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Abstract

This work studies the robust design of linear precoding and linear/ non-linear equalization for

multi-cell MIMO systems in the presence of imperfect channel state information (CSI). A worst-

case design approach is adopted whereby the CSI error is assumed to lie within spherical sets of

known radius. First, the optimal robust design of linear precoders is tackled for a MIMO interference

broadcast channel (MIMO-IBC) with general unicast/multicast messages in each cell and operating over

multiple time-frequency resources. This problem is formulated as the maximization of the worst-case

sum-rate assuming optimal detection at the mobile stations (MSs). Then, symbol-by-symbol non-linear

equalization at the MSs is considered. In this case, the problem of jointly optimizing linear precoding

and decision-feedback (DF) equalization is investigated for a MIMO interference channel (MIMO-

IC) with the goal of minimizing the worst-case sum-mean squared error (MSE). Both problems are

addressed by proposing iterative algorithms with descent properties. The algorithms are also shown to

be implementable in a distributed fashion on processors that have only local and partial CSI by means

of the Alternating Direction Method of Multipliers (ADMM). From numerical results, it is shown that

the proposed robust solutions significantly improve over conventional non-robust schemes in terms of

sum-rate or symbol error rate. Moreover, it is seen that the proposed joint design of linear precoding

and DF equalization outperforms existing separate solutions.
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I. INTRODUCTION

The trend towards extreme densification is one of the defining characteristics of 5G systems [1].

As a result, dense heterogeneous networks are expected typical in 5G systems. The study of this class

of network architectures is bringing to the fore the need to develop practical and effective interference

management techniques. A key constraint on the design of such techniques is the difficulty to collect

channel state information (CSI).

Linear precoding at the base stations (BSs) of a multi-cell system provides a practical and effective

means to control intra- and inter-cell interference (see, e.g., [2][3]). Linear precoding can be designed

assuming optimal decoding at the mobile stations (MSs), and hence invoking the Shannon capacity as

the relevant performance metric, see, e.g., [4]; or, alternatively, one can consider suboptimal symbol-

by-symbol equalizers at the MSs, for which other performance criteria, such as interference leakage

minimization for interference alignment [5] or minimum mean squared error (MSE) [6], are relevant.

Moreover, theoretical results demonstrate the potential advantages that can be accrued by performing

linear precoding over multiple time-frequency resources (see [7] and references therein).

Linear precoding design requires the availability of CSI at the base stations (BSs). CSI imperfections

are inevitable in both time-division and frequency-division duplex systems due to channel estimation

errors, CSI outdating and limited feedback (see, e.g., [8][9]). Therefore, a system design that is tailored to

the available CSI is bound to incur a potentially severe degradation under the actual unknown channel

conditions. In order to prevent unforeseen system failures due to CSI mismatch, a well established

approach prescribes the adoption of a robust optimization [10] formulation. Accordingly, linear precoding

is designed by optimizing the worst-case performance over the set of all plausible CSI conditions given

the available CSI at the BSs. In this fashion, a given performance level is guaranteed no matter what the

actual CSI is within the given uncertainty set. Alternatively, one can attempt to maximize the average

performance with respect to the distribution of the CSI error, see, e.g., [11].

Robust precoder design was studied in [8][9][12] (see also references therein) for multi-cell downlink

channels with unicast messages that operate over a single time-frequency resource. Instead, the work

[13] considered the robust optimization of single-cell multicast systems in the context of a cognitive-

radio network. These works consider optimal decoders and use the sum-rate as the performance metric

of interest. The analysis of the degrees of freedom in the presence of imperfect CSI can be found in

[14][15].

The robust design of DF equalizers under imperfect CSI is studied in [16] for a single-cell system,
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e.g., in the absence of interference. The case of multiple cells was considered in [17] in the presence

of perfect CSI by considering a separate design of linear precoding and DF equalization.

A. Contributions

This paper has the following main contributions.

1. Linear precoding optimization based on robust sum-rate maximization: We first consider a

multi-cell multicast system in which each BS transmits a number of independent messages, each to be

decoded by different subset of MSs, over multiple time-frequency resources. The system is referred to as

a MIMO interference broadcast channel (MIMO-IBC). Unlike the related prior work mentioned above,

the model includes the possibility for a BS to multicast the same message to multiple MSs, as studied

in [18]-[21] for single-cell systems. Note that multicast is for instance implemented in LTE systems via

the evolved multimedia broadcast/multicast service (eMBMS) interface [22]. Robust linear precoding

optimization is tackled for this system under the assumptions that the MSs perform optimal decoding

in terms of worst-case sum-rate maximization in Sec. III. An iterative algorithm that monotonically

increases a lower bound of the objective function is proposed. We then focus on the special case of a

MIMO interference channel (MIMO-IC) where each BS communicates to a single MS. For the MIMO-

IC, a distributed implementation of the proposed algorithm is derived based on the Alternating Direction

Method of Multipliers (ADMM) that only requires local (imperfect) CSI. Numerical results in Sec. V

show that the proposed robust solution provides significant performance improvement over conventional

non-robust schemes that consider the nominal CSI as being accurate.

2. Linear precoding and DF equalization optimization based on sum-MSE minimization:

While the contribution discussed above assumes optimal decoders at the MSs, we consider here the

case in which each MS runs a symbol-by-symbol DF equalizer for the MIMO-IC. The DF equalizer is

allowed to successively decode any subset of intra-cell and inter-cell streams. Robust joint optimization

of linear precoding and DF equalization is tackled for a MIMO-IC in terms of worst-case sum-MSE

minimization in Sec. IV. An iterative algorithms is proposed that monotonically decreases an upper

bound on the sum-MSE and a distributed implementation is developed based on ADMM. Numerical

evidence, reported in Sec. V, shows that the joint optimization considered here is beneficial over

the separate optimization considered in the earlier work [17] and that the proposed robust solution

outperforms non-robust approaches.

Notations: The set of all M × N complex matrices is denoted by CM×N . We use the notation

X ≽ 0 to indicate that the matrix X is positive semidefinite. The operations (·)T and (·)† denote

transpose and Hermitian transpose of a matrix or vector, and the Frobenius norm and the spectral norm

of a matrix X are denoted by ||X||F and ||X||, respectively. E[·] represents the expectation operator.

We use the notation δi,j = 1 if i = j and δi,j = 0 otherwise.
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Figure 1. MIMO interference broadcast channel (MIMO-IBC) with B interfering cells.

II. SYSTEM MODEL

We study a multi-cell MIMO downlink channel, also known as MIMO-IBC, with B mutually

interfering cells that operate over the same time-frequency resources as shown in Fig. 1. We assume

that each ith cell has a single multi-antenna BS that wishes to communicate with Ki multi-antenna MS

located in the cell. We denote the numbers of antennas at the ith BS and the kth MS in the ith cell as

NT,i and NR,(i,k), respectively, and define the sets of all BSs and MSs in the ith cell as B , {1, . . . , B}
and Ki , {1, . . . ,Ki}, respectively. For notational convenience, let us denote the kth MS in cell i as

MS (i, k).

In the most general case, we assume a multicast set-up in which that the ith BS transmits Mi

messages, where each mth message Wi,m is to be decoded by a set Di,m ⊆ Ki of the MSs within the

cell. We assume that Di,m ̸= ∅ and Di,m ̸= Di,m′ for all m ̸= m′ ∈Mi , {1, . . . ,Mi}. Note that the

systems with only unicast messages (as in, e.g., [2]) or only multicast messages (as in e.g., [13]) can

be captured in this model by choosing Mi = Ki with Di,m = {m} for all m ∈ Ki and Mi = 1 with

Di,1 = Ki, respectively. We also define as Si,k ⊆Mi the set of the indices of messages to be decoded

by the (i, k)th MS.

In order to simplify the presentation, we will also consider a simpler system with a single MS per

cell, i.e., with Ki = 1, as shown in Fig. 2. This set-up amounts to a MIMO-IC with B transmitter-

receiver pairs and will be described by using a single index to identify the quantities related to each

cell. Specifically, each BS i here will have a single message Wi, i.e., Mi , {1}, which is intended for
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Figure 2. MIMO interference channel (MIMO-IC) with B interfering cells.

the ith MS, i.e., Di,1 = Ki = {1}.

A. Signal Model

The BSs perform joint precoding over L time or frequency slots with arbitrarily varying channel

gains1. In the MIMO-IBC of Fig. 1, the signal yi,k , [yi,k(1); . . . ;yi,k(L)] ∈ CLNR,(i,k)×1 received

by MS (i, k) over the slots, with yi,k(l) representing the received signal at slot l ∈ L , {1, . . . , L},
can be written as

yi,k =
∑
j∈B

Hi,k,jxj + zi,k, (1)

where Hi,k,j , diag(Hi,k,j(1), . . . ,Hi,k,j(L)) ∈ CLNR,(i,k)×LNT,j denotes the channel response matrix

from the jth BS to the MS (i, k), with Hi,k,j(l) ∈ CNR,(i,k)×NT,j representing the matrix at slot l ∈ L;

xj , [xj(1); . . . ;xj(L)] ∈ CLNT,j×1 is the signal transmitted by the jth BS with xj(l) ∈ CNT,j×1

being the signal transmitted at slot l; zi,k , [zi,k(1); . . . ; zi,k(L)] ∈ CLNR,(i,k)×1 denotes the additive

noise distributed as zi,k ∼ CN (0,Σi,k) with Σi,k , diag(Σi,k(1), . . . ,Σi,k(L)), where Σi,k(l) ≽ 0

denotes the covariance matrix of the noise zi,k(l) at slot l. We assume that each BS i is subject to the

transmit power constraint
1

L
E
[
∥xi∥2

]
≤ Pi. (2)

The notation is simplified for the MIMO-IC in Fig. 2, so that we can write

yi =
∑
j∈B

Hi,jxj + zi (3)

1We recall that one way to obtain varying channels in the frequency domain is to have flat-fading channels but with

asynchronous interference [23].
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for the signal received by MS i, where Hi,j ∈ CLNR,i×LNT,j denotes the channel response matrix from

the jth BS to the ith MS.

B. Linear Precoding

Each BS i in the MIMO-IBC transmits the linearly precoded signal

xi =
∑

m∈Mi

Vi,msi,m, (4)

where si,m ∈ Cdi,m×1 is the baseband signal encoding the message Wi,m intended for MSs (i, k) with

k ∈ Di,m; and the matrix Vi,m ∈ CLNT,i×di,m is the associated precoding matrix. The dimension di,m

of the encoded signal si,m cannot exceed the maximum number of signal dimensions on the channels

between the ith BS and the MSs in set Di,m, namely L ·min{NT,i, NR,(i,k)} for k ∈ Di,m. Note that,

for the MIMO-IC, the transmitted signal is simplified to

xi = Visi, (5)

where Vi ∈ CLNT,i×di is the precoding matrix for the signal si ∼ CN (0, I) intended for the ith MS.

In the MIMO-IBC with the linear precoding model (4) described above, the received signal (1) can

be rewritten as

yi,k=
∑

m∈Si,k

Hi,k,iVi,msi,m+
∑

q∈Mi\Si,k

Hi,k,iVi,qsi,q +
∑

j∈B\{i}

∑
q∈Mj

Hi,k,jVj,qsj,q + zi,k, (6)

where the first term is the desired signals to be decoded by the receiving MS (i, k) while the second and

third terms stand for the intra-cell and inter-cell interference signals, respectively. For the MIMO-IC,

using (5), the received signal (3) reduces to

yi = Hi,iVisi +
∑

j∈B\{i}

Hi,jVjsj + zi, (7)

showing only the presence of inter-cell interference.

C. Channel State Information

With the exceptions of Sec. III-D and Sec. IV-E, we assume that the optimization of the system is

performed at a central unit that receives the CSI about the channel matrices {Hi,k,j}i∈B,k∈Ki from the

jth BS for all j ∈ B. These channel matrices can be estimated by each BS either via uplink training

for Time Division Duplex systems or fed back by the MSs in a Frequency Division Duplex system. As

a result, the channel matrices Ĥi,k,j available at the central unit are different from the actual channel

matrix Hi,k,j due to, e.g., i) channel estimation errors at the BSs; ii) channel outdating; iii) capacity

limitation on the backhaul links connecting the BSs to the central unit.
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In order to address the CSI inaccuracy, we adopt a standard deterministic uncertainty model, whereby

the actual channel Hi,k,j is related to the CSI Ĥi,k,j as

Hi,k,j = Ĥi,k,j +∆i,k,j , (8)

where the error matrix ∆i,k,j , defined as ∆i,k,j , diag(∆i,k,j(1), . . . ,∆i,k,j(L)), is known to lie in

the bounded spherical uncertainty region [8][9][12]

Ui,k,j(l) ,
{
∆i,k,j(l)

∣∣ ∥∆i,k,j(l)∥F ≤ εi,k,j(l)
}
. (9)

Therefore, the central unit performs the system design based on the knowledge of the nominal CSIs

{Ĥi,k,j}i,j∈B,k∈Ki and the parameters {εi,k,j(l)}l∈L,i,j∈B,k∈Ki that measure the inaccuracy of the reported

CSI as per (9). Note that, following the discussion above, the notation simplifies in a natural fashion for

the MIMO-IC. Finally, we assume that the MSs have all necessary local CSI, which can be obtained

via downlink training.

A distributed implementation of the proposed algorithms that does not require a central unit will

be discussed in Sec. III-D and Sec. IV-E.

III. ROBUST SUM-RATE MAXIMIZATION OVER LINEAR PRECODING

In this section, we investigate the optimal design of the precoding matrices V , {Vi,m}i∈B,m∈Mi

for the MIMO-IBC with the aim of maximizing the sum-rate. A key underlying assumption here is that

the BSs use (point-to-point) capacity-achieving codes and that the MSs perform optimal decoding, so

that the Shannon capacity can be used as the performance criterion. We start by deriving an achievable

sum-rate for given precoding matrices V , {Vi,m}i∈B,m∈Mi in Sec. III-A. The design problem is then

formulated in Sec. III-B and tackled in Sec. III-C. A distributed situation based on ADMM is proposed

in Sec. III-D.

A. Sum-Rate

In order to decode the intended message set Si,k, the MS (i, k) performs successive interference

cancellation with a predetermined order πi,k : {1, . . . , |Si,k|} → Si,k. More specifically, MS (i, k) first

decodes the signal si,πi,k(1) based on the received signal y(1)
i,k , yi,k by treating all other signals as

noise. Then, MS (i, k) cancels the decoded signal si,πi,k(1) on the received signal yi,k obtaining y
(2)
i,k ,

yi,k−Hi,k,iVi,πi,k(1)si,πi,k(1). The next signal si,πi,k(2) is hence decoded based on y
(2)
i,k by treating all

remaining signals as noise, and the process is repeated until all the signals {si,m}m∈Si,k
are decoded.

We emphasize that in prior works [8][9][12] the intended message set includes a single message, hence

not requiring successive interference cancellation and significantly simplifying the analysis.

Following, e.g., [24][25] (see also references therein), we find it useful to express the achievable

sum-rate in terms of the minimum MSE covariance matrices. The minimum MSE matrix E∗
i,m,k ,
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E[ei,m,ke
†
i,m,k] is the covariance of the error vector ei,m,k , ŝ∗i,m,k − si,m that measures the error

between the desired signal si,m and the minimum MSE estimate ŝ∗i,m,k of si,m at the MS (i, k). We

recall that MS (i, k) decodes si,m based on the signal y
(π−1

i,k(m))

i,k obtained via the successive interference

cancellation procedure discussed above. The following relationship is well known to exist between the

maximum achievable rate R∗
i,m,k that can be decoded at MS (i, k) for message m and the minimum

MSE covariance matrix:

R∗
i,m,k(V,H) =

1

L
log det

(
E∗−1

i,m,k(V,H)
)
, (10)

where we have made explicit the dependence of the rate R∗
i,m,k and the minimum MSE covariance

matrix E∗
i,m,k on the precoding matrices V and the channel matrices H , {Hi,k,j}i,j∈B,k∈Ki .

We now derive the minimum MSE covariance matrix E∗
i,m,k(V,H). To this end, we introduce the

matrix U∗
i,m,k ∈ CLNR,(i,k)×di,m , which describes the minimum MSE equalizer applied by MS (i, k)

on y
(π−1

i,k(m))

i,k to estimate the signal si,m for n ∈ {1, . . . , |Si,k|}, as ŝ∗i,m,k = U∗†
i,m,ky

(π−1
i,k(m))

i,k , namely

U∗
i,m,k =

(
Ωi,m,k +Hi,k,iVi,mV†

i,mH†
i,k,i

)−1

Hi,k,iVi,m. (11)

In (11), we have defined

Ωi,m,k , Σi,k +
∑

q∈Mi\{m,πi,k(1),...,πi,k(π
−1
i,k(m)−1)}

Hi,k,iVi,qV
†
i,qH

†
i,k,i (12)

+
∑

j∈B\{i}

∑
q∈Mj

Hi,k,jVj,qV
†
j,qH

†
i,k,j ,

which denotes the covariance matrix of the interference-plus-noise signals when MS (i, k) decodes the

signal si,m.

To evaluate the minimum MSE covariance matrix E∗
i,m,k(V,H), it is then useful to define the

MSE matrix Ei,m,k(V,U,H) , E[(U†
i,m,ky

(π−1
i,k(m))

i,k − si,m)(U∗
i,m,ky

(π−1
i,k(m))

i,k − si,m)†] obtained for

a generic matrix Ui,m,k, which can be written as (see, e.g., [25])

Ei,m,k(V,U,H) =
∑
j∈B

∑
q∈Mi,m,k,j

(
U†

i,m,kHi,k,jVj,q − δ(i,m),(j,q)I
)

·
(
V†

j,qH
†
i,k,jUi,m,k − δ(i,m),(j,q)I

)
+U†

i,m,kΣi,kUi,m,k, (13)

where we have defined the variable U , {Ui,m,k}i∈B,m∈Mi,k∈Di,m , and the set Mi,m,k,j = Mi \

{πi,k(1), . . . , πi,k(π
−1
i,k (m)−1)} if i = j andMi,m,k,j =Mj otherwise. The MSE matrix E∗

i,m,k(V,H)

is then obtained as E∗
i,m,k(V,H) = Ei,m,k(V,U∗,H), using the optimal decoding matrices Ui,m,k =

U∗
i,m,k in (11).
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B. Problem Formulation

In this section, we formulate the problem of maximizing the worst-case sum-rate, where the worst

case is evaluated over all possible CSI error matrices {∆i,k,j(l) ∈ Ui,k,j(l)}l∈L,i,j∈B,k∈Ki within the

uncertainty sets (9). The optimization is done over the precoding matrices V for fixed decoding orders

{πi,k}i∈B,k∈Ki at the MSs. The problem is stated as

maximize
V,R

∑
i∈B

∑
m∈Mi

Ri,m (14a)

s.t. Ri,m ≤ min
{∆i,k,j(l)∈Ui,k,j(l)}l∈L,j∈B

R∗
i,m,k(V, Ĥ+∆) (14b)

for all i ∈ B, m ∈Mi, k ∈ Di,m,∑
m∈Mi

tr
(
Vi,mV†

i,m

)
≤ LPi, for all i ∈ B, (14c)

where we have defined the variable R , {Ri,m}i∈B,m∈Mi . The constraint (14b) imposes that each

signal si,m is decodable by the destination MSs k ∈ Di,m for all possible error matrices {∆i,k,j(l) ∈

Ui,k,j(l)}l∈L,i,j∈B,k∈Ki ; and the condition (14c) corresponds to the transmit power constraint (14c).

Note that solving problem (14) is difficult due to its non-convexity even in the presence of perfect CSI,

i.e., with {εi,k,j(l) = 0}l∈L,i,j∈B,k∈Ki .

Remark 1. Some special cases of the problem (14) were studied in prior works. Specifically, the unicast

system, i.e., Di,m = {m} for m ∈ Ki, with single-antenna MSs, i.e., NR = 1, and no time-frequency

extension, i.e., L = 1, was treated in [8], while the broadcast set-up with a single user per cell, i.e.,

Ki = 1, and L = 1 was studied in [12], and the single-cell broadcast system, i.e., B = 1, with L = 1

was investigated in [9]. Moreover, the single-cell set-up, i.e., B = 1, with a multicast message, i.e.,

Di,1 = Ki, and L = 1 was studied in [18][20] assuming that perfect CSI is available at BS, i.e.,

εi,k,j(l) = 0, and the study was extended in [21] to the multi-cell scenario. The algorithm proposed

here hence unifies and generalizes [8][9][12][18][20][21].

C. Robust Sum-Rate Optimization

In this subsection, we present the proposed iterative algorithm to tackle the problem (14). We first

apply Fenchel duality, as summarized in Lemma 3 in Appendix ??, to the constraint (14b), so as to

restate it in the equivalent form

Ri,m≤ min
{∆i,k,j(l)∈Ui,k,j(l)}l∈L,j∈B

max
Si,m,k≽0,Ui,m,k

−tr
(
Si,m,kEi,m,k(V,U,Ĥ+∆)

)
+ log det (Si,m,k) + di,m

 . (15)

Then, in order to make the problem more tractable, we obtain a lower bound on the optimal value of

the problem (14) by exchanging the order of the min and the max operations in the constraint (15), as
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done in [12, Sec. III], leading to the problem

maximize
V,R,U,S≽0

∑
i∈B

∑
m∈Mi

Ri,m (16a)

s.t. Ri,m ≤ min
{∆i,k,j(l)∈Ui,k,j(l)}l∈L,j∈B

 −tr
(
Si,m,kEi,m,k(V,U, Ĥ+∆)

)
+ log det (Si,m,k) + di,m

 ,

for all i ∈ B, m ∈Mi, k ∈ Di,m, (16b)∑
m∈Mi

tr
(
Vi,mV†

i,m

)
≤ LPi, for all i ∈ B, (16c)

where we have defined the variable S , {Si,m,k}i∈B,m∈Mi,k∈Di,m . To see that the optimal value of

(16) lower-bounds that of (14), with (15) in lieu of (14b), observe that, unlike (14), in (16) the variables

U and S cannot be chosen as a function of the error matrices ∆i,k,j(l).

Problem (16) is made complicated by the nested minimization with respect to the uncertainty

variables ∆i,k,j(l). Since this problem appears to be prohibitively complex, the following lemma

provides an alternative problem which does not include the matrices ∆i,k,j(l) and whose optimal

solution lower-bounds that of (16).

Lemma 1. The optimal value of the problem

maximize

V,U, S̃ ≽ 0;

(R, γ, τ, µ) ≥ 0

∑
i∈B

∑
m∈Mi

Ri,m (17a)

s.t. LRi,m ≤ −γi,m,k + 2 log det
(
S̃i,m,k

)
+ di,m,

for all i ∈ B, m ∈Mi, k ∈ Di,m, (17b)

γi,m,k ≥
∑
j∈B

τi,m,k,j +
∥∥∥Σ1/2

i,k Ui,m,kS̃i,m,k

∥∥∥2
F
,

for all i ∈ B, m ∈Mi, k ∈ Di,m, (17c)
τi,m,k,j−

∑
l∈L

µi,m,k,j(l) c†i,m,k,j 0

ci,m,k,j I −Ci,m,k,j

0 −C†
i,m,k,j diag({µi,m,k,j(l)}l∈L)⊗I

≽0,
for all i, j ∈ B, m ∈Mi, k ∈ Di,m, (17d)∑
m∈Mi

tr
(
Vi,mV†

i,m

)
≤ LPi, for all i ∈ B, (17e)

provides a lower bound on the optimal value of problem (16), where we have defined the variables

S̃ , {S̃i,m,k}i∈B,m∈Mi,k∈Di,m , γ , {γi,m,k}i∈B,m∈Mi,k∈Di,m , τ , {τi,m,k,j}i,j∈B,m∈Mi,k∈Di,m ,
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µ , {µi,m,k,j(l)}l∈L,i∈B,m∈Mi,k∈Di,m and the notations

S̃i,m,k , S
1/2
i,m,k, (18)

ci,m,k,j,q , vec
(
S̃†
i,m,k(U

†
i,m,kĤi,k,jVj,q − δ(i,m),(j,q)I)

)
, (19)

ci,m,k,j ,
[
ci,m,k,j,Mi,m,k,j(1); . . . ; ci,m,k,j,Mi,m,k,j(|Mi,m,k,j |)

]
, (20)

Ci,m,k,j,q(l) , VT
j,q(l)⊗ (S̃†

i,m,kU
†
i,m,k(l)), (21)

Ci,m,k,j(l) ,
[
Ci,m,k,j,Mi,m,k,j(1)(l); . . . ;Ci,m,k,j,Mi,m,k,j(|Mi,m,k,j |)(l)

]
, (22)

and Ci,m,k,j , − [εi,k,j(1)Ci,m,k,j(1), . . . , εi,k,j(L)Ci,m,k,j(L)] . (23)

In (21), the matrices Ui,m,k(l) and Vi,m(l) represent the submatrices of Ui,m,k and Vi,m, respectively,

corresponding to the lth slot. Moreover, the problem (17) is equivalent to the problem (16) when the

precoding is performed over a single time-frequency slot, i.e., L = 1.

Proof. See Appendix ??.

Problem (17) is still not convex with respect to the optimization variables. However, the problem

of optimizing one of three sets of variables V, U and S̃ along with the remaining variables R, γ, τ and

µ when fixing the other two sets can be seen to be convex using standard arguments [29]. Based on

this observation, we propose an alternating optimization algorithm as summarized in Table Algorithm

1. Note that the subproblems in Step 2-4 can be solved using standard convex optimization tools (e.g.,

[29]).

Remark 2. The proposed algorithm, being based on alternating optimization, is guaranteed to provide

a sequence of feasible solutions with non-decreasing objective function, hence guaranteeing the con-

vergence of Algorithm 1. The effectiveness of the approach, which is based on optimizing the problem

(17) in lieu of (14) will be validated via numerical results.

Remark 3. The complexity of solving convex problems is polynomial in the size of the unknowns and

hence the same complexity order is inherited by each iteration of Algorithm 1. The speed of convergence

will be discussed via numerical results in Sec. V.

D. Distributed Implementation

The discussion above assumes that a single control unit is available to perform the optimization.

In the special case of the MIMO-IC, we will now discuss how Algorithm 1 can be also performed in

a distributed fashion. The extension to the general MIMO-IBC is left as future work. Similar to, e.g.,

[25], this decentralization is done by assigning different subtasks to distinct processors that are allowed

to communicate with one another. We focus on the case L = 1 in order to simplify the presentation,

although the extension to any L is straightforward. Unlike [25] and references therein, which consider
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Algorithm 1 Iterative Algorithm for problem (17)
Step 1. Initialize the matrices V(1) and S̃(1) to arbitrary feasible matrices for problem (17) and

set t = 1.

Step 2. Solve the problem (17) with respect to the variables U, R, γ, τ and µ for fixed variables

V = V(t) and S̃ = S̃(t), and update the matrices U(t+1) as a solution of this problem.

Step 3. Solve the problem (17) with respect to the variables S̃, R, γ, τ and µ for fixed variables

U = U(t+1) and V = V(t) , and update the matrices S̃(t+1) as a solution of this problem.

Step 4. Solve the problem (17) with respect to the variables V, R, γ, τ and µ for fixed variables

U = U(t+1) and S̃ = S̃(t+1), and update the matrices V(t+1) as a solution of this problem.

Step 5. Stop if a convergence criterion on the objective function is satisfied. Otherwise, set

t← t+ 1 and go back to Step 2.

perfect CSI, the robust problem (17) requires some additional steps in order to be made distributed. For

this purpose, as discussed below, we will resort to ADMM [27][30]. Throughout this section, we use

the simplified notation introduced for the MIMO-IC in Sec. II. Accordingly, the problem (17) reduces

to

maximize

{Ui,Vi, S̃i ≽ 0,

(Ri, γi, τj,i, µj,i) ≥ 0}i,j∈B

∑
i∈B

Ri (24a)

s.t. Ri ≤ −γi + 2 log det
(
S̃i

)
+ di, for all i ∈ B, (24b)

γj ≥
∑
k∈B

τj,k +
∥∥∥Σ1/2

j UjS̃j

∥∥∥2
F
, for all j ∈ B, (24c)


τj,i − µj,i c†j,i 0

cj,i I −Cj,i

0 −C†
j,i µj,iI

 ≽ 0, for all i, j ∈ B,

tr
(
ViV

†
i

)
≤ Pi for all i ∈ B; (24d)

where Cj,i , V†
i ⊗

(
S̃jU

†
j

)
and cj,i , vec

(
S̃j

(
U†

jĤj,iVi − δj,iI
))

.

In the distributed implementation under study, there are 2B processors, one for each BS and one for

each MS, where each processor needs only be informed about the CSI concerning the associated BS or

MS. For instance, the processor associated with BS i should only be informed about the local CSI Ĥj,i

for all j ∈ B. Moreover, the processor associated with BS i produces the precoding matrix Vi, while

the processor corresponding to MS i yields the matrix Ui. This division of the optimization task into
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distinct processors enables, on the one hand, a parallel and modular implementation at the control unit

and, on the other hand, a distributed implementation across BSs and MSs. As mentioned, the processors

operate by exchanging messages in an iterative fashion until convergence. In the following, we refer to

the processor associated to a BS or an MS simply with the index of the BS or MS. The schedule of

the subtasks and of the exchanged messages, with reference to Table Algorithm 1, is as follows.

1) Step 2 and Step 3: After initialization (Step 1), Step 2 in Table Algorithm 1 is carried

out in parallel by all MSs. Specifically, each MS i ∈ B optimizes over the variables Ui, Ri, γi, τi,j

and µi,j for all j ∈ B. It can be seen that this parallelization comes at no loss of optimality, since the

variables pertaining to each MS i appear in different constraints in problem (24). Moreover, it is easily

verified that the terms in (24) that are relevant for MS i only depend on the local CSI Ĥi,j for all

i ∈ B. Similarly, Step 3) can be carried out in parallel by each MS by optimizing over variables S̃i,

Ri, γi, τi,j and µi,j for all j ∈ B. At the end of this step, each MS i sends the obtained matrices Ui

and S̃i to all BSs.

2) Step 4: Following the approach above, we would like to parallelize Step 4 across the BSs.

Specifically, each BS i should optimize over the variables Vi, Ri, γi, τ i =[τ 1,i...τK,i]
T and µj,i for

all j ∈ B. However, this turns out to be not directly possible due to the constraints (24c), which couple

the variables τ i of different BSs i. To solve this problem, first observation is that, at the optimum

solution for Step 4, the constraints (24c) should be satisfied with equality2. Therefore, the coupling

constraint (24c) can be written as
∑

i∈B τ i = γ − u, where we have defined γ = [γ1...γK ]T and

u = [||Σ1/2
1 U1S̃1||2F ...||Σ

1/2
K UK S̃K ||2F ]T . Linear equality constraints such as this one can be handled

in a distributed fashion by the ADMM algorithm, which is known to convergence to the optimal solution

of the original problem [27][30]3. We review the ADMM algorithm for the problem at hand in the rest

of this section.

Define the augmented Lagrangian function for BS i

Li(Ri, τ ,γ,λ) = Ri + λT (τ i − γ) +
ρ

2

∥∥∥∥∥∥
∑
j∈B

τ j − γ + u

∥∥∥∥∥∥
2

, (25)

where ρ ≥ 0 is a parameter of the algorithm. We will use the notation τ∼i to denote all vectors τ j with

j ̸= i and similarly for γ∼i. Following ADMM, the distributed implementation of step 4 of Algorithm

2If the constraints were not satisfied with equality for some optimal solution, it would be possible to decrease at least one γi

for some i, without violating the constraints. This would in turn allow a larger value of the corresponding rate Ri to be selected,

which would result in a contradiction.
3For a review of the convergence properties of the ADMM algorithm, we refer to [27] for the case K = 2 and to [30] for

the general case.
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Algorithm 2 ADMM implementation of step 4 of Algorithm 1
Step 1. For each BS i = 1, ..., K, solve the convex problem (26), where U = U(t+1) and

S̃ = S̃(t+1), and update γ [m−1] ← [γ∗
i ,γ

[m−1]
∼i ] and τ [m−1] ← [τ ∗

i , τ
[m−1]
∼i ], with γ∗

i and τ ∗
i equal

to the calculated optimal values.

Step 2. Set τ [m] ← τ [m−1] and γ [m] ← γ [m−1], and update the Lagrangian vector as

λ(m) = λ(m−1) + ρ

(∑
j∈B

τ
[m]
j − γ [m] + u

)
. (27)

1 is obtained as summarized in Table Algorithm 2, where we have defined the problem

maximize

Vi, (Ri, γi, τ i, {µj,i}j∈B) ≥ 0

Li(Ri, [τ i, τ
[m−1]
∼i ], [γi,γ

[m−1]
∼i ],λ[m−1]) (26a)

s.t. Ri ≤ −γi + 2 log det
(
S̃i

)
+ di, (26b)

τj,i − µj,i c†j,i 0

cj,i I −Cj,i

0 −C†
j,i µj,iI

 ≽ 0, for all j ∈ B, (26c)

tr
(
ViV

†
i

)
≤ Pi. (26d)

Note that the problem (26) can be solved at BS i based only on local CSI. Moreover, in Algorithm 2,

the BSs only need to exchange information about the solutions γ∗
i and τ ∗

i obtained at each step, since

this information is required to solve problem (26) and to update the Lagrangian vector according to

(27).

IV. ROBUST MSE OPTIMIZATION OF LINEAR PRECODING AND DF

EQUALIZATION

In the previous section, an underlying assumption was that each MS performs information-theoretically

optimum decoding of all the streams intended for it. In this section, instead, we assume that each MS

implements a simpler symbol-by-symbol (i.e., per-channel use) DF equalizer. For generality, the DF

equalizer is allowed to decode and cancel not only the streams intended for the given MS but also

an arbitrary subset of interfering signals. A key differentiating feature of the proposed approach with

respect to existing art is that we tackle the joint optimization of linear precoding and DF equalization.

We will focus here on the MIMO-IC and we will set L = 1. This will be done in order to simplify

the discussion but the extension to the more general MIMO-IBC could be done by generalizing in a

relatively straightforward way the analysis covered here. We start by reviewing DF equalization in the
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Figure 3. Illustration of the DF equalizer at receiver k.

context of the MIMO-IC in the next subsection. Then, we formulate the problem in Sec. IV-C, propose

a solution in Sec. IV-D and discuss a distributed implementation in Sec. IV-E.

A. DF Equalization

As shown in Fig. 3, each MS k performs symbol-by-symbol DF equalization with a feedforward

linear equalization matrix Uk ∈ Cddec
k ×NR,k and a feedback matrix Bk ∈ Lddec

k , where LN is the set

of strictly lower triangular matrices in CN×N and ddeck is the total number of data streams decoded by

receiver k. Specifically, receiver k decodes the vector of signals sdeck , [sqk1 ; . . . ; sqk|Idec
k

|
; sk] ∈ Cddec

k ×1,

where we have defined the set Ideck = {qk1 , . . . , qk|Idec
k |} ⊆ Ik , K\{k} of the indices of the interfering

signals to be decoded and canceled prior to the desired signal sk and ddeck , dk+
∑

j∈Idec
k

dj . According

to the structure of the matrix Bk, cancellation is performed stream-by-stream starting from the top of

vector sdeck and hence ending with the desired signal sk, see, e.g., [28].

Similar to [28] (see also references therein), assuming that decoding of all the previously decoded

streams is successful, the signals ŝdeck at the input of the decision device can be written as

ŝdeck =
(
UkH̄k −Bk

)
sdeck +Uk

∑
j∈Ik\Idec

k

Hk,jVjsj +Ukzk, (28)

where the matrix H̄k is defined as

H̄k ,
[
(Hk,qk1

Vqk1
) . . . (Hk,qk

|Idec
k

|
Vqk

|Idec
i,k

|
) (Hk,kVk)

]
. (29)

B. Sum-MSE

As done in [28] and related references therein, we consider the MSE at the output of the DF equalizer

as the performance metric used to optimize the precoding matrices V, the feedback equalization matrices

U and the feedback matrices B , {Bk}k∈K. The MSE matrix is given as Ek , E[eke†k] with the error

signal being defined as ek , ŝdeck − sdeck . With the estimate (28) and for given matrices (V,U,C,H),
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with C , {Ck = I+Bk}k∈K, the MSE matrix EDFE
k (V,U,C,H), similar to [28], can be seen to be

equal to

EDFE
k (V,U,C,H) =

(
UkH̄k −Ck

) (
H̄†

kU
†
k −C†

k

)
(30)

+
∑

j∈Ik\Idec
k

UkHk,jVjV
†
jH

†
k,jU

†
k +UkΣkU

†
k.

We remark that the MSE function EDFE
k (V,U,C,H) is convex with respect to one of two variables

V and U, along with the remaining variable C, if we fix the other one. This property will be used to

derive an iterative alternating algorithm below.

C. Problem Formulation

In this section, we tackle the problem of minimizing the worst-case sum of the MSEs over all

possible error matrices {∆k,j ∈ Uk,j}k,j∈K within the uncertainty sets over the linear precoding and

DF equalization matrices. The problem is stated as

minimize
V

∑
k∈K

max
{∆k,j∈Uk,j}j∈K

min
U,C

tr
(
EDFE

k (V,U,C, Ĥ+∆)
)

(31a)

s.t. tr
(
VjV

†
j

)
≤ Pj , for all j ∈ K, (31b)

Ck ∈ Lddec
k , diag(Ck) = 1, for all k ∈ K. (31c)

The constraint (31b) imposes that the precoding matrices V satisfy the power constraint in (2). Note

that solving problem (31) is difficult due to its non-convexity even in the presence of perfect CSI, i.e.,

with {εk,j = 0}k,j∈K.

Remark 4. Some special cases of the problem (31) were studied in prior works. Specifically, the case

with a single-user, i.e., K = 1, and hence no interference, was studied in [28] and [16] assuming the

availability of perfect CSI and imperfect CSI, respectively. The case of multiple users, i.e., K ≥ 2, was

studied in [17], but the optimization was tackled only for the design of the variables U and C under

the assumption of perfect CSI.

D. Robust Sum-MSE Optimization

In this subsection, we present an iterative algorithm to tackle the problem (31). In order to make

the problem more tractable, we obtain a feasible solution for (31) by formulating an alternative problem

whose solution provides an upper bound on the optimal MSE of the original problem (31). This is

done by exchanging the order of the min and the max operations in the cost function (31a). To see

that the optimal value of the resulting problem upper-bounds that of (31), observe that, unlike (31), the

variables U and C cannot be chosen as a function of the error matrices ∆k,j . This reduces the scope
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of the optimization domain and generally leads to suboptimal, but computationally efficient, solutions

to problem (31).

The problem at hand is made complicated by the nested maximization with respect to the uncertainty

variables ∆k,j . The following lemma provides an equivalent problem which does not include the

matrices ∆k,j .

Lemma 2. The problem at hand is equivalent to the problem

minimize
V,U,C,γ,τ,µ≥0

∑
k∈K

γk (32a)

s.t. tr
(
VjV

†
j

)
≤ Pj , for all j ∈ K, (32b)

Ck ∈ Lddec
k , diag(Ck) = 1, for all k ∈ K, (32c)

γk ≥
∑
j∈K

τk,j +
∥∥∥UkΣ

1/2
k

∥∥∥2
F

for all k ∈ K, (32d)


τk,j wDFE†

k,j 0

wDFE
k,j I −εk,jWDFE

k,j

0 −εk,jWDFE†
k,j µk,jI

 ≽ 0 for all k, j ∈ K, (32e)

where we have defined the notations γ , {γk}k∈K, τ , {τk,j}k,j∈K, µ , {µk,j}k,j∈K, WDFE
k,j ,

VT
j ⊗Uk, Ck = [Ck,ik1

. . .Ck,ik
|Idec

k
|
Ck,k] and

wDFE
k,j ,

vec(GkĤk,jVj −Cj), j ∈ {k} ∪ Ideck

vec(GkĤk,jVj), otherwise

. (33)

Proof. Lemma 2 follows from the same arguments used in Appendix ?? to prove Lemma 1 and is not

detailed here.

Problem (32) is still not convex with respect to the optimization variables. However, the problem

of optimizing one of two variables V and U, along with the remaining variables C, γ, τ and µ, when

fixing the other one can be seen to be convex. Based on this observation, we propose an alternating

optimization algorithm as summarized in Table Algorithm 3. Note that the subproblems in Step 2-3 can

be solved using standard convex optimization tools (e.g., [29]). The same consideration in Remark 2

and Remark 3 apply here.

E. Distributed Implementation

While the algorithm discussed above for the solution of (32) requires a centralized implementation,

it is also possible to implement it using a distributed approach, following the same steps detailed in

Sec. III-D, as long as one sets Ideck = ∅, i.e., if each MS only performs DF equalization on the stream

intended for itself. The general case is more challenging and is left as interesting open problem. The
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Algorithm 3 Iterative Algorithm for problem (32)
Step 1. Initialize the matrices V(1) to arbitrary feasible matrices for problem (32) and set t = 1.

Step 2. Solve the problem (32) with respect to the variables U, C γ, τ and µ for fixed variables

V = V(t), and update the matrices U(t+1) as a solution of this problem.

Step 3. Solve the problem (32) with respect to the variables V, C γ, τ and µ for fixed variables

U = U(t+1), and update the matrices V(t+1) as a solution of this problem.

Step 4. Stop if a convergence criterion on the objective function is satisfied. Otherwise, set

t← t+ 1 and go back to Step 2.

distributed implementation works as follows. After initialization (Step 1), Step 2 in Table Algorithm 3

can be carried out with no loss of optimality in parallel by all MSs with only local CSI, whereby each

MS i ∈ B optimizes over the variables Ui, Ci γi, τi,j and µi,j for all j ∈ B. Then, Step 3 can be

solved in a distributed way across the BSs, whereby each BS i optimizes over the variables Vi, Ci, γi,

τj,i and µj,i for all j ∈ B, by means of the ADMM algorithm. The details follow in a straightforward

way from the discussion in Sec. III-D and will not be detailed here.

V. NUMERICAL RESULTS

In this section, we present numerical results to illustrate the advantage of the proposed robust

designs. We start with the sum-rate performance in the presence of optimal decoding at the MSs and

then evaluate the Symbol Error Rate (SER) performance gains of the proposed DF-based design.

A. Sum-Rate Maximization over Linear Precoding

Here, we evaluate the performance of the robust strategy proposed in Sec. III. The following two

baseline strategies will be considered for reference:

1) Non-robust design: The precoding matrices V are designed assuming that there is no uncertainty

on the reported channel matrices so that Ĥ = H. We refer to this approach as “non-robust”. This

scheme can be implemented via Algorithm 1 by setting {εi,k,j(l) = 0}l∈L,i,j∈B,k∈Ki .

2) MMSE design: Instead of focusing on the weighted sum-rate maximization, one may be interested

in minimizing the worst-case sum of MSEs over all MS, which can be written as∑
i∈B

∑
m∈Mi

∑
k∈Di,m

max
{∆i,k,j(l)∈Ui,k,j(l)}l∈L,j∈B

tr
(
Si,m,kEi,m,k(V,U,Ĥ+∆)

)
, (34)

as studied in [9, Sec. II-B] for the case of a single-cell, i.e., B = 1, without symbol extension, i.e.,

L = 1. This approach will be referred to as “MMSE” scheme and can be implemented via Algorithm

1 by fixing the weight matrices to {Si,m,k = I}i∈B,m∈Mi,k∈Di,m and removing Step 4.
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Figure 4. Average worst-case sum-rate versus the number of iterations for the multi-cell downlink system with B = 3, Ki = 1,

NT,i = NR,(i,k) = 1, Pi = 10 dB,L = 2, ε = 0.5 and unicast messages Di,m = {m} for m ∈ Ki.

We set the CSI uncertainty levels to be all equal as εi,k,j(l) = ε for all i, j ∈ B, k ∈ Ki and

l ∈ L. We assume that the elements of the nominal channel matrices Ĥi,k,j(l) are independent and

identically distributed (i.i.d.) complex Gaussian random variables with zero mean and unit variance,

and are also independent across the indices i, k, j and l. For each realization of the nominal CSIs

{Ĥi,k,j}i,j∈B,k∈Ki
and given precoding matrices V, we measure the worst-case sum-rate by randomly

generating Nworst samples of the uncertainty terms ∆i,k,j(l) ∈ Ui,k,j(l) for all i, j ∈ B, k ∈ Ki and

l ∈ L, and taking the minimum of the measured sum-rates using (10). Specifically, we obtain each

sample ∆i,k,j(l) as ∆i,k,j(l) = Wi,k,j(l)/||Wi,k,j(l)||F · εi,k,j(l) where the matrix Wi,k,j(l) has

i.i.d. complex Gaussian random elements with zero mean and unit variance. Thus, the measured worst-

case sum-rate is expected to approach the actual worst-case sum-rate as the number Nworst of samples

increases. In our simulations, we used Nworst = 104 samples.

In Fig. 4, we show an example of the convergence rates of the proposed schemes summarized in

Sec. III to a locally optimal point. Specifically, Fig. 4 plots the average worst-case sum-rate obtained

with the sum-rate maximization and MMSE designs versus the number of iterations for the multi-cell

downlink system with B = 3, Ki = 1, NT,i = NR,(i,k) = 1, Pi = 10 dB, L = 2, ε = 0.5 and unicast

message sets Di,m = {m} for m ∈ Ki. It is observed that a few, around 7, iterations are sufficient for

the convergence of the schemes.

Fig. 5 plots the average worst-case sum-rate versus the uncertainty level ε for the multi-cell downlink

September 14, 2015 DRAFT



20

0 0.1 0.2 0.3 0.4 0.5 0.6
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Uncertainty level ε
k,j

A
ve

ra
ge

 w
or

st
−

ca
se

 s
um

−
ra

te
 [b

its
/s

/H
z] Sum−rate maximization

MMSE design

Robust design

Non−robust design

Figure 5. Average worst-case sum-rate versus the uncertainty level ε for the multi-cell downlink system with B = 3, Ki = 1,

NT,i = NR,(i,k) = 1, Pi = 10 dB,L = 2 and unicast messages Di,m = {m} for m ∈ Ki.

system with B = 3, Ki = 1, NT,i = NR,(i,k) = 1, Pi = 10 dB, L = 2 and unicast message sets

Di,m = {m} for m ∈ Ki. The performance gain of the proposed robust scheme over the non-robust

design is seen to increase rapidly with the CSI uncertainty level ε for both sum-rate maximization

and MMSE design. For instance, for ε = 0.1, ε = 0.2 and ε = 0.3, the gains in terms of sum-rate

are 5%, 13% and 28% for sum-rate maximization design and 17%, 50% and 67% for MMSE design,

respectively. Moreover, the performance loss of the robust MMSE scheme compared to the robust sum-

rate maximization scheme vanishes when the CSI is sufficiently inaccurate. This shows that a simpler

MMSE design may be sufficient when the CSI is not accurate enough.

Fig. 6 plots the average sum-rate obtained with the MMSE design versus the number L of (time-

frequency) slots for the multi-cell downlink system with B = 3, Ki = 1, NT,i = NR,(i,k) = 1, ε = 0.15

and unicast message sets Di,m = {m} for m ∈ Ki. From the figure, we observe that joint precoding

across multiple slots provides a significant gain compared to precoding over a single slot, due to the

possibility to perform power allocation and interference alignment precoding across the slots. Note that

this gain will be decreased in the presence of correlated channel matrices due to the lower diversity.

Moreover, the gain of the robust scheme compared to the non-robust scheme is uniform over L slots

and more significant at high SNR, where the channel estimation error is dominant over the channel

noise power.

Fig. 7 plots the average sum-rate obtained with the MMSE design versus the number Ki = K of
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Figure 6. Average sum-rate versus the number L of slots for the multi-cell downlink system with B = 3, Ki = 1, NT,i =

NR,(i,k) = 1, ε = 0.15 and unicast message sets Di,m = {m} for m ∈ Ki.
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Figure 7. Average sum-rate versus the number Ki of MSs for the multi-cell downlink system with B = 2, NT,i = 2,

NR,(i,k) = 1, L = 1, Pi = 15 dB and ε = 0.15.
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MSs for the multi-cell downlink system with B = 2, NT,i = 2, NR,(i,k) = 1, L = 1, Pi = 15 dB and

ε = 0.15. We compare the performance obtained with three different message assignments: i) Each BS

transmits K unicast messages to the MSs in the cell; ii) Each BS transmits a single multicast message

to all the MSs in the cell; and iii) Each BS transmits ⌊K/2⌋ unicast messages to ⌊K/2⌋ MSs and a

single multicast message to the remaining K − ⌊K/2⌋ MSs. It is observed that increasing the number

of unicast messages results in improved sum-rate performance due to the added flexibility in allocating

the available transmission resources. In contrast, the sum-rate is degraded by increasing the number

of MSs requesting multicast messages because of the increased number of rate constraints imposed on

the multicast data streams (see (14b)). Finally, it is noted that, as the number of MSs increases, the

performance gain of the robust unicast scheme grows larger with respect to the non-robust strategy:

in this regime, the less effective control of inter-MS interference afforded by imperfect CSI leads to

a more significant performance degradation. This trend is not present for the multicast case, in which

having more MSs leads to smaller gains achievable by precoding based on CSI.

B. Sum-MSE Minimization over Linear Precoding and DF Equalization

We now turn to the evaluation of the performance of linear precoding and DF equalization in terms

of SER. We consider uncoded transmission and focus on a 4-QAM constellation, as done, e.g., in [28].

We start by focusing on the case with perfect CSI, i.e., Hi,j = Ĥi,j for all i, j ∈ B. The purpose

is to demonstrate the gains of the proposed joint optimization of linear precoding and DF equalization

over a separate optimization. According to the latter approach, adopted, e.g., in [17], the precoding is

first optimized according to some criterion, here the MSE, and then the DF equalizers are optimized

for the given precoding matrices. Another benchmark is provided by the MMSE solution with linear

precoding and equalization discussed above. DF equalization is designed with ddeck = di, i.e., each MS

only decodes and cancels the data streams intended for itself. Fig. 8 shows the SER for K = 2, di = 2

and NT,i = NR,i = 4 for all i ∈ B versus the signal-to-noise ratio (SNR) Pi = P for all i ∈ B for the

three mentioned techniques. The gains of DF equalization versus linear equalization are apparent, and

the proposed joint optimization leads to gains of around 2.5 dB at SER equal to 10−6.

Turning to the case with imperfect CSI, we assume that the CSI errors ∆i,j are generated randomly

and we evaluate the worst-case SER using the same procedure discussed above in the context of the

sum-rate. Fig. 9 shows the SER versus SNR P for the proposed robust solution as compared to a

non-robust solution that is designed assuming perfect CSI, i.e., that Hi,j = Ĥi,j for all i, j ∈ B. We set

K = 4, di = 2 and NT,i = NR,i = 4 for all i ∈ B and ε is selected to be 10% of the average norm of

the channel matrices (E[||Ĥi,j ||2])1/2. The robust scheme is shown to provide significant performance

gains, namely around 3 dB at 6×10−3. It should also be mentioned that both schemes attain their error

floors at P = 15 dB (not shown in the figure).
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Figure 8. SER versus SNR for linear equalization and DF equalization assuming separate or joint optimization (K = 2, di = 2,

NT,i = NR,i = 4, Pi = P for all i ∈ B).

Finally, we further elaborate on the distributed solution discussed in Sec. IV-E. Specifically, we

focus on the convergence properties of the proposed ADMM approach. Fig. 9 shows the SER for the

centralized solution discussed as far as compared with the decentralized solution with two or five ADMM

iteration. It is seen that five iterations are sufficient to obtain the same performance as the centralized

scheme.

VI. CONCLUDING REMARKS

The design of linear and non-linear transceivers for multi-cell MIMO systems has been studied

under the requirement of robustness with respect to the uncertainty on the CSI. Adopting a deterministic

worst-case design approach, we have tackled the sum-rate optimal robust design of linear precoders for

a MIMO interference broadcast channel (MIMO-IBC) with general unicast/multicast messages in each

cell and operating over multiple time-frequency resources. We have then considered the optimal robust

joint design of linear precoding and symbol-by-symbol DF equalization at the MSs using the MSE as

the performance criterion. Both problems have been addressed by proposing iterative algorithms that

are also shown to be implementable in a distributed fashion via the ADMM algorithm on processors

that have only local and partial CSI. Numerical results have demonstrated that the proposed robust

solutions improves significantly over conventional non-robust schemes. The gain in sum-rate is seen to

be particularly relevant for unicast message assignments with a larger number of users and for moderate-

to-large SNR. Moreover, the proposed joint design of linear precoding and DF equalization is shown

to outperform existing separate design approaches.
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and ε = 0.1(E[||Ĥi,j ||2])1/2).

APPENDIX

In this section, we review some useful lemmas that are used in the derivations presented in the text.

Lemma 3. (Fenchel Conjugate Function [26]) Consider a matrix E ∈ Cd×d with E ≻ 0. Then, we

have the equality

log det
(
E−1

)
= max

S≽0
{−tr (SE) + log det (S) + d} . (35)

Lemma 4. (Sign Definiteness Lemma [9]) Let A, {Pi,Qi}Ni=1 be given matrices with appropriate sizes

and A = A†. Then, the condition

A ≽
N∑
i=1

(
P†

iXiQi +Q†
iX

†
iPi

)
(36)

holds for all Xi satisfying ||Xi|| ≤ εi, i ∈ {1, . . . , N} if there exist real nonnegative numbers

µ1, . . . , µN ≥ 0 that satisfy the condition
A−

∑N
i=1 µiQ

†
iQi −ε1P†

1 · · · −εNP†
N

−ε1P1 µ1I · · · 0
...

...
. . .

...

−εNPN 0 · · · µNI

 ≽ 0. (37)

The converse is also true when N = 1 [10, Sec. IV][31, Sec. 2.6.3].
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In this appendix, we show that the optimal solution of the problem (16) is lower-bounded by that

of the problem (17) in Lemma 1. We first write an epigraph form of the problem (16) as

maximize
V,R,U,S≽0,γ

∑
i∈B

∑
m∈Mi

Ri,m (38a)

s.t. Ri,m ≤ −γi,m,k + log det (Si,m,k) + di,m, for all i ∈ B, m ∈Mi, k ∈ Di,m, (38b)

γi,m,k ≥ tr
(
Si,m,kEi,m,k(V,U, Ĥ+∆)

)
, (38c)

for all {∆i,k,j(l) ∈ Ui,k,j(l)}l∈L,j∈B, i ∈ B, m ∈Mi, k ∈ Di,m,∑
m∈Mi

tr
(
Vi,mV†

i,m

)
≤ LPi, for all i ∈ B, (38d)

where we have defined the variables γ , {γi,m,k}i∈B,m∈Mi,k∈Di,m and S̃ , {S̃i,m,k}i∈B,m∈Mi,k∈Di,m

with S̃i,m,k , S
1/2
i,m,k.

From the MSE expression in (13), we can see that the constraints (38c) are equivalent to the

conditions

γi,m,k ≥
∑
j∈B

τi,m,k,j +
∥∥∥Σ1/2

i,k Ui,m,kS̃i,m,k

∥∥∥2
F
, for all i ∈ B, m ∈Mi, k ∈ Di,m, (39)

and τi,m,k,j ≥
∑

q∈Mi,m,k,j

∥∥∥S̃†
i,m,k

(
U†

i,m,k(Ĥi,k,j +∆i,k,j)Vj,q − δ(i,m),(j,q)I
)∥∥∥2

F
, (40)

for all {∆i,k,j(l) ∈ Ui,k,j(l)}l∈L, i, j ∈ B, m ∈Mi, k ∈ Di,m,

where we have introduced auxiliary variables τim,,k,j to simplify the expression and the sets Mi,m,k,j

are defined in (13). After some manipulations, the constraint (40) can be rewritten as

τi,m,k,j ≥

∥∥∥∥∥ci,m,k,j +
∑
l∈L

Ci,m,k,j(l)di,k,j(l)

∥∥∥∥∥
2

, (41)

for all {∥di,,k,j(l)∥ ≤ εi,k,j(l)}l∈L, i, j ∈ B, m ∈Mi, k ∈ Di,m,

where we have defined the vector di,k,j(l) , vec(∆i,k,j(l)) and the notations ci,m,k,j and Ci,m,k,j(l)

are defined in (19)-(22).

Applying the Schur complement Lemma [29, Appendix C] to the constraint (41), we obtain the

following equivalent linear matrix inequality. τi,m,k,j c†i,m,k,j

ci,m,k,j I

+
∑
l∈L

 0 d†
i,k,j(l)C

†
i,m,k,j(l)

Ci,m,k,j(l)di,k,j(l) 0

 ≽ 0, (42)

for all {∥di,k,j(l)∥ ≤ εi,k,j(l)}l∈L, i, j ∈ B, m ∈Mi, k ∈ Di,m.
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From Lemma 4, we can see that the constraint (42) holds if the condition
τi,m,k,j −

∑
l∈L µi,m,k,j(l) c†i,m,k,j 0

ci,m,k,j I −Ci,m,k,j

0 −C†
i,m,k,j diag ({µi,m,k,j(l)}l∈L)⊗ I

 ≽ 0, (43)

is satisfied for some {µi,m,k,j(l) ≥ 0}l∈L and for all i, j ∈ B, m ∈Mi and k ∈ Di,m with the notation

Ci,m,k,j , −[εi,k,j(1)Ci,m,k,j(1), . . . , εi,k,j(L)Ci,m,k,j(L)]. Also, the converse is true when L = 1

(see, e.g., [10, Sec. IV][31, Sec. 2.6.3]). Note that the condition (43) implies (42) but is not equivalent

unless L = 1. Therefore, replacing the condition (40) with (43) leads to a problem whose solution

lower-bounds that of the problem (38). Substituting the conditions (39), (40) and (43) into the problem

(38) results in the problem (17) in Lemma 1, which concludes the proof.
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