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C
loud radio access networks (C-RANs) provide a novel 
architecture for next-generation wireless cellular 
systems whereby the baseband processing is 
migrated from the base stations (BSs) to a 
control unit (CU) in the “cloud.” The 

BSs, which operate as radio units (RUs), are 
connected via fronthaul links to the man-
aging CU. The fronthaul links carry 
information about the baseband sig-
nals—in the uplink from the RUs 
to the CU and vice versa in the 
downlink—in the form of quan-
tized in-phase and quadrature 
(IQ) samples. Due to the large 
bit rate produced by the 
quantized IQ signals, com-
pression prior to transmis-
sion on the fronthaul links is 
deemed to be of critical 
importance and is receiving 
considerable attention. This 
article provides a survey of the 
work in this area with emphasis 
on advanced signal processing 
solutions based on network informa-
tion theoretic concepts. Analysis and 
numerical results illustrate the consider-
able performance gains to be expected for 
standard cellular models. 

INTRODUCTION
C-RANs provide a promising architecture for next-generation 
wireless cellular systems that is based on the separation of 

distributed RUs and centralized information processing nodes 
[1], [2]. Unlike current cellular systems, in C-RANs, the func-
tionalities needed to process the baseband complex or IQ enve-

lopes of the radio signals received/transmitted by the RUs 
are not implemented at the RUs; instead, they are 

carried out remotely within the “cloud” of 
the core network. 

To this end, the baseband signals are 
transferred between the cloud and 

the RUs on a network of fronthaul 
links. As an example, Figure 1 
illustrates the uplink of a C-RAN 
in a heterogeneous cellular 
network with RUs consisting 
of macro-BSs and pico-BSs 
and a multihop fronthaul 
topology between the RUs 
and the cloud (see, e.g., [3]). 
Note that on the used nomen-
clature, fronthaul links are 

often distinguished from back-
haul links in that they have 

more stringent requirements on 
latency and synchronization to 

enable baseband processing in the 
cloud [3].
The centralization of information pro-

cessing made possible by C-RANs enables 
interference management at the geographical 

scale covered by the distributed RUs (see, e.g., [4]). In 
fact, C-RANs provide an effective means to implement network 
multiple-input, multiple-output (MIMO) [5], [6] in heteroge-
neous wireless networks via the joint processing of the base-
band signals at a CU, also known as baseband unit, in the cloud. 

As discussed, the key feature of C-RANs is the use of a 
fronthaul network for the transfer of baseband information to 
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and from the cloud. Current solutions, which are the object of 
various standardization efforts [3], prescribe the use of conven-
tional scalar quantizers for this purpose. However, with this 
approach, fronthaul capacity limitations are known to impose a 
formidable bottleneck to the system performance.

Example  
Consider an RU consisting of an long-term evolution (LTE) 
macro-BS that serves three cell sectors with five carriers and two 
receive antennas. As summarized in [7], it can be calculated that, 
using standard scalar quantization techniques with 15 bits/base-
band IQ sample, the throughput required on the fronthaul links 
exceeds even the 10 Gbit/s provided by standard fiber optics links. 
The problem is even more pronounced for smaller RUs, e.g., pico-
BSs or home-BSs, that, while operating with fewer antennas, 
channels, and sectors, are typically connected to fronthaul links 
of lower capacity, such as DSL-based wireline or millimeter- 
wave channels.� ■

To alleviate the performance bottleneck identified above, 
recent efforts have targeted the design of more advanced fron-
thaul compression schemes. These schemes are based on point-
to-point compression algorithms (see, e.g., [1], [7], and [8]). 
However, as is well known from network information theory, 
point-to-point techniques fail to achieve the optimal perfor-
mance in the context of even the simplest networks, such as 
star, or single-hop, topologies [9]. 

Motivated by the previous discussion, this article aims at 
providing a survey of the work in the area of fronthaul compres-
sion with emphasis on advanced signal processing solutions 
based on network information theoretic concepts. Specifically, 
the main ideas that are brought to bear from network informa-
tion theory are: 

1)	Multiterminal compression: In contrast to point-to-point 
compression, multiterminal compression allows for the joint 

processing of the compressed IQ samples of different RUs at 
the CU. Specifically, in the uplink, joint decompression 
enables the CU to leverage the correlation among the signals 
received by neighboring RUs. The key technique that makes 
this possible is distributed compression or Wyner–Ziv coding 
[10]. Instead, in the downlink, joint compression allows the 
CU to correlate the quantization noises of the baseband sig-
nals transmitted by neighboring RUs. This can be done via 
the information-theoretic technique of multivariate com-
pression [9, Ch. 9]. 
2)	Structured coding: Point-to-point and multiterminal com-
pression employ unstructured quantization codebooks that 
are designed independently of the channel codebooks used for 
transmission on the wireless channels. As a conceptually dif-
ferent alternative, structured codes that are matched to the 
channel codebooks may instead be used. This leads to new 
strategies for C-RANs based on the framework of compute-
and-forward [11]. 
In the following, we review point-to-point/multiterminal fron-

thaul compression and structured coding for the uplink and 
downlink of a C-RAN. Throughout, we provide numerical results 
to illustrate the key concepts. We also provide simulation results 
over standard cellular models to substantiate the gains that are 
expected from the implementation of multiterminal fronthaul 
compression in real-world systems. See “Information Theoretic 
Measures” for a brief review of the standard information theoretic 
notations used in the article. 

UPLINK

SYSTEM MODEL
In a C-RAN, the RUs are partitioned into clusters, such that all 
RUs within a cluster are managed by a single CU. Within the 
area covered by a given cluster, there are NU  multiantenna 
user equipment (UE) and NR  multiantenna RUs. In the 
uplink, the UE transmits wirelessly to the RUs. In turn, the 
RUs compress the received baseband signals and transmit the 
compressed signals on the fronthaul network toward the man-
aging CU. 

[Fig1]  The uplink of a C-RAN with a multihop fronthaul topology 
between the RUs and the cloud, which contains the CU. The solid 
lines represent the fronthaul links.
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INFORMATION THEORETIC MEASURES
Throughout the article, we adopt standard information-theo-
retic definitions for the mutual information ( ; ),I X Y  conditional 
mutual information ( ; | ),I X Y Z  differential entropy ( )h X  and 
conditional differential entropy ( | )h X Y  [9]. For jointly complex 
Gaussian variables ( , )~ ( , ),0x y CN ,x yX  we define the condi-
tional covariance matrix as [ | ]xx yE|x yX = =@  x x,yX X-

,,
1

y x yX X@-  where [ ],xxExX = @  [ ],yyEyX = @  ,x yX =  [ ]xyE @  and 
the operation (·) @  denotes the Hermitian transpose of a matrix 
or vector. Then, for joint complex Gaussian vectors ,x  y , and ,z  
the quantities ( ; )I x y  and ( ; | )I x y z  are computed as ( ; )I x y =  
( ) ( | ) ( ) ( )logdet logdeth hx x y |x x yX X- = -  and ( ; | )I x y z =

( ),logdet X( )logdet X -=( | , )x y zh( | )h x z | | ,x z x y z-  respectively. 
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The fronthaul network connecting the RUs to the CU may 
have a single-hop topology, in which all RUs are directly con-
nected to the CU or, more generally, a multihop topology. We 
first concentrate on the single-hop topology and then discuss 
the multihop case. An example of a single-hop C-RAN is the net-
work shown in Figure 1 when restricted to RU 2 and RU 4. 

Assuming flat-fading channels, the discrete-time pulse-
matched baseband or IQ signal yi

ul  received by the ith RU at any 
given time sample can be written using the standard linear model 

	 ,y H x zi i i
ul ul ul ul= + 	 (1)

where Hi
ul  represents the channel matrix from all the UE in the 

cluster toward the ith RU; xul  is the vector of IQ symbols trans-
mitted by all the UE in the cluster; and ~ ( , )0z CNi

ul
zi
ulX  models 

thermal noise and the interference arising from the other clus-
ters. The signals xul  transmitted by the UE are assumed to be 
jointly complex Gaussian and independent across the UE. This 
corresponds to assuming standard point-to-point channel codes 
at the UE (see, e.g., [9, Ch. 3]). The channel matrices are assumed 
to be fixed and to remain constant during a coding block, which 
is of size n  samples. Note that in (1) and in the following, we do 
not denote explicitly the dependence of the signals on the sample 
index to simplify the notation. 

In the single-hop topology under study, each RU i  is con-
nected to the CU via a fronthaul link of capacity Ci  bits/s/Hz. The 
fronthaul capacity is normalized to the bandwidth of the uplink 
channel. This implies that for any uplink coding block of n  sym-
bols, nCi  bits can be transmitted on the ith fronthaul link. 

Remark 1
Model (1), which is typically used in related literature, assumes 
implicitly that the RUs perform time and frequency synchroniza-
tion locally. In fact, signal (1) is free of frequency drift and is 

sampled at the baud rate. It is noted that, if time synchronization 
is not carried out at the RUs, then the RUs need to oversample 
the baseband signals prior to transferring them on the fronthaul 
links. This is, for instance, prescribed in the CPRI standard [3].

Remark 2
Following Remark 1, while model (1) assumes that time and fre-
quency synchronization is done locally, the optimal allocation of 
layer 1 functionalities, such as synchronization and channel esti-
mation, between the RUs and the CU is a subject of ongoing 
investigations (see, e.g., [12] for a related discussion).

POINT-TO-POINT FRONTHAUL COMPRESSION
In baseline C-RAN systems, each ith  RU uses conventional 
point-to-point compression strategies to process the n  samples 
of the received IQ signal ,yi

ul  as illustrated in Figure 2. 

Point-to-point compression
As a result of compression, each ith  RU produces a binary 
string of (at most) nCi  bits, which allows the corresponding 
decompressor at the CU to identify the quantized signal within 
the quantization codebook. The quantized signal consists of n  
samples ,yi

ult  and is selected by the ith  RU from a quantization 
codebook of 2nCi  codewords (see, e.g., [13]). The example of a 
scalar quantizer n 1=^ h at each RU is illustrated in Figure 2 for 
either the I or the Q component of the IQ sample. 

Key information-theoretic results
A standard way of modeling the relationship between the 
received baseband signal yi

ul  and its compressed version yi
ult  at 

RU i  is to follow information-theoretic considerations (see, e.g., 
[9, Ch. 3]) and adopt the Gaussian “test channel”

	 ,y y qi i i
ul ul ul= +t 	 (2)
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[Fig2]  Point-to-point fronthaul compression for the uplink of C-RANs.
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where the quantization noise qi
ul  is independent of the signal yi

ul  
and distributed as ~ ( , ) .0q CNi i

ul ulX  The quantization noise sta-
tistics are thus defined by the covariance matrix .i

ulX  Connect-
ing the information-theoretic viewpoint with classical vector 
quantization, the covariance matrix i

ulX  can be thought of defin-
ing the shape of the quantization regions of the compressor.

Information theory provides analytical conditions that relate 
the quantization noise statistics i

ulX  to the size of the quantiza-
tion codebooks, and hence to the fronthaul capacity ,Ci  needed 
to satisfy the condition (2). More precisely, under these condi-
tions (and for n  large enough), the theory guarantees that a 
quantization codebook exists that contains a codeword of n  sam-
ples yi

ult  for any input sequence of n  samples ,yi
ul  such that the 

joint empirical statistic of the two sequences is “close” to the joint 
distribution implied by (2) [9, Ch. 3]. 

Specifically, a standard result in information theory states 
that, if the fronthaul capacity Ci  satisfies the condition 

	 ( ; ) ,I Cy yi i i
ul ul #t 	 (3)

where the mutual information is calculated using (2), then it is 
possible to design a compression strategy that realizes the given 
quantization error covariance matrix i

ulX  in the sense discussed 
above (see, e.g., [9, Ch. 3]). At an intuitive level, condition (3) 
says that a “smaller” covariance matrix ,i

ulX  and hence a larger 
mutual information ( ; ),I y yi i

ul ult  calls for a larger required 
fronthaul capacity .Ci  

System design
Assuming that the condition (3) is satisfied for all RUs, the 
quantized IQ signals , ,y yN1

ul ul
Rft t  are successfully recovered at 

the CU. The CU then performs joint decoding of the messages 
sent by all UE, which are encoded in the signals .xul  As a result, 
the uplink sum-rate 

	 ( ; , , ),R I x y yN1sum
ul ul ul ul

Rf= t t 	 (4)

where the mutual information can be calculated from (1) and 
(2), is achievable (see, e.g., [9, Ch. 4]). Note that individual rates 
could also be similarly calculated using standard results on the 
capacity region of multiple access channels, and so could rates 
achievable with suboptimal decoding strategies such as treating 
interference as noise (see [9, Ch. 4]). 

The sum-rate (4) depends on the compression strategies used 
by the RUs through the covariance matrices ,i

ulX  , ..., .i N1 R=  
The sum-rate can then be maximized with respect to these matri-
ces to identify the optimal compression strategies to be used at 
the RUs. The nonconvex problem of maximizing the sum-rate 
under the fronthaul constraints (3), for , ..., ,i N1 R=  over the 
matrices ,i

ulX  , ..., ,i N1 R=  falls in the category of difference-of-
convex problems and can be tackled by using the so-called 
majorization minimization (MM) algorithm [14]. 

Remark 3 
To compress its received signal ,yi

ul  each RU i  must only be 
informed about the quantization codebook to be used. 

Furthermore, the achievability of the sum-rate (4) hinges on the 
assumption that the CU is aware of the channel matrices of all the 
active UE. Each ith  RU may estimate the channel matrix Hi

ul  
based on standard uplink training and then forward the estimated 
matrix to the CU on the fronthaul links. The CU can then optimize 
the compression strategies as discussed above and inform accord-
ingly the RUs. We refer to [15] and [16] for an analysis of the over-
head associated with the transfer of channel state information on 
the fronthaul links for ergodic fading channels.

DISTRIBUTED FRONTHAUL COMPRESSION
As seen in Figure 2, with standard point-to-point compression, 
compression and decompression across different RUs take place 
in parallel. This separate processing across the RUs neglects the 
key fact that the baseband signals yi

ul  in (1) are correlated 
across the RU index ,i  since they are noisy observations of the 
same transmitted signals .xul  Based on this fact, the joint pro-
cessing of the signals received on the fronthaul links at the CU 
via distributed compression is expected to be advantageous, as 
first proposed in [17]. 

Distributed compression
To explain distributed compression, here we concentrate on the 
practical implementation that uses sequential decompression 
(see [9, Ch. 10] and also [18] and [19]). To this end, we fix an 
ordering r  on the RU indices { , , } .N1 Rf  As shown in Figure 3, 
the CU first decompresses the signal ,y ( )1

ul
rt  then ,y ( )2

ul
rt  and so on 

until .y ( )N
ul

Rrt  Therefore, when decompressing ,y ( )i
ul
rt  the CU has 

already retrieved the signals { ,y ( )1
ul
rt  },y ( )i 1

ulf r -t  which are corre-
lated with the signal of interest .y ( )i

ul
rt

Wyner–Ziv compression offers the information-theoretically 
optimal approach to leverage side information available at the 
decompressor to improve the quality of the description .y ( )i

ul
rt  

Specifically, Wyner–Ziv compression enables the compressor to 
use a finer quantizer and hence to obtain a better description 

,y ( )i
ul
rt  as compared to conventional point-to-point compression, 

for the same fronthaul capacity .C ( )ir  
The approach works as follows. Since a finer quantizer has 

more codewords than the 2nC ( )ir  binary strings that can be sup-
ported on the fronthaul link, Wyner–Ziv compression associates 
the same binary string of nC ( )ir  bits to a subset of codewords. 
This is in contrast to point-to-point compression in which a dis-
tinct binary string is associated with each codeword in the 
quantization codebook. This subset is known as bin, and the 
binning step can be, in practice, realized by using a coset of lin-
ear codes or hashing (see, e.g., [10]). Therefore, the complexity 
of compression is not significantly increased as compared to the 
point-to-point approach. An example is shown in Figure 3, 
where RUs ( )ir  with i 12  use a scalar quantizer n 1=^ h that 
assigns the same quantization level to multiple regions of the 
real line (for the I and Q components). 

When using Wyner–Ziv compression, the decompressor is 
thus faced with the problem of having to distinguish among all 
codewords y ( )i

ul
rt  that belong to the bin indexed by the binary 

string received on the fronthaul link. As long as the bins are not 



	 IEEE SIGNAL PROCESSING MAGAZINE  [73] no vember 2014

too large, this can be done by leveraging the available correlated 
side information { ,y ( )1

ul
rt , } .y ( )i 1

ulf r -t  In fact, because of their sta-
tistical dependence, the real codeword y ( )i

ul
rt  is expected to be 

“closer” to the side information sequences. This detection step 
can be in practice performed by using channel decoding algo-
rithms such as message passing or trellis search (see, e.g., [10]). 

Key information-theoretic results
A classical information-theoretic result states that, using 
Wyner–Ziv compression, a given quantization error matrix 

( )i
ulXr  in (2) is attainable if the fronthaul capacity C ( )ir  satisfies 

the inequality 

	 ( ; | , , ) .I Cy y y y( ) ( ) ( ) ( ) ( )i i i i1 1
ul ul ul ulf #r r r r r-t t t 	 (5)

It is observed that, by standard properties of the mutual informa-
tion [9, Ch. 2], the constraint (5) imposed on the quantization 
covariances ( )i

ulXr  is weaker than the constraint (3) corresponding 
to point-to-point compression. Specifically, the gap between the 
two mutual information quantities on the left-hand sides of (3) 
and (5) increases as the correlation between the useful signal y ( )i

ul
rt  

and the side information { ,y ( )1
ul
rt , }y ( )i 1

ulf r -t  grows and vanishes if 
signal and side information are independent. 

System design
We are now interested in maximizing the achievable sum-rate 
(4) with respect to the quantization noise covariances ,i

ulX  for 
, ...,i N1 R=  under the fronthaul constraints (5) imposed by 

distributed compression for a fixed decompression order .r  
This order can be also optimized upon, as further discussed in 
Remark 4. 

The optimization problem at hand is generally challenging. 
In [18, Sec. III], a (suboptimal) block-coordinate optimization 

approach was proposed that leverages a key result in [20]. 
Accordingly, one optimizes the covariance matrices following 
the same order r  that is employed for decompression. In par-
ticular, at the ith  step, for fixed (already optimized upon) 
covariances , , ,( ) ( )i1 1

ul ulfX Xr r -  the covariance ( )i
ulXr  is obtained 

by solving the following problem: 

	 ( ; | , , )Imaximize x y y y( ) ( ) ( )i i1 1
0

ul ul ul ul

( )i
ul

f
*

r r r
X

-

r

t t t

	 ( ; | , , ) .I Cs.t. y y y y( ) ( ) ( ) ( ) ( )i i i i1 1
ul ul ul ulf #r r r r r-t t t 	 (6)

In (6), by the chain rule of mutual information (see [9, Ch. 2]), 
the objective function measures the sum-rate increase obtained 
by transmitting the signal y ( )i

ul
rt  to the CU that already has the 

knowledge of the signals { , , } .y y( ) ( )i1 1
ul ulfr r -t t

It was shown in [20] that an optimal covariance ( )i
ulXr  of this 

problem is given as 

	 ,U D U( ) ( ) ( ) ( )i i i i
ulX = @
r r r r 	 (7)

where U ( )ir  is a unitary matrix whose columns are the 
orthonormal eigenvectors of the covariance matrix of the 
signal y ( )i

ul
r  conditioned on the signals { , , },y y( ) ( )i1 1

ul ulfr r -t t  and 
D ( )ir  is a diagonal matrix whose diagonal elements are 
obtained following a procedure similar to conventional 
reverse waterfilling [20, Th. 1]. 

The compression strategy described by the test channel (2) 
with the derived covariance matrix ( )i

ulXr  in (7) can be imple-
mented at the RU ( )ir  using classical transform coding [13] as 
discussed in [20, Sec. III-A]. Accordingly, the RU ( )ir  first 
applies the linear preprocessing matrix U D( ) ( )

/
i i

1 2@
r r

-  to the 
received signal vector y ( )i

ul
r  and then independently compresses 

the resulting signal streams using a Gaussian test channel with 

[Fig3]  Multiterminal fronthaul compression for the uplink of C-RANs.
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noise of unit variance. It can be proved that multiplication by 
the unitary transform ,U ( )i

@
r  also referred to as conditional Kar-

hunen–Loeve transform (KLT) [21], decorrelates the received 
signal streams when conditioned on the side information sig-
nals { , , } .y y( ) ( )i1 1

ul ulfr r -t t

Remark 4 
The decompression order r  generally affects the achievable 
performance and should be optimized upon. A choice that is 
generally sensible, and close to optimal, is that of decompress-
ing first the signals coming from macro-BSs and then those 
from pico- or femto-BSs in their vicinity. The rationale for this 
approach is that macro-BSs tend to have a larger fronthaul 
capacity and hence their decompressed signals provide rele-
vant side information for the signals coming from smaller 
cells, which are typically connected with lower capacity fron-
thaul links.

Remark 5  
In the previous discussion, it was assumed that the CU first 
decompresses the signals and then decodes the messages of the 
UE based on the decompressed signals. The performance may 
be improved by performing joint decompression and decoding 
at the cost of an increased computational complexity [17].

COMPUTE-AND-FORWARD
In the schemes discussed so far, the quantization codebooks 
used by the RUs are designed separately from the channel code-
books used by the UE for transmission in the uplink. A concep-
tually different approach was instead proposed in [11] based on 
the principle of compute-and-forward. Accordingly, the same 
codebook is used both for channel encoding at all the UE and 
for quantization at the RUs. 

The approach proposed in [11] selects a (nested) lattice 
code. Lattice codes have the property that the weighted-sum—
more precisely the modulo-sum with respect to the coarse lat-
tice—of two codewords is also a codeword, as long as the 
weights are integer numbers. In the scheme of [11], each RU 
then decodes an appropriate (modulo-)sum, with integer 
weights, of the codewords transmitted by the UE. The bit 
stream sent on the fronthaul link identifies the decoded code-
word within the lattice code. The idea is that, upon receiving a 
sufficient number of linear combinations of codewords from 
the RUs, the CU can invert the resulting linear system and 
recover the transmitted codewords. 

The key potential advantage of the compute-and-forward 
strategy is that no quantization noise is introduced by the 
CU due to the fact that the channel and quantization code-
books are matched. On the flip side, the baseband signal (1) 
received at each RU is a sum with noninteger weights of the 
codewords transmitted by the UE. Therefore, the difference 
between the decoded integer combination of codewords and 
the actual noninteger combination of codewords resulting 
from the channel affects decoding at each RU as an additional 
noise term. 

NUMERICAL EXAMPLE
We now discuss the performance of point-to-point compression 
and of more advanced strategies in the context of a specific exam-
ple. We focus on a standard three-cell circulant Wyner model 
(see, e.g., [6]), where each cell contains a single-antenna UE and 
a single-antenna RU, and intercell interference takes place only 
between adjacent cells (the first and third cell are considered to 
be adjacent). This implies that the received signal (1) is given as 

,y x gx gx z[ ] [ ]i i i i i1 1
ul ul ul ul ul

3 3= + + +- +  where x j
ul  is the signal sent 

by the UE in cell j  and [·] 3  represents the modulo-3 operation. 
The intercell channel gain is equal to . .g 0 4=  Moreover, every 
RU has the same fronthaul capacity of 3  bits/s/Hz. 

Figure 4 plots the achievable per-cell sum-rate for point-to-
point compression, distributed compression, and compute-and-
forward versus the transmitted UE power ,P  which can be 
taken as a measure of signal-to-noise ratio (SNR). For reference, 
we also show the per-cell sum-rate achievable with single-cell 
processing, whereby each RU decodes the signal of the in-cell 
UE by treating all other UE signals as noise, and the cut-set 
upper bound [6]. It can be seen that the performance advantage 
of distributed compression over point-to-point compression 
increases as the SNR grows larger. This is because the correla-
tion of the received signals in (1) at the RUs becomes more pro-
nounced as the SNR increases. As for compute-and-forward, its 
performance at low SNR coincides with single-cell processing, 
as the RUs tend to decode trivial combinations consisting only 
of the signals of the local UE. On the other hand, compute-and-
forward outperforms all the other schemes as the SNR 
increases, i.e., in the regime where the fronthaul capacity is the 
main performance bottleneck. Further discussion can be found 
in the “Downlink” section.  

MULTIHOP FRONTHAUL TOPOLOGY 
In this subsection, we study the case in which the fronthaul net-
work has a general multihop topology. As an example, in Figure 1, 
RU 6 communicates to the CU via a two-hop fronthaul connection 
that passes through RU 2 and RU 4. Note that each RU may have 
multiple incoming and outgoing fronthaul links. 

Routing
To convey the quantized IQ samples from the RUs to the CU 
through multiple hops, each RU must decide on the informa-
tion to be transmitted on each outgoing fronthaul link based on 
the information received on the incoming fronthaul links. A 
first option is to use routing: the bits received on the incoming 
links are simply forwarded on the outgoing links without any 
additional processing. This approach requires the optimization 
of standard flow variables that define the allocation of fronthaul 
capacity to the different bit streams. The problem is formulated 
and addressed via the MM algorithm in [22]. 

In-network processing
Routing may be highly inefficient in the presence of a dense 
deployment of RUs. In fact, in this case, an RU may be con-
nected to a large number of nearby RUs, all of which receive 
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correlated baseband signals. In this case, it is wasteful of the 
fronthaul capacity to merely forward all the bit streams 
received from the connected RUs. Instead, it is possible to 
combine the correlated baseband signals at the RU to reduce 
redundancy. We refer to this processing of incoming signals as 
in-network processing. 

To allow for in-network processing, the RU at hand must first 
decompress the received bit streams from the connected RUs to 
recover the baseband signals. The decompressed baseband signals 
are then linearly processed, along with the IQ signal received 
locally by the RU. After in-network processing, the obtained sig-
nals must be recompressed before they can be sent on the outgo-
ing fronthaul links. The effect of the resulting quantization noise 
must thus be counterbalanced by the advantages of in-network 
processing to make the strategy preferable to routing. The opti-
mal design of in-network processing is addressed in [22] using 
the MM algorithm. 

Numerical example
We now compare the sum-rates achievable with routing and 
with in-network processing for the uplink of a C-RAN with a 
two-hop fronthaul network. Specifically, there are N  RUs in the 
first layer and two RUs in the second layer, all receiving in the 
uplink. The RUs in the first layer do not have direct fronthaul 
links to the CU, while the RUs in the second layer do. Half of the 
RUs in the first layer is connected to one RU in the second layer, 
and half to the other RU in the second layer. We assume that all 
fronthaul links have capacity equal to 2–4 bits/s/Hz and all 
channel matrices have identically and independently distributed 
(i.i.d.) complex Gaussian entries with unit power (Rayleigh fad-
ing). Figure 5 shows the average sum-rate versus the number 
N  of RUs in layer 1 with N 4U =  UE and average received per-
antenna SNR of 20 dB at all RUs. It is observed that the perfor-
mance gain of in-network processing over routing becomes more 
pronounced as the number N  of RUs in the first layer increases. 
This suggests that, as the density of the RUs’ deployment 
increases, it is desirable for each RU in layer 2 to perform in-net-
work processing of the signals received from layer 1. 

DOWNLINK

SYSTEM MODEL
In the downlink, the CU that manages a given cluster processes 
the information messages of the UE within the cluster by per-
forming channel coding and precoding on behalf of the RUs. As 
seen in Figure 6, the precoded baseband signals are then com-
pressed by the CU, which finally forwards the compressed IQ sig-
nals to the RUs on the fronthaul links. Each RU decompresses the 
signal received on the fronthaul link (by looking up the corre-
sponding quantization codebook), performs pulse shaping, 
upconverts the resulting signal, and transmits it to the UE on the 
wireless downlink channel. Note that we concentrate here on a 
single-hop fronthaul topology. The multihop case can be 
addressed following the analysis for the uplink, but this is not fur-
ther detailed here and is left as an interesting future work. 

Similar to the uplink, assuming flat-fading channels, each 
UE k  in the cluster under study receives a discrete-time base-
band signal given as 

	 ,y H x zk k k
dl dl dl dl= + 	 (8)

where xdl  is the aggregate baseband signal vector transmitted 
by all the RUs in the cluster; the additive noise ~ ( , )0z CNk

dl
zk
dlX  

accounts for thermal noise and interference from the other 
clusters; and the matrix Hk

dl  denotes the channel response 
matrix from all the RUs in the cluster toward UE .k

As mentioned, the transmitted signals xdl  are quantized ver-
sions of the baseband signals produced by the CU that manages 
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the cluster. As shown in Figure 6, to obtain ,xdl  the CU first per-
forms channel encoding separately for different UE. This produces 
the IQ samples [ ; ; ],s s sN1 Uf=  with sk  representing the signal 
intended for UE .k  The CU then performs linear precoding of the 
channel-encoded baseband signals .s  We observe that non-linear 
precoding via “dirty-paper” coding can also be considered with 
minor modifications. The precoded IQ signals xdlu  produced by the 
CU can be written as 

	 [ ; ; ] ,x x x AsN1
dl dl dl

Rf= =u u u 	 (9)

where xi
dlu  is the precoded signal intended for transmission by RU 

i  and [ , , ]A A AN1 Uf=  is the precoding matrix with the subma-
trix Ak  multiplied to the signal .sk  The compression of the sig-
nals ,xi

dlu  with , ...,i N1 R=  to produce xdl  is discussed next. 

POINT-TO-POINT FRONTHAUL COMPRESSION
Similar to the uplink, in the conventional C-RAN implementa-
tion, the CU compresses separately the precoded IQ signals xi

dlu  
intended for transmission by different RUs i  using point-to-
point compression, as shown in Figure 6. The index describing 
the compressed signal xi

dl  is sent to the ith  RU via the corre-
sponding fronthaul link of capacity .Ci  Using compression with 
a Gaussian test channel, the compressed signal xi

dl  is given as 

	 ,x x qi i i
dl dl dl= +u 	 (10)

where the compression noise qi
dl  is distributed as ~ ( , ) .0q CNi i

dl dlX  
The quantization noises are independent across the RU index i  
due to the separate compression of the RUs’ IQ signals. 

Using the information theoretic results reviewed in the pre-
vious section, the quantization error matrix i

dlX  can be realized 
if the fronthaul link capacity Ci  satisfies the inequality 

	 ; .I Cx xi i i
dl dl #u^ h 	 (11)

Moreover, assuming that each kth UE treats the signals intended 
for other UE as noise, the information rate 

	 ;R I s yk k k
dl dl= ^ h	 (12)

can be achieved for UE .k  The optimization of the weighted-
sum-rate R w Rk kk

N
1sum

dl dlU=
=

/  subject to per-RU power con-
straints and to the constraints (11), for , , ,i N1 Rf=  with 
respect to the variables A  and i

dlX  for , ,i N1 Rf=  was tackled 
in [23, Sec. V-C] by using the MM algorithm. 

MULTIVARIATE FRONTHAUL COMPRESSION
We now investigate possible improvements to point-to-point 
compression based on multiterminal compression principles. 
Our starting observation is that point-to-point compression 
yields quantization errors that are independent across the RUs. 
In contrast, multivariate compression [9, Ch. 7] allows corre-
lated quantization noises to be produced, at the expense of a 
joint, rather than separate, compression of the baseband signals 
xi
dlu  for , ...,i N1 R=  at the CU. 

Multivariate compression
The block diagram of the CU and RUs in a cluster operating 
with multivariate fronthaul compression is shown in Figure 7. 
As for the conventional point-to-point case of Figure 6, the CU 
performs channel encoding separately for each UE and applies 
precoding, hence obtaining the baseband signals xi

dlu  in (9) for 
, ..., .i N1 R=  However, unlike point-to-point compression, the 

signals xi
dlu  are jointly compressed to select the quantized 

signals xi
dl  from the corresponding quantization codebooks 

, ..., .i N1 R=  
Before providing some details on multivariate compression, 

we observe that correlating the quantization noises can be benefi-
cial to control the effect of the additive quantization noises on the  
reception of the UE. To see this, assume that the quantization 
noise vector [ ; ; ]q q qN1

dl dl dl
Rf=  in (10) are distributed as 

( , ),0CN dlX  where the covariance matrix dlX  is a block matrix 
whose ,i j th^ h  block [ ]q qE,i j i j

dl dl dlX = @  defines the correlation 
between the quantization noises of RU i  and RU .j  By using (8) 
and (10), the effective noise at the kth  UE is given by 

.z H qk k
dl dl dl+  The covariance matrix of the effective noise is then 

given as ,H Hk k
dl dl dl

zk
dlX X+  and can hence be controlled by design-

ing the quantization error covariance matrix .dlX  As a result, one 
can reduce the impact of the effective noise on the reception of 
the useful signal and enhance the achievable rates (12). 

[Fig6]  Point-to-point fronthaul compression for the downlink of C-RANs.
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With reference to vector quantization concepts, one can 
think of the matrix dlX  as defining the shape of the quantiza-
tion regions in the space of the baseband signals of all RUs. Spe-
cifically, while point-to-point compression leads to regions that 
are merely the Cartesian product of the quantization regions of 
the separate quantizers, multivariate compression allows for 
more general shapes. 

Key information-Theoretic results
The multivariate compression lemma in [9, Ch. 9] provides suf-
ficient conditions on the fronthaul capacities under which a 
given joint quantization error matrix dlX  can be realized. It is 
recalled that, if the error matrix dlX  is block diagonal, i.e., if the 
submatrices ,i j

dlX  have all zero entries for ,i j!  then the condi-
tions at hand reduce to (11) for , , .i N1 Rf=  Instead, for a 
general covariance matrix ,dlX  the multivariate compression 
lemma requires that the following inequality 

	 |h h Cx x x
i

i i
i

dl dl dl
S

SS

#-
! !

u^ ^h h/ / 	 (13)

be satisfied for all subsets { , ..., } .N1S R3  Using standard 
properties of the mutual information, it can be seen that if dlX  
is block diagonal, then the system of conditions (13) for all 
subsets S  is equivalent to the system of inequalities (11) for 

, ..., .i N1 R=  Otherwise, the inequalities (13) provide more 
stringent constraints on the fronthaul capacities than (11). 
The optimization over the precoding matrix A  and the com-
pression noise covariance dlX  was tackled by using the MM 
algorithm in [23]. 

Remark 6 
Similar to Figure 3 for the uplink, multivariate compression 
can be implemented using a sequential architecture, whereby 
the baseband signals of different RUs are sequentially, rather 
than jointly, compressed [23, Sec. IV-D]. 

Compute-and-forward 
Similar to the “Uplink” section, we now observe that the schemes 
discussed so far for the downlink employ quantization codebooks 
that are designed separately from the channel codebooks used for 

encoding the messages of the UE. An alternative approach, which 
is dual to the one studied for the uplink, leverages instead the same 
(nested) lattice code for both channel coding and quantization. 

Specifically, according to the approach introduced in [24], 
the CU employs the same lattice code to perform channel 
encoding for all UE. Then, it performs precoding using only 
integer (modulo-)sum operations. In this fashion, the resulting 
precoded baseband signals are still codewords of the same lat-
tice code. Finally, the CU transmits on the fronthaul links 
directly the index of the obtained precoded codewords. 

The scheme at hand has similar advantages and disadvantages 
as compared to its counterpart for the uplink. Specifically, while 
not adding any quantization noise, it is limited by the integrality 
constraints on the coefficients of the precoding matrix. 

NUMERICAL EXAMPLE
We consider here the same three-cell circulant Wyner model used 
in Figure 4 for the uplink, where the intercell channel gain is 
equal to . ,g 0 5=  and every RU uses the same transmit power of 
20 dB and has the same fronthaul capacity .C  Figure 8 shows the 
per-cell sum-rate of point-to-point compression and multivariate 
compression, as applied to both linear precoding and “dirty paper” 
nonlinear precoding [25], and also of compute-and-forward. For 
reference, we also show the cut-set upper bound and the perfor-
mance with single-cell processing, whereby each RU transmits 
only the signal of the in-cell UE. It is observed that multivariate 
compression significantly outperforms point-to-point compression 
for both linear precoding and “dirty paper” nonlinear precoding. 
Moreover, compute-and-forward is the most effective strategy in 
the regime of moderate fronthaul capacity C  in which the limita-
tions imposed by integer precoding are not dominant. In contrast, 
for sufficiently large fronthaul capacity ,C  both compression-
based schemes attain the upper bound, while compute-and-for-
ward is limited by the mentioned integrality constraints. 

PERFORMANCE EVALUATION
This section provides a performance evaluation of the dis-
cussed fronthaul compression techniques using the standard 
cellular topology and channel models of [26]. We focus on the 
performance of the macrocell located at the center of a 
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two-dimensional 19-cell hexagonal cellular layout. In each 
macrocell, there are K  randomly and uniformly located UE; a 
macro-BS with three sectorized antennas placed in the center; 
and a single randomly and uniformly located single-antenna 
pico-BS. A single-hop fronthaul topology is assumed, where 
each macrocell is a cluster served by a CU that is connected 
directly to the macro-BS and the pico-BS in the macrocell. 
Specifically, the fronthaul links to each macro-BS antenna and 
to each pico-BS have capacities Cmacro  and ,Cpico  respectively. 
All interference signals from other macrocells are treated as 
independent noise signals. The system parameters are as indi-
cated in [26]. We focus here on the downlink, but comparable 
results were observed also for the uplink [27]. 

We adopt the conventional metric of cell-edge throughput ver-
sus the average per-UE spectral efficiency (see, e.g., [8, Fig. 5]). 
This is obtained by running a proportional fairness scheduler on a 
sequence of T  time-slots with independent fading realizations, 
and by then evaluating the cell-edge throughput as the fifth per-
centile rate and the average spectral efficiency as the average sum-
rate normalized by the number of UE. We recall that the 
proportional fairness scheduler maximizes at each time-slot the 
weighted-sum-rate / ,R R Rk kk

N
1sum

fair dlU= a

=
r/  with 0$a  being a fair-

ness constant, Rk
dl  in (12), and Rkr  being the average data rate 

accrued by UE k  so far. After each time-slot, the rate Rkr  is 
updated as ( )R R R1k k k

dl
! b b+ -r r  where [ , ]0 1!b  is a forget-

ting factor. Increasing a  leads to a more fair rate allocation 
among the UE. 

Figure 9 plots the cell-edge throughput versus the average 
spectral efficiency for K 4=  UE, ,C Cmacro pico^ h ( , )3 1=  bits/s/Hz, 
T 5=  and . .0 5b =  The curve is obtained by varying the fair-
ness constant a  in the utility function .Rsum

fair  It is observed that 
spectral efficiencies larger than 1.05 bits/s/Hz are not achievable 
with point-to-point compression, while they can be obtained 

with multivariate compression. Moreover, it is seen that multi-
variate compression provides 2 #  gain in terms of cell-edge 
throughput for a spectral efficiency of 1 bits/s/Hz. 

CONCLUSIONS AND OUTLOOK
The design of C-RANs poses a host of new research challenges to 
the signal processing community. One key problem is that of 
devising effective compression algorithms for the fronthaul links 
connecting the RUs with the CU that resides within the “cloud” 
of the operator’s core network. As reviewed in this article, the 
performance of conventional point-to-point compression strate-
gies can be substantially improved by leveraging techniques 
inspired by network information theory. Most notably, we have 
emphasized the potential gains of multiterminal compression—
distributed compression for the uplink and multivariate com-
pression for the downlink—and of structured coding via 
compute-and-forward. Among the many open issues, we men-
tion here the investigation of structured coding schemes that are 
robust to nonintegrality limitations (see [11] and [24]); the per-
formance analysis for limited frame lengths; the optimal alloca-
tion of layer-1 functionalities between the RUs and the CU [12]; 
the study of the impact of the fronthaul latency on higher-layer 
performance metrics; and the analysis of the interplay of the 
considered techniques with multiuser scheduling and limited-
feedback channel state information. 
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