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Machine Learning Today

[Rajendran [íô�

Breakthroughs in ML using (deep) Artificial Neural Networks (ANNs)
have come at the expense of massive memory, energy, and time
requirements...
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Resource-Constrained Machine Learning
How to implement ML (inference and learning) on mobile or
embedded devices with limited energy and memory resources?
[Welling ’18]

mobile personal assistants medical and health wearables

IoT mobile or embedded devices neural prosthetics
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Machine Learning at the Edge
A solution is mobile edge or cloud computing: offload computations
to an edge or cloud server.

Possible privacy and latency issues
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Machine Learning on Mobile Devices

Another solution is to scale down energy and memory requirements of
ANNs via tailored hardware implementations for mobile devices.

Active field with established players and start-ups

Trade-offs between accuracy and complexity

Limited to inference
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Neuromorphic Computing
Spiking Neural Networks (SNNs) aim at attaining the efficiency of the
human brain...

13 Million Watts
5600 sq. ft. & 340 tons

∼ 1010 ops/J

∼ 20 Watts
2 sq. ft. & 1.4 Kg
∼ 1015 ops/J

Source: https://www.olcf.ornl.gov, Google ImagesOsvaldo Simeone Neuromorphic Computing 9 / 60



Neuromorphic Computing
... by taking inspiration from the dynamic, sparse, and event-driven
learning and inference operation of the human brain.
Neurons in the brain sense, process, and communicate over time using
sparse binary signals (spikes or action potentials).

[Gerstner]Osvaldo Simeone Neuromorphic Computing 10 / 60



Spiking Neural Networks

SNNs are networks of spiking neurons [Maas ’97].

Mostly studied in theoretical neuroscience, but recent interest from
machine learning and hardware design researchers...
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Spiking Neural Networks
Proof-of-concept and commercial hardware implementations of SNNs
have demonstrated significant energy savings as compared to ANNs
[Rajendran et al ’19].
Energy consumed only when spikes are produced (binary values →
pJ/spike)
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Spiking Neural Networks

Increasing press coverage and positive market predictions...

Osvaldo Simeone Neuromorphic Computing 13 / 60



Overview

Motivation and Introduction

Applications

Models

Learning Algorithms

Examples

Osvaldo Simeone Neuromorphic Computing 14 / 60



I/O Interfaces

SNN
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I/O Interfaces

SNN
Neuromorphic 
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I/O Interfaces

iniVation’s Dynamic Vision Sensor (DVS), iniVation and AiCTX’s
Speck, Prophesee

[Prophesee]
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I/O Interfaces

From IBM’s DVS128 Gesture Dataset...
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I/O Interfaces

SNNencoder decoder

source actuator

5
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I/O Interfaces
Conversion from natural signals to spike signals – theory [Lazar ’06]
Practice: Rate encoding, time encoding, population encoding; rate
decoding, first-to-spike decoding,...
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Applications

SNNs can perform
I Inference/ control: classification, regression, prediction, ...

SNN
?

(a) inference/ control
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Applications
SNNs can perform

I Inference/ control: classification, regression, prediction, ...
I Learning: supervised, unsupervised, reinforced

SNN
?

(a) inference/ control

SNN

(b) learning 

?

feedback/ reward

Data presentation through I/O interfaces:
I Frame-based (or batch)
I Streaming (or online)
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SNN Models

SNNs are networks of spiking neurons.

Their operation is defined by:
I topology (connectivity)
I neuron model
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Topology

Arbitrary directed graph with directed links representing synaptic
connections

“Parent”, or pre-synaptic, neuron affects causally spiking behavior of
“child”, or post-synaptic, neuron

Enables recurrent connectivity (directed loops), including self-loops
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Topology

Discrete (algorithmic) time, as in many practical implementations
(e.g., Intel’s Loihi)

Binary outputs: 0 = no spike; and 1 = spike (energy consumed)
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Neuron Model

Each neuron is characterized by an internal state known as membrane
potential [Gerstner and Kistler ’02].

Generally, a higher membrane potentially entails a larger propensity
for spiking.

The membrane potential evolves over time as a function of the past
behavior of pre-synaptic neurons and of the neuron itself.
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Membrane Potential

ui ,t =
∑
j∈Pi
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Feedforward filter (kernel) at with learnable synaptic weight wj ,i
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Membrane Potential

ui ,t =
∑
j∈Pi

wj ,i

(
at ∗ sj ,t

)
+ wi

(
bt ∗ si ,t

)
+ γi

Feedback filter (kernel) bt with learnable wi (e.g., refractory period)
Bias (threshold) γi
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Membrane Potential

Kernels can more generally be parameterized via multiple basis
functions and learnable weights [Pillow et al ’08].

This allows learning of the temporal “receptive fields” of the neurons,
e.g., by adapting synaptic delays.
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Deterministic SNN Models

The most common model is leaky integrate-and-fire (LIF) [Gerstner
and Kistler ’02]: Spike when membrane potential is positive
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Deterministic SNN Models

LIF-based SNNs can approximate operation of feedforward and
recurrent ANNs: spiking rates in SNN ≈ neuron outputs in ANN

Often used for inference by converting a pre-trained ANN [Rueckauer
et al ’17]

Direct training is required to leverage temporal information processing
and learning

This is made difficult by output non-differentiability with respect to
model parameters

Heuristic training algorithms based on approximations, such as
surrogate gradient [Neftci ’18] [Anwani and Rajendran ’18]

As for ANNs, these require backpropagation
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Probabilistic SNN Models

Probabilistic Generalized Linear Model (GLM): Conditional spiking
probability [Pillow et al ’08]

p(si ,t = 1|s≤t−1) = σ(ui ,t)

𝜎(𝑥)

𝑥
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Probabilistic SNN Models

Probabilistic Generalized Linear Model (GLM): Conditional spiking
probability [Pillow et al ’08]

p(si ,t = 1|s≤t−1) = σ(ui ,t)
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Probabilistic SNN Models

GLM SNN models are dynamic generalization of belief networks [Neal
’92].

They enable direct training of spike-based statistical criteria.
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Training SNNs

SNNs can be trained using supervised, unsupervised, and
reinforcement learning.

To fix the ideas, we focus here on supervised learning:

training data = {(input, output)} → generalization

Osvaldo Simeone Neuromorphic Computing 40 / 60



Training SNNs

Visible neurons, clamped to input/ output data

Latent neurons, free

SNN

input outputlatent

input data
output data
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Learning Rules

Probabilistic SNNs can be directly trained using standard statistical
criteria, such as maximum likelihood, maximum mutual information,
or maximum average return.

Maximum likelihood for supervised (and unsupervised) learning:

max Edata[ln p(visible)] = Edata[ln Elatentp(visible,latent)]

Regularization terms are typically added, e.g., to limit spiking rate
(and hence energy consumption) – bounded rationality [Leibfried and
Braun ’15]

Osvaldo Simeone Neuromorphic Computing 42 / 60



Learning Rules

Probabilistic SNNs can be directly trained using standard statistical
criteria, such as maximum likelihood, maximum mutual information,
or maximum average return.

Maximum likelihood for supervised (and unsupervised) learning:

max Edata[ln p(visible)] = Edata[ln Elatentp(visible,latent)]

Regularization terms are typically added, e.g., to limit spiking rate
(and hence energy consumption) – bounded rationality [Leibfried and
Braun ’15]

Osvaldo Simeone Neuromorphic Computing 42 / 60



Learning Rules

Probabilistic SNNs can be directly trained using standard statistical
criteria, such as maximum likelihood, maximum mutual information,
or maximum average return.

Maximum likelihood for supervised (and unsupervised) learning:

max Edata[ln p(visible)] = Edata[ln Elatentp(visible,latent)]

Regularization terms are typically added, e.g., to limit spiking rate
(and hence energy consumption) – bounded rationality [Leibfried and
Braun ’15]

Osvaldo Simeone Neuromorphic Computing 42 / 60



Learning Rules

Using Stochastic Gradient Descent (SGD) along with...

... variational inference to address marginalization over latent neurons
yields the on-line learning rule [Rezende et al ’11] [Osogami ’17] [Jang
et al ’18]

wj ,i ← wj ,i + η × `× pre-synj × post-syni

The learning signal ` is a global feedback signal (akin to
neuromodulator in neuroscience).

Pre-synaptic and post-synaptic terms are local to each synapse.
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Learning Rules

Stochastic Gradient Descent (SGD) updates for synaptic weights:

wj ,i ← wj ,i + η × `× pre-synj × post-syni

The learning signal ` is derived using variational inference [Rezende et
al ’11] [Osogami ’17] [Jang et al ’18]:

`t = 1 for visible (input and output) neurons,

`t =
∑

i∈visible
log p(si ,t |ui ,t) for latent neurons

Positive feedback to hidden neurons if desired behavior has large
probability
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Learning Rules

Stochastic Gradient Descent (SGD) updates for synaptic weights:

wj ,i ← wj ,i + η × `× pre-synj × post-syni

pre-synj = at ∗ sj ,t = pre-synaptic trace

Large if previous behavior of pre-synaptic neuron is consistent with
synaptic receptive field (e.g., if recent spiking)
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Learning Rules

Stochastic Gradient Descent (SGD) updates for synaptic weights:

wj ,i ← wj ,i + η × `× pre-synj × post-syni

post-syni = si ,t − σ
(
ui ,t
)

= post-synaptic error

Post-synaptic error = desired/ observed behavior - model averaged
behavior [Bienenstock et al ’82]

No backpropagation
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Learning Rules

The learning rules simplifies to Spike-Timing-Dependent Plasticity
(STDP) [Markram ’97].

Further simplifications yield Hebbian learning: “Neurons that fire
together, wire together” [Hebb ’49].
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Batch Training

encoder

source

decoder

5
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Batch Training

Rate encoding/ decoding
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Batch Training

Graceful trade-off complexity/ delay vs accuracy [Jang et al ’18-2]
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Online Training
Online training for prediction
Fully connected (recurrent) SNN topology with hidden neurons

encoder

decoder

source input/ output

latent
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Online Training

Rate encoding
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Online Training
Rate encoding
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Online Training

Rate encoding
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Online Training

Time encoding
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Online Training

Rate vs time encoding
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Concluding Remarks

Statistical signal processing review of neuromorphic computing via
Spiking Neural Networks

Additional topics:
I more general energy-based probabilistic SNN models [Osogami ’17]

[Jang ’19]
I recurrent SNNs for long-term memory [Maas ’11]
I neural sampling: information encoded in steady-state behavior [Buesing

et al ’11]
I Bayesian learning via Langevin dynamics [Pecevski et al ’11] [Kappel et

al ’15]

Some open problems:
I meta-learning, life-long learning, transfer learning [Bellec et al ’18]
I training I/O interfaces [Lazar and Toth ’03]
I integration of ANNs and SNNs [Pei et al ’19]
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For More...

H. Jang, O. Simeone, B. Gardner and A. Gruning, “An Introduction
to Probabilistic Spiking Neural Networks,” to appear on IEEE Signal
Processing Magazine (available on arxiv).
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Reinforcement Learning

encoder decoder

actuator

up
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Reinforcement Learning

From [Rosenfeld et al ’18]

GLM SNN
IF SNN
ANN

GLM SNN
IF SNN
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Applications

Example: Keyword spotting based on audio streaming; accuracy
comparable to ANN.

[Blouw et al '18]
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Variational Inference (VI)

With latent variables z , Maximum Likelihood requires the
maximization of

max
θ

ln p(x |θ) = ln

(∑
z

p(x , z |θ)

)
= ln

(
Ez∼p(z|θ)[p(z|x , θ)]

)
Key issue: Need to marginalize over latent variables, whose
distribution is to be learned.
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Variational Inference (VI)

VI tackles this problem by substituting the expectation for an
optimization over a predictive, or variational, distribution q(z |x , ϕ)

Optimization over both model parameters θ and variational
parameters ϕ is done by maximizing the Evidence Lower BOund
(ELBO) or (negative) free energy

L(θ, ϕ) =Ez∼q(z|x ,ϕ)[ln p(x , z|θ)− ln q(z|x , ϕ)︸ ︷︷ ︸
learning signal `(x ,z|θ,ϕ)

]

Osvaldo Simeone Neuromorphic Computing 11 / 15



Variational Inference (VI)

VI tackles this problem by substituting the expectation for an
optimization over a predictive, or variational, distribution q(z |x , ϕ)

Optimization over both model parameters θ and variational
parameters ϕ is done by maximizing the Evidence Lower BOund
(ELBO) or (negative) free energy

L(θ, ϕ) =Ez∼q(z|x ,ϕ)[ln p(x , z|θ)− ln q(z|x , ϕ)︸ ︷︷ ︸
learning signal `(x ,z|θ,ϕ)

]

Osvaldo Simeone Neuromorphic Computing 11 / 15



Variational Inference (VI)

The ELBO is a global lower bound on the log-likelihood (LL) function

ln p(x |θ) ≥ L(θ, ϕ),

Equality holds at a value θ0 if and only if the distribution q(z |x , ϕ) is
the posterior of z given x (i.e., optimal Bayesian estimate)

q(z |x , ϕ) = p(z |x , θ0).

LL

0
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Variational Inference (VI)

VI approximates the EM algorithm by using SGD over both variables
with gradients

∇θL(θ, ϕ) ≈ ∇θ log p(x , z),

∇ϕL(θ, ϕ) ≈ `(x , z |θ, ϕ) · ∇ϕ log q(z |x , ϕ)

with z ∼ q(z |x , ϕ)
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Variational Inference (VI) for SNNs

In order to simplify the evaluation of the learning signal and the
learning rule, a typical choice for GLM SNNs is

q(zi ,t |x≤T , z≤t−1) = p(zi ,t |ui ,t , θ)

This leads to a simplified learning signal

`t =
∑
i

log p(xi ,t |ui ,t)

where the sum is over the observed spike trains.

The learning signal measure the likelihood of the observed spike trains
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Pseudocode for Online Learning

For each time t
I Sampling: Each hidden neuron i emits a spike with probability σ(ui,t)
I Global feedback (1): A central processor updates the learning signal

`t = κ`t−1 + (1− κ)
∑
i

log p(xi,t |ui,t),

where the sum is over the observed neurons, which is fed back to all
latent neurons

I Global feedback (2): The central processor feeds back to all neurons
any reward signal rt (if reinforcement learning)

I Local parameter update: Three-factor rule with Mt = `t × rt for hidden
neurons and Mt = rt for the observed neurons
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