∼ N
(
0, σ2I

)
⇒ xn|zn ∼ N

(
Wzn + µ, σ2I

)
θ =

Wµ
σ2

 D ×M
D × 1

Figure 20: Bayesian network for Probabilistic PCA (from [1]).

• Applications: Dimensionality reduction, feature extraction, density estimation.

• The columns of W = [w1,w2...wM ] can be interpreted as features since (see Fig. 21):

xn =

M∑
m=1

wmzmn + µ+ ε (51)

Figure 21: Illustration of Probabilistic PCA (from [1]).

• An EM Algorithm can be designed to estimate W , µ,σ2 ([1, p. 577]), see Fig. 22.
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Figure 22: Illustration of the EM algorithm for Probabilistic PCA (from [1]).

• Via Bayes theorem

p (zn|xn,θ) = N
(
zn|M−1W T (x− µ), σ2M

)
(52)

where M =W TW + σ2I.

• When z ∼
∏
j p(zj) but not Gaussian, we obtain Independent Component Analysis (ICA), (see [1, p. 591]).

It is also possible to impose structure on each p(zj), e.g., sparsity via t-student or Laplace priors. A general
discussion on linear factor models can be found [3].

• Techniques that attempt to extract features or more generally to infer the structure in p0(x) by �tting a
generative directed model, are also known as �analysis by synthesis�.

7 Generative Undirected Models

7.1 Restricted Boltzmann Machines (RBM)

• Bernoulli - Bernoulli RBM:

p(x, z|W ,a, b︸ ︷︷ ︸
θ

) =
1

Z(θ)
exp (−E(x, z|θ)) , (53)

with x∈ {0, 1}D , z ∈ {0, 1}M and with the energy function
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E(x, z|θ) = −aTz − bTx− xTWz (54)

and the partition function Z(θ) =
∑
x,z exp (−E (x, z|θ)) .

• It belongs to the exponential family.

• Applications: feature extraction for binary images (M < D).

• The columns of W = [w1,w2, ..,wM ] can be interpreted as features, as illustrated in Fig. 23.

Figure 23: In RBMs, the columns of W can be interpreted as features (from [7]).

• From the model, it is easy to compute

p(zj = 1|x,θ) =σ
(
wT
j x+ aj

)
(55)

p(xi = 1|z,θ) =σ
( ∼
wiz + bi

)
(56)

where
∼
wi is the i

th row of W .

• Note that zj tends to equal 1 if x is correlated with the feature wj .

• Learning is typically done by means of an approximate EM algorithm based on gradient ascent:

M step: Apply gradient ascent instead of exact optimization (see Fig. 24):

∇θQ(θ,θold)|θ=θold = Ez∼p(z|x,θold) [∇θ ln p(x, z|θ)|θ=θold ] (57)

• The gradients can be computed as
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Figure 24: Illustration of gradient based learning of RBMs.

∇wij
Q(θ, θold)|θ=θold = Ezj∼p(zj |x,θold) [xizj ]− Ex,z∼p(x,z|θold)

[
x′iz
′
j

]
= xiσ

(
(wold

j )Tx+ aoldj
)
− Ex′∼p(x|θold)

[
x′iσ

(
(wold

j )Tx′ + aoldj
)]

(58)

and similarly for a and b :

∇ajQ(θ,θold) = Ezj∼p(zj |x,θold) [zj ]− Ez′j∼p(zj ,θold)

[
z′j
]

= σ
(
(wold

j )Tx+ aoldj
)
− Ex′∼p(x|θold)

[
σ
(
(wold

j )Tx′ + aoldj
)]

(59)

∇biQ(θ,θold) = xi − Ez′∼p(z|θold)

[
σ
(
w̃old
i z′ + boldi

)]
(60)

• E step: Generate samples x′,z′∼ p(x, z|θold) so as to compute the averages in (58)-(60). This is typically
done using Contrastive Divergence, an example of Markov Chain Monte Carlo techniques:

� Start with x (data)

� Generate the independent variables:

∼
zj ∼

i.i.d.
Bern

(
σ
(
(wold

j )Tx+ aoldj
))

x′i ∼
i.i.d.

Bern
(
σ
(
w̃old
i

∼
z + boldi

))
z′j ∼

i.i.d.
Bern

(
σ
(
(wold

j )Tx′ + aoldj
))

� Use the resulting x′ and z′ to approximate the expectations:

Ex′∼p(x|θold)

[
x′iσ

(
(wold

j )Tx′ + aoldj
)]
≈x

′

i

(
σ
(
(wold

j )Tx
′
+ aoldj

))
(61)

Ex′∼p(x|θold)

[
σ
(
(wold

j )Tx′ + aoldj
)]
≈
(
σ
(
(wold

j )Tx
′
+ aoldj

))
(62)

Ez′∼p(z|θold)

[
σ
(
w̃old
i z′ + boldi

)]
≈
(
σ
(
w̃old
i z′ + boldi

))
(63)

• As illustrated in Fig. 24, it can be proven that

∇θ ln p(x|θ)|θ=θ′ = ∇θQ(θ,θ′)|θ=θ′ (64)
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Figure 25: The ELBO at θ = θ′ has the same gradient at that point of the log-likelihood function

and hence the approach can be directly justi�ed as gradient ascent on the log-likelihood.

• There are other RBMs such as:

� Gaussian-Bernoulli RBM, ex: non-binary images;

� Categorical-Bernoulli RBM, ex: collaborative �ltering for movie ratings (see Fig. 26).

Figure 26: Categorical-Bernoulli RBM for collaborative �ltering (from [7]).
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8 Autoencoders

• Autoencoders include parametric models for both �encoder� (discriminative model) and �decoder� (generative
model) as seen in Fig. 27.

Z

X

X

Decoder D

Features 
or code

Encoder E

Figure 27: An autoencoder includes encoder E and decoder D.

• Autoencoders are based on deterministic models and convert the unsupervised problem to a supervised prob-
lem.

• A typical formulation of the training criterion is

minimize
E,D

N∑
n=1

‖xn −D (E(xn)) ‖2, (65)

where constraints, such as dimensionality or sparsity, are imposed on z in order to avoid learning the identity
mapping.

• Examples: a) PCA

Z

X

X

unitary 
full rank 
and 

Figure 28: PCA.

� Training:
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minimize
V

N∑
n=1

‖xn − V V Txn‖2 (66)

⇒ V̂ =M principal eigenvectors of the co-variance matrix 1
N

∑N
n=1 xnx

T
n

� See Fig. 27 for an example.

� PCA can be generalized to kernel PCA.

� It is a special case of probabilistic PCA with µ = 0 and σ2 → 0.

Figure 29: An example of PCA (from [8]).

(b) Dictionary learning (see Fig. 29)

z

x

x

A Linear decoder

Sparse representation: 

Non-linear encoder

Figure 30: Dictionary Learning

z ← minimize
z

‖x−Az‖2subject to constraints such as sparsity (C)

• Training:

minimize
A

min
{zn}∈C

1

N

N∑
n=1

‖xn −Azn‖2 (67)
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Figure 31: An autoencoder based on a multilayer neural network.

(c) Non-linear encoder-decoder as neural networks (see Fig. 31).

• Training:

L(w) =

N∑
n=1

‖y(xn,w)− xn‖2, (68)

where y(xn,w) is the input - output relationship of the autoencoder, and xn are the desired �labels� equal
to the input.

Example:

� input: xn, 10× 10 pixel images (D =100)

� M = 100 hidden units (M = D just for illustration)

� output shown in Fig. 32: images that are matched to each hidden neuron (i.e., proportional to the
corresponding vector w)
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Figure 32: Example of a trained autoencoder based on a neural network.

9 Multiple Hidden Layers

• Di�erent types of models with multiple layers exist as illustrated in Fig. 4:

� Helmholtz machines

� Deep Boltzmann Machines

� Deep Belief networks

• Training is often done layer by layer.
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10 A Di�erent Type of Unsupervised Learning: PageRank

• Given a set of webpages, how should we rank them?

• De�ne a graph with a vertex for each webpage

Li,j =

{
1 if page j links to page i

0 otherwise
(69)

Cj =

N∑
n=1

Li,j (70)

Figure 33: Key quantities in the PageRank algorithm.

• The rank pi of a webpage i is given as

pi = (1− d) + d
∑
j 6=i

Lij
Cj

pj (71)

where 0 < d < 1 is a parameter.

• In the formula above, the �vote� of a webpage j to the linked webpages is proportional to the rank of a page:
pages with a lot of incoming links from important pages are highly ranked.

• The equation (70) can be solved recursively to obtain the pageranks of all pages.

11 Problems

1. For the dataset x used in the previous assignment (this �le), we wish to implement the EM algorithm to train a
mixture of Gaussians model with K = 2. To this end, pick K points randomly in the data set for the class means µk,
initialize the covariance matrices as Σk = 10I (I is the identity matrix) and the a priori probability of each class as
πk = 1/K. At each step, show the current cluster means and represent with colors the current a posteriori probabili-
ties, also known as responsibilities, p(zn = k|xn, θ). You use scatter3(x(1,:),x(2,:),x(3,:),50*ones(1,N),[pz;
zeros(1,N)]'), where pz is the K ×N vector containing the current a posteriori probabilities for each class. You
can repeat the experiment to check the impact of the random initalization of cluster centers.

2. (Adapted from [4]) Consider the following generative directed model

z = Bern(0.5) + 1

and
x|z = k ∼ N (kθ, 0.5).
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Note that z takes values 1 and 2 with equal probability and that the model parameter is θ. We observe a sample
x = 2.75. We wish to develop the EM algorithm to tackle the problem of ML estimation of the parameter θ given
this single observation of x = 2.75.

a. Write the likelihood function p(x = 2.75|θ) of θ for the given observation. Plot the likelihood p(x = 2.75|θ)
for θ in the interval [−5, 5] using MATLAB and check that it is not concave.

b. In the E-step, we need to compute p(z|x = 2.75, θold). Write the probability p(z = 2|x = 2.75, θold) as a
function of θold (note that p(z = 1|x = 2.75, θold) = 1− p(z = 2|x = 2.75, θold)).

c. In the M-step, we instead need to solve the problem

maximize Ez∼p(z|x=2.75,θold)[ln p(x = 2.75, z|θ)]

over θ. Formulate and solve the problem to obtain θnew as a function of θold.

3. Load this dataset. It contains N = 1000 examples of size D = 10 in a N ×D matrix. Note that the alphabet
is binary.

a. Observe the dataset by using the command imagesc(X); colorbar. What is the main feature of the data?
b. Use PCA to identify the principal component of the data. Note that this requires to set M = 1 in PCA. You

should use the function eig in MATLAB. Since the resulting vector may be complex due to numerical rounding
errors, plot the real part. Compare the principal component with your observation of the data at point a.

c. We now wish to use a Bernoulli-Bernoulli RBM to learn the M = 2 main features of the data. To this
end, perform 100 iterations of the approximate EM algorithm described in class. To initialize, use W=rand(D,M);

a=rand(M,1); b=rand(D,1). At each iteration, choose randomly and uniformly one sample xn from the data set
and evaluate the gradient of the log-likelihood with respect to the parameters W,a,b for that point. Apply the
computed gradient with learning rate η = 0.1. To compute the gradient, apply the Contrastive Divergence method
explained in the notes: Given the data point xn, generate z̃n, then again x′n and �nally z′n. Plot one of columns of
W and compare with the principal component. To facilitate comparison, normalize the column so that the norm
of the column is 1 as for the principal component.

4. (Adapted from [4]) Consider a generative undirected and unstructured model p(x|θ), where x = [x1, x2] ∈
{0, 1}2. The parameters θ are de�ned as θij = Pr[x1 = i and x2 = j] with i, j ∈ {0, 1}. Note that we hence have
four parameters and that

∑
i,j θij = 1.

a. Assume that we have one observation D = {[1, ?]}, where �?� denotes the fact that the corresponding variable
x2 is hidden. Write the log-likelihood for the parameters θ given observation D as a function of θ00, θ01, θ10, θ11.

b. Assume that we now have three independent observations

D = {[1, 1], [1, ?], [?, 0]},

where �?� denotes the fact that the corresponding variable is hidden. Note that the �rst observation has no hidden
variables, while the second and third have di�erent latent variables. Write the log-likelihood for the parameters θ
given observation D as a function of θ00, θ01, θ10, θ11.

c. Derive the EM algorithm for the maximization of the likelihood obtained at point b. Give the explicit update
rule that computes θnew as a function of θold (Hint: Compute �rst p(x2 = 1|x1 = 1, θ) and p(x1 = 1|x2 = 0, θ)).
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6. Probabilistic Graphical Models

1 Introduction

• We have so far dealt with unstructured probabilistic models.

• Speci�cally for generative directed models, we have assumed a model
that can be represented by the Bayesian network, in Fig. 1, where α
parametrizes p(z) and β parametrizes p(x|z).

Figure 1: An unstructured generative directed model.

• The Bayesian network in Fig. 1, encodes the factorization of the joint
distribution p(x, z|θ) as

p(x, z|θ) =
N∏
n=1

p(zn|α)p(xn|zn, β), (1)

where θ = [α, β] .

• We have also talked about generative undirected model, which can be
represented by the Markov random �eld in Fig. 2,

1



Figure 2: An unstructured generative undirected model.

which encodes the factorization of the joint distribution

p(x, z|θ) =
N∏
n=1

p(xn, zn|θ). (2)

• An example of undirected models are energy-based models, such as RBM
studied in Chapter 5.

• Bayesian variants of directed and undirected models treat the parameters
θ as random variables.

• Unlike the simple scenarios studied so far, in many problems of practical
interest, the joint distribution of observed and unobserved (if any) vari-
ables has a more complex structure that can be leveraged to de�ne more
speci�c models.

• Example: Image denoising via supervised learning.

� We wish to learn the joint distribution p(x, t|θ), where x is the noisy
image and t the noiseless image. See Fig. 3 for an illustration.

� Instead of using general unstructured models as in Fig. 1 or Fig. 2,
we can adopt a more structured model that accounts for the following
assumptions:

∗ neighboring pixels are correlated, while pixels further apart are
not directly related;

∗ noise acts independently on each pixel.

� These assumptions are encoded by the Markov random �eld in Fig.
4.
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Figure 3: Example of noisy and noiseless images (from [1]).

Figure 4: Markov random �eld representing a structured model for the image
denoising problem (from [1]).

• Example: Text classi�cation via supervised or unsupervised learning.

� tn ∈ {1, ..., T} = topic of a document n (e.g., tn ∈{sport, politics,
entertainment}).

� xn =

 x1n
...

xWn

 �bag-of-words� model, where xwn = 1 if word w ∈

{1, ...,W} is in document n.

� Instead of using the general model, which contains (T−1)+T (2w−1)
parameters, we can adopt a more structured model that encodes the
assumption:

∗ once the topic is �xed, the presence of a word is independent on
the presence of other words.

� The resulting model is known as Bernoulli naive Bayes model:
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- tn ∼ Cat(α)

- xn|tn ∼
W∏
w=1

p(xwn|tn) =
W∏
w=1

Bern(xwn|βwtn)

� The Bernoulli naive Bayes model is hence characterized by the pa-
rameters

θ =

 α1

...
αT

 where αi= Pr[t = ith topic] with
T∑
i=1

αi = 1

� Note that we have (T − 1) + TW � (T − 1) + T (2w − 1) parameters
in the structured model.

� The Bayesian network representing the Bernoulli naive Bayes model
is shown in Fig. 5.

Figure 5: Bayesian network representing the Bernoulli naive Bayes model.

• It should be always kept in mind that the degree of specialization of a
model determine a trade-o� between bias (measured by Lp(h

∗)) and ap-
proximation error (measured by Lp(hθ) − Lp(h∗) and caused by over�t-
ting). In fact, more specialized, or structured, have less parameters to
learn. We refer to Chapter 4 for details.

• It is also useful to keep in mind that a model is not necessarily meant
to provide an accurate depiction of reality, but to yield a satisfactory
performance for the learning task (e.g., classi�cation).

• As a �nal note, this chapter, we will use a �exible notation for the model
variables that is tailored to the di�erent problems.

• Structure in probabilistic model is conveniently represented by means of
graphs.

• As assumed structure simpli�es, or even makes possible at all, learning.
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Figure 6: A structured probabilistic model.

• Graphical models encode the structure of a probability model, particularly
about conditional independence properties.

• Three main types:

a. Directed graphical models: Bayesian networks.

b. Undirected graphical models: Markov random �elds.

c. Factor graphs.

2 Bayesian Networks

2.1 De�nitions and Examples

• Bayesian networks (or Bayes nets) encode a probability factorization or,
equivalently, a set of conditional independence relationships.

• The starting point is the chain rule for probabilities:

p(x1, ..., xk) = p(x1)p(x2|x1)...p(xk|x1, ..., xk−1), (3)

where the order is arbitrary in (3).

• Factorization (3) applies for general unstructured model. However, as
discussed in many important applications, it is convenient to encode more
structures in the model.

• For example, we may have the independence relationships encoded by the
factorization in Fig. 6, where the notation A⊥⊥B|C indicates that A is
independent of B given C.

• The factorization at the previous equation is represented by the Bayesian
network in Fig. 7.
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Figure 7: Bayesian network representing the factorization in Fig. 6 (from [1]).

• De�nition: A Bayesian network is a directed acyclic graph (DAG)1, in
which vertices represent random variables (or vectors), with an associated
joint distribution that factorizes as

p(x) =
∏
k

p(xk|xP(k)) (4)

where P(k) denotes the set of parents of node k in the graph.

• In a Bayesian network parameters are represented by dots and observed
variables are represented by full circles.

• Plates are used to represent replications of a part of the graph.

• Examples:

a. Basic generative model for supervised learning: The factorization is

p(x, t|α, β) =
N∏
n=1

p(tn|α)p(xn|tn, β) (5)

Figure 8: Bayesian network corresponding to (5).

1There are no directed cycles, that is, no closed paths following the direction of the arrows.
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and the Bayesian network is shown in Fig. 8. The Bayesian ver-
sion assuming independence of priors corresponds to the following
factorization

p(α, β,x, t) = p(α)p(β)

(
N∏
n=1

p(tn|α)p(xn|tn, β)

)
p(t|α)p(x|t, β)

(6)
and Bayesian network is shown in Fig. 9.

Figure 9: Bayesian network corresponding to (6).

b. Bernoulli naive Bayesian model for text classi�cation: The probabil-
ity distribution factorizes as

p(x, t|α,β) =
N∏
n=1

Cat(tn|α) · (
W∏
w=1

Bern(xwn|βwtn)) (7)

and the corresponding Bayesian network is shown in Fig. 10.

Figure 10: Bayesian network corresponding to (7).

For a Bayesian formulation, one typically makes the global indepen-
dence assumption:

p(α,β) = p(α)

(
T∏
t=1

W∏
w=1

p(βwt)

)
, (8)
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where typical choices are Dirichlet for p(α) and Beta for p(βwt). The
corresponding Bayesian network is illustrated in Fig. 11.

Figure 11: Bayesian network corresponding to (8).

c. Latent Dirichlet model for unsupervised text classi�cation:

αn = distribution of topic for document n ∼ Dir(θα).

tin = topic for the word in the ith position of document n ∼ Cat(αn).

βt = distribution of topics for topic t ∼ Dir(θβ).

xin = ith word in the document n ∼ Cat(βtin),

Figure 12: Latent Dirichlet model for unsupervised text classi�cation.

d. QMR-DT: Fig. 13.
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diseases (binary)

symptoms (binary)

Figure 13: QMR-DT.

e. Hidden Markov models for speech recognition: Fig. 14.

words

sounds

...

...

Figure 14: HMM for speech recognition.

f. Monitoring patients in an Intensive Care Unit: Fig. 15.

Figure 15: The ICU-Alarm Bayesian network (from [2]).
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2.2 Assessing conditioned independence

• Bayesian network enable the e�cient assessment of global conditional de-
pendence properties, that is, they allow to address, but only in the posi-
tive, the question: Is a certain subset of variables independent of another
conditioned on a third set of variables?

• Given a Bayesian network, we wish to check if the independence condition
A⊥⊥B|C holds for arbitrary subset of variables A, B and C.

• d-separation algorithm:

a. Build a subgraph G′ consisting of all vertices A, B and C and all
edges and vertices encountered by moving backwards one or more
edges from the vertices in A, B and C.

b. Build a subgraph G′′ from G′ by deleting all edges coming out of the
vertices in C.

� If there is no path, neglecting the directionality of the edges, between
A and B, then A⊥⊥B|C holds.

� If there is, then there is at least one joint distribution that factorizes
as for the given Bayesian network for which A⊥⊥B|C does not hold.

• Examples:

a. V-structured: Based on d-separation, as seen in Fig. 16, A⊥⊥B|C
not true in general. Speci�c examples are given in Fig. 17.

Figure 16:

10



Figure 17: Examples of V-structures.

b. Bayesian prediction: Using d-separation, we can seen from Fig. 18
that t⊥⊥t|w holds, and hence we have p(t|t) =

∫
p(t,w|t)dw =∫

p(w|t)p(t|w)dw, that is, we can �rst compute the posterior p(w|t)
and then perform prediction.

Figure 18: Bayesian prediction.

2.3 Learning Bayesian networks

• Assume that the graph is given (structure learning is also an important
problem that we won't consider).

• A Bayesian network can be generally parametrized as

p(x) =
∏
k

p(xk|xP(k), µk|xP(k)
), (9)

where µk|xP(k)
are the parameters de�ning the conditional distribution

p(xk|xP(x)).

• It is emphasized that in this section, x represents one data point, possibly
including hidden variables.

• In most cases of interest, p(xk|xP(k), µk|xP(k)
) is in the exponential family

(for every xP(k)) or is a GLM.
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• Modeling the parameters:

� Separate parameters: The parameters µk|xP(k)
are di�erent for each

k and each value of xP(k) .

ex:

∗ Mixture of Gaussian

∗ QDA

� Shared parameters: Some of the parameters µk|xP(k)
are tied to be

equal across di�erent values of xP(k) and/or across k. The value of
µk|xP(k)

may even be independent of xP(k) , e.g., for GLMs.

ex:

∗ Latent Dirichlet model: The distributions βt of di�erent topics t
are characterized by the same parameter θβ .

∗ Linear regression or any other GLM: The weight vector is inde-
pendent of xP(k).

• Modeling the data:

� Fully observed: The variables (x1n, ..., xDn) in each data point xn
are fully observed.

ex:

∗ supervised learning (Chapters 1, 3, 4).

� Missing data: Some of the variables (x1n, ..., xDn) are missing at least
in some data points xn.

ex:

∗ Unsupervised learning (Chapter 5).

2.3.1 ML learning for the fully observed case with separate param-

eters

• Given a fully observed data set D = {xn}, with xn = [xkn] (discrete), the
log-likelihood is given as:

ln p(D|µ) =
N∑
n=1

∑
k

ln p(xkn|xP(k)n, µk|xP(k)n
) (10)

=
∑
k

N∑
n=1

ln p(xkn|xP(k)n, µk|xP(k)n
) (11)

=
∑
k

∑
xP(k)

∑
n:

xP(k)n=xP(k)

ln p(xP(k)n, µk|xP(k)n
)

︸ ︷︷ ︸
depends only on µk|xP(k)

. (12)

• It follows that the ML estimate decomposes on each variable for each
con�guration of the parents.

12



• Problem of data fragmentation: each parameter is estimated based only
on a fraction of the data.

• As a concrete example for binary variables, we have

µ̂k|xP(k),ML =

∑
xnk

n:xP(k)n=xP(k){
n : xP(k)n = xP(k)

} (13)

• Example: Consider the Bayesian shown in Fig. 12 with the observed
data

Figure 19: Example of ML learning for the fully observed case with separate
parameters.

D

# observations

=


 1

0
1


︸ ︷︷ ︸

10

,

 0
1
1


︸ ︷︷ ︸

14

,

 1
1
0


︸ ︷︷ ︸

8

,

 0
0
0


︸ ︷︷ ︸

12

,

 1
0
0


︸ ︷︷ ︸

1

,

 0
1
0


︸ ︷︷ ︸

2

,

 1
1
1


︸ ︷︷ ︸

1

,

 0
0
1


︸ ︷︷ ︸

2


The maximum likelihood estimates are:

µ̂1,ML = 10+8+1+1
50 = 20

50 = 2
5

µ̂2,ML = 14+8+2+1
50 = 1

2

µ̂3|00 = 2
12+2 = 1

7

µ̂3|11 = 1
8+1 = 1

9
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µ̂3|01 = 14
14+2 = 7

8

µ̂3|10 = 10
10+1 = 10

11

2.4 Extensions

• MAP and Bayesian approaches: MAP decompose in a similar way un-
der independence assumptions on the parameters, and the same holds for
Bayesian approach.

• Shared parameters:

� With shared parameters, ML requires aggregate statistics across all
variables that share the same parameters.

� Bayesian approach is more complex in the presence of shared vari-
ables.

� An alternative approach with �soft sharing� is the hierarchical Bayes
model (see Fig. 17.11 in [2]).

• Missing data:

� For the missing data case, learning typically involves the EM algo-
rithm.

3 Markov Random Fields

3.1 De�nitions and examples

• De�nition: A Markov random �eld is an undirected graph in which
vertices represent random variables (or vectors) with associated joint dis-
tribution that factorizes as

p(x) =
1

Z

∏
c

ψc(xc) (14)

where:

� c is the index of cliques2 in the graph.

� ψc(xc) ≥ 0 is the factor or potential associated with clique c (not a
probability).

� Z =
∑
x

∏
c
ψc(xc) is the partition function.

• Each factor encodes the compatibility of the values xc in each clique,
rather than cause-e�ect relationships as in Bayesian networks.

2A clique is a fully connected subgraph
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• Examples:

a. For the undirected graph in Fig. 20, the distribution factorizes as

Figure 20: Example of a Markov random �eld.

p(x) =
1

Z
ψc1(x1, x2)ψc2(x3, x4, x5). (15)

b. Image denoising: The Markov random �eld is shown in Fig. 21 and
the joint distribution factorizes as

Figure 21: Markov random �eld of image denoising.

p(x, t) ∝
∏
{i,j}

ψi,j(ti, tj) ·
∏
i

ψi(ti, xi) (16)

where {i, j} is an edge of the Markov random �eld. A speci�c example
is the Ising model, where ti, xi ∈ {−1,+1}, and the potentials are

15



de�ned as
ψij(ti, tj) = exp(−E(ti, tj |β)) (17)

ψi(ti, xi) = exp(−E(ti, xi|η)) (18)

with
E(ti, tj |β) = −βtitj (19)

and
E(ti, xi|η) = −ηtixi (20)

From (19), a large β > 0 yields a large probability where ti and tj
are equal, while, from (20), a large η > 0 corresponds to a low noise
assumption.

c. Restricted Boltzmann Machine (RBM): The Markov random �eld is
shown in Fig. 22 and the distribution factorizes as

Figure 22: Restricted Boltzmann Machine.

p(x, z) ∝
K∏
i=1

D∏
j=1

exp(−E(xj , zi|wji)− E(zi|ai)− E(xj |bj)), (21)

with potentials
E(xj , zi|wji) = −wjixjzi (22)

E(xj |bj) = −bjxj (23)

E(zi|ai) = −aizi. (24)

• The partition function Z is typically hard to compute due to the need to
integrate over a large domain.

• It is often convenient to work with the unnormalized distribution and
perform normalization at the end.
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• As seen, we typically have energy-based models

ψc(xc) = exp(− Ec(xc)︸ ︷︷ ︸
energy function

) (25)

and hence
− ln p(x) =

∑
c

Ec(xc) + lnZ (26)

=
∑
c

Ec(xc) +A (27)

where A is the log-partition function.

• In energy based-models, maximum probability states are those with min-
imal energy.

3.2 Assessing conditional independence

• Markov random �elds, in a manner similar to Bayesian networks, enable
the assessment of conditional independence properties.

• In fact, this is easier with Markov random �elds thanks to the Hammers-
ley�Cli�ord theorem:

If ψc(xc) > 0 for all cliques c, conditional independence A⊥⊥B|C can be
tested as follows:

� Eliminate all variables in C and connected edges;

� If there is no path between A and C, then A⊥⊥B|C holds;

� If there is, then there is at least one joint distribution that factorizes
as for the Markov �eld for which A⊥⊥B|C does not hold.

• Example: Fig. 23

Figure 23: In this example we have A⊥⊥B|C (from [1]).

17



• We will assume the standard log-linear model

Ec(xc|ηc) = −ηTc uc(xc) (28)

where ηc are the (natural) parameters associated with cluster c and uc(xc)
are the corresponding su�cient statistics.

• Example: RBMs are log-linear models with

E(xj , zi|wji) = −wjixjzi (29)

E(xj |bj) = −bjxj (30)

E(zi|ai) = −aizi (31)

and hence the natural parameters are {wji, bj , ai}, while the su�cient
statistics are {xj , zi, xjzi}.

• Energy-based models with log-linear factor belong to the exponential fam-
ily.

3.3 Learning Markov random �elds

• Learning Markov random �elds is made complicated by the partition func-
tion. In fact, the log-partition function is

A(η) = ln

(∑
x

exp(−
∑
c

Ec(xc|ηc))

)
(32)

which depends on all parameters η. Therefore, it is not possible to carry
out separately the estimate of the parameters {ηc}, even in the fully ob-
served case with separate parameters.

• Nevertheless, in the fully observed case the ML problem

minimize
η

−
N∑
n=1

ln p(xn|η) =
N∑
n=1

∑
c

Ec(xcn|ηc) +A(η) (33)

is convex and can be tackled by means of gradient algorithm as we have
seen in Chapter 2.

• In fact, following the same calculation in Chapter 2, for the case of separate
parameters, we can write

∇ηc
ln p(xn|η) = uc(xcn)− E[uc(xc)]. (34)

• The main issue is the computation of E[uc(xc)], which typically requires
Monte Carlo approximations as seen for RBM.

• As for Bayesian networks, learning with missing data typically requires
the use of the EM algorithm.
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3.4 Converting a Bayesian network to a Markov random

�eld

• Given p(x) =
∏
k

p(xk|xP(k)) (Bayesian network), we can de�ne potential

functions
ψk(xk, xP(k)) = p(xk|xP(k)) (35)

to obtain the factorization

p(x) =
∏
k

ψk(xk, xP(k)) (Z = 1) (36)

• Each clique contains xk and its parents xP(k).

• It follows that the Markov random �elds is obtained by following the
procedure:

1. Connect all pairs of parents by one undirected edge (�moralization�).

2. Make all edges undirected.

• Example: Fig. 24.

Figure 24: Example of conversion of a Bayesian network into a Markov random
�eld (from [1]).

3.4.1 Directed vs. undirected graphs

• Some conditional independence properties can be expressed by BN or
MRF but not by both

• Examples:

19



a. Fig. 25.

Figure 25: Example of conditional independence properties.

b. No directed graphs exists that satis�es the conditional independence
properties for the Markov random �elds in Fig. 26.

Figure 26: Example of conditional independence properties.

4 Bayesian Inference in Probabilistic Graphic Mod-

els

• Bayesian inference amounts to the computation of

p(unobserved|observed).

20



• We have encountered this operation in a number of problems:

� Learning step with hidden variables:

∗ In the E-step of EM, we need to compute

p(zn|xn, θ) =
p(xn, zn|θ)
p(xn|θ)

=
p(xn, zn|θ)∑
zn

p(xn, zn|θ)
(37)

� Prediction step in generative models for supervised learning:

∗ Given a new sample x, we need to compute

p(t|x, θ̂) = p(x, t|θ̂)
p(x|θ̂)

=
p(x, t|θ̂)∑
t
p(x, t|θ̂)

(38)

for frequentist approaches, and

p(θ|D) = p(|D|θ)p(θ)
p(D)

=
p(|D|θ)p(θ)∑
θ

p(|D|θ)p(θ)
(39)

for the Bayesian approach.

• Bayesian inference hence requires to marginalize over (all or) some of the
unobserved variables.

• The complexity of this step is exponential in the number of unobserved
variables and hence it can be prohibitive.

• The structure encoded in probabilistic graphic models can help reduce this
complexity.

• Example: Hidden Markov Model (HMM): The Bayesian network of an
HMM is shown in Fig. 27. Inferring the hidden variables requires to
compute

Figure 27: Hidden Markov Model (HMM).
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p(z|x) = p(x, z)

p(x)
with p(x) =

∑
z

p(x, z). (40)

The complexity of computing p(x) is | Z |D. For the same HMM, we may
instead want to predict an individual hidden variable zk by computing

p(zk|x) =
∑
zrzk

p(z|x) =

∑
zrzk

p(z,x)

p(x)
, (41)

where p(x) =
∑
zk

∑
zrzk

p(x, z). The complexity is still | Z |D.

• For joint distributions de�ned by a probabilistic graphic model

p(x) =
1

Z

∏
c

ψc(xc), (42)

we can state the Bayesian inference problem in general form as the so-
called sum-product inference task∑

z

p(x) =
∑
z

∏
c

ψc(xc), (43)

where z contains a subset of the variables in x representing a subset or all
of the unobserved variables.

• When the undirected graph describing the joint distribution is a tree3,
the complexity of sum-product inference becomes exponential only in the
maximum number of variables in each factor, also known as treewidth of
the graph.

• In this case, the sum-product inference problem can be exactly solved via
message passing, or belief propagation, over an associated factor graph.

• Example: For the HMM in Fig. 27, we have the associated undirected
graph in Fig. 28 that is a tree, and the corresponding factorization can
be written as

Figure 28: HMM as a Markov random �eld.

3There is only one path between any pairs of nodes (no loops).
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p(x, z) ∝
∏
i

ψ(zi, zi+1)ψ(xi). (44)

Bayesian inference has complexity of the order | Z |2.

• See Fig. 29 for an illustration of the concept of message passing.

Figure 29: Illustration of message passing (from [1]).

• When the undirected graph is not a tree, one can use the junction tree
algorithm for exact Bayesian inference, The idea is to group variables
together so that the resulting graph is a tree. The complexity depends on
the treewidth of the resulting graph.

• It is also possible to use message passing when the graph has loops. This
is known as loopy believe propagation. This will be further discussed in
the next Chapter.
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5 Problems

1. Consider a data set in which each record n concerns a student taking some
class. Speci�cally, each data point n includes the following variables:

• Dn ∈ {0, 1} = Di�culty of the class (easy, 0, or di�cult, 1)

• In ∈ {0, 1} = Intelligence of the student (average, 0, or high, 1)

• Gn ∈ {0, 1} = Grade of the student in the class (low, 0, or high, 1)

• Sn ∈ {0, 1} = SAT score of the student (low, 0, or high, 1)

• Ln ∈ {0, 1} = Letter of recommendation obtained by the student from the
professor teaching the class (negative, 0, or positive, 1).

a. How many parameters de�ne the joint distribution p(D, I,G, S, L) if we don't
impose any structure on it?

b. Propose conditional independence assumptions to simplify the model and
specify the corresponding Bayesian network and the corresponding factorization
of the joint distribution.

c. How many parameters does your proposed model have?
d. Read the section in the notes about assessing conditional independence

properties in Bayesian networks (not covered in class). Study the d-separation
algorithm. This algorithm allows to determine if any given conditional indepen-
dence property holds in the model. More precisely, the output of this algorithm
is one of the following: 1) Yes, the given conditional independence relationship
holds; 2) No, the conditional independence does not hold in general, although
it may hold for some speci�c choice of the conditional probabilities. Using d-
separation, check if the following conditional independence assumptions hold in
your proposed model:

• Dn independent of In?

• Dn independent of In conditioned on Gn?

• Ln independent of Sn?

• Ln independent of Sn given Gn?

For each relationship, explain if you model yields interpretable results. In other
words, do the outcomes of d-separation comply with your intuition? If you are
unsure about point b, you can use the following factorization p(D, I,G, S, L) =
p(D)p(I)p(G|D, I)p(S|I)p(L|G).

2. Consider a naive Bayes model

p(t,x|θ) = Bern(t|p)
D∏
i=1

Bern(xi|µt),

where the parameters are θ = (p, µ1, µ0).

24



a. Draw the directed acyclic graph that describes the corresponding Bayesian
network assuming N i.i.d. data points (tn,xn).

b. Write the equations needed to compute ML estimate of θ for fully observed
data.

c. For a given estimate θ̂, evaluate the optimum prediction t given a new
data point x based on the learnt distribution p(t, x|θ̂).

d. Use the function [x,t,xtest,ttest]=datagenhw11(N); to generate a training
set of N data points (x,t) and a N test points (xtest,ttest). Note that D = 10.
Fix N = 1000. Evaluate the ML estimate in MATLAB using the training set.

e. Evaluate the training and test errors for the optimal prediction derived
at step c. given the ML estimate at step c.

f. Repeat for di�erent values of N and comment.

3. Consider the model

z ∼ Bern(0.5)

x|z ∼ Bern(0.8z)

y|z ∼ Bern(1− 0.8z)

and compute p(y = 1|x = 0).

4. Consider the Hidden Markov Model

X1 → X2 → X3

↓ ↓ ↓
Y1 Y2 Y3

Using d-separation, determine if the following independence relationships hold:
(a) Y1 independent of Y2; (b) Y1 independent of Y2 conditioned on X2; (c) Y1
independent of Y2 conditioned on X3.

References

[1] Bishop, Pattern recognition and Machine Learning. Springer, 2006.

[2] D. Koller and N. Friedman, Probabilistic Graphical Models: Principles and

Techniques. MIT press, 2009.
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7. Approximate Inference

• We have seen that Bayesian inference, that is, the calculation of the distribution p(z|x) of unobserved variable z given the
observation x plays a key role in learning (EM, Bayesian approach) and in prediction.

• We have also seen that computing p(z|x) requires the solution of a sum-product inference task

p(x) =
∑
z

p(x, z), (1)

where p(x, z) is a factorized joint probability distribution.

• The complexity is exponential in the treewidth of the corresponding Markov �eld model.

• What to do when this complexity is excessive? We can resort to approximate inference via

� Monte Carlo methods

� Variational inference.

1 Monte Carlo methods: Importance Sampling

• The general idea behind Monte Carlo methods is replacing the ensemble average in (1) with an empirical average.

• We have:
p(x) =

∑
z

p(z)p(x|z) = Ez∼p(z)[p(x|z)]. (2)

• If it is easy to generate zm ∼
i.i.d.

p(z),m = 1, . . . ,M , then we can compute

p(x) ≈ 1

M

M∑
m=1

p(x|zm) −−−−→
M→∞

p(x). (3)

• However, this is generally not easy. One may instead resort to a simpli�ed distribution q(z), typically having convenient
factorization properties.

• We have:

p(x) =
∑
z

p(z)p(x|z)q(z)
q(z)

=
∑
z

q(z)
p(z)

q(z)
p(x|z)

= Ez∼q(z)

[p(z)
q(z)

p(x|z)
]
.

(4)

• Hence, we can use the Importance Sampling estimate

zm ∼
i.i.d.

q(z), m = 1, . . . ,M,

p(x) =
1

M

M∑
m=1

p(zm)

q(zm)
p(x|zm) −−−−→

M→∞
p(x).

(5)
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• The variance of this estimate depends on how well q(z) approximates p(z).

• We can also select q(z) as a function of x and hence we can write q(z|x).

• The approach requires to be able to compute p(z), which may not be easy.

• Importance Sampling is more often used in combination with variational inference, to be discussed next.

2 Variational Inference

• The general idea behind Variational inference is replacing the ensemble average in (1) with an optimization.

• From Chapter 5, we know that

lnp(x) = ln
∑
z

p(x, z) ≥ L(q), (6)

for any q(z), possibly dependent on x, where L(q) is the ELBO. Note that we have suppressed the dependence on the
parameters Q that are �xed.

• Recall that
L(q) = Ez∼q(z)[lnp(x, z)] +H(q)

= −KL(q(z)||p(x, z)),
(7)

and that (6) holds with equality if q(z) = p(z|x).

• It follows that we have the equality
lnp(x) = max

q(z)
L(q), (8)

which yields as a solution q(z) = p(x|z).

• Solving this problem directly is generally prohibitive.

• The key idea of variational inference is to choose a parametric form for q(z) that enables the solution of problem (8):

lnp(x) = max
q(z)∈Q

L(q)

= min
q(z)∈Q

KL(q(z)||p(x, z)),
(9)

where Q is a speci�c subset of distribution.

• The optimization above is known as I-projection.

• The result of the optimization depends on x and is known as variational posterior or inference network.

• The variational posterior directly provides an estimate of p(z|x).

• Example (I-projection vs. M-projection):

� Fix p(z) to be bi-modal Gaussian (blue lines in Fig. 1).

� q(z) is a conventional Gaussian with mean µ and covariance Σ to be designed.

� I-projection:

∗ minimize
µ,Σ

KL(q||p);

∗ Tends to be mode-seeking and exclusive, since q(z) determines the support in which p(z) and q(z) are compared
(zero-forcing);

∗ Tends to be more accurate where q(x) is larger;

∗ See Fig. 1 and Fig. 2.
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Figure 1: Blue contour lines de�ne a mixture of Gaussian distribution p and red contour lines correspond to distribution obtained
q via an I-projection of p onto the space of bivariate Gaussian distributions (from [3]).

Figure 2: Blue contour lines de�ne a mixture of Gaussian distribution p and red contour lines correspond to distribution obtained
q via an I-projection of p onto the space of bivariate Gaussian distributions (from [3]).

� M-projection:

∗ minimize
µ,Σ

KL(p||q);

∗ Tends to avoid having q(z) = 0 when p(z) 6= 0, and hence it tends to span the support of p(z) (inclusive or zero
avoiding);

∗ The output is shown in Fig. 3;

∗ It can be shown that the solution is µ = E[x] and Σ = E[(x− µ)(x− µ)T ] (moment matching);

∗ In the Appendix, it is shown that the M-projection with q(z) from the exponential family q(z) = 1
Z exp(η

Tu(z))
yields natural parameters η∗ such that

Ep[u(z)] = Eqη∗ [u(z)]. (10)
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Figure 3: Blue contour lines de�ne a mixture of Gaussian distribution p and red contour lines correspond to distribution obtained
q via an M-projection of p onto the space of bivariate Gaussian distributions (from [3]).

• Remark: I-projection and M-projection can be both generalized by using the notion of α-divergence as discussed in the
Appendix (see [4]).

2.1 Mean �eld variational inference

• An important example of variational inference methods is mean �eld, which assumes the factorization q(z) =
∏
j q(zj).

Example: See Fig. 4 and Fig. 5.

Figure 4: Green contour lines correspond to a correlated Gaussian distribution p(z1, z2), and red contour lines represent the mean
�eld approximation where q(zi) = N (zi|µi, σ2

i ), i = 1, 2 (from [3]).
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Figure 5: Green contour lines correspond to a correlated Gaussian distribution p(z1, z2), and red contour lines represent M-
projection of p(z1, z2) into the space Q = {p(z1, z2) =

∏
iN (zi|µi, σ2

i )} (from [3]).

• The mean �eld method performs the I-projection for one zj at a time, �xing the factors {q(zj)} for i 6= j. This corresponds
to tackling the I-projection problem using coordinate descent.

• This yields the problem

minimize
qj

KL
(∏

i

qi(zi)||p(x, z)
)

= −Ez∼q(z)[lnp(x, z)]−H(q)

= −Ezj∼q(zj)[Ezi6=j∼
∏

i6=j p(zj)
[lnp(x, z)]︸ ︷︷ ︸]−

∑
i

H(q(zi))

, Ei 6=j [lnp(x, z)]

= −Ezj∼q(zj)[lnexp(Ei 6=j [lnp(x, z)])]−
∑
i

H(q(zi)).

(11)

• Neglecting constants independent of q(zj), this problem becomes:

minimize
qj

− Ezj∼q(zj)[lnexp(Ei 6=j [lnp(x, z)])]−H(q(zj))

= KL(q(zj)||exp(Ei 6=j [lnp(x, z)])),
(12)

whose solution is

q(zj) =
exp(Ei 6=j [lnp(x, z)])∑
zj
exp(Ei6=j [lnp(x, z)])

. (13)

• The equation (13) can be solved by cycling through the factors q(zj) or choosing them randomly.

• Convergence to a stationary point is guaranteed.

• If p(x, z) = 1
Z

∏
c ψc(xc, zc) according to a given probabilistic graphical model, the mean �eld equation can be written as

q(zj) ∝ exp(Ei 6=j [
∑
c

lnψc(xc, zc)])

∝ exp(
∑

c:zj∈zc

Ei6=j [lnψc(xc, zc)]).
(14)

• To compute q(zj) we hence need only the q(zj) factors for the variables zi that belong to the same cliques as zj . This
enables implementations by means of local message passing.

• Example (Ising model):
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� p(x, z) = 1
Z exp(−E(x, z))

� E(x, z) = −
∑
{i,j} zizj − σ

∑
i xizi

Figure 6: Markov random �eld for the Ising model.

� Mean �eld assumes q(z) =
∏
i q(zi) and obtain

q(zj) ∝exp
(∑
{i,j}

Ei[zizj ] + σxjzj

)
=exp

(
zj

(∑
{i,j}

µi + σxj

))
,

(15)

and hence

q(zj = 1) = Eq[zj ] =
1

1 + exp(−2(
∑
{i,j} µi + σxj))

, (16)

where µi = q(zi = 1)− q(zi = −1) = 2q(zi = 1)− 1.

� Final estimate:

q(zj = 1)
zj=1

≷
zj=−1

1

2
. (17)

� See Fig. 7.

Figure 7: Denoising via the mean �eld method with di�erent values of σ (@Salimbeni 2015).
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• Mean �eld assumes a fully factorized distribution q(zj). It is possible to develop methods that are based on more general
forms for q(z) that captures some of the real independencies in p(x|z). This can be done by choosing a probabilistic
graphical model for q(z) and using the corresponding factorization

q(z) =
1

Z

∏
c′

φc′(zc′). (18)

• There is also a class of methods based on �locally consistent� q(z) that yield methods such as loopy belief propagation.

• We refer to [2] for further discussion.

2.2 Stochastic gradient-based variational inference

• The mean �eld method made speci�c assumptions about the factorization of the variational distribution q(z) and no
assumption about the parametric form of q(z). Alternatively, it is possible to develop methods that learn a generic
distribution q(z|θ) parametrized by vector θ under the following basic assumptions:

� It is easy to draw samples z ∼q(z|θ)
� We can compute the gradient ∇θlnq(z|θ)

• The methods can scale to large data sets and are based on stochastic gradient.

• The key observation is that the gradient of the KL divergence can be written as

∇θKL(q(z|θ)||p(x, z)) = Ez∼q(z|θ) [∇θlnp(z|θ)g(x, z|θ) +∇θg(x, z|θ)] , (19)

where
g(x, z|θ) = lnq(z|θ)− lnp(x, z) (20)

and we used the equality ∇θlnq(z|θ) = ∇θq(z|θ)/q(z|θ) (see [1] for details).

• The expectation above can be computed using Monte Carlo methods by drawing one or more samples z ∼q(z|θ). The
resulting gradients are also known as likelihood ratio or REINFORCE gradients. In practice, these gradients have high
variance and control variates need to be introduced [1].

• Alternatively, the reparametrization trick method can be used to compute the gradient above. This approaches requires
lnp(x, z) with respect to z [1].

• Amortized variational inference: While the approach discussed so far �ts a di�erent q(z|θ) for each data point, it is faster
to learn a single parameter θ for all x. This can be done by adopting a model q(z|x, θ) with a single θ for all x. Stochastic
gradient methods can be devised in a manner similar to the discussion above [1].

• It is possible to choose parametric models such as (18) that factorize in speci�c ways that encode additional information.

2.3 Variational EM

• When variational inference via M-projection is used for the E step of the EM algorithm, the resulting scheme is known as
variational EM.

• An example is the variational autoencoder, which is a variational EM method based on amortized variational inference.

• When the M-projection is used instead, we obtain the wake-sleep algorithm.

3 Problems

1. Load this dataset in MATLAB. It contains a single noisy binary image x.
a. Show this image using imagesc.
b. Implement the mean �eld scheme based on the Ising model. Please note that you need to �rst convert the image using the

alphabet {-1,1}. You can initialize the µ values to equal the image x itself (after conversion to {-1,1} alphabet) and you can set
σ = 0.1. Plot the estimated image after each iteration. To estimate the image, select 1 if the corresponding probability q(zj) is
larger than 1/2 and 0 otherwise.

c. What happens if you increase σ? Justify your observation.
d. What happens if you make σ negative? Justify your observation.
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Appendix: M-projection with exponential family

• Consider the problem minimize KL(p||qη), where q(x|η) = 1
Z(η)exp(η

Tu(x)).

• If there exists a value of η∗ such that
Ep(x)[u(x)] = Eq(x|η∗)[u(x)], (21)

then q(x|η∗) is the M-projection.

• Proof: We have

KL(p||qη) = −H(p)−
∫
p(x)(−lnZ(η) + ηTu(x))dx

= −H(p) + lnZ(η)− ηTEp[u(x)].

(22)

Hence,
KL(p||qη)−KL(p||qη∗)

= ln
Z(η)

Z(η∗)
− (η − η∗)TEp[u(x)]

= ln
Z(η)

Z(η∗)
− (η − η∗)TEqη∗ [u(x)]

= Eqη∗

[
ln
qη∗(x)

qη(x)

]
= KL(qη∗ ||qη) ≥ 0.

(23)

4 Appendix: Generalized Projections using α-Divergence

• The α-divergence is de�ned as [4]

Dα(p||q) =
∑
x αp(x) + (1− α)q(x)− p(x)αq(x)1−α

α(1− α)
, (24)

where p and q need not be normalized.

• It can be proved that, as α→ 0, we obtain Dα(p||q) = KL(q||p), and, when α→ 1, we have Dα(p||q) = KL(p||q).

• Performing projections minq∈QDα(p||q) with α ≤ 0 and decreasing values of α yields an increasingly mode-seeking, or
exclusive, solution; while increasing values of α ≥ 1 yield increasingly inclusive and zero avoiding solutions. See Fig. 1 in
[4] for an example.

• For all α 6= 0, it can be proved that the stationary point of the projection minq∈QDα(p||q) coincide with those of the
projection minq∈QKL(p||pαq1−α).
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