
Spiking Neural Networks for Low-Power Edge
Intelligence

Osvaldo Simeone
Joint work with Hyeryung Jang (KCL), Bipin Rajendran (NJIT), Brian

Gardner (USurrey), and André Grüning (HStralsund)

King’s College London

University of Luxembourg, 18/9/2019

Osvaldo Simeone Neuromorphic Computing 1 / 60

Overview

Motivation and Introduction

Applications

Models

Learning Algorithms

Examples

Osvaldo Simeone Neuromorphic Computing 2 / 60

Overview

Motivation and Introduction

Applications

Models

Learning Algorithms

Examples

Osvaldo Simeone Neuromorphic Computing 3 / 60

Machine Learning Today

[Rajendran [íô�

Breakthroughs in ML using (deep) Artificial Neural Networks (ANNs)
have come at the expense of massive memory, energy, and time
requirements...

Osvaldo Simeone Neuromorphic Computing 4 / 60

Machine Learning Today

Breakthroughs in ML using (deep) Artificial Neural Networks (ANNs)
have come at the expense of massive memory, energy, and time
requirements...

Osvaldo Simeone Neuromorphic Computing 5 / 60

Resource-Constrained Machine Learning
How to implement ML (inference and learning) on mobile or
embedded devices with limited energy and memory resources?
[Welling ’18]

mobile personal assistants medical and health wearables

IoT mobile or embedded devices neural prosthetics

Osvaldo Simeone Neuromorphic Computing 6 / 60

Machine Learning at the Edge
A solution is mobile edge or cloud computing: offload computations
to an edge or cloud server.

Possible privacy and latency issues

Osvaldo Simeone Neuromorphic Computing 7 / 60

Machine Learning at the Edge
A solution is mobile edge or cloud computing: offload computations
to an edge or cloud server.

Possible privacy and latency issues

Osvaldo Simeone Neuromorphic Computing 7 / 60

Machine Learning on Mobile Devices

Another solution is to scale down energy and memory requirements of
ANNs via tailored hardware implementations for mobile devices.

Active field with established players and start-ups

Trade-offs between accuracy and complexity

Limited to inference

Osvaldo Simeone Neuromorphic Computing 8 / 60

Machine Learning on Mobile Devices

Another solution is to scale down energy and memory requirements of
ANNs via tailored hardware implementations for mobile devices.

Active field with established players and start-ups

Trade-offs between accuracy and complexity

Limited to inference

Osvaldo Simeone Neuromorphic Computing 8 / 60

Neuromorphic Computing
Spiking Neural Networks (SNNs) aim at attaining the efficiency of the
human brain...

13 Million Watts
5600 sq. ft. & 340 tons

∼ 1010 ops/J

∼ 20 Watts
2 sq. ft. & 1.4 Kg
∼ 1015 ops/J

Source: https://www.olcf.ornl.gov, Google ImagesOsvaldo Simeone Neuromorphic Computing 9 / 60

Neuromorphic Computing
... by taking inspiration from the dynamic, sparse, and event-driven
learning and inference operation of the human brain.
Neurons in the brain sense, process, and communicate over time using
sparse binary signals (spikes or action potentials).

[Gerstner]Osvaldo Simeone Neuromorphic Computing 10 / 60

Spiking Neural Networks

SNNs are networks of spiking neurons [Maas ’97].

Mostly studied in theoretical neuroscience, but recent interest from
machine learning and hardware design researchers...

x2

x1

xn

y

Artificial Neural Network

(ANN)

Spiking Neural Network (SNN)

Time

Time

w1

wn

w2

...

w1

wn

w2

...

x2(t)

x1(t)

xn(t)

y(t)

Osvaldo Simeone Neuromorphic Computing 11 / 60

Spiking Neural Networks
Proof-of-concept and commercial hardware implementations of SNNs
have demonstrated significant energy savings as compared to ANNs
[Rajendran et al ’19].
Energy consumed only when spikes are produced (binary values →
pJ/spike)

Osvaldo Simeone Neuromorphic Computing 12 / 60

Spiking Neural Networks

Increasing press coverage and positive market predictions...

Osvaldo Simeone Neuromorphic Computing 13 / 60

Overview

Motivation and Introduction

Applications

Models

Learning Algorithms

Examples

Osvaldo Simeone Neuromorphic Computing 14 / 60

I/O Interfaces

SNN

Osvaldo Simeone Neuromorphic Computing 15 / 60

I/O Interfaces

SNN
Neuromorphic

sensor

Neuromorphic

actuator

Osvaldo Simeone Neuromorphic Computing 16 / 60

I/O Interfaces

iniVation’s Dynamic Vision Sensor (DVS), iniVation and AiCTX’s
Speck, Prophesee

[Prophesee]

Osvaldo Simeone Neuromorphic Computing 17 / 60

I/O Interfaces

From IBM’s DVS128 Gesture Dataset...

Osvaldo Simeone Neuromorphic Computing 18 / 60

I/O Interfaces

SNNencoder decoder

source actuator

5

Osvaldo Simeone Neuromorphic Computing 19 / 60

I/O Interfaces
Conversion from natural signals to spike signals – theory [Lazar ’06]
Practice: Rate encoding, time encoding, population encoding; rate
decoding, first-to-spike decoding,...

Osvaldo Simeone Neuromorphic Computing 20 / 60

Applications

SNNs can perform
I Inference/ control: classification, regression, prediction, ...

SNN
?

(a) inference/ control

Osvaldo Simeone Neuromorphic Computing 21 / 60

Applications

SNNs can perform
I Inference/ control: classification, regression, prediction, ...
I Learning: supervised, unsupervised, reinforced

SNN
?

(a) inference/ control

SNN

(b) learning

?

feedback/ reward

Osvaldo Simeone Neuromorphic Computing 22 / 60

Applications

SNNs can perform
I Inference/ control: classification, regression, prediction, ...
I Learning: supervised, unsupervised, reinforced

SNN
?

(a) inference/ control

SNN

(b) learning

?

feedback/ reward

Data presentation through I/O interfaces:
I Frame-based (or batch)

Osvaldo Simeone Neuromorphic Computing 23 / 60

Applications
SNNs can perform

I Inference/ control: classification, regression, prediction, ...
I Learning: supervised, unsupervised, reinforced

SNN
?

(a) inference/ control

SNN

(b) learning

?

feedback/ reward

Data presentation through I/O interfaces:
I Frame-based (or batch)
I Streaming (or online)

Osvaldo Simeone Neuromorphic Computing 24 / 60

Overview

Motivation and Introduction

Applications

Models

Learning Algorithms

Examples

Osvaldo Simeone Neuromorphic Computing 25 / 60

SNN Models

SNNs are networks of spiking neurons.

Their operation is defined by:
I topology (connectivity)
I neuron model

x2

x1

xn

y

Artificial Neural Network

(ANN)

Spiking Neural Network (SNN)

Time

Time

w1

wn

w2

...

w1

wn

w2

...

x2(t)

x1(t)

xn(t)

y(t)

Osvaldo Simeone Neuromorphic Computing 26 / 60

Topology

Arbitrary directed graph with directed links representing synaptic
connections

“Parent”, or pre-synaptic, neuron affects causally spiking behavior of
“child”, or post-synaptic, neuron

Enables recurrent connectivity (directed loops), including self-loops

Osvaldo Simeone Neuromorphic Computing 27 / 60

Topology

Arbitrary directed graph with directed links representing synaptic
connections

“Parent”, or pre-synaptic, neuron affects causally spiking behavior of
“child”, or post-synaptic, neuron

Enables recurrent connectivity (directed loops), including self-loops

Osvaldo Simeone Neuromorphic Computing 27 / 60

Topology

Discrete (algorithmic) time, as in many practical implementations
(e.g., Intel’s Loihi)

Binary outputs: 0 = no spike; and 1 = spike (energy consumed)

Osvaldo Simeone Neuromorphic Computing 28 / 60

Neuron Model

Each neuron is characterized by an internal state known as membrane
potential [Gerstner and Kistler ’02].

Generally, a higher membrane potentially entails a larger propensity
for spiking.

The membrane potential evolves over time as a function of the past
behavior of pre-synaptic neurons and of the neuron itself.

Osvaldo Simeone Neuromorphic Computing 29 / 60

Neuron Model

Each neuron is characterized by an internal state known as membrane
potential [Gerstner and Kistler ’02].

Generally, a higher membrane potentially entails a larger propensity
for spiking.

The membrane potential evolves over time as a function of the past
behavior of pre-synaptic neurons and of the neuron itself.

Osvaldo Simeone Neuromorphic Computing 29 / 60

Membrane Potential

ui ,t =
∑
j∈Pi

wj ,i

(
at ∗ sj ,t

)
+ wi

(
bt ∗ si ,t

)
+ γi

Osvaldo Simeone Neuromorphic Computing 30 / 60

Membrane Potential

ui ,t =
∑
j∈Pi

wj ,i

(
at ∗ sj ,t

)
+ wi

(
bt ∗ si ,t

)
+ γi

Feedforward filter (kernel) at with learnable synaptic weight wj ,i

Osvaldo Simeone Neuromorphic Computing 31 / 60

Membrane Potential

ui ,t =
∑
j∈Pi

wj ,i

(
at ∗ sj ,t

)
+ wi

(
bt ∗ si ,t

)
+ γi

Feedback filter (kernel) bt with learnable wi (e.g., refractory period)
Bias (threshold) γi

Osvaldo Simeone Neuromorphic Computing 32 / 60

Membrane Potential

Kernels can more generally be parameterized via multiple basis
functions and learnable weights [Pillow et al ’08].

This allows learning of the temporal “receptive fields” of the neurons,
e.g., by adapting synaptic delays.

Osvaldo Simeone Neuromorphic Computing 33 / 60

Deterministic SNN Models

The most common model is leaky integrate-and-fire (LIF) [Gerstner
and Kistler ’02]: Spike when membrane potential is positive

0

0.5

1

1.5
s pr

e
(t

)

0 10 20 30 40 50 60 70 80 90 100
t

0 10 20 30 40 50 60 70 80 90 100
t

0

1

2

u
po

st
(t

)-
po

st

0

0.5

1

s po
st

(t
)

0 10 20 30 40 50 60 70 80 90 100
t

Osvaldo Simeone Neuromorphic Computing 34 / 60

Deterministic SNN Models

LIF-based SNNs can approximate operation of feedforward and
recurrent ANNs: spiking rates in SNN ≈ neuron outputs in ANN

Often used for inference by converting a pre-trained ANN [Rueckauer
et al ’17]

Direct training is required to leverage temporal information processing
and learning

This is made difficult by output non-differentiability with respect to
model parameters

Heuristic training algorithms based on approximations, such as
surrogate gradient [Neftci ’18] [Anwani and Rajendran ’18]

As for ANNs, these require backpropagation

Osvaldo Simeone Neuromorphic Computing 35 / 60

Deterministic SNN Models

LIF-based SNNs can approximate operation of feedforward and
recurrent ANNs: spiking rates in SNN ≈ neuron outputs in ANN

Often used for inference by converting a pre-trained ANN [Rueckauer
et al ’17]

Direct training is required to leverage temporal information processing
and learning

This is made difficult by output non-differentiability with respect to
model parameters

Heuristic training algorithms based on approximations, such as
surrogate gradient [Neftci ’18] [Anwani and Rajendran ’18]

As for ANNs, these require backpropagation

Osvaldo Simeone Neuromorphic Computing 35 / 60

Deterministic SNN Models

LIF-based SNNs can approximate operation of feedforward and
recurrent ANNs: spiking rates in SNN ≈ neuron outputs in ANN

Often used for inference by converting a pre-trained ANN [Rueckauer
et al ’17]

Direct training is required to leverage temporal information processing
and learning

This is made difficult by output non-differentiability with respect to
model parameters

Heuristic training algorithms based on approximations, such as
surrogate gradient [Neftci ’18] [Anwani and Rajendran ’18]

As for ANNs, these require backpropagation

Osvaldo Simeone Neuromorphic Computing 35 / 60

Probabilistic SNN Models

Probabilistic Generalized Linear Model (GLM): Conditional spiking
probability [Pillow et al ’08]

p(si ,t = 1|s≤t−1) = σ(ui ,t)

𝜎(𝑥)

𝑥

Osvaldo Simeone Neuromorphic Computing 36 / 60

Probabilistic SNN Models

Probabilistic Generalized Linear Model (GLM): Conditional spiking
probability [Pillow et al ’08]

p(si ,t = 1|s≤t−1) = σ(ui ,t)

0

0.5

1

1.5

s pr
e
(t

)

0 10 20 30 40 50 60 70 80 90 100
t

0 10 20 30 40 50 60 70 80 90 100
t

-1

0

1

2

u
po

st
(t

)-
po

st

0

0.5

1

s po
st

(t
)

0 10 20 30 40 50 60 70 80 90 100
t

Osvaldo Simeone Neuromorphic Computing 37 / 60

Probabilistic SNN Models

GLM SNN models are dynamic generalization of belief networks [Neal
’92].

They enable direct training of spike-based statistical criteria.

Osvaldo Simeone Neuromorphic Computing 38 / 60

Overview

Motivation and Introduction

Applications

Models

Learning Algorithms

Examples

Osvaldo Simeone Neuromorphic Computing 39 / 60

Training SNNs

SNNs can be trained using supervised, unsupervised, and
reinforcement learning.

To fix the ideas, we focus here on supervised learning:

training data = {(input, output)} → generalization

Osvaldo Simeone Neuromorphic Computing 40 / 60

Training SNNs

Visible neurons, clamped to input/ output data

Latent neurons, free

SNN

input outputlatent

input data
output data

Osvaldo Simeone Neuromorphic Computing 41 / 60

Learning Rules

Probabilistic SNNs can be directly trained using standard statistical
criteria, such as maximum likelihood, maximum mutual information,
or maximum average return.

Maximum likelihood for supervised (and unsupervised) learning:

max Edata[ln p(visible)] = Edata[ln Elatentp(visible,latent)]

Regularization terms are typically added, e.g., to limit spiking rate
(and hence energy consumption) – bounded rationality [Leibfried and
Braun ’15]

Osvaldo Simeone Neuromorphic Computing 42 / 60

Learning Rules

Probabilistic SNNs can be directly trained using standard statistical
criteria, such as maximum likelihood, maximum mutual information,
or maximum average return.

Maximum likelihood for supervised (and unsupervised) learning:

max Edata[ln p(visible)] = Edata[ln Elatentp(visible,latent)]

Regularization terms are typically added, e.g., to limit spiking rate
(and hence energy consumption) – bounded rationality [Leibfried and
Braun ’15]

Osvaldo Simeone Neuromorphic Computing 42 / 60

Learning Rules

Probabilistic SNNs can be directly trained using standard statistical
criteria, such as maximum likelihood, maximum mutual information,
or maximum average return.

Maximum likelihood for supervised (and unsupervised) learning:

max Edata[ln p(visible)] = Edata[ln Elatentp(visible,latent)]

Regularization terms are typically added, e.g., to limit spiking rate
(and hence energy consumption) – bounded rationality [Leibfried and
Braun ’15]

Osvaldo Simeone Neuromorphic Computing 42 / 60

Learning Rules

Using Stochastic Gradient Descent (SGD) along with...

... variational inference to address marginalization over latent neurons
yields the on-line learning rule [Rezende et al ’11] [Osogami ’17] [Jang
et al ’18]

wj ,i ← wj ,i + η × `× pre-synj × post-syni

The learning signal ` is a global feedback signal (akin to
neuromodulator in neuroscience).

Pre-synaptic and post-synaptic terms are local to each synapse.

Osvaldo Simeone Neuromorphic Computing 43 / 60

Learning Rules

Using Stochastic Gradient Descent (SGD) along with...

... variational inference to address marginalization over latent neurons
yields the on-line learning rule [Rezende et al ’11] [Osogami ’17] [Jang
et al ’18]

wj ,i ← wj ,i + η × `× pre-synj × post-syni

The learning signal ` is a global feedback signal (akin to
neuromodulator in neuroscience).

Pre-synaptic and post-synaptic terms are local to each synapse.

Osvaldo Simeone Neuromorphic Computing 43 / 60

Learning Rules

Using Stochastic Gradient Descent (SGD) along with...

... variational inference to address marginalization over latent neurons
yields the on-line learning rule [Rezende et al ’11] [Osogami ’17] [Jang
et al ’18]

wj ,i ← wj ,i + η × `× pre-synj × post-syni

The learning signal ` is a global feedback signal (akin to
neuromodulator in neuroscience).

Pre-synaptic and post-synaptic terms are local to each synapse.

Osvaldo Simeone Neuromorphic Computing 43 / 60

Learning Rules

Using Stochastic Gradient Descent (SGD) along with...

... variational inference to address marginalization over latent neurons
yields the on-line learning rule [Rezende et al ’11] [Osogami ’17] [Jang
et al ’18]

wj ,i ← wj ,i + η × `× pre-synj × post-syni

The learning signal ` is a global feedback signal (akin to
neuromodulator in neuroscience).

Pre-synaptic and post-synaptic terms are local to each synapse.

Osvaldo Simeone Neuromorphic Computing 43 / 60

Learning Rules

Stochastic Gradient Descent (SGD) updates for synaptic weights:

wj ,i ← wj ,i + η × `× pre-synj × post-syni

The learning signal ` is derived using variational inference [Rezende et
al ’11] [Osogami ’17] [Jang et al ’18]:

`t = 1 for visible (input and output) neurons,

`t =
∑

i∈visible
log p(si ,t |ui ,t) for latent neurons

Positive feedback to hidden neurons if desired behavior has large
probability

Osvaldo Simeone Neuromorphic Computing 44 / 60

Learning Rules

Stochastic Gradient Descent (SGD) updates for synaptic weights:

wj ,i ← wj ,i + η × `× pre-synj × post-syni

pre-synj = at ∗ sj ,t = pre-synaptic trace

Large if previous behavior of pre-synaptic neuron is consistent with
synaptic receptive field (e.g., if recent spiking)

Osvaldo Simeone Neuromorphic Computing 45 / 60

Learning Rules

Stochastic Gradient Descent (SGD) updates for synaptic weights:

wj ,i ← wj ,i + η × `× pre-synj × post-syni

post-syni = si ,t − σ
(
ui ,t
)

= post-synaptic error

Post-synaptic error = desired/ observed behavior - model averaged
behavior [Bienenstock et al ’82]

No backpropagation

Osvaldo Simeone Neuromorphic Computing 46 / 60

Learning Rules

Stochastic Gradient Descent (SGD) updates for synaptic weights:

wj ,i ← wj ,i + η × `× pre-synj × post-syni

post-syni = si ,t − σ
(
ui ,t
)

= post-synaptic error

Post-synaptic error = desired/ observed behavior - model averaged
behavior [Bienenstock et al ’82]

No backpropagation

Osvaldo Simeone Neuromorphic Computing 46 / 60

Learning Rules

The learning rules simplifies to Spike-Timing-Dependent Plasticity
(STDP) [Markram ’97].

Further simplifications yield Hebbian learning: “Neurons that fire
together, wire together” [Hebb ’49].

Osvaldo Simeone Neuromorphic Computing 47 / 60

Learning Rules

The learning rules simplifies to Spike-Timing-Dependent Plasticity
(STDP) [Markram ’97].

Further simplifications yield Hebbian learning: “Neurons that fire
together, wire together” [Hebb ’49].

Osvaldo Simeone Neuromorphic Computing 47 / 60

Overview

Motivation and Introduction

Applications

Models

Learning Algorithms

Examples

Osvaldo Simeone Neuromorphic Computing 48 / 60

Batch Training

encoder

source

decoder

5

Osvaldo Simeone Neuromorphic Computing 49 / 60

Batch Training

Rate encoding/ decoding

Osvaldo Simeone Neuromorphic Computing 50 / 60

Batch Training

Graceful trade-off complexity/ delay vs accuracy [Jang et al ’18-2]

Osvaldo Simeone Neuromorphic Computing 51 / 60

Online Training
Online training for prediction
Fully connected (recurrent) SNN topology with hidden neurons

encoder

decoder

source input/ output

latent

Osvaldo Simeone Neuromorphic Computing 52 / 60

Online Training

Rate encoding

Osvaldo Simeone Neuromorphic Computing 53 / 60

Online Training
Rate encoding

Osvaldo Simeone Neuromorphic Computing 54 / 60

Online Training

Rate encoding

Osvaldo Simeone Neuromorphic Computing 55 / 60

Online Training

Time encoding

Osvaldo Simeone Neuromorphic Computing 56 / 60

Online Training

Rate vs time encoding

Osvaldo Simeone Neuromorphic Computing 57 / 60

Concluding Remarks

Statistical signal processing review of neuromorphic computing via
Spiking Neural Networks

Additional topics:
I more general energy-based probabilistic SNN models [Osogami ’17]

[Jang ’19]
I recurrent SNNs for long-term memory [Maas ’11]
I neural sampling: information encoded in steady-state behavior [Buesing

et al ’11]
I Bayesian learning via Langevin dynamics [Pecevski et al ’11] [Kappel et

al ’15]

Some open problems:
I meta-learning, life-long learning, transfer learning [Bellec et al ’18]
I training I/O interfaces [Lazar and Toth ’03]
I integration of ANNs and SNNs [Pei et al ’19]

Osvaldo Simeone Neuromorphic Computing 58 / 60

For More...

H. Jang, O. Simeone, B. Gardner and A. Gruning, “An Introduction
to Probabilistic Spiking Neural Networks,” to appear on IEEE Signal
Processing Magazine (available on arxiv).

Osvaldo Simeone Neuromorphic Computing 59 / 60

Acknowledgements

This work has received funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation

programme (grant agreement No. 725731) and from the US National
Science Foundation (NSF) under grant ECCS 1710009.

Osvaldo Simeone Neuromorphic Computing 60 / 60

References

[Gerstner and Kistler ’02] W. Gerstner and W. M. Kistler, Spiking neuron
models: Single neurons, populations, plasticity. Cambridge University
Press, 2002.
[Pillow et al ’08] J.W. Pillow, J. Shlens, L. Paninski, A. Sher, A. M. Litke,
E. Chichilnisky, and E. P. Simoncelli, “Spatio-temporal correlations and
visual signalling in a complete neuronal population,” Nature, vol. 454, no.
7207, p. 995, 2008.
[Osogami ’17] T. Osogami, “Boltzmann machines for time-series,” arXiv
preprint arXiv:1708.06004, 2017.
[Ibnkahla ’00] Ibnkahla M. Applications of neural networks to digital
communications–a survey. Signal processing. 2000 Jul 1;80(7):1185-215.
[Koller and Friedman ’09] Koller D, Friedman N, Bach F. Probabilistic
graphical models: principles and techniques. MIT press; 2009.

Osvaldo Simeone Neuromorphic Computing 1 / 15

References

[Fremaux et al ‘08] N. Fremaux and W. Gerstner, “Neuromodulated
spike-timing-dependent plasticity, and theory of three-factor learning
rules,” Frontiers in neural circuits, vol. 9, p. 85, 2016.
[Jang et al ’18] H. Jang, O. Simeone, B. Gardnerm and A. Gruning,
“Spiking neural networks: A stochastic signal processing perspective,”
arXiv:1812.03929. ...
[Rezende et al ’11] Rezende DJ, Wierstra D, Gerstner W. “Variational
learning for recurrent spiking networks”, In Advances in Neural Information
Processing Systems, 2011 (pp. 136-144).
[Brea et al ’13] J. Brea, W. Senn, and J.-P. Pfister, “Matching recall and
storage in sequence learning with spiking neural networks,” Journal of
Neuroscience, vol. 33, no. 23, pp. 9565–9575, 2013.
[Hebb ’49] D. Hebb, The Organization of Behavior. New York: Wiley and
Sons, Nov. 1949.

Osvaldo Simeone Neuromorphic Computing 2 / 15

References

[Bienenstock et al ’82] E. L. Bienenstock, L. N. Cooper, and P. W. Munro,
“Theory for the development of neuron selectivity: orientation specificity
and binocular interaction in visual cortex,” Journal of Neuroscience, vol. 2,
no. 1, pp. 32–48, 1982.
[Pecevski et al ’11] D. Pecevski, L. Buesing, and W. Maass, “Probabilistic
inference in general graphical models through sampling in stochastic
networks of spiking neurons,” PLOS Computational Biology, vol. 7, no.
12, pp. 1–25, 12 2011.
[Rosenfeld et al ’18] Rosenfeld B, Simeone O, Rajendran B. Learning
First-to-Spike Policies for Neuromorphic Control Using Policy Gradients.
arXiv preprint arXiv:1810.09977. 2018 Oct 23.
[Jang et al ’19] Jang H, Simeone O. Training Dynamic Exponential Family
Models with Examples and Lateral Dependencies for Generalized
Neuromorphic Computing”, in Proc. IEEE ICASSP 2019.

Osvaldo Simeone Neuromorphic Computing 3 / 15

References

[Bellec et al ’18] G. Bellec, D. Salaj, A. Subramoney, R. Legenstein, and
W. Maass, “Long short-term memory and learning-to-learn in networks of
spiking neurons,” arXiv preprint arXiv:1803.09574, 2018.
[Kappel et al ’15] Kappel D, Habenschuss S, Legenstein R, Maass W.
Synaptic sampling: a Bayesian approach to neural network plasticity and
rewiring. InAdvances in Neural Information Processing Systems 2015 (pp.
370-378).
[Buesing et al ’11] Buesing L, Bill J, Nessler B, Maass W. Neural dynamics
as sampling: a model for stochastic computation in recurrent networks of
spiking neurons. PLoS computational biology. 2011 Nov
3;7(11):e1002211.
[Lazar and Toth ’03] Lazar, Aurel A., and László T. Tóth. "Time encoding
and perfect recovery of bandlimited signals." ICASSP (6). 2003.
[Maas ’11] Maass W. Liquid state machines: motivation, theory, and
applications. InComputability in context: computation and logic in the
real world 2011 (pp. 275-296).

Osvaldo Simeone Neuromorphic Computing 4 / 15

References

[Neftci ’18] Neftci EO. Data and power efficient intelligence with
neuromorphic learning machines. iScience. 2018 Jul 27;5:52.
[Anwani and Rajendran ’18] N. Anwani and B. Rajendran, “Training
Multilayer Spiking Neural Networks using NormAD based Spatio-Temporal
Error Backpropagation,” arXiv:1811.10678.
[Blouw et al ’18] Peter Blouw, Xuan Choo, Eric Hunsberger, Chris
Eliasmith, “Benchmarking Keyword Spotting Efficiency on Neuromorphic
Hardware,” arXiv:1812.01739.
[Binas et al ’17] J Binas, D Neil, SC Liu, T Delbruck, “DDD17:
End-to-end DAVIS driving dataset,” arXiv:1711.01458, 2017.
[Rajendran et al ’19] B. Rajendran, et al, “Low-Power Neuromorphic
Hardware for Signal Processing Applications”, arXiv:1901.03690.

Osvaldo Simeone Neuromorphic Computing 5 / 15

References

[Welling ’18] M. Welling, “Intelligence per kilowatt-hour”, plenary talk,
ICML 2018, https://youtu.be/7QhkvG4MUbk.
[Rueckauer ’17] Rueckauer B, Lungu IA, Hu Y, Pfeiffer M, Liu SC.
Conversion of continuous-valued deep networks to efficient event-driven
networks for image classification. Frontiers in neuroscience. 2017 Dec
7;11:682.
[Neal ’92] Neal RM. Connectionist learning of belief networks. Artificial
intelligence. 1992 Jul 1;56(1):71-113.
[Leibfried and Braun ’15] Leibfried, Felix, and Daniel A. Braun. ”A
reward-maximizing spiking neuron as a bounded rational decision maker.”
Neural computation 27.8 (2015): 1686-1720.
[Pei et al ’19] J. Pei et al, “Towards artificial general intelligence with
hybrid Tianjic chip architecture”, Nature, Aug. 2019.

Osvaldo Simeone Neuromorphic Computing 6 / 15

Reinforcement Learning

encoder decoder

actuator

up

Osvaldo Simeone Neuromorphic Computing 7 / 15

Reinforcement Learning

From [Rosenfeld et al ’18]

GLM SNN
IF SNN
ANN

GLM SNN
IF SNN

Osvaldo Simeone Neuromorphic Computing 8 / 15

Applications

Example: Keyword spotting based on audio streaming; accuracy
comparable to ANN.

[Blouw et al '18]

Osvaldo Simeone Neuromorphic Computing 9 / 15

Variational Inference (VI)

With latent variables z , Maximum Likelihood requires the
maximization of

max
θ

ln p(x |θ) = ln

(∑
z

p(x , z |θ)

)
= ln

(
Ez∼p(z|θ)[p(z|x , θ)]

)
Key issue: Need to marginalize over latent variables, whose
distribution is to be learned.

Osvaldo Simeone Neuromorphic Computing 10 / 15

Variational Inference (VI)

VI tackles this problem by substituting the expectation for an
optimization over a predictive, or variational, distribution q(z |x , ϕ)

Optimization over both model parameters θ and variational
parameters ϕ is done by maximizing the Evidence Lower BOund
(ELBO) or (negative) free energy

L(θ, ϕ) =Ez∼q(z|x ,ϕ)[ln p(x , z|θ)− ln q(z|x , ϕ)︸ ︷︷ ︸
learning signal `(x ,z|θ,ϕ)

]

Osvaldo Simeone Neuromorphic Computing 11 / 15

Variational Inference (VI)

VI tackles this problem by substituting the expectation for an
optimization over a predictive, or variational, distribution q(z |x , ϕ)

Optimization over both model parameters θ and variational
parameters ϕ is done by maximizing the Evidence Lower BOund
(ELBO) or (negative) free energy

L(θ, ϕ) =Ez∼q(z|x ,ϕ)[ln p(x , z|θ)− ln q(z|x , ϕ)︸ ︷︷ ︸
learning signal `(x ,z|θ,ϕ)

]

Osvaldo Simeone Neuromorphic Computing 11 / 15

Variational Inference (VI)

The ELBO is a global lower bound on the log-likelihood (LL) function

ln p(x |θ) ≥ L(θ, ϕ),

Equality holds at a value θ0 if and only if the distribution q(z |x , ϕ) is
the posterior of z given x (i.e., optimal Bayesian estimate)

q(z |x , ϕ) = p(z |x , θ0).

LL

0

Osvaldo Simeone Neuromorphic Computing 12 / 15

Variational Inference (VI)

VI approximates the EM algorithm by using SGD over both variables
with gradients

∇θL(θ, ϕ) ≈ ∇θ log p(x , z),

∇ϕL(θ, ϕ) ≈ `(x , z |θ, ϕ) · ∇ϕ log q(z |x , ϕ)

with z ∼ q(z |x , ϕ)

Osvaldo Simeone Neuromorphic Computing 13 / 15

Variational Inference (VI) for SNNs

In order to simplify the evaluation of the learning signal and the
learning rule, a typical choice for GLM SNNs is

q(zi ,t |x≤T , z≤t−1) = p(zi ,t |ui ,t , θ)

This leads to a simplified learning signal

`t =
∑
i

log p(xi ,t |ui ,t)

where the sum is over the observed spike trains.

The learning signal measure the likelihood of the observed spike trains

Osvaldo Simeone Neuromorphic Computing 14 / 15

Pseudocode for Online Learning

For each time t
I Sampling: Each hidden neuron i emits a spike with probability σ(ui,t)
I Global feedback (1): A central processor updates the learning signal

`t = κ`t−1 + (1− κ)
∑
i

log p(xi,t |ui,t),

where the sum is over the observed neurons, which is fed back to all
latent neurons

I Global feedback (2): The central processor feeds back to all neurons
any reward signal rt (if reinforcement learning)

I Local parameter update: Three-factor rule with Mt = `t × rt for hidden
neurons and Mt = rt for the observed neurons

Osvaldo Simeone Neuromorphic Computing 15 / 15

	Appendix

	0.Plus:
	0.Reset:
	0.Minus:
	0.EndRight:
	0.StepRight:
	0.PlayPauseRight:
	0.PlayRight:
	0.PauseRight:
	0.PlayPauseLeft:
	0.PlayLeft:
	0.PauseLeft:
	0.StepLeft:
	0.EndLeft:
	anm0:
	0.99:
	0.98:
	0.97:
	0.96:
	0.95:
	0.94:
	0.93:
	0.92:
	0.91:
	0.90:
	0.89:
	0.88:
	0.87:
	0.86:
	0.85:
	0.84:
	0.83:
	0.82:
	0.81:
	0.80:
	0.79:
	0.78:
	0.77:
	0.76:
	0.75:
	0.74:
	0.73:
	0.72:
	0.71:
	0.70:
	0.69:
	0.68:
	0.67:
	0.66:
	0.65:
	0.64:
	0.63:
	0.62:
	0.61:
	0.60:
	0.59:
	0.58:
	0.57:
	0.56:
	0.55:
	0.54:
	0.53:
	0.52:
	0.51:
	0.50:
	0.49:
	0.48:
	0.47:
	0.46:
	0.45:
	0.44:
	0.43:
	0.42:
	0.41:
	0.40:
	0.39:
	0.38:
	0.37:
	0.36:
	0.35:
	0.34:
	0.33:
	0.32:
	0.31:
	0.30:
	0.29:
	0.28:
	0.27:
	0.26:
	0.25:
	0.24:
	0.23:
	0.22:
	0.21:
	0.20:
	0.19:
	0.18:
	0.17:
	0.16:
	0.15:
	0.14:
	0.13:
	0.12:
	0.11:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

