Source Coding With Side Information

O. Simeone

NJIT

National Chiao-Tung University, Jan. 2015

- Classical problem (1973-) with many applications
- This lecture: Overview covering both classical and recent results with emphasis on intuition
- Background: Basics of information theory and coding theory

PART I: Basics

- Example: File Synchronization
- The Wyner-Ziv problem
- Code design
- PART II: Constraints
 - Causality constraints
 - Reconstruction constraints
 - Robustness constraints
 - Privacy constraints
- PART III: Extensions
 - Action-dependent side information
 - Cascade problems
 - Sources with memory

PART I: Basics

- Example: File Synchronization
- The Wyner-Ziv problem
- Code design

PART II: Constraints

- Causality constraints
- Reconstruction constraints
- Robustness constraints
- Privacy constraints
- PART III: Extensions
 - Action-dependent side information
 - Cascade problems
 - Sources with memory

- Goal: File synchronization with minimum (bit) rate [Orlitsky '91]
- R rate (bits per source symbol)
- Key observation: leveraging the side information, $R < 1 \mbox{ bits may suffice}$

- Goal: File synchronization with minimum (bit) rate [Orlitsky '91]
- *R* rate (bits per source symbol)
- Key observation: leveraging the side information, $R < 1 \mbox{ bits may suffice}$

- Source coding (compression) with side information
- Encoder: x^n (and possibly y^n) $\rightarrow nR$ bits (message or code)
- Decoder: $(nR \text{ bits}, y^n) \rightarrow x^n$

• *n* = 3

At most one substitution

- If y^3 is known at the encoder, only the error pattern $x^3 \oplus y^3$ must be communicated (delta compression)
- Ex.: $x^3 = (100)$ and $y^3 = (110)$, $x^3 \oplus y^3 = (010)$
- Required number of bits

 $R = \log_2(\# \text{error patterns})$ $= \log_2\left(\begin{pmatrix} 3\\ 0 \end{pmatrix} + \begin{pmatrix} 3\\ 1 \end{pmatrix}\right) = 2 \text{ bits}$

• *n* = 3

- At most one substitution
- If y^3 is known at the encoder, only the error pattern $x^3 \oplus y^3$ must be communicated (delta compression)
- Ex.: $x^3 = (100)$ and $y^3 = (110)$, $x^3 \oplus y^3 = (010)$
- Required number of bits

$$nR = \log_2(\#\text{error patterns})$$
$$= \log_2\left(\begin{pmatrix} 3\\ 0 \end{pmatrix} + \begin{pmatrix} 3\\ 1 \end{pmatrix}\right) = 2 \text{ bits}$$

- When y^3 is not known at the encoder...
- Need to assign code (color) to each xⁿ so that the decoder can recover xⁿ based on code and yⁿ
- What does the decoder know based on yⁿ? Equivocation set at the receiver: for yⁿ = (000)

• Equivocation set at the receiver: for $y^n = (001)$

• Each source sequence is connected to all others at a Hamming distance of at most 2

(characteristic graph [Witsenhausen '76]

• The encoder must assign different codes to sequences connected by an edge

• The encoder can thus encode with the same label ("color") sequences that are not connected by an edge (independent set)

• A set with the same color forms a "bin"

Encoding:

Bin	Code
$\mathscr{C}_1 = \{000, 111\}$	00
$\mathscr{C}_2 = \{001, 110\}$	01
$\mathscr{C}_3 = \{100, 011\}$	10
$\mathscr{C}_4 = \{010, 101\}$	11

• Same rate as the case in which y^3 is known at the encoder! (But this is not always the case for zero error [Orlitsky '91])

- Channel decoding at the decoder...
- Bins as channel codes?

- $\mathscr{C}_1 = \{000, 111\}$ is a (3, 1) repetition code: can correct one bit flip
- ... zero-error channel code for the channel between X and Y
- $\mathscr{C}_2 = \{001, 110\}$ is $\mathscr{C}_1 \oplus (001)...$ coset of \mathscr{C}_1 ((001) coset leader)
- C₃ = {100,011} is C₁⊕(100) ... coset of C₁ ((100) coset leader)
 C₄ = {010,101} is C₁⊕(010) ... coset of C₁ ((010) coset leader)

- $\mathscr{C}_1 = \{000, 111\}$ is a (3, 1) repetition code: can correct one bit flip
- ... zero-error channel code for the channel between X and Y
- $\mathscr{C}_2 = \{001, 110\}$ is $\mathscr{C}_1 \oplus (001)$... coset of \mathscr{C}_1 ((001) coset leader)
- C₃ = {100,011} is C₁⊕(100) ... coset of C₁ ((100) coset leader)
 C₄ = {010,101} is C₁⊕(010) ... coset of C₁ ((010) coset leader)

- $\mathscr{C}_1 = \{000, 111\}$ is a (3, 1) repetition code: can correct one bit flip
- ... zero-error channel code for the channel between X and Y
- $\mathscr{C}_2 = \{001, 110\}$ is $\mathscr{C}_1 \oplus (001)...$ coset of \mathscr{C}_1 ((001) coset leader)
- $\mathscr{C}_3 = \{100,011\}$ is $\mathscr{C}_1 \oplus (100) \dots$ coset of \mathscr{C}_1 ((100) coset leader)
- $\mathscr{C}_4 = \{010, 101\}$ is $\mathscr{C}_1 \oplus (010)$... coset of \mathscr{C}_1 ((010) coset leader)

• Parity matrix for $\mathscr{C}_1 = \{000, 111\}$

$$H = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

Codewords must satisfy: $H \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} = H \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$

- (00) is the code for the sequences in \mathscr{C}_1
- (00) is also known as the syndrome for \mathscr{C}_1

۲

• The code $\mathscr{C}_2 = \{001, 110\}$ is obtained in the same way

$$H\left(\begin{array}{c}0\\0\\1\end{array}\right)=H\left(\begin{array}{c}1\\1\\0\end{array}\right)=\left(\begin{array}{c}0\\1\end{array}\right)$$

- (01) is referred to as the syndrome for \mathscr{C}_2
- Check syndromes for \mathscr{C}_3 (10), and for \mathscr{C}_4 (11)

Cosets and Syndromes

Bin (Coset)	Code (Syndrome)
$C_1 = \{000, 111\}$	00
$\mathscr{C}_2 = \{001, 110\}$	01
$\mathscr{C}_3 = \{100, 011\}$	10
$\mathscr{C}_4 = \{010, 101\}$	11

• ... The operation at the decoder can be interpreted as channel decoding... [Orlitsky and Viswanathan '03]

• Binning is related to the concept of hashing [MacKay '03]

Cosets and Syndromes

Bin (Coset)	Code (Syndrome)
$C_1 = \{000, 111\}$	00
$\mathscr{C}_2 = \{001, 110\}$	01
$\mathscr{C}_3 = \{100, 011\}$	10
$\mathscr{C}_4 = \{010, 101\}$	11

- ... The operation at the decoder can be interpreted as channel decoding... [Orlitsky and Viswanathan '03]
- Binning is related to the concept of hashing [MacKay '03]

PART I: Basics

- Example: File Synchronization
- The Wyner-Ziv problem
- Code design
- PART II: Constraints
 - Causality constraints
 - Reconstruction constraints
 - Robustness constraints
 - Privacy constraints
- PART III: Extensions
 - Action-dependent side information
 - Cascade problems
 - Sources with memory

Slepian-Wolf/ Wyner-Ziv Problem

A Theory of Source Coding with Side Information

Tractable and relevant

"In theory, yes, Mrs. Wilkins. But also in theory, no"

Slepian-Wolf/ Wyner-Ziv Problem

A Theory of Source Coding with Side Information

- How much compression is possible for a given "correlation" between x^n and y^n ?
- How to encode optimally?

Slepian and Wolf '73

- $X^n \sim p(x)$ i.i.d., discrete finite alphabet
- Memoryless side information "channel": $Y^n | X^n = x^n \sim \prod_{i=1}^n p(y_i | x_i)$
- Fixed-length codes: $M \in \{1, 2, ..., 2^{nR}\}$ (*nR* bits)
- Correlation between X and Y is captured by p(x,y) = p(x)p(y|x)

Doubly Symmetric Binary Source (DSBS)

- Binary Symmetric Source (BSS): $X_i \underset{\text{i.i.d.}}{\sim} Ber(1/2)$
- Binary Symmetric Channel (BSC(q)):

$$Y_i = X_i \oplus Q_i$$
 with $Q_i \underset{\text{i.i.d.}}{\sim} Ber(q)$ and indep. of X^n

•
$$q = \Pr[X_i \neq Y_i] \ (q \leq 1/2)$$

Slepian and Wolf '73

• Lossless compression: R is achievable if for any $\varepsilon > 0$, there exists a sufficiently large n_0 such that for $n \ge n_0$

$$\Pr[\hat{X}^n \neq X^n] \leq \varepsilon$$

• What is the infimum R^{SW} of all achievable rates? How to achieve it?

• File synchronization [Orlitsky '91], distributed file backup and file sharing systems [Suel and Memon '02], reference based genome compression [Chern et al '12], ...

Shannon Theory

- Entropy H(A) = -E [log₂ p(A)]: measure of "randomness" or "uncertainty"
 - For $A \sim Ber(p)$, $H(A) = H(p) = -p \log_2 p (1-p) \log_2(1-p)$
- Mutual information I(A; B) = E [log₂ p(A,B)/p(A)p(B)]: measure of "correlation"
- Conditional entropy H(A|B) = H(A) I(A; B): measure of "residual uncertainty"
- Conditional mutual information I(A; B|C) = H(A|C) H(A|B,C): measure of "conditional correlation"

Lossless Compression El Gamal and Kim '11

- $A^n \sim p(a)$ i.i.d. (ex.: Ber(q))
- H(A) bits/sample are necessary and sufficient for lossless compression
- ... Consequence of the fact that, with high probability, Aⁿ is one of the 2^{nH(A)} typical sequences (ex.: for Ber(q), sequence with approximately nq ones)
- Achievable in practice with Huffman coding, arithmetic coding, LZ techniques,... (e.g., [Sayood '12])

Packing Lemma (Channel Coding) El Gamal and Kim '11

• Memoryless channel p(b|a) (ex.: BSC(q))

- Random codebook of 2^{nR} codewords $A^n(m)$, $m = 1, ..., 2^{nR}$
- $A^n(m) \sim p(a)$ i.i.d. and independent
- If R < I(A; B), then $\Pr[\hat{M} \neq M] \rightarrow 0$ as $n \rightarrow \infty$

Packing Lemma (Channel Coding) El Gamal and Kim '11

• Memoryless channel p(b|a) (ex.: BSC(q))

- Random codebook of 2^{nR} codewords $A^n(m)$, $m = 1, ..., 2^{nR}$
- $A^n(m) \sim p(a)$ i.i.d. and independent
- If R < I(A; B), then $\Pr[\hat{M} \neq M] \rightarrow 0$ as $n \rightarrow \infty$

Doubly Symmetric Binary Source (DSBS)

Encoder:

- ► Divide the set of all binary sequences randomly and uniformly into codebooks (bins) of sizes 2^{nI(X;Y)} = 2^{n(1-H(q))} = 2ⁿ/2^{nH(q)}
- (There are $2^{nH(q)}$ codebooks or bins)
- The code associated to any binary sequence 2^n is the index of the bin $\rightarrow R > H(q)$
- Decoder:
 - Channel decoding within the bin (successful with high probability by the packing lemma)

Slepian and Wolf '73

 If the encoder knew Yⁿ, it could calculate the error pattern Qⁿ = Xⁿ ⊕ Yⁿ ~ Ber(q) i.i.d., which requires H(q) bits/sample for lossless compression

• "It follows" that
$$R^{SW} = H(q)$$

Slepian and Wolf '73

• The results can be generalized (see discussion around the more general Wyner-Ziv problem)

$$R^{SW} = H(X) - I(X;Y)$$
$$= H(X|Y)$$

• This is also the rate required if the encoder knows Y^n (as in the example)!
Wyner and Ziv '76

- Lossy compression: Distortion measure $0 \le d(x, \hat{x}) < \infty$,
- Ex.: Hamming distortion $d(x, \hat{x}) = 1(x \neq \hat{x})$; MSE $d(x, \hat{x}) = (x \hat{x})^2$
- Average per-block distortion

$$\frac{1}{n}\sum_{i=1}^{n}E[d(X_i,\hat{X}_i)] \le D$$

• Ex.: With Hamming distortion $\frac{1}{n}\sum_{i=1}^{n}E[d(X_i, \hat{X}_i)] = \frac{1}{n}\sum_{i=1}^{n}\Pr[X_i \neq \hat{X}_i]$

Wyner and Ziv '76

- Lossy compression: Distortion measure $0 \le d(x, \hat{x}) < \infty$,
- Ex.: Hamming distortion $d(x, \hat{x}) = 1(x \neq \hat{x})$; MSE $d(x, \hat{x}) = (x \hat{x})^2$
- Average per-block distortion

$$\frac{1}{n}\sum_{i=1}^{n}E[d(X_i,\hat{X}_i)] \leq D$$

• Ex.: With Hamming distortion $\frac{1}{n}\sum_{i=1}^{n}E[d(X_{i},\hat{X}_{i})] = \frac{1}{n}\sum_{i=1}^{n}\Pr[X_{i} \neq \hat{X}_{i}]$

Wyner and Ziv '76

Lossy functional reconstruction d(x, y, x̂) = d(f(x, y), x̂) [Yamamoto '82] [Feng et al '04]

$$\frac{1}{n}\sum_{i=1}^{n}E[d(X_i,Y_i,\hat{X}_i)] \le D$$

Wyner and Ziv '76

 (R,D) is achievable if for any ε > 0, there exists a sufficiently large n₀ such that for n ≥ n₀

$$\frac{1}{n}\sum_{i=1}^{n}E[d(X_i,Y_i,\hat{X}_i)] \leq D+\varepsilon$$

• The rate-distortion function $R_{X|Y}^{WZ}(D)$ is the infimum of all R such that (R,D) is achievable

Wyner and Ziv '76

- Sensor networks [Draper and Wornell '04], video coding [Aaron et al '02],...
- Systematic source-channel coding: analog+digital audio/video broadcasting [Shamai et al '98]
- Denoising: fidelity-boosting sequence constrained to rate *R* [Jalali et al '10]
- Networks: Relay channel [Cover and El Gamal '79], distributed uplink reception [Sanderovich et al '09],...

• Source
$$A^n \sim p(a)$$
 i.i.d. (ex.: $A^n \underset{\text{i.i.d.}}{\sim} Ber(1/2)$)

• Cover (quantize) source A^n using a codebook of 2^{nR} codewords $\hat{A}^n(m)$ for $m = 1, ..., 2^{nR}$

Covering Lemma

El Gamal and Kim '11

For "most" sequences Aⁿ, we want to find a sequence Âⁿ(m) such that (Aⁿ,Âⁿ(m)) are "close"

- Ex.: $\frac{1}{n} \sum_{i=1}^{n} 1(a_i \neq \hat{a}_i) \le D = 0.2$
- How large should *R* be?

Covering Lemma

El Gamal and Kim '11

"Closeness": (Aⁿ,Âⁿ(m)) are jointly typical according to a desired joint distribution p(a,â) = p(a)p(â|a)

• Ex.:
$$p(a, \hat{a})$$
: $\begin{array}{c|ccc} A \setminus \hat{A} & 0 & 1 \\ \hline 0 & 0.4 & 0.1 \\ \hline 1 & 0.1 & 0.4 \end{array}$

Covering Lemma

El Gamal and Kim '11

"Closeness": (Aⁿ,Âⁿ(m)) are jointly typical according to a desired joint distribution p(a,â) = p(a)p(â|a)

Ex.:
$$p(a, \hat{a})$$
: $A \setminus \hat{A} = 0$ 1
1 0.1 0.4

• Ex.:
$$p(a, \hat{a})$$
: $A \setminus \hat{A} = 0$ 1
0 0.4 0.1
1 0.1 0.4 \rightarrow Hamming distortion $D = 0.2$

- p(a) given by the problem
- $p(\hat{a}|a)$ is referred to as the inverse test channel
- Intuitively, we need a larger R if we desire A and \hat{A} to be more "correlated"

• Ex.:
$$p(a, \hat{a})$$
: $A \setminus \hat{A} = 0$ 1
 $0 = 0.4 = 0.1$
 $1 = 0.1 = 0.4$
 $D = 0.2$

- p(a) given by the problem
- $p(\hat{a}|a)$ is referred to as the inverse test channel
- Intuitively, we need a larger R if we desire A and \hat{A} to be more "correlated"

• If the codewords $\hat{A}^n(m)$ are selected i.i.d. $\sim p(\hat{a})$ and independently (random codebook), then if

$$R > I(A; \hat{A}),$$

we have

 $\Pr[\nexists \hat{A}^n(m) \text{ jointly typical with } A^n] \to 0 \text{ as } n \to \infty$

• Quantization defined by the inverse test channel $p(\hat{a}|a)$

• If the codewords $\hat{A}^n(m)$ are selected i.i.d. $\sim p(\hat{a})$ and independently (random codebook), then if

$$R > I(A; \hat{A}),$$

we have

 $\Pr[\nexists \hat{A}^{n}(m) \text{ jointly typical with } A^{n}] \to 0 \text{ as } n \to \infty$

• Quantization defined by the inverse test channel $p(\hat{a}|a)$

Converse

Converse

• Using data processing inequality, memorylessness and convexity properties of the rate-distortion function, we get the lower bound:

$$egin{aligned} &R_{X|Y}(D) \geq \min_{p(\hat{x}|x,y)} I(X; \hat{X}|Y) \ & ext{ s.t. } E[d(X,Y,\hat{X})] \leq D \end{aligned}$$

- Proof: See Appendix-A
- Note that $p(x, y, \hat{x}) = p(x, y)p(\hat{x}|x, y)$

Achievability

- $\mathsf{DSBS}(q)$ $(Y = X \oplus Q$ where $Q \sim Ber(q))$ with Hamming distortion
- The lower bound

$$egin{aligned} &R_{X|Y}(D) \geq \min_{p(\hat{x}|x,y)} I(X; \hat{X}|Y) \ & ext{ s.t. } E[d(X,Y,\hat{X})] \leq D \end{aligned}$$

leads to

$$R_{X|Y}(D) \ge H(q) - H(D)$$

= $I(Q; \hat{Q}),$

where $p(q|\hat{q})$ is BSC(D)

• ... lower bound achievable by compressing the error Q^n with inverse test channel $p(\hat{q}|q)$ (delta compression)

Achievability

- $\mathsf{DSBS}(q)$ $(Y = X \oplus Q$ where $Q \sim Ber(q))$ with Hamming distortion
- The lower bound

$$egin{aligned} &R_{X|Y}(D) \geq \min_{p(\hat{x}|x,y)} I(X; \hat{X}|Y) \ & ext{ s.t. } E[d(X,Y,\hat{X})] \leq D \end{aligned}$$

leads to

$$R_{X|Y}(D) \ge H(q) - H(D)$$

= $I(Q; \hat{Q}),$

where $p(q|\hat{q})$ is BSC(D)

• ... lower bound achievable by compressing the error Q^n with inverse test channel $p(\hat{q}|q)$ (delta compression)

Achievability

• In order to obtain a more generally applicable scheme, note that:

$$R_{X|Y}(D) \ge \min_{p(\hat{x}|x,y)} I(X; \hat{X}|Y) = \min_{p(\hat{x}|x,y)} \sum_{y \in \mathscr{Y}} p(y) I(X; \hat{X}|Y=y)$$

s.t. $E[d(X, Y, \hat{X})] \le D$

Achievability

- Context-adaptive encoding
- Each subsequence is of length np(y) and is encoded using the inverse test channel $p(\hat{x}|x, y)$
- Number of bits produced for each subsequence $np(y)I(X; \hat{X}|Y = y)$

Achievability

• The achievable rate matches the lower bound: rate-distortion function

$$R_{X|Y}(D) = \min_{p(\hat{x}|x,y)} I(X; \hat{X}|Y)$$

s.t. $E[d(X, Y, \hat{X})] \le D$

Wyner and Ziv '76

- $R_{X|Y}(D) = \min_{p(\hat{x}|x,y)} I(X; \hat{X}|Y)$ s.t. $E[d(X, Y, \hat{X})] \leq D$ not achievable!
- Problem: the encoder cannot implement the inverse test channel $p(\hat{x}|x,y)$

Wyner-Ziv Problem

Converse

• Lower bound:

$$R_{X|Y}^{WZ}(D) \ge \min_{p(u|x), f(u,y)} I(X; U|Y)$$

s.t. $E[d(X, Y, f(U, Y))] \le D$

• Proof: See Appendix-B

Converse

• Lower bound:

$$R_{X|Y}^{WZ}(D) \ge \min_{p(u|x), f(u,y)} I(X; U|Y)$$

s.t. $E[d(X, Y, f(U, Y))] \le D$

- Proof: See Appendix-B
- Key point: We have the Markov chain U X Y so that p(x, y, u) = p(x, y)p(u|x)

Wyner-Ziv Problem

Converse

• Lower bound:

$$R_{X|Y}^{WZ}(D) \ge \min_{p(u|x), f(u,y)} I(X; U|Y)$$

=
$$\min_{p(u|x), f(u,y)} I(X; U) - I(U;Y)$$

s.t.
$$E[d(X, Y, f(U, Y))] \le D$$

Achievability: 1. Quantization

I(X; U) - I(U; Y)

• Quantization with inverse test channel p(u|x)

O. Simeone

Source Coding With Side Information 53 / 2

Achievability: 2. Binning

I(X; U) - I(U; Y)

• $2^{nl(U;Y)}$ codewords per bin: the decoder can detect the codeword inside the bin based on the side information Y^n

O. Simeone

Source Coding With Side Information

54 / 241

Wyner-Ziv Problem Achievability: 3. Estimate

- Final estimate: symbol-by-symbol function $\hat{X}_i = f(U_i, Y_i)$
- Rate-distortion function:

$$R_{X|Y}^{WZ}(D) = \min_{p(u|x), f(u,y)} I(X; U|Y)$$

s.t. $E[d(X, Y, f(U, Y))] \le D$

A One-Dimensional View

A One-Dimensional View

• If Y^n is known at the encoder

$$R_{X|Y}(D) = \min_{p(\hat{x}|x,y)} I(X; \hat{X}|Y)$$

s.t. $E[d(X, Y, \hat{X})] \le D$

• Achievability: Delta compression or mux/demux

• If Y^n not known at the encoder

$$R_{X|Y}^{WZ}(D) = \min_{p(u|x), f(u,y)} I(X; U|Y)$$

s.t. $E[d(X, Y, f(U, Y))] \le D$

• Achievability: Quantization, binning and estimate

• If Y^n is known at the encoder

$$R_{X|Y}(D) = \min_{p(\hat{x}|x,y)} I(X; \hat{X}|Y)$$

s.t. $E[d(X, Y, \hat{X})] \le D$

- Achievability: Delta compression or mux/demux
- If Yⁿ not known at the encoder

$$R_{X|Y}^{WZ}(D) = \min_{p(u|x), f(u,y)} I(X; U|Y)$$

s.t. $E[d(X, Y, f(U, Y))] \le D$

Achievability: Quantization, binning and estimate

- As seen, we have $R_{X|Y}(0) = R_{X|Y}^{WZ}(0)$
- The property extends to Gaussian sources with MSE distortion [Wyner '78]; and binary sources with erased side information and Hamming/erasure distortion [Diggavi et al '09] [Weissman and Verdú '08]

Computation of the Rate-Distortion Function

• Introducing Shannon strategies: $T:\mathscr{Y}\to \hat{\mathscr{X}}$, we can write

$$R_{X|Y}^{WZ}(D) = \min_{p(t|x)} I(X; T|Y)$$

s.t. $E[d(X, Y, T(Y))] \le D$

- Convex problem in p(t|x)
- Can be solved using alternating optimization *à la* Blahut-Arimoto [Dupuis et al '04]
Wyner-Ziv Problem

Example

- DSBS(q) with Hamming distortion
- $R_{X|Y}^{WZ}(D) = I.c.e.\{H(q * D) H(D), (q, 0)\}$ for $D \le q$

Wyner-Ziv Problem Example

Overview

PART I: Basics

- Example: File Synchronization
- The Wyner-Ziv problem
- Code design

PART II: Constraints

- Causality constraints
- Reconstruction constraints
- Robustness constraints
- Privacy constraints
- PART III: Extensions
 - Action-dependent side information
 - Cascade problems
 - Sources with memory

Code Design From Theory To Implementation

"In theory, theory and practice are the same. In practice, they are not." (A. Einstein)

Code Design

• Quantization, Binning, Estimation

- Random codes lead to exponential quantization and decoding complexities
- Goal: Design structured codes with feasible quantization/decoding

O. Simeone

Code Design

• 1. Lossless case: Binning via syndromes and coset decoding

- 2. Lossy case, no side information: Quantization as decoding
- 3. Lossy case, side information: Quantization, binning and estimation

- DSBS(q) with Hamming distortion
- With D = 0, no need for quantization (U = X)

•
$$R_{X|Y}^{WZ}(0) = H(X|Y) = H(q)$$

Lossless Case From the Theory

- As seen, from the packing lemma, the decoder can decode within a bin of 2^{nI(X;Y)} = 2^{n(1-H(q))} randomly selected sequences Xⁿ
- The number of bins is $2^n/2^{n(1-H(q))} = 2^{nH(q)}$
- Rate of the message $R = H(q) = R_{X|Y}^{WZ}(0)$

Linear codes are optimal for communication over a BSC [Gallager '68]
... therefore, bins can be constructed from linear codes

Lossless Case From the Theory

- As seen, from the packing lemma, the decoder can decode within a bin of 2^{nl(X;Y)} = 2^{n(1-H(q))} randomly selected sequences Xⁿ
- The number of bins is $2^n/2^{n(1-H(q))} = 2^{nH(q)}$
- Rate of the message $R = H(q) = R_{X|Y}^{WZ}(0)$
- Linear codes are optimal for communication over a BSC [Gallager '68]
- ... therefore, bins can be constructed from linear codes

• Fix a linear code $((n-k) \times n$ parity matrix H) with k/n = 1 - H(q)

- ... and cosets
- Described by syndrome $s^{n-k} = Hx^n$ and by the corresponding coset leader $f(s^{n-k})$
- The coset leader f(s^{n-k}) is the offset with the minimal number of ones

- The encoder informs the decoder about the syndrome $s^{n-k} = Hx^n$, and hence about the bin
- The decoder decodes inside the bin

O. Simeone

Source Coding With Side Information 73 / 241

- To decode, calculate $HY^n \oplus S^{n-k} = H(Y^n \oplus X^n) = HQ^n$ estimate Q^n and then calculate $\hat{X}^n = Y^n \oplus \hat{Q}^n$
- If $\frac{n-k}{n} > H(q)$, then from HQ^n , we can recover Q^n as $f(HQ^n)$ with high probability [Ancheta '76]

Linear encoding

Decoder still has an exponential complexity

Lossless Case, Side Information

 The complexity at the decoder can be drastically reduced by adopting specific classes of linear codes

- LDPC codes are capacity-achieving for BSC and are known to be efficiently decoded using message passing [MacKay '99]
- Polar codes are capacity-achieving for BSC and can be efficiently decoded via successive decoding [Arıkan '09]

Lossless Case, Side Information

- The complexity at the decoder can be drastically reduced by adopting specific classes of linear codes
- LDPC codes are capacity-achieving for BSC and are known to be efficiently decoded using message passing [MacKay '99]
- Polar codes are capacity-achieving for BSC and can be efficiently decoded via successive decoding [Arıkan '09]

Lossless Case, Side Information

- The complexity at the decoder can be drastically reduced by adopting specific classes of linear codes
- LDPC codes are capacity-achieving for BSC and are known to be efficiently decoded using message passing [MacKay '99]
- Polar codes are capacity-achieving for BSC and can be efficiently decoded via successive decoding [Arıkan '09]

From the Theory

- No need for binning $(U = \hat{X})$
- Random coding

• For BSS: $R_X(D) = 1 - H(D)$ for $0 \le D \le 1/2$ and $R_X(D) = 0$ otherwise

• Can linear encoders be optimal for D > 0 (as in the lossless case)?

 No, non-linear operations are generally necessary [Ancheta '76] [Massey '78]

- Can linear encoders be optimal for D > 0 (as in the lossless case)?
- No, non-linear operations are generally necessary [Ancheta '76] [Massey '78]

- ... Quantization is akin to channel decoding on the test channel $p(x|\hat{x})!$
- (cf. binning where channel decoding is performed at the decoder's side)

[Gupta and Verdú '11]

[Gupta and Verdú '11]

• Source and channel coding problems related by functional duality [Pradhan et al '03]

- The dual channel is the test channel $p(x|\hat{x})$
- Example 1: Binary source Ber(1/2) with Hamming distortion $D \le p$
- The dual channel coding problem is: BSC $X = \hat{X} \oplus Z$ with $Z \sim Ber(D)$
- Example 2: $X_i \underset{\text{i.i.d.}}{\sim} \mathcal{N}(0, \sigma^2)$, MSE distortion $D \leq \sigma^2$
- The dual channel coding problem is: $X = \hat{X} + Z$ with $Z \sim \mathcal{N}(0, D)$ and cost constraint $E[\hat{X}^2] \leq \sigma^2 - D$

- The dual channel is the test channel $p(x|\hat{x})$
- Example 1: Binary source Ber(1/2) with Hamming distortion $D \le p$
- The dual channel coding problem is: BSC $X = \hat{X} \oplus Z$ with $Z \sim Ber(D)$
- Example 2: $X_i \underset{\text{i.i.d.}}{\sim} \mathscr{N}(0,\sigma^2)$, MSE distortion $D \leq \sigma^2$
- The dual channel coding problem is: $X = \hat{X} + Z$ with $Z \sim \mathcal{N}(0, D)$ and cost constraint $E[\hat{X}^2] \leq \sigma^2 - D$

- Capacity-achieving codes exist whose ML channel decoder for the dual channel is an optimal quantizer [Gupta and Verdú '11]
- LDPC codes achieve the rate-distortion bound with ML decoder as encoder [Matsunaga and Yamamoto '03]

- Capacity-achieving codes exist whose ML channel decoder for the dual channel is an optimal quantizer [Gupta and Verdú '11]
- LDPC codes achieve the rate-distortion bound with ML decoder as encoder [Matsunaga and Yamamoto '03]

- Not *every* optimal channel decoder is an optimal quantizer [Gupta and Verdú '11]
- (see also [Csiszár and Körner '11] proof of rate-distortion theorem)

 Message passing decoders fail as quantizers with LDPC codes [Martinian and Yedidia '03] (see Appendix-C)

- Not *every* optimal channel decoder is an optimal quantizer [Gupta and Verdú '11]
- (see also [Csiszár and Körner '11] proof of rate-distortion theorem)

 Message passing decoders fail as quantizers with LDPC codes [Martinian and Yedidia '03] (see Appendix-C)

- Low Density Generator Matrix (LDGM) codes achieve the rate-distortion function for BSS with Hamming distortion [Sun et al '10]
- LDGM codes allow low-complexity encoding via message-passing-type algorithm [Wainwright et al '10] [Sun et al '10]
- Unlike channel coding, many codewords "close" to to the source signal → need modifications of the message passing strategy

- Performance of LDGM codes with finite check degree bounded as [Dimakis et al '07] [Kudekar and Urbanke '08]: $R \ge R(D)/(1 - e^{-(1-D)\gamma/R})$
- Compound LDGM-LDPC codes achieve the rate-distortion function with bounded degrees [Martinian and Wainwright '06]

- Polar codes achieve the rate-distortion bound with successive encoding [Korada and Urbanke '10]
- For more general alphabet and non-uniform distributions, non-linear codes obtained via multilevel mappings [Sun et al '10] or by limiting the set of w's [Gupta and Verdú '09]

• BSS with Hamming distortion

[Wainwright and Maneva '05]

Lossy Case, Side Information From the Theory

• Quantization, Binning, Estimation

[Pradhan and Ramchandran '03]
- Quantization: linear code $-(n-k_q) \times n$ parity matrix $H_q(n-k_q) \times n$ with $\frac{k_q}{n} = I(X; U) = 1 - H(D)$
- Binning: nested linear code [Zamir et al '02] $(n k_b) \times n$ parity matrix $H_b = \begin{bmatrix} H_q \\ \Delta H_b \end{bmatrix}$ with $\frac{k_b}{n} = I(U; Y) = 1 H(D * q)$

(estimation step dealt with via time-sharing)

- LDGM do not provide good channel codes
- Compound LDGM-LDPC code achieves the rate-distortion function with side information with bounded degrees [Martinian and Wainwright '06]

- Polar codes [Korada and Urbanke '10]
 - O. Simeone

• Vector quantization and vector binning: nested lattice codes [Zamir et al '02] (see also [Fleming et al '04] [Saxena et al '10])

• Fine code good for quantization and coarse code good for channel coding [Zamir et al '02]

- Gaussian sources with MSE distortion
- Scalar quantizer followed by binning

• Scalar quantization followed by vector binning is optimal at high rate [Liu et al '06] (cf. [Ziv '85])

- DISCUS based on trellis codes for quantization and binning [Pradhan and Ramchandran '03]
- TCQ for quantization and LDPC for binning [Yang et al '09]

Overview

PART I: Basics

- Example: File Synchronization
- The Wyner-Ziv problem
- Code design
- PART II: Constraints
 - Causality constraints
 - Reconstruction constraints
 - Robustness constraints
 - Privacy constraints
- PART III: Extensions
 - Action-dependent side information
 - Cascade problems
 - Sources with memory

Strictly Causal Side Information

Strictly Causal Side Information

Lower bound

$$R_{X|Y}^{WZ-C}(D) \ge \min_{p(\hat{x}|x)} I(X; \hat{X})$$

s.t. $E[d(X, Y, \hat{X})] \le D$

- Proof: See Appendix-D
- ... delayed side information is not useful for memoryless sources!

Weissman and El Gamal '06

Weissman and El Gamal '06

• Lower bound:

$$R_{X|Y}^{WZ-C}(D) \ge \min_{p(u|\times)} I(X; U)$$

s.t. $E[d(X, Y, f(U, Y))] \le D$

• Proof: See Appendix-E

Weissman and El Gamal '06

- Achievability via standard compression with inverse test channel p(u|x) (... no need for binning!)
- Rate-distortion function

$$R_{X|Y}^{WZ-C}(D) = \min_{p(u|x)} I(X; U)$$

s.t. $E[d(X, Y, f(U, Y))] \le D$

Weissman and El Gamal '06

• DSBS(1/4) with Hamming distortion

Limited Look-Ahead Side Information

Weissman and El Gamal '06

Limited Look-Ahead Side Information

Weissman and El Gamal '06

- Treat the source as a super-source with n/k symbols made of successive k-blocks of Xⁿ
- Achievable rate:

$$R_k(D) = \frac{1}{k} \min_{P(u|x^k)} I(X^k; U)$$

s.t.

$$\frac{1}{k-\ell}\sum_{i=1}^{k-\ell} E[d(X_i, Y_i, f_i(U, Y^{i+\ell}))] \leq D$$

• Rate-distortion function

$$R^{WZ-\ell}_{X|Y}(D) = \lim_{k o \infty} R_k(D)$$

Limited Look-Ahead Side Information

Weissman and El Gamal '06

Overview

PART I: Basics

- Example: File Synchronization
- The Wyner-Ziv problem
- Code design

PART II: Constraints

- Causality constraints
- Reconstruction constraints
- Robustness constraints
- Privacy constraints
- PART III: Extensions
 - Action-dependent side information
 - Cascade problems
 - Sources with memory

Common Reconstruction Constraint

- In the Wyner-Ziv problem, two roles for the side information sequence:
- Reduce the rate required for "digital" communication between encoder and decoders via binning
- Improve the source estimate

Common Reconstruction Constraint Steinberg '09

• Wyner-Ziv rate-distortion function

$$R_{X|Y}^{WZ}(D) = \min_{p(u|x): \ E[d(X, f(U, Y))] \le D} I(X; U|Y)$$

- f(U, Y) cannot be reproduced at the encoder
- Might be unacceptable, e.g., for transmission of sensitive medical, financial or military information

Common Reconstruction Constraint Steinberg '09

 Common Reconstruction (CR) constraint: X̂ⁿ should be reproducible by the encoder (ψ(Xⁿ) = X̂ⁿ w.h.p.)

Common Reconstruction Constraint Steinberg '09

• Rate-distortion function:

$$R_{X|Y}^{WZ-CR}(D) = \min_{p(\hat{x}|x): E[d(X,\hat{X})] \le D} I(X; \hat{X}|Y)$$

Common Reconstruction Constraint

Steinberg '09

$$R_{X|Y}^{WZ-CR}(D) = \min_{p(\hat{x}|x): E[d(X,\hat{X})] \le D} I(X; \hat{X}|Y)$$

- Achievability: 1. compression + 2. binning, but no estimate at the receiver
- Converse: Identify ψ_i with \hat{X}_i
- Dual to causal constraint
- Extension to distortion-based CR constraints [Lapidoth et al '11]

Common Reconstruction Constraint Steinberg '09

• DSBS(1/4) with Hamming distortion

Overview

PART I: Basics

- The Wyner-Ziv problem
- Code design

PART II: Constraints

- Causality constraints
- Reconstruction constraints
- Robustness constraints
- Privacy constraints
- PART III: Extensions
 - Action-dependent side information
 - Cascade problems
 - Sources with memory

[Heegard and Berger '85] [Kaspi '94]

• Distortion constraints: $\frac{1}{n}\sum_{i=1}^{n} E[d_1(X_i, \hat{X}_{1i})] \le D_1$ and

$$\frac{1}{n}\sum_{i=1}^{n} E[d_2(X_i, \hat{X}_{2i})] \le D_2$$

 Sensor network with unreliable remote measurements, file sharing with unreliable remote file transfers

[Heegard and Berger '85] [Kaspi '94]

- Assume that Y₁ is (physically/stochastically) degraded side information with respect to Y₂: p(x, y₂)p(y₁|y₂)
- Rate-distortion function

$$\begin{aligned} R_{X|Y_1Y_2}^{HB}(D_1, D_2) &= \min_{\substack{p(u_1, u_2|x), f_j(u_j, y_j)}} I(X; U_1|Y_1) + I(X; U_2|Y_2, U_1) \\ \text{s.t. } \mathsf{E}[d_1(X, f_j(U_j, Y_j))] &\leq D_j, \text{ for } j = 1, 2 \end{aligned}$$

Achievability: 1. Quantization

 $I(X; U_1|Y_1) + I(X; U_2|Y_2, U_1)$

Achievability: 2. Binning

Side information at decoder 1: Y_1^n

• Since $I(X; U_1|Y_1) \ge I(X; U_1|Y_2)$, decoder 2 can also decode

Achievability: 3. Successive refinement

 $I(X; U_1|Y_1) + I(X; U_2|Y_2, U_1)$

• $I(X; U_2|Y_2, U_1) = I(X; U_2|U_1) - I(U_2; Y_2|U_1)$

Achievability: 4. Binning

• $I(X; U_2|Y_2, U_1) = I(X; U_2|U_1) - I(U_2; Y_2|U_1)$

Achievability: 5. Estimate

• Final estimates: symbol-by-symbol function $\hat{X}_1 = f_1(U_1, Y_1)$ and $\hat{X}_2 = f_2(U_2, Y_2)$

Ahmadi et al '13

• CR constraints

$$\psi_j(X^n) = \hat{X}_j^n$$
, $j = 1, 2$ w.h.p.

Rate-Distortion Function

• If the side information Y_1 is stochastically degraded with respect to Y_2 , the rate-distortion function for the HB problem with CR is given by

$$R_{X|Y_1Y_2}^{HB}(D_1, D_2) = \min_{\substack{p(\hat{x}_1, \hat{x}_2|x)}} I(X; \hat{X}_1|Y_1) + I(X; \hat{X}_2|Y_2, \hat{X}_1),$$

s.t.

$$\operatorname{E}[d_j(X, \hat{X}_j)] \leq D_j, ext{ for } j = 1, 2$$

Sketch of Proof of Achievability

- As for conventional HB, successive refinement and binning
- ... but \hat{X}_1^n and \hat{X}_2^n generated by the encoder (no estimation) to satisfy the CR constraint

Binary Source with Erased Side Information

- Binary source $X \sim \operatorname{Ber}(\frac{1}{2})$
- For point-to-point set-up (erasure probability *p*) under Hamming distortion

$$R_{X|Y}^{WZ-CR}(D) = p(1-H(D))$$
 for $D \le 1/2$

and zero otherwise

• With no CR constraint: $R_{X|Y}^{WZ}(D) = R_{X|Y}(D) = p(1 - H(D/p))$ for $D \le p/2$ and zero otherwise [Diggavi et al '09]

Binary Source with Erased Side Information

- $p_1 = 1$ (Decoder 1 has no side information) and $p_2 = 0.35$, and two values of the distortion $D_2 = 0.05, 0.3$
- $R_{X|Y_1,Y_2}(D_1,D_2) \le R_{X|Y_1Y_2}^{HB}(D_1,D_2) \le R_{X|Y_1,Y_2}^{HB-CR}(D_1,D_2)$
HB Problem with CR constraint

Binary Source with Erased Side Information

- $p_1 = 1$ (Decoder 1 has no side information) and $p_2 = 0.35$, and two values of the distortion $D_2 = 0.05, 0.3$
- $R_{X|Y_1,Y_2}(D_1,D_2) \le R_{X|Y_1Y_2}^{HB}(D_1,D_2) \le R_{X|Y_1,Y_2}^{HB-CR}(D_1,D_2)$

Overview

PART I: Basics

- Example: File Synchronization
- The Wyner-Ziv problem
- Code design

PART II: Constraints

- Causality constraints
- Reconstruction constraints
- Robustness constraints
- Privacy constraints
- PART III: Extensions
 - Action-dependent side information
 - Cascade problems
 - Sources with memory

Privacy

Utility vs. Privacy

[Sankar et al '13]

• E.g., de-anonymizing the Netflix dataset: movie ratings can be used to infer a user's political affiliation, gender, etc.

```
O. Simeone
```

Source Coding With Side Information

129 / 241

Utility vs. Privacy

[Sankar et al '13]

Utility vs. Privacy

[Sankar et al '13]

• Privacy-preserving transformation

O. Simeone

Source Coding with Privacy Constraints Yamamoto '83

• Average per-block distortion:

$$\frac{1}{n}\sum_{i=1}^{n}E[d(X_i,\hat{X}_i)] \leq D$$

• Equivocation (privacy) constraint:

$$\frac{1}{n}H(Y^n|M)\geq E$$

Source Coding with Privacy Constraints Yamamoto '83

• Rate-distortion-equivocation function:

$$R(D,E) = \min_{\substack{p(\hat{x}|x,y)}} I(X,Y;\hat{X})$$

s.t.

$$E[d(X,X)] \le D$$

 $H(Y|\hat{X}) \ge E$

• The optimal privacy-preserving transformation is quantization

Source Coding with Privacy Constraints

Source Coding with Privacy Constraints

• A number of extensions and variations on the theme: [Gunduz et al '08] [Villard and Piantanida '10] [Tandon et al '13],...

Overview

PART I: Basics

- Example: File Synchronization
- The Wyner-Ziv problem
- Code design
- PART II: Constraints
 - Causality constraints
 - Reconstruction constraints
 - Robustness constraints
 - Privacy constraints
- PART III: Extensions
 - Action-dependent side information
 - Cascade problems
 - Sources with memory

Permuter and Weissman '11

• Wyner-Ziv problem

Permuter and Weissman '11

• Generalization of the Wyner-Ziv problem where the side information can be controlled via cost-constrained actions

Permuter and Weissman '11

• Generalization of the Wyner-Ziv problem where the side information can be controlled via cost-constrained actions

• Action $A^n(M)$ is cost constrained as $\frac{1}{n}\sum_{i=1}^{n} \mathbb{E}[\Lambda(A_i)] \leq \Gamma$

• Ex.: If A = 1, Y = X + Z; and if A = 0, $Y = \phi$. With $\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}[A_i] \leq \Gamma$

Permuter and Weissman '11

• Generalization of the Wyner-Ziv problem where the side information can be controlled via cost-constrained actions

• Action $A^n(M)$ is cost constrained as $\frac{1}{n}\sum_{i=1}^{n} \mathbb{E}[\Lambda(A_i)] \leq \Gamma$

• Ex.: If A = 1, Y = X + Z; and if A = 0, $Y = \phi$. With $\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}[A_i] \leq \Gamma$

Permuter and Weissman '11

- Key issue: Adaptive vs. non-adaptive data acquisition
- Rate-distortion-cost function

$$R(D,\Gamma) = \min_{p(a,u|x), f(U,Y)} I(X;A) + I(X;U|A,Y)$$

subject to $E[\Lambda(A)] \leq \Gamma$ and $E[d(X, f(U, Y))] \leq D$

• Result extends to actions $A_i(M, Y^{i-1})$ [Choudhuri and Mitra '12]

Permuter and Weissman '11

- Key issue: Adaptive vs. non-adaptive data acquisition
- Rate-distortion-cost function

$$R(D,\Gamma) = \min_{p(a,u|x), f(U,Y)} I(X;A) + I(X;U|A,Y)$$

subject to $E[\Lambda(A)] \leq \Gamma$ and $E[d(X, f(U, Y))] \leq D$

• Result extends to actions $A_i(M, Y^{i-1})$ [Choudhuri and Mitra '12]

Achievability: 1. Quantization

I(X;A) + I(X;U|A,Y)

Achievability: 2. Successive refinement

I(X; A) + I(X; U|A, Y)

•
$$I(X; U|A, Y) = I(X; U|A) - I(U; Y|A)$$

Achievability: 3. Binning

•
$$I(X; U|A, Y) = I(X; U|A) - I(U; Y|A)$$

Side Information "Vending Machine" Achievability: 4. Estimate

- Final estimate $\hat{X} = f(U, Y)$.
- ... Adaptive data acquisition

Comparison with Non-Adaptive Approach

- (X, Y) DSBS(q)
- $T = f(X, Y) = X \otimes Y$ (binary product)
- Measurement of Z_i as p(z|x, y, a) (to measure or not to measure)

$$Z_i = \begin{cases} Y_i & \text{if } A_i = 1\\ 1 & \text{if } A_i = 0 \end{cases}$$

• Cost constraint: $\Lambda(A_i) = 1$ if $A_i = 1$ and $\Lambda(A_i) = 0$ if $A_i = 0$

Comparison with Non-Adaptive Approach

- "Greedy" approach: choose A_i independently of M
- For $\Gamma = 1$, the greedy approach is clearly optimal
- Joint design of control and compression

O. Simeone

Overview

PART I: Basics

- Example: File Synchronization
- The Wyner-Ziv problem
- Code design
- PART II: Constraints
 - Causality constraints
 - Reconstruction constraints
 - Robustness constraints
 - Privacy constraints
- PART III: Extensions
 - Action-dependent side information
 - Cascade problems
 - Sources with memory

- Fixed-length codes: $M_1 \in \{1, 2, ..., 2^{nR_1}\}$ (*nR*₁ bits), $M_2 \in \{1, 2, ..., 2^{nR_2}\}$ (*nR*₂ bits),
- $\frac{1}{n}\sum_{i=1}^{n} E[d_j(X_i, Y_i, \hat{X}_{ji})] \le D_j$ for j = 1, 2.
- Sensor networks, computer networks

- The problem of determining the rate-distortion region is still open
- The main issue is the operation at Node 2 [Vasudevan et al '06] [Gu and Effros '06] [Bakshi et al '07] [Cuff et al '09]

Idea 1: Recompress [Cuff et al '09]

Idea 1: Recompress [Cuff et al '09]

Idea 1: Recompress [Cuff et al '09]

Idea 1: Recompress [Cuff et al '09]

Idea 1: Recompress [Cuff et al '09]

Idea 2: Forward [Cuff et al '09]

When Forward is Optimal [Chia et al '11]

• If X - Y - Z, the rate-cost region is given by union of the set of all of rate tuples (R_1, R_2) that satisfy the inequalities

$$R_1 \ge I(X; \hat{X}_1, U|Y)$$

$$R_2 \ge I(X, Y; U|Z),$$

where the mutual informations are evaluated with respect to the joint pmf

$$p(x,y,z,\hat{x}_1,u) = p(x,y)p(z|y)p(\hat{x}_1,u|x,y)$$

for some pmf $p(\hat{x}_1, u | x, y)$ that satisfies $E[d_j(X, \hat{X}_j)] \le D_j$ for j = 1, 2. • See Appendix-F
Cascade Source Coding Problem with CR constraint Ahmadi et al '13

Distortion constraints:

$$\frac{1}{n}\sum_{i=1}^{n} \mathbb{E}\left[d_j(X, \hat{X}_j)\right] \le D_j \text{ for } j = 1, 2$$

CR constraints:

$$\psi_1(X^n) \neq \hat{X}_1$$
 w.h.p.
 $\psi_2(X^n) \neq \hat{X}_2$ w.h.p.

Common Reconstruction Constraint

When the CR Constraint Simplifies the Problem

- Simultaneous transmission of data and state over state-dependent channels [Steinberg '09]
- Joint source-channel coding for the degraded broadcast channel [Steinberg '09]
- Multiple description problem [Tandon et al '12]

Cascade Source Coding Problem with CR constraint Rate-Distortion Function $(X - Y_1 - Y_2)$ [Ahmadi et al '13]

 If X − Y₁ − Y₂, the rate-distortion cost region is given by union of the set of all of rate tuples (R₁, R₂) that satisfy the inequalities

 $R_1 \ge I(X; \hat{X}_1 \hat{X}_2 | Y_1)$ $R_2 \ge I(X; \hat{X}_2 | Y_2),$

where the mutual informations are evaluated with respect to the joint pmf

$$p(x, y_1, y_2, \hat{x}_1, \hat{x}_2) = p(x, y_1)p(y_2|y_1)p(\hat{x}_1, \hat{x}_2|x)$$

for some $p(\hat{x}_1, \hat{x}_2 | x)$ that satisfies $E[d_j(X, \hat{X}_j)] \le D_j$, for j = 1, 2. • See Appendix-G

Overview

PART I: Basics

- Example: File Synchronization
- The Wyner-Ziv problem
- Code design
- PART II: Constraints
 - Causality constraints
 - Reconstruction constraints
 - Robustness constraints
 - Privacy constraints
- PART III: Extensions
 - Action-dependent side information
 - Cascade problems
 - Sources with memory

Lossless Compression, No Side Information

- Consider stationary and ergodic source Xⁿ
- Lossless compression requires a rate equal to the entropy rate [Cover and Thomas '06]

$$egin{aligned} \mathcal{H}(\mathscr{X}) &= \lim_{n o \infty} rac{1}{n} \mathcal{H}(X^n) \ &= \lim_{n o \infty} \mathcal{H}(X_n | X^{n-1}) \ &\leq \mathcal{H}(X) \end{aligned}$$

Lossless Compression, No Side Information

• For stationary Markov chains: $H(\mathscr{X}) = H(X_2|X_1)$

Lossless Compression, No Side Information

• Achieving rate $R = H(X_2|X_1)$ via context-adaptive encoding (e.g., JBIG)

The Impact of Memory

Lossless Compression, No Side Information

Lossy Compression, No Side Information

• Rate-distortion function for stationary ergodic sources [Gallager '68]

$$R(D) = \lim_{n \to \infty} \frac{1}{n} \min_{p(\hat{x}^n | x^n) \text{ s.t. } \frac{1}{n} \sum_{i=1}^n E[d(X_i, \hat{X}_i)] \le D} I(X^n; \hat{X}^n)$$

• Can be evaluated for some sources such as stationary Gaussian processes

Lossy Compression, No Side Information

- Hard to evaluate in general
- For stationary Markov sources

$$I(X^{n}; \hat{X}^{n}) = \sum_{i=1}^{n} H(X_{i}|X_{i-1}) - H(X_{i}|X^{i-1}, \hat{X}^{n})$$

$$\geq \sum_{i=1}^{n} H(X_{i}|X_{i-1}) - H(X_{i}|X_{i-1}, \hat{X}_{i})$$

$$= \sum_{i=1}^{n} I(X_{i}; \hat{X}_{i}|X_{i-1})$$

• This leads to the lower bound [Gray '73] $R(D) \ge R_{X_2|X_1}(D) = \min_{p(\hat{x}|x_1,x_2)} I(X_2; \hat{X}|X_1) \text{ s.t. } E[d(X_2, \hat{X})] \le D$

Lossy Compression, No Side Information

- In the lossless case, $R(0) = H(X_2|X_1)$
- However, in the lossy case (D > 0), we can have $R(D) > R_{X_2|X_1}(D)$

Lossy Compression, No Side Information

- X_i binary Markov chain with symmetric transition probabilities $p(1|0) = p(0|1) = \varepsilon$ ($\varepsilon \le 1/2$)
- Note that $X_i = X_{i-1} \oplus Z_i$, where $Z_i \sim Ber(\varepsilon)$ i.i.d. (innovation process)
- From [Weissman and Merhav, 03] for $0 \le D \le \varepsilon$

$$R_{X_2|X_1}(D) = H(\varepsilon) - H(D)$$

$$< R(D)$$
[Gray '70]

for D larger than a critical value

Lossy Compression, No Side Information

• Unlike the lossless case $R_{X_2|X_1}(D) = \min_{p(\hat{x}|x_1,x_2)} I(X_2; \hat{X}|X_1)$ generally not achievable... no known general single-letter expression

Sources Coding with Feed-Forward

• Achievable if the receiver has strictly casual side information X^{i-1}

- Studied for general sources [Weissman and Merhav '03] [Venkataramanan and Pradhan '07] [Naiss and Permuter '11]
- For stationary Markov sources: $R_{FF}(D) = R_{X_2|X_1}(D)$

Sources Coding with Feed-Forward: Achievability

Sources Coding with Feed-Forward: Achievability

Generalizing Conditional Lower Bound

• Generalizing to stationary and ergodic sources [Gray '73]

$$R(D) \geq R_{X_m|X^{m-1}}(D) - (H(X_m|X^{m-1}) - H(\mathscr{X}))$$

• Achievable for order-m stationary Markov sources with feed-forward

Source Coding with Feed-Forward

 Rate-distortion-cost function for stationary ergodic sources [Venkataramanan and Pradhan '07] [Naiss and Permuter '11]

$$R(D) = \lim_{n \to \infty} \frac{1}{n} \min_{p(\hat{x}^n | x^n) \text{ s.t. } \frac{1}{n} \sum_{i=1}^n E[d(X_i, \hat{X}_i)] \le D} I(X^n \to \hat{X}^n)$$

• Directed information [Massey '90]

$$\begin{split} U(\hat{X}^n &\to X^n) = \sum_{i=1}^n I(X_i^n; \hat{X}_i | \hat{X}^{i-1}, X^{i-1}) \\ &= \sum_{i=1}^n I(X_i; \hat{X}^i | X^{i-1}) \end{split}$$

Source Coding with Feed-Forward

 Rate-distortion-cost function for stationary ergodic sources [Venkataramanan and Pradhan '07] [Naiss and Permuter '11]

$$R(D) = \lim_{n \to \infty} \frac{1}{n} \min_{p(\hat{x}^n | x^n) \text{ s.t. } \frac{1}{n} \sum_{i=1}^n E[d(X_i, \hat{X}_i)] \le D} I(X^n \to \hat{X}^n)$$

• Directed information [Massey '90]

$$egin{aligned} &U(\hat{X}^n o X^n) = \sum_{i=1}^n I(X^n_i; \hat{X}_i | \hat{X}^{i-1}, X^{i-1}) \ &= \sum_{i=1}^n I(X_i; \hat{X}^i | X^{i-1}) \end{aligned}$$

Source Coding with Feed-Forward: Converse

• Converse: easy (try!)

Source Coding with Feed-Forward: Achievability

Codetrees

Source Coding with Feed-Forward: Achievability

- Compare with codetrees with general feed-forward (the encoder does not know \hat{X}^n) [Simeone '13]
- Related results for Hidden Markov Models [Simeone and Permuter '13]

Conclusions

Further issues:

- Vector sources [Gastpar et al '06] [Yu and Sharma '11]
- Fixed-to-variable codes [Alon and Orlitsky '96] [Koulgi et al '03] [Zhao and Effros '03] [Grangetto et al '09]
- Rateless codes [Draper '04] [Eckford and Yu '05] [Caire et al '05]
- Universal coding [Merhav and Ziv '06] [Jalali et al '10]
- Computational complexity [Gupta et al '08]
- Real-time operation [Teneketzis '06] [Kaspi and Merhav '12]
- Source-channel coding [Wernersson et al '09] [Akyol et al '10]
- Interactive coding [Orlitsky '92] [Ma and Ishwar '11]
- Quantum source coding [Yard and Devetak '09]
- Distributed source coding [El Gamal and Kim '11]

[Aaron et al '02] A. Aaron, S. Rane, E. Setton, B. Girod, Transformdomain Wyner-Ziv codec for video, in: SPIE Visual Communications and Image Processing Conf., San Jose, CA, 2004
[Ahmadi et al '13] B. Ahmadi, R. Tandon, O. Simeone and H. V. Poor, "Heegard-Berger and Cascade Source Coding Problems with Common Reconstruction Constraints," IEEE Trans. Inform. Theory, March 2013.
[Akyol et al '10] Akyol, Emrah, Kenneth Rose, and Tor Ramstad.
"Optimal mappings for joint source channel coding." Information Theory Workshop (ITW), 2010 IEEE. IEEE, 2010.
[Alon and Orlitsky '96] Alon, Noga, and Alon Orlitsky. "Source coding and

graph entropies." Information Theory, IEEE Transactions on 42, no. 5 (1996): 1329-1339.

[Ancheta '76] Ancheta Jr, T. "Syndrome-source-coding and its universal generalization." IEEE Trans. Information Theory, 1976.

[Arıkan '09] E. Arıkan, "Channel polarization: A method for constructing capacity achieving codes for symmetric binary-input memoryless channels," IEEE Trans. Inform. Theory, Jul. 2009.

[Bakshi et al '07] Bakshi, Mayank, Michelle Effros, WeiHsin Gu, and Ralf Koetter. "On network coding of independent and dependent sources in line networks." In Information Theory, 2007. ISIT 2007. IEEE International Symposium on, pp. 1096-1100. IEEE, 2007.

[Berger '71] Berger, Toby. Rate-Distortion Theory. John Wiley & Sons, Inc., 1971.

[Caire et al '03] aire, Giuseppe, Shlomo Shamai, and Sergio Verdu.

"Lossless data compression with error correcting codes." In Information Theory, 2003. Proceedings. IEEE International Symposium on, p. 22. IEEE, 2003.

[Caire et al '05] Caire, Giuseppe, Shlomo Shamai, Amin Shokrollahi, and Sergio Verdú. "Fountain codes for lossless data compression." DIMACS Series in Discrete Mathematics and Theoretical Computer Science 68 (2005): 1-18.

[Chern et al '12] Chern, Bobbie, Idoia Ochoa, Alexandros Manolakos, Albert No, Kartik Venkat, and Tsachy Weissman. "Reference Based Genome Compression." arXiv preprint arXiv:1204.1912 (2012).

[Choudhuri and Mitra '12] Choudhuri, Chiranjib, and Urbashi Mitra. "How useful is adaptive action?." in Proc. Globecom2012 (2012). [Chia et al '11] Chia, Yeow-Khiang, Haim H. Permuter, and Tsachy Weissman. "Cascade, Triangular, and Two-Way Source Coding With Degraded Side Information at the Second User." I nformation Theory, IEEE Transactions on 58, no. 1 (2012): 189-206. [Cover and El Gamal '79] Cover, T., and A. EL Gamal. "Capacity

theorems for the relay channel." Information Theory, IEEE Transactions on 25, no. 5 (1979): 572-584.

[Cover and Thomas '06] Cover, Thomas M., and Joy A. Thomas. Elements of information theory. Wiley-interscience, 2006.

[Csiszár and Körner '11] Csiszar, Imre, and János Körner. Information theory: coding theorems for discrete memoryless systems. Cambridge University Press, 2011.

[Cuff et al '09] Cuff, Paul, Han-I. Su, and Abbas El Gamal. "Cascade multiterminal source coding." In Information Theory, 2009. ISIT 2009. IEEE International Symposium on, pp. 1199-1203. IEEE, 2009.

[Diggavi et al '09] Diggavi, S., E. Perron, and Emre Telatar. "Lossy source coding with Gaussian or erased side-information." In Information Theory, 2009. ISIT 2009. IEEE International Symposium on, pp. 1035-1039. [Dimakis et al '07] Dimakis, A. G., M. J. Wainwright, and K. Ramchandran. "Lower bounds on the rate-distortion function of LDGM codes." In Information Theory Workshop, 2007. ITW'07. IEEE, pp. 650-655. IEEE, 2007.

[Dimakis et al '09] Dimakis, Alexandros G., and Pascal O. Vontobel. "LP decoding meets LP decoding: a connection between channel coding and compressed sensing." In Communication, Control, and Computing, 2009. Allerton 2009. 47th Annual Allerton Conference on, pp. 8-15. IEEE, 2009. [Doshi et al '10] Doshi, Vishal, Devavrat Shah, Muriel Médard, and Michelle Effros. "Functional compression through graph coloring." Information Theory, IEEE Transactions on 56, no. 8 (2010): 3901-3917. [Draper '04] Draper, Stark C. "Universal incremental slepian-wolf coding." In Proc. 42nd Allerton Conf. on Communication, Control and Computing, pp. 1332-1341. 2004.

[Draper and Wornell '04] Draper, Stark C., and Gregory W. Wornell. "Side information aware coding strategies for sensor networks." Selected Areas in Communications, IEEE Journal on 22, no. 6 (2004): 966-976. [Dupuis et al '04] Dupuis, Frédéric, Wei Yu, and Frans MJ Willems. "Blahut-Arimoto algorithms for computing channel capacity and rate-distortion with side information." In Information Theory, 2004. ISIT 2004. Proceedings. International Symposium on, p. 179. IEEE, 2004. [Eckford and Yu '05] Eckford, Andrew W., and Wei Yu. "Rateless slepian-wolf codes." In Proc. Asilomar conference on signals, systems and computers, pp. 1757-1761. 2005.

[El Gamal and Kim '11] A. El Gamal and Y. Kim, Network Information Theory, Cambridge University Press, Dec 2011.

[Feng et al '04] Feng, Hanying, Michelle Effros, and Serap Savari.

"Functional source coding for networks with receiver side information." In Proceedings of the Allerton Conference on Communication, Control, and Computing, pp. 1419-1427. 2004.

[Fleming et al '04] Fleming, Michael, Qian Zhao, and Michelle Effros. "Network vector quantization." Information Theory, IEEE Transactions on 50, no. 8 (2004): 1584-1604.

[Gallager '68] Gallager, Robert G. "Information theory and reliable communication." (1968).

[Gastpar et al '06] Gastpar, Michael, Pier Luigi Dragotti, and Martin Vetterli. "The distributed karhunen–loeve transform." Information Theory, IEEE Transactions on 52, no. 12 (2006): 5177-5196.

[Gersho and Gray '92] Gersho, Allen, and Robert M. Gray. Vector quantization and signal compression. Vol. 159. Springer, 1992. [Grangetto et al '09] Grangetto, Marco, Enrico Magli, and Gabriella Olmo. "Distributed arithmetic coding for the Slepian–Wolf problem." Signal Processing, IEEE Transactions on 57, no. 6 (2009): 2245-2257. [Gray '72] R. M. Gray, "Conditional rate-distortion theory," Stanford Univ., Stanford, CA, Electronics Laboratories Tech. Rep. 6502-2, Oct. 1972.

[Gray '73] Gray, R. "A new class of lower bounds to information rates of stationary sources via conditional rate-distortion functions." Information Theory, IEEE Transactions on 19, no. 4 (1973): 480-489. [Gu and Effros '06] Gu, Wei-Hsin, and Michelle Effros. "Source coding for a simple multi-hop network." In Information Theory, 2005. ISIT 2005. Proceedings. International Symposium on, pp. 2335-2339. IEEE, 2005. [Gupta et al '08] Gupta, Ankit, Sergio Verdu, and Tsachy Weissman. "Rate-distortion in near-linear time." In Information Theory, 2008. ISIT 2008. IEEE International Symposium on, pp. 847-851. IEEE, 2008. [Gupta and Verdú '09] Gupta, Ankit, and Sergio Verdú. "Nonlinear sparse-graph codes for lossy compression." Information Theory, IEEE Transactions on 55, no. 5 (2009): 1961-1975. [Gupta and Verdú '11] Gupta, Ankit, and Sergio Verdú. "Operational duality between lossy compression and channel coding." Information Theory, IEEE Transactions on 57, no. 6 (2011): 3171-3179.

[Heegard and Berger '85] C. Heegard and T. Berger, "Rate distortion when side information may be absent," IEEE Trans. Inf. Theory, vol. 31, no. 6, pp. 727-734, Nov. 1985.

[Jalali et al '10] Jalali, Shirin, Sergio Verdú, and Tsachy Weissman. "A Universal Scheme for Wyner–Ziv Coding of Discrete Sources." Information Theory, IEEE Transactions on 56, no. 4 (2010): 1737-1750.

[Kanlis et al '96] A. Kanlis, S.Khudanpur, and P.Narayan. Typicality of a good rate-distortion code. Problems of Information Transmission (Problemy Peredachi Informatsii) January 1996. Special issue in honor of

(Problemy Peredachi Informatsii), January 1996. Special issue in honor of M. S. Pinsker.

[Kaspi '94] A. Kaspi, "Rate-distortion when side-information may be present at the decoder," IEEE Trans. Inf. Theory, vol. 40, no. 6, pp. 2031–2034, Nov. 1994.

[Kaspi and Merhav '12] Kaspi, Yonatan, and Neri Merhav. "On real-time and causal secure source coding." In Information Theory Proceedings (ISIT), 2012 IEEE International Symposium on, pp. 353-357. IEEE, 2012.

[Koller and Friedman '09] Koller, Daphne, and Nir Friedman. Probabilistic graphical models: principles and techniques. MIT press, 2009. [Korada and Urbanke '10] Korada, Satish Babu, and Rüdiger L. Urbanke. "Polar codes are optimal for lossy source coding." Information Theory, IEEE Transactions on 56, no. 4 (2010): 1751-1768.

[Koulgi et al '03] Koulgi, Prashant, Ertem Tuncel, Shankar L. Regunathan, and Kenneth Rose. "On zero-error source coding with decoder side information." Information Theory, IEEE Transactions on 49, no. 1 (2003): 99-111.

[Kramer '08] Kramer, Gerhard. Topics in multi-user information theory. Vol. 4. Now Pub, 2008.

[Kudekar and Urbanke '08] Kudekar, Shrinivas, and Ruediger Urbanke. "Lower bounds on the rate-distortion function of individual LDGM codes." In Turbo Codes and Related Topics, 2008 5th International Symposium on, pp. 379-384. IEEE, 2008.

[Liu et al '06] Liu, Zhixin, Samuel Cheng, Angelos D. Liveris, and Zixiang Xiong. "Slepian-Wolf coded nested lattice quantization for Wyner-Ziv coding: High-rate performance analysis and code design." Information Theory, IEEE Transactions on 52, no. 10 (2006): 4358-4379. [Ma and Ishwar '11] Ma, Nan, and Prakash Ishwar. "Some results on distributed source coding for interactive function computation." Information Theory, IEEE Transactions on 57, no. 9 (2011): 6180-6195. [MacKay '99] MacKay, David J. C. "Good error-correcting codes based on very sparse matrices." Information Theory, IEEE Transactions on 45, no. 2 (1999): 399-431.[MacKay '03] MacKay, David JC. Information theory, inference and learning algorithms. Cambridge university press, 2003. [Martinian and Wainwright '06] Martinian, Emin, and Martin Wainwright. "Low density codes achieve the rate-distortion bound." In Data Compression Conference, 2006. DCC 2006. Proceedings, pp. 153-162. IEEE, 2006.

[Martinian and Yedidia '03] Martinian, Emin, and Jonathan S. Yedidia. "Iterative quantization using codes on graphs." arXiv preprint cs/0408008 (2004).

[Matsunaga and Yamamoto '03] Y. Matsunaga and H. Yamamoto,

"Coding Theorem for Lossy Data Compression by LDPC Codes," IEEE Trans. Inform. Theory, Sept. 2003.

[Massey '78] J. L. Massey, "Joint source channel coding," in

Communication Systems and Random Process Theory, 1978.

[Massey '90] Massey, J. "Causality, feedback and directed information." In Proc. int. symp. information theory application, pp. 303-305. 1990. [Merhav and Ziv '06] Merhav, Neri, and Jacob Ziv. "On the Wyner-Ziv problem for individual sequences." IEEE Trans. Inf. Theory 2006. [Naiss and Permuter '11] I. Naiss and H. Permuter, "Computable bounds for rate distortion with feed-forward for stationary and ergodic sources," arXiv:1106.0895v1.

[Orlitsky '91] Orlitsky, Alon. "Interactive communication: Balanced distributions, correlated files, and average-case complexity." In Foundations of Computer Science, 1991. Proceedings., 32nd Annual Symposium on, pp. 228-238. IEEE, 1991.

[Orlitsky '92] Orlitsky, Alon. "Average-case interactive communication." Information Theory, IEEE Transactions on 38, no. 5 (1992): 1534-1547. [Orlitsky and Roche '01] Orlitsky, Alon, and James R. Roche. "Coding for computing." Information Theory, IEEE Transactions on 47, no. 3 (2001): 903-917.

[Orlitsky and Wiswanathan '03] Orlitsky, Alon, and Krishnamurthy Viswanathan. "One-way communication and error-correcting codes." Information Theory, IEEE Transactions on 49, no. 7 (2003): 1781-1788. [Permuter and Weissman '11] H. Permuter and T. Weissman, "Source coding with a side information "vending machine"," IEEE Trans. Inf. Theory, vol. 57, pp. 4530–4544, Jul 2011.

[Pradhan et al '03] Pradhan, S. Sandeep, Jim Chou, and Kannan Ramchandran. "Duality between source coding and channel coding and its extension to the side information case." Information Theory, IEEE Transactions on 49, no. 5 (2003): 1181-1203.

[Pradhan and Ramchandran '03] Pradhan, S. Sandeep, and Kannan Ramchandran. "Distributed source coding using syndromes (DISCUS): Design and construction." Information Theory, IEEE Transactions on 49, no. 3 (2003): 626-643.

[Sanderovich et al '09] Sanderovich, Amichai, Oren Somekh, H. Vincent Poor, and Shlomo Shamai. "Uplink macro diversity of limited backhaul cellular network." Information Theory, IEEE Transactions on 55, no. 8 (2009): 3457-3478.

[Saxena et al '10] Saxena, Ankur, Jayanth Nayak, and Kenneth Rose. "Robust distributed source coder design by deterministic annealing." Signal Processing, IEEE Transactions on 58, no. 2 (2010): 859-868.
[Shamai et al '98] Shamai, Shlomo, Sergio Verdú, and Ram Zamir. "Systematic lossy source/channel coding." Information Theory, IEEE Transactions on 44, no. 2 (1998): 564-579.

[Simeone '13] Simeone, Osvaldo. "Source Coding with in-Block Memory and Causally Controllable Side Information." arXiv preprint arXiv:1301.0926 (2013).

[Simeone and Permuter '13] Simeone, Osvaldo, and Haim H. Permuter. "Source coding when the side information may be delayed." to appear in IEEE Trans. Inform. Theory, 2013.

[Slepian and Wolf '73] Slepian, David, and Jack Wolf. "Noiseless coding of correlated information sources." Information Theory, IEEE Transactions on 19, no. 4 (1973): 471-480.

[Steinberg '09] Y. Steinberg, "Coding and common reconstruction," IEEE Trans. Inform. Theory, vol. 55, no. 11, 2009.

[Suel and Memon '02] T. Suel and N.Memon. Algorithms for delta compression and remote file synchronization. In K. Sayood, editor, Lossless Compression Handbook. Academic Press, 2002. [Sun et al '10] Sun, Zhibin, Mingkai Shao, Jun Chen, Kon Wong, and Xiaolin Wu. "Achieving the rate-distortion bound with low-density generator matrix codes." Communications, IEEE Transactions on 58, no. 6 (2010): 1643-1653.

[Tandon et al '11] R. Tandon, S. Mohajer, and H. V. Poor, "Cascade source coding with erased side information," in Proc. IEEE Symp. Inform. Theory, St. Petersburg, Russia, Aug. 2011.

[Tandon et al '12] R. Tandon, B. Ahmadi, O. Simeone and H. V. Poor, "Gaussian Multiple Descriptions with Common and Constrained Reconstruction Constraints," in Proc. IEEE International Symposium on Information Theory (ISIT 2012), Cambridge, MA, USA, July 1-6, 2012. [Teneketzis '06] Teneketzis, Demosthenis. "On the structure of optimal real-time encoders and decoders in noisy communication." Information Theory, IEEE Transactions on 52, no. 9 (2006): 4017-4035.

[Vaezi and Labeau '12] Vaezi, Mojtaba, and Fabrice Labeau. "Distributed lossy source coding using real-number codes." In Vehicular Technology Conference (VTC Fall), 2012 IEEE, pp. 1-5. IEEE, 2012. [Vasudevan et al '06] D. Vasudevan, C. Tian, and S. N. Diggavi, "Lossy source coding for a cascade communication system with sideinformations," In Proc. Allerton, Sept. 2006.

[Venkataramanan and Pradhan '07] R. Venkataramanan and S. S. Pradhan, "Source coding with feed-forward: Rate-distortion theorems and error exponents for a general source," IEEE Trans. Inform. Theory, vol. 53, no. 6, pp. 2154-2179, Jun. 2007.

[Wainwright et al '10] Wainwright, Martin J., Elitza Maneva, and Emin Martinian. "Lossy source compression using low-density generator matrix codes: Analysis and algorithms." Information Theory, IEEE Transactions on 56, no. 3 (2010): 1351-1368.

[Wainwright and E. Maneva '05] M. J. Wainwright and E. Maneva, "Lossy source coding via messagepassing and decimation over generalized codewords of LDGM codes," IEEE International Symp. Inf. Theory, Adelaide, Australia, Sept. 2005.

[Wainwright and Martinian '09] Wainwright, Martin J., and Emin Martinian. "Low-density graph codes that are optimal for binning and coding with side information." Information Theory, IEEE Transactions on 55, no. 3 (2009): 1061-1079.

[Weissman and El Gamal '06] T. Weissman and A. El Gamal, "Source coding with limited-look-ahead side information at the decoder," IEEE Trans. Inf. Theory, vol. 52, no. 12, pp. 5218–5239, Dec. 2006. [Weissman and Merhav '03] T. Weissman and N. Merhav, "On competitive prediction and its relation to rate-distortion theory," IEEE Trans. Inform. Theory, vol. 49, no. 12, pp. 3185- 3194, Dec. 2003. [Weissman and Merhav '04] Weissman, Tsachy, and Neri Merhav. "On competitive prediction and its relation to rate-distortion theory." [Weissman and Merhav '04] Weissman, Tsachy, and Neri Merhav. "On competitive prediction and its relation to rate-distortion theory." Information Theory, IEEE Transactions on 49, no. 12 (2003): 3185-3194.

[Weissman and Ordentlich '05] Weissman, Tsachy, and Erik Ordentlich. "The empirical distribution of rate-constrained source codes." Information Theory, IEEE Transactions on 51, no. 11 (2005): 3718-3733. [Weissman and Verdú '08] Verdú, Sergio, and Tsachy Weissman. "The information lost in erasures." Information Theory, IEEE Transactions on 54, no. 11 (2008): 5030-5058.

[Wernersson and Skoglund '09] Wernersson, Niklas, Johannes Karlsson, and Mikael Skoglund. "Distributed quantization over noisy channels." Communications, IEEE Transactions on 57, no. 6 (2009): 1693-1700. [Witsenhausen '76] Witsenhausen, H. "The zero-error side information problem and chromatic numbers (corresp.)." Information Theory, IEEE Transactions on 22, no. 5 (1976): 592-593.

[Wyner '74] Wyner, Aaron. "Recent results in the Shannon theory." Information Theory, IEEE Transactions on 20, no. 1 (1974): 2-10.

[Wyner '78] Wyner, Aaron D. "The rate-distortion function for source coding with side information at the decoder $\$ 3-II: General sources." Information and Control 38, no. 1 (1978): 60-80.

[Wyner and Ziv '76] Wyner, Aaron, and Jacob Ziv. "The rate-distortion function for source coding with side information at the decoder." Information Theory, IEEE Transactions on 22, no. 1 (1976): 1-10.

[Yamamoto '82] Yamamoto, Hirosuke. "Wyner-Ziv theory for a general function of the correlated sources (Corresp.)." Information Theory, IEEE Transactions on 28, no. 5 (1982): 803-807.

[Yang et al '09] Yang, Yang, Samuel Cheng, Zixiang Xiong, and Wei Zhao. "Wyner-Ziv coding based on TCQ and LDPC codes." Communications, IEEE Transactions on 57, no. 2 (2009): 376-387.

[Yard and Devetak '09] Yard, Jon T., and Igor Devetak. "Optimal quantum source coding with quantum side information at the encoder and decoder." Information Theory, IEEE Transactions on 55, no. 11 (2009): 5339-5351.

[Yu and Sharma '11] Yu, Chao, and Gaurav Sharma. "Distributed estimation and coding: A sequential framework based on a side-informed decomposition." Signal Processing, IEEE Transactions on 59, no. 2 (2011): 759-773.

[Zamir et al '02] Zamir, Ram, Shlomo Shamai, and Uri Erez. "Nested linear/lattice codes for structured multiterminal binning." Information Theory, IEEE Transactions on 48, no. 6 (2002): 1250-1276.

[Zhao and Effros '03] Zhao, Qian, and Michelle Effros. "Lossless and near-lossless source coding for multiple access networks." Information Theory, IEEE Transactions on 49, no. 1 (2003): 112-128.

[Ziv '85] Ziv, Jacob. "On universal quantization." Information Theory, IEEE Transactions on 31, no. 3 (1985): 344-347.

Appendix-A

Conditional Rate-Distortion Theory

1

Converse

 Factorization of the joint pmf: p(xⁿ, yⁿ, m, x̂ⁿ) = ∏ⁿ_{i=1} p(x_i)p(y_i|x_i) ⋅ 1(m|xⁿ, yⁿ) ⋅ 1(x̂ⁿ|m, yⁿ)
 From data processing inequality considerations:

$$nR \ge H(M)$$

$$\ge H(M|Y^{n})$$

$$= H(M|Y^{n}) - H(M|X^{n}, Y^{n})$$

$$= I(X^{n}; M, \hat{X}^{n}|Y^{n})$$

Conditional Rate-Distortion Theory

Converse

$$nR \ge I(X^{n}; \hat{X}^{n} | Y^{n})$$

= $H(X^{n} | Y^{n}) - H(X^{n} | Y^{n}, \hat{X}^{n})$
= $\sum_{i=1}^{n} H(X_{i} | Y_{i}) - H(X_{i} | X^{i-1}, Y^{n}, \hat{X}^{n})$
 $\ge \sum_{i=1}^{n} H(X_{i} | Y_{i}) - H(X_{i} | Y_{i}, \hat{X}_{i})$
= $\sum_{i=1}^{n} I(X_{i}; \hat{X}_{i} | Y_{i})$

• Using convexity properties of the rate-distortion function (see, e.g., [El Gamal and Kim '11]), we get the lower bound:

$$R_{X|Y}(D) \geq \min_{p(\hat{x}|x,y)} I(X; \hat{X}|Y)$$

O. Simeone

Source Coding With Side Information

Appendix-B

Converse

• Factorization of the joint pmf:

• See [Kramer '08] and [Koller and Friedman '09]

Converse

• Factorization of the joint pmf:

Converse

 $nR \geq H(M)$ $> H(M|Y^n)$ $= H(M|Y^n) - H(M|X^n, Y^n)$ $= I(X^n; M|Y^n)$ $= H(X^n|Y^n) - H(X^n|Y^n, M)$ $=\sum_{i=1}^{n}H(X_{i}|Y_{i})-H(X_{i}|X^{i-1},Y^{n},M)$ $=\sum_{i=1}^{M}H(X_i|Y_i)-H(X_i|\underbrace{X^{i-1},Y^{n\setminus i},M}_{i},Y_i)$ $\triangleq U_i$ $=\sum_{i=1}^{n}I(X_i;U_i|Y_i)$

Converse

U_i = {Xⁱ⁻¹, Y^{n,i}, M} satisfies U_i − X_i − Y_i, and hence p(u_i, x_i, y_i) = p(x_i, y_i)p(u_i|x_i)
 X̂_i = f(M, Yⁿ) = f(U_i, Y_i)

Converse

• d-separation test for conditional independence [Kramer '08]

•
$$U_i = \{X^{i-1}, Y^{n \setminus i}, M\}$$
 satisfies $U_i - X_i - Y_i$

O. Simeone

Converse

- d-separation test for conditional independence [Kramer '08]:
- 1. Include only edges and vertices moving backward from the involved vertices

- d-separation test for conditional independence [Kramer '08]:
- 2. Remove all edges coming out of the conditioning variable X_i

Converse

- d-separation test for conditional independence [Kramer '08]:
- 3. Make edges undirected

 If no path between U_i and Y_i in the resulting undirected graph, then we have U_i - X_i - Y_i

Appendix C

LDPC Codes and Compression

Figure 1: Using an LDPC code for binary erasure quantization. The boxes with = signs are repetition nodes: all edges connected to an = box must have the same value. The boxes with + signs are check nodes: the modulo 2 sum of the values on edges connected to a + box must be 0. The source consists of 0's, 1's, and erasures represented by *'s. Erasures may be quantized to 0 or 1 while incurring no distortion. A non-zero distortion must be incurred for the source shown above since the left-most check cannot be satisfied.

[Martinian and Yedidia '03]

LDPC Codes and Compression

Figure 2: Using the dual of an LDPC code for binary erasure quantization. Choosing values for the variables at the bottom produces a codeword. The values for each sample of the resulting codeword are obtained by taking the sum modulo 2 of the connected variables. In contrast to Fig. 1, this structure can successfully match the source with no distortion if the bottom 3 variables are set to 0, 0, 1.

[Martinian and Yedidia '03]

Appendix D

Strictly Causal Side Information

Converse

$$nR \ge \sum_{i=1}^{n} H(X_i) - H(X_i|X^{i-1}, M)$$

 $\ge \sum_{i=1}^{n} H(X_i) - H(X_i|Y^{i-1}, M)$

by data processing inequality since $X_i - (X^{i-1}, M) - (Y^{i-1}, M)$ (check with d-separation!)

Strictly Causal Side Information

$$nR \ge \sum_{i=1}^{n} H(X_i) - H(X_i | X^{i-1}, M)$$

$$\ge \sum_{i=1}^{n} H(X_i) - H(X_i | Y^{i-1}, M)$$

$$= \sum_{i=1}^{n} H(X_i) - H(X_i | Y^{i-1}, M, \hat{X}_i)$$

$$= \sum_{i=1}^{n} I(X_i; \hat{X}_i)$$

• ... delayed side information not useful (but it can be for sources with memory)

Appendix E

Causal Side Information

Converse

$$nR \ge \sum_{i=1}^{n} H(X_i) - H(X_i|X^{i-1}, M)$$
$$\ge \sum_{i=1}^{n} H(X_i) - H(X_i|\underbrace{Y^{i-1}, M}_{\triangleq U_i})$$
$$= \sum_{i=1}^{n} I(X_i; U_i)$$

• We also have $\hat{X}_i = f(U_i, Y_i)$ and $U_i - X_i - Y_i$ • It follows that

$$R_{X|Y}^{WZ-C}(D) \ge \min_{p(u|x)} I(X; U)$$

s.t. $E[d(X, Y, f(U, Y))] \le D$

Appendix F

When Forward is Optimal [Chia et al '11]

When Forward is Optimal [Chia et al '11]

• $R_1 \ge I(X; \hat{X}_1, U|Y)$ • $R_2 \ge I(X, Y; U|Z)$

O. Simeone

When Forward is Optimal [Chia et al '11]

Appendix G

Cascade Source Coding Problem with CR constraint

Rate-Distortion Region $(X - Y_1 - Y_2)$

• $R_1 \ge I(X; \hat{X}_1 \hat{X}_2 | Y_1)$ • $R_2 \ge I(X; \hat{X}_2 | Y_2)$

• $R_1 \ge I(X; \hat{X}_1 \hat{X}_2 | Y_1)$ • $R_2 > I(X; \hat{X}_2 | Y_2)$ \hat{X}_1^n \hat{X}_2^n R_1 *R*., Node 1 Node 2 Node 3 Y_1^n Y_2^n X^n Y_1^n

Cascade Source Coding Problem with CR constraint

Rate-Distortion Region $(X - Y_1 - Y_2)$

• $R_1 \ge I(X; \hat{X}_1 \hat{X}_2 | Y_1)$ • $R_2 \ge I(X; \hat{X}_2 | Y_2)$

• $R_1 \ge I(X; \hat{X}_1 \hat{X}_2 | Y_1)$ • $R_1 \ge I(X; \hat{X}_1 \hat{X}_2 | Y_1)$

• $R_2 \geq I(X; \hat{X}_2 | Y_2)$

Cascade Source Coding Problem with CR constraint

Rate-Distortion Region $(X - Y_1 - Y_2)$

• $R_1 \ge I(X; \hat{X}_1 \hat{X}_2 | Y_1)$ • $R_2 \ge I(X; \hat{X}_2 | Y_2)$

