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Abstract—In network MIMO cellular systems, subsets of base
stations (BSs), or remote radio heads, are connected via backhaul
links to central units (CUs) that perform joint encoding in the
downlink and joint decoding in the uplink. Focusing on the
uplink, an effective solution for the communication between
BSs and the corresponding CU on the backhaul links is based
on compressing and forwarding the baseband received signal
from each BS. In the presence of ergodic fading, communicating
the channel state information (CSI) from the BSs to the CU
may require a sizable part of the backhaul capacity. In a prior
work, this aspect was studied by assuming a Compress-Forward-
Estimate (CFE) approach, whereby the BSs compress the training
signal and CSI estimation takes place at the CU. In this
work, instead, an Estimate-Compress-Forward (ECF) approach
is investigated, whereby the BSs perform CSI estimation and
forward a compressed version of the CSI to the CU. This choice
is motivated by the information theoretic optimality of separate
estimation and compression. Various ECF strategies are proposed
that perform either separate or joint compression of estimated
CSI and received signal. Moreover, the proposed strategies
are combined with distributed source coding when considering
multiple BSs. “Semi-coherent” strategies are also proposed that
do not convey any CSI or training information on the backhaul
links. Via numerical results, it is shown that a proper design
of ECF strategies based on joint received signal and estimated
CSI compression or of semi-coherent schemes leads to substantial
performance gains compared to more conventional approaches
based on non-coherent transmission or the CFE approach.

Index Terms—Uplink network MIMO, distributed antenna
systems, limited backhaul, imperfect CSI, compress and forward,
distributed compression, indirect compression, cloud radio ac-
cess.

I. INTRODUCTION

IN network MIMO systems, multiple base stations (BSs),
or remote radio heads, are connected via backhaul links

to a central unit (CU). Under ideal BSs-to-CU connectivity
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conditions, the CU performs joint encoding in downlink and
joint decoding in uplink on behalf of all the connected
BSs (see [1]–[3] and references therein). In the presence of
practical limitations on the backhaul links, various strategies
have been proposed for the communication between BSs and
CU. Among these, one that appears to be favored due to
its practicality and good theoretical performance is based on
compress-and-forward [4]–[7]. Accordingly, focusing on the
uplink, the BSs compress the received baseband signal and
forward it to the CU. Network MIMO with compress-and-
forward BSs is also known as cloud radio access (see, e.g.,
[8]–[13]).

Previous work on the design of backhaul compression
strategies for the uplink has focused mostly on the problem of
compressing the baseband received signal, and has implicitly
assumed full channel state information (CSI) to be available at
the CU [5], [14]–[16]. This assumption comes with little loss
of generality in quasi-static channels in which the coherence
time/bandwidth of the channel is large enough. In this case,
in fact, the CSI overhead on the backhaul can be amortized
within the channel coherence time. Instead, in the presence of
time-varying or frequency selective channels, CSI overhead
can become significant. Under this assumption, it is hence
important to properly design the transfer of CSI and data from
the BSs to the CU.

The backhaul overhead due to CSI transfer between BSs
and CU in the uplink was studied in [17], [18] by adapting the
standard model of [19]. Accordingly, the transmission period
is divided into coherence intervals of limited lengths, each of
which is used for both training and data transmission. It is
recalled that, in [19], this model was used to study a point-
to-point MIMO system, and then the analysis was extended
for downlink MIMO systems (with no backhaul constraints)
in [20], [21]. Related work that concerns models in which BSs
are connected to one another (see, e.g., [22], [23]) and CSI is
imperfect can be found in [24], [25].

In [17], an uplink system is studied in which the received
baseband signals are first compressed by each BS and then
transmitted over the backhaul to the CU. The latter performs
channel estimation based on the training part of the com-
pressed received signals and then carries out joint decoding.
We refer to this approach as Compress-Forward-Estimate
(CFE). In this work, we instead study an alternative approach
that is motivated by the classical information-theoretic result
concerning the separation of estimation and compression [26].
This result states that, when compressing a noisy observation,
it is optimal to first estimate the signal of interest and then
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compress the estimate, rather than to let the estimation be
performed at the decoder’s side. Following this insight, we
propose various strategies that are based on an Estimate-
Compress-Forward (ECF) approach: each BS first estimates
the CSI and then compresses it for transmission to the CU1.
Specifically, the proposed strategies carry out separate or joint
compression of the estimated CSI and the received signal in
the data part of the block.

The main contributions in this paper are summarized as
follows:

• Proposal and analysis of a class of ECF strategies for the
separate or joint compression of the estimated CSI and
of the received data signal;

• Proposal and analysis of a novel semi-coherent process-
ing strategy that is based on the compression of the data
signal after equalization at the BSs;

• Thorough performance comparison among the non-
coherent transmission scheme, the CFE method [17],
and the proposed ECF and semi-coherent strategies via
numerical results.

The rest of the paper is organized as follows. We first review
the conventional schemes, namely the non-coherent approach
and the CFE scheme in Section III. Then, we propose and
analyze the ECF strategies in Section V for the single-BS case
and in Section VI for the more general scenario with multiple
BSs. There, we combine the proposed ECF techniques with
the distributed source coding strategies of [14]. Moreover, in
Section VII we propose “semi-coherent” schemes that do not
convey any pilot information on the backhaul links. In Section
VIII, numerical results are presented. Concluding remarks are
summarized in Section IX.

Notation: E[·], tr(·), and vec(·) denote the expectation,
trace, and vectorization (i.e., stacking of the columns) of
the argument matrix. The Kronecker product is denoted by
⊗. We use the standard notation for mutual information and
differential entropy [27]. We reserve the superscript AT for
the transpose of A, A† for the conjugate transpose of A and
A−1 for the the pseudo-inverse A−1 = (A†A)−1A†, which
reduces to the usual inverse if the number of columns and rows
are same. The matrices Ii and 1i×j denote the i×i identity and
the i × j all-one matrix, respectively. The covariance matrix
RX of the random vector X is computed RX = E[XX†],
the cross covariance matrix RXY of X and Y is RXY =
E[XY †], and RX|Y denotes the conditional covariance matrix
of X conditioned on Y , i.e., RX|Y = RX −RXY R

−1
Y R†

XY .
The covariance matrix RZ of a matrix Z is denoted by
RZ = E[vec(Z)vec(Z)†]. For a subset S ⊆ {1, . . . , n}, given
matrices X1, . . . ,Xn, we define the matrix XS by stacking
the matrices Xi with i ∈ S vertically in ascending order,
namely XS =

[
XT

1 , . . . ,X
T
n

]T
.

II. SYSTEM MODEL

Consider the uplink of a cellular system consisting of NM

MSs, NB BSs and a CU, as shown in Fig. 1. We denote the set
of all MSs as NM = {1, . . . , NM} and of all BSs as NB =

1The possibility to use an ECF approach rather than CFE was well
recognized in [17], where it is stated that: “. . . It is for example not clear if
each BS should estimate its local channels and forward compressed versions
of its estimates to the central station (CS) or if the CS should estimate all
channels based on compressed signals from the BSs, . . . ”.

. . . 
Nr, 1 H CU 

C1 
. . . 

. . . 

Nr, NB 

CNB 

. . . 

. . . 
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Nt, NM 
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Fig. 1. System model.

{1, . . . , NB}. The MSs, the i-th of which has Nt,i transmit
antennas, communicate in the uplink to the BSs, where the
j-th BS is equipped with Nr,j receive antennas. Each j-th
BS is connected to the CU via a backhaul link of capacity
Cj . All rates, including Cj , are normalized to the bandwidth
available on the uplink channel from MSs to BSs and are
measured in bits/s/Hz. More precisely, we assume that CjTB
bits can be transmitted on the backhaul by any j-th BS over
an arbitrary number B of coherence blocks. Note that each
j-th BS can thus allocate its backhaul bits across different
coherence blocks. This is akin to the standard long-term power
constraints considered in a large part of the literature on fading
channels (see, e.g., [28]). We define Nmin = min(Nt, Nr)
and Nmax = max(Nt, Nr) where Nt and Nr are the number
of total transmit antennas and total receive antennas, that is
Nt =

∑NM

i=1 Nt,i and Nr =
∑NB

j=1 Nr,j , respectively.
The channel coherence block, of length T channel uses, is

split it into a phase for channel training of length Tp channel
uses and a phase for data transmission of length Td channel
uses, with

Tp + Td = T, (1)

as in [17], [19]–[21]. The signal transmitted by the i-th MS is
given by a Nt,i × T complex matrix Xi, where each column
corresponds to the signal transmitted by the Nt,i antennas
in a channel use. This signal is divided into the Nt,i × Tp

pilot signal Xp,i and the Nt,i × Td data signal Xd,i. We
assume that the transmit signal Xi has a total per-block power
constraint 1

T ‖Xi‖2 = Pi, and we define 1
Tp

‖Xp,i‖2 = Pp,i

and 1
Td

‖Xd,i‖2 = Pd,i as the powers used for training and
data, respectively by the i-th MS. In terms of pilot and data
signal powers, then, the power constraint becomes

Tp

T
Pp,i +

Td

T
Pd,i = Pi. (2)

For simplicity, we assume equal transmit power allocation for
each antenna of all MSs, and hence we have Pi = P , Pd,i =
Pd and Pp,i = Pp for all i ∈ NM . We define Xp and Xd as
the overall pilot signal and the data signal transmitted by all
MSs, respectively, i.e., Xp = [XT

p,1, . . . ,X
T
p,NM

]T and Xd =

[XT
d,1, . . . ,X

T
d,NM

]T .
As in [17], [19], we assume that coding is performed

across multiple channel coherence blocks. This implies that
the ergodic capacity describes the system performance in
terms of achievable sum-rate. Moreover, the training signal

is Xp =
√

Pp

Nt
Sp where Sp is a Nt × Tp matrix of i.i.d.

CN (0, 1) variables. This implies that an independently gener-
ated training sequence with power Pp/Nt is transmitted from
each transmitting antenna across all MSs. Similarly, during
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the data phase, the MSs transmit independent streams with
power Pd/Nt from its transmitting antennas using spatial

multiplexing. As a result, we have Xd =
√

Pd

Nt
Sd where Sd

is a Nt × Td matrix of i.i.d. CN (0, 1) variables.
The Nr,j ×T signal Yj received by the j-th BS in a given

coherence block, where each column corresponds to the signal
received by the Nr,j antennas in a channel use, can be split
into the Nr,j×Tp received pilot signal Yp,j and the Nr,j×Td

data signal Yd,j . The received signal at the j-th BS is then
given by

Yp,j =

√
Pp

Nt
HjSp + Zp,j (3a)

and Yd,j =

√
Pd

Nt
HjSd + Zd,j , (3b)

where Zp,j and Zd,j are respectively the Nr,j×Tp and Nr,j×
Td matrices of independent and identically distributed (i.i.d.)
complex Gaussian noise variables with zero-mean and unit
variance, i.e, CN (0, 1). The Nr,j × Nt channel matrix Hj

collects all the Nr,j ×Nt,i channel matrix Hji from the i-th
MS to the j-th BS as Hj = [Hj1, . . . ,HjNM ].

The channel matrix Hji is modeled as Rician fading with
the line-of-sight (LOS) component H̄ji, which is determinis-
tic, and the scattered component Hw,ji with i.i.d. CN (0, 1)
entries. Overall, the channel matrix Hji between the j-th BS
and the i-th MS is represented as

Hji =
√
αji

(√
K

K + 1
H̄ji +

√
1

K + 1
Hw,ji

)
, (4)

where the Rician factor K defines the power ratio of the LOS
component and the scattered component, and the parameter
αji represents the power gain between the j-th BS and the
i-th MS. The channel matrix Hj is assumed to be constant
during each channel coherence block and to change according
to an ergodic process from block to block.

III. PRELIMINARIES

In this section, we discuss two reference schemes. The first
is a non-coherent strategy, whereby the MSs do not transmit
any pilot signal (i.e., Tp = 0), each j-th BS compresses its
received data signal (3b) for transmission on the backhaul,
and the CU performs non-coherent decoding [29]. The second
approach is the CFE strategy first studied in [17], whereby
each j-th BS compresses and transmits also its received
pilot signals (3a); the CU estimates the CSI based on the
compressed pilot signals received on the backhaul links; and
the estimated CSI is then used by the CU to perform coherent
decoding. To simplify the presentation, in this section, we
assume a single BS, i.e., NB = 1, and hence drop the BS
index j. Additionally, in non-coherent processing, we assume
a single MS and drop the MS index i.

A. Non-Coherent Processing

With non-coherent processing, the MS transmits the data
signals Xd during the entire channel coherence time T (i.e.,
Tp = 0). The BS compresses the vector of received signals Yd

(3b) across all coherence times in the coding block and sends
it to the CU on the backhaul link. Accordingly, the compressed
received signals Ŷd available at the CU can be written as

Ŷd = Yd +Qd, (5)

where Qd is independent of Yd and represents the quanti-
zation noise matrix, which is assumed for simplicity to have
i.i.d. CN (0, σ2

d) entries.
Remark 1: It is noted that, in principle, the design of

the quantizers could be adapted to the channel statistics.
Here, and in most of the paper, we instead assume i.i.d.
quantization noises. Beside simplifying the system design,
this choice is known to be optimal in the high-resolution
regime (see the discussion on reverse waterfilling in [30,
Ch. 10]). Another advantage of independent compression
noises is that, if the signals to be compressed are not
too correlated, then close-to-optimal quantization can
be obtained with a separate quantizer for each compo-
nent2. �

Using standard rate-distortion theoretic arguments, the
quantization noise σ2

d depends on the backhaul capacity via
the equation I(Yd; Ŷd) = C, which leads to σ2

d = (1 +
P )/(2(C/Nr) − 1) (see, e.g., [27, Ch. 3]). A lower bound on
the capacity achievable with non-coherent decoding can be
obtained by substituting the equivalent SNR ρ = P/(1 + σ2

d)
in [29, Eq. (10)]3.

B. Compress-Forward-Estimate (CFE)

With the CFE scheme, the BS compresses both its received
pilot signal (3a) and its received data signal (3b), and forwards
them to the CU on the backhaul link. The CU then estimates
the CSI based on the received compressed pilot signals and
performs coherent decoding.

1) Training Phase: During the training phase, the vector of
received training signals Yp (3a) across all coherence times
is compressed as

Ŷp = Yp +Qp, (6)

where the compression noise matrix Qp is assumed to have
i.i.d. CN (0, σ2

p) entries (see Remark 1). Based on (6), the
channel matrix Hi from i-th MS to the BS is estimated at
the CU by the minimum mean square error (MMSE) method.
Hence, it can be expressed as

Hi = Ĥi +Ei, (7)

where the estimated channel Ĥi is a complex Gaussian

matrix with mean matrix
√

αiK
K+1H̄i and covariance matrix

σ2
ĥi
INrNt,i , and the estimation error Ei has i.i.d. CN (0, σ2

ei)

entries. The variances of the estimated channel and the esti-
mation error can be calculated as σ2

ĥi
=

αi
K+1TpPp

TpPp+Nt(1+σ2
p)(K+1)

and σ2
ei =

αiNt(1+σ2
p)

TpPp+Nt(1+σ2
p)(K+1) , respectively (see, e.g., [19],

[31]).
2) Data Phase: The compressed data signal received at the

CU in (5) can be written as the sum of a useful term ĤXd

and of the equivalent noise Nd = EXd + Zd +Qd, namely

Ŷd = ĤXd +Nd, (8)

2Independent signals can be in fact optimally compressed by separate
quantizers, as it can be seen from the fact that the rate-distortion function
for a set of independent signals can be written as the sum of the individual
rate-distortion functions (see [30, Ch. 10]).

3It is remarked that this rate is achieved by choosing the codewords Xd
according to an appropriate orthogonal signaling scheme [29] and not via
Gaussian random codebooks as described in Section II and assumed in the
rest of the paper.
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where the equivalent noise Nd has zero-mean and covariance
matrix

RN = E[vec(Nd)vec(Nd)
†]

=

(
1 + σ2

d +
Pd

Nt

NM∑
i=1

Nt,iσ
2
ei

)
INrTd

. (9)

3) Ergodic Achievable Rate: The ergodic capacity that can
be attained with the assumed Gaussian input distribution4 is
given by the mutual information 1

T I(Xd; Ŷd|Ĥ) [bits/s/Hz]
(see, e.g, [27, Ch. 3]), which is bounded in the next lemma.

Lemma 1: Let Cp and Cd define the backhaul rates allo-
cated respectively to the compressed pilot and data signals on
the backhaul from the BS to the CU. The ergodic capacity
for the CFE strategy can be bounded as 1

T I(Xd; Ŷd|Ĥ) ≥ R,
where

R =
Td

T
E
[
log2 det

(
INr + ρeffĤĤ†

)]
, (10)

with ρeff = Pd

Nt

(
1+σ2

d+
Pd
Nt

∑NM
i=1 Nt,iσ2

ei

) , and Ĥ being dis-

tributed as in (7). Moreover, the quantization noise powers
(σ2

p, σ
2
d) must satisfy the backhaul constraint Cp + Cd = C,

where

Cd =
Td

T
log2 det

(
INr +

Pd

Nt
E[HH†] + INr

σ2
d

)
(11a)

and Cp =
Tp

T
log2 det

(
INr +

Pp

Nt
E[HH†] + INr

σ2
p

)
, (11b)

with E[HH†] =
(

K
K+1H̄H̄† +

∑NM
i=1 αiNt,i

K+1 INr

)
.

Proof: Since a closed-form expression is not known, here
we consider a lower bound obtained by overestimating the
detrimental effect of the estimation error [19], [33], [34].
This is done by treating the total noise term Nd in (8) as
being independent of Xd and zero-mean complex Gaussian
[19], [33], [34]. The resulting lower bound R can then be
evaluated as (10). Then, from standard rate-distortion theoretic
considerations [27, Ch. 3], we can relate the backhaul rates Cd

for data transmission with the variances of the compression
noise σ2

d as

Cd =
1

T
I(Yd; Ŷd)

=
1

T
(h(Yd +Qd)− h(Qd))

≤ Td

T
log2 det

(
INr +

Pd

Nt
E[HH†] + INr

σ2
d

)
, (12)

where we have used the test channel defined by (5) and the
maximum entropy theorem to bound the differential entropy
h(Yd +Qd) in the last line [30]. Note that the upper bound
(12) overestimates the backhaul rate Cd needed to convey
the received data signal over the backhaul link. Therefore, its
application leads to feasible solutions for the original problem.
In (11), we make the conservative choice of imposing equality
in (12). In a similar manner, we obtain the relation between

4Given the presence of imperfect CSI at the receiver, a Gaussian input
distribution is generally not optimal in terms of capacity (see, e.g., [32]).

the quantization error variance σ2
p and the backhaul rate Cp

for training transmission as (11b).
For the CFE scheme, the ergodic achievable sum-rate (10)

can now be optimized over the backhaul allocation (Cp, Cd)
under the backhaul constraint C = Cp + Cd, with Cp and
Cd in (11), by maximizing the effective SNR ρeff in (10).
This non-convex problem can be tackled using a line search
method [35] in a bounded interval (e.g., over Cp in the interval
[0, C]).

Remark 2: The lower bound R on the ergodic capacity in
(10), and related bounds in the next section, will be referred
thereafter as the ergodic achievable rate. �

IV. ESTIMATE-COMPRESS-FORWARD (ECF)

Here, we introduce the ECF approach. Accordingly, each
BS estimates the CSI based on its received pilot signal (3a),
and then compresses both its estimated CSI and its received
data signal (3b) for transmission on the backhaul. In this
section, we introduce the key common quantities that define
the class of ECF schemes, which are then studied in Section V
for the single BS case and in Section VI for the more general
multiple BSs case.

A. Training Phase

The MMSE estimate of Hj performed at the j-th BS given
the observation Yp,j in (3a) is given by

H̃j=

√
Nt

Pp
Ȳp,jS

†
p

(
Nt (K + 1)

Pp
INr+ SpS

†
p

)−1

+

√
K

K + 1
H̄j ,

(13)

where Ȳp,j = Yp,j −
√

Pp

Nt

K
K+1H̄jSp and H̄j =

[
√
αj1H̄j1, . . . ,

√
αjNM

H̄jNM ] (see, e.g., [19], [31]). The

estimated channel H̃j = [H̃j1, . . . , H̃jNM ] in (13) is such that
the estimated channel matrix H̃ji corresponding to the channel
between the j-th BS and i-th MS has a matrix-variate com-

plex Gaussian distribution with mean matrix
√

αjiK
K+1 H̄ji and

covariance matrix σ2
h̃ji

INr,j , where σ2
h̃ji

=
αji
K+1TpPp

TpPp+Nt(K+1) .
Moreover, we can decompose the channel matrix Hji into the
estimate H̃ji and the independent estimation error Eji, as

Hji = H̃ji +Eji, (14)

where the error Eji has i.i.d. CN (0, σ2
eji ) entries with σ2

eji =
αjiNt

TpPp+Nt(K+1) .

The sequence of channel estimates H̃j for all coherence
times in the coding block is compressed by the j-th BS and
forwarded to the CU on the backhaul link. The compressed
channel Ĥj is related to the estimate H̃j as

H̃j = Ĥj +Qp,j , (15)

where the Nr,j × Nt quantization noise matrix Qp,j has
zero-mean i.i.d. CN (0, σ2

p,j) entries (see Remark 1) and the
compressed estimate Ĥj is complex Gaussian with mean

matrix
√

K
K+1H̄j and covariance matrix Rh̃j

− σ2
p,jINt ,

where Rh̃j
is diagonal matrix with main diagonals given

by [σ2
h̃j1

INt,1 , . . . , σ
2
h̃jNM

INt,NM
] (see, e.g., [27, Ch. 3]). We

will discuss in Section V and Section VI how to relate the
quantization noise variance σ2

p,j to the backhaul capacity Cj .
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B. Data Phase

During the data phase, the j-th BS compresses the signal
Yd,j in (3b) and sends it to the CU on the backhaul link. The
received signals at the CU are related to Yd,j as

Ŷd,j = Yd,j +Qd,j, (16)

where Qd,j is independent of Yd,j and represents the quanti-
zation noise matrix5. This is assumed to be zero-mean complex
Gaussian with covariance matrix E[vec(Qd,j)vec(Qd,j)

†] =
Rd,j⊗ITd

. By this definition, Rd,j is the covariance matrix of
the Nr,j ×1 compression noise vector for all the channel uses
in a data transmission period. Following our design choices
for the other quantization noises, we will mostly assume Rd,j

to be a scaled identity matrix, namely Rd,j = σ2
d,jINr,jTd

(see
Remark 1). However, we will allow this covariance matrix to
be arbitrary in Section V-C in order to illustrate the potential
advantages of a system design that adapts the quantizers
to the current channel conditions (see also Remark 1). The
relationship of matrix Rd,j with the backhaul capacity will
be clarified in the next sections.

We close this section by deriving a model for the received
signals at the CU that is akin to (8)-(9) for CFE. With ECF,
the CU recovers the sequence of quantized data signals Ŷd,j

in (16) and of quantized channel estimates Ĥj in (15) from
the information received on the backhaul link. Separating the
desired signal and the noise in (16), the received signal Ŷd,j

from the j-th BS can be expressed as

Ŷd,j = ĤjXd +Nd,j, (17)

where Nd,j denotes the equivalent noise Nd,j =
(Qp,j +Ej)Xd + Zd,j + Qd,j , which has zero-mean and
covariance matrix

RNj=E[vec(Nd,j)vec(Nd,j)
†]=Rd,j ⊗ ITd

+σ2
pej

INr,jTd
(18)

with

σ2
pe,j =

(
1 + Pd

(
σ2
p,j +

∑NM

i=1 Nt,iσ
2
eji

Nt

))
, (19)

where we have used the relations E[Qp,jQ
†
p,j] = Ntσ

2
p,jINr,j

and E[EjE
†
j ] =

∑NM

i=1 Nt,iσ
2
eji INr,j . We observe that, as in

(8)-(9), Nd,j is not Gaussian distributed and is not independent
of Xd (see also [19]).

V. ANALYSIS OF ECF : THE SINGLE BASE STATION CASE

In this section, we discuss how to calculate the compression
noises statistics, namely σ2

p,j for the estimated CSI (see (15))
and Rd,j for the data (see (16)). We consider three different
strategies in order of complexity, namely separate compres-
sion, joint compression and joint adaptive compression of
estimated CSI and received data signal. Specifically, here, we
first consider the single base station case, i.e., NB = 1. The
more complex scenario with multiple BSs will be studied in
Section VI by building on the analysis in this section. For
simplicity of notation, we drop the BS index in this section.

5Note that we use a different formulation for the quantization test channel
(see, e.g., [27, Ch. 3]) in (16) with respect to (15). In (16) and similarly
in (5) and (6), in fact, the quantization noise is added to the signal to be
compressed. While the formulation in (15) is optimal from a rate-distortion
point of view [27, Ch. 3], the test channel (16) is selected here for its analytical
convenience. It is noted that this test channel is assumed in many previous
studies, including [5], [16], [17], [36].

A. Separate Compression of Channel and Received Data
Signal

Here, we consider the conventional option of compressing
separately the sequence of the estimated channels H̃ and of
the received data signals Yd. For simplicity, and due to the
identical distribution of the entries of Yd, here we choose
Rd = σ2

dINr (see Remark 1).
Proposition 1: Let Cp and Cd denote respectively the back-

haul rates allocated for the transmission of the compressed
channel estimates (15) and of the compressed received signals
(16) on the backhaul link from the BS to the CU. The ergodic
achievable sum-rate for separate compression strategy is given
as

R =
Td

T
E
[
log2 det

(
INr + ρeffĤĤ†

)]
, (20)

with

ρeff =
Pd

Nt

(
1 + σ2

d + Pd

(
σ2
p +

∑NM

i=1 Nt,iσ2
ei/Nt

)) , (21)

with Ĥ being distributed as in (15), and with σ2
ei in (14).

Moreover, the quantization noise powers (σ2
p, σ

2
d) must satisfy

the backhaul constraint Cp + Cd = C, where

Cp =
Nr

T
log2

⎛⎜⎝
∏NM

i=1

(
σ2
h̃i

)Nt,i

(σ2
p)

Nt

⎞⎟⎠ (22a)

and Cd =
Td

T
log2 det

(
INr +

Pd

Nt
E[HH†] + INr

σ2
d

)
, (22b)

with σ2
h̃i

being given in (13).
Proof: As in the proof of Lemma 1, a lower bound on the

ergodic achievable sum-rate is obtained by overestimating the
detrimental effect of the estimation error, and the resulting
ergodic achievable sum-rate R can be evaluated as in (20).
Then, from standard rate-distortion theoretic considerations
[30], we can relate the compression noise power σ2

p with the
backhaul capacity needed for the transmission of the sequence
of channel estimates Ĥ as

Cp =
1

T
I(H̃; Ĥ) =

1

T

(
h(Ĥ+Qp)− h(Qp)

)
=

Nr

T
log2

⎛⎜⎝
∏NM

i=1

(
σ2
h̃i

)Nt,i

(σ2
p)

Nt

⎞⎟⎠ , (23)

where we have used the test channel defined by (15). It follows
that the CSI quantization noise is

σ2
p =

(
NM∏
i=1

(
σ2
h̃i

)Nt,i

) 1
Nt

2−TCp/(NrNt). (24)

Moreover, equation (22b) follows in the same way as (12).
As for CFE, the ergodic achievable sum-rate (20) can now

be optimized over the backhaul allocation (Cp, Cd) under the
backhaul constraint C = Cp+Cd, with Cp and Cd in (22), by
maximizing the effective SNR ρeff in (21) using a line search
[35] in a bounded interval.

Remark 3: If we consider the special case of a Rayleigh
fading channel, that is K = 0, the ergodic achievable sum-
rate (20) can be evaluated explicitly following [37]. Moreover,
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by imposing equality in (22b), we can easily calculate the
quantization variance σ2

d as

σ2
d =

Pd

Nt

∑NM

i=1 αiNt,i + 1

2TCd/(NrTd) − 1
. (25)

�
Remark 4: For Rayleigh fading (K = 0) and

Nr = Nt = 1, the ergodic achievable sum-rate (10)
obtained with CFE equals the ergodic achievable sum-
rate (20) with ECF based on separate compression.
Further comparisons among the discussed methods
will be presented in Section VIII via numerical re-
sults. �

Remark 5: In the discussion above, we have considered the
power allocation (Pp, Pd) and the time allocation (Tp, Td) as
fixed. The optimization of these parameters can be carried out
similar to [19] and is not further detailed here. �

B. Joint Compression of Channel and Received Data Signal

Here we propose a more sophisticated method to convey
the sequence of the channel estimates Ĥ in (15) and of
received data signals Ŷd in (16) over the backhaul link. This
method leverages the fact that channel estimates H̃ in (14)
and received signals Yd in (3b), and thus Ĥ and Ŷd, are
correlated. As in Section V-A, we assume an uncorrelated
compression covariance Rd = σ2

dINr in (16) and we are
interested in finding the optimal pair (σ2

p, σ
2
d).

Proposition 2: The ergodic achievable sum-rate for joint
compression strategy can be bounded as (20), where ρeff

is given by (21). Moreover, the quantization noise powers
(σ2

p, σ
2
d) must satisfy the backhaul constraint Cp + Cd = C,

where

Cd =
Td

T

(
E
[
log2 det

(
INr + ρeffĤĤ†

)]
+Nr log2

(
σ2
pe + σ2

d

)−Nr log2 σ
2
d

)
, (26)

and Cp is defined in (23), with Ĥ being distributed as in (15)
and σ2

pe being given in (19).
Proof: We only need to derive (26). To this end, from

standard rate-distortion arguments, we have that the rate
required on the backhaul is

C=
1

T
I
(
Yd, H̃; Ŷd, Ĥ

)
=
1

T

(
I
(
H̃; Ĥ

)
+ I

(
Yd; Ŷd|Ĥ

))
,

(27)
where the second equality is shown in Appendix A. As also
shown in Appendix A, equality (27) implies the condition C =
Cp + Cd, with Cp in (23) and Cd in (26).

The ergodic achievable sum-rate (20) can now be optimized
over the quantization noise powers (σ2

p, σ
2
d) under the back-

haul constraint C = Cp+Cd, with Cp in (23) and Cd in (26),
using a two-dimensional search.

Remark 6: It is useful to compare the backhaul constraint
in (22), corresponding to separate compression, with C =
Cp +Cd, which applies to joint compression with Cp in (23)
and Cd in (26). To this end, we observe that (22) can be
expressed in terms of the quantization noise variance σ2

p and
σ2
d using (23) and (22b), leading to the condition

C = Cp +
Td

T
log2 det

(
INr +

Pd

Nt
E[HH†] + INr

σ2
d

)
. (28)

The difference between (28) and the condition C = Cp +Cd,
with Cp in (23) and Cd in (26), is given as

Td

T

(
log2 det

(
INr + ρeffE

[
ĤĤ†

])
(29)

−E
[
log2 det

(
INr + ρeffĤĤ†

)])
≥ 0,

where the latter condition follows by Jensen’s inequality
since we have E

[
ĤĤ†

]
= K

K+1H̄H̄† + (
∑NM

i=1 Nt,iσ
2
h̃i

−
Ntσ

2
p)INr . Inequality (30) shows that joint compression has

the potential of improving the efficiency of backhaul utiliza-
tion. This will be further explored via numerical results in
Section VIII. �

C. Joint Adaptive Compression of Channel and Received Data
Signal

In this section, we introduce an improved method for joint
compression of channel and received data signal. The main
idea is that of adapting the covariance matrix Rd of the
compression noise added to the data signal (see (16)) to
the channel estimate in each channel coherence block. The
rationale for this approach is that if, e.g., the channel quality
in a coherence block is poor, there is no reason to invest
significantly backhaul capacity for the compression of the
corresponding received data signal. We recall that, in the
strategy studied in the previous section, the covariance matrix
Rd was instead selected to be equal for all the coherence
blocks (and given as Rd = σ2

dINrTd
).

We start by observing that (27) suggests that joint com-
pression can be performed in two steps: (i) first, the channel
estimate sequence in compressed with required backhaul rate
1
T I(H̃; Ĥ); (ii ) then, given that the sequence of channel
estimates Ĥ for all coherence blocks is known at both the BS
an the CU, the BS uses a different compression strategy for
the quantization of Yd depending on the value of Ĥ6. Based
on this observation, we propose here to adapt the choice of
matrix Rd to the current value of Ĥ for each coherence block.
To emphasize this fact, we use the notation Rd(Ĥ).

Proposition 3: For a given adaptive choice Rd(Ĥ) of the
compression covariance matrix on the data signal, the ergodic
achievable sum-rate for joint adaptive compression strategy is
given as

R=
Td

T
E

[
log2det

(
INt+

Pd

Nt
Ĥ†

(
Rd(Ĥ)+ σ2

peINr

)−1

Ĥ

)]
,

(30)
where Ĥ is distributed as in (15) and σ2

pe is given in (19).
Moreover, the quantization noise power σ2

p and the covariance
matrices Rd(Ĥ) must satisfy the backhaul constraint Cp +
Cd = C, where

Cd =
Td

T
E

[
log2 det

(
INr+R−1

d (Ĥ)

(
Pd

Nt
ĤĤ†+σ2

peINr

))]
(31)

and Cp is defined in (23).
Proof: The ergodic achievable sum-rate follows as for

the previous propositions. Moreover, using (27) and following
the same steps as in Appendix A, we obtain the relationship

6In practice, the values of ̂H can be quantized in order to reduce the number
of codebooks.
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(31) between the backhaul capacity and the quantization noise
statistics (σ2

p,Rd(Ĥ)).
We now observe that the optimization of the compression

covariance matrices Rd(Ĥ) of the data signal for a given the
variance σ2

p can be carried out analytically. The problem of
maximizing the ergodic achievable sum-rate (30) then reduces
to a one-dimensional search over σ2

p .
Proposition 4: Define the eigenvalue decomposition

Pd

Nt
ĤĤ†+σ2

peINr = U(Ĥ)diag
(
t1(Ĥ), . . . , tNr(Ĥ)

)
U†(Ĥ).

(32)
The problem of maximizing the ergodic achievable sum-
rate (30) under the constraint C = Cp + Cd, with Cp

in (23) and Cd in (31), admits the solution Rd(Ĥ) =
U(Ĥ)diag(λ1(Ĥ), . . . , λNr(Ĥ))−1U†(Ĥ), where the inverse
eigenvalues are given as

λ∗
n(Ĥ) =

[
1

μ

(
1

σ2
pe

− 1

tn(Ĥ)

)
− 1

σ2
pe

]+

, (33)

for n = 1, . . . , Nr; σ2
pe is given in (19); the Lagrange

multiplier μ∗ is such that the condition C = Cp + Cd, with
Cp in (23) and Cd in (31), is satisfied with the equality.

Proof: The proof follows closely [14, Theorem 1] and
details are available in [38, Appendix B].

VI. ANALYSIS OF ECF : THE MULTIPLE BASE STATIONS

CASE

We now consider the general case with NB ≥ 1 BSs. A
key aspect that is introduced by the model with multiple BSs
is the fact that the signals Yd,j for j ∈ NB received by
the BSs during the data transmission phase are statistically
dependent. In fact, they are noisy versions of the same signals
transmitted by the MSs. Therefore, using distributed source
coding strategies, the BSs can potentially improve the quality
of the descriptions Ŷd,j in (17) conveyed to the CU over the
backhaul links [5]. Note that this is instead not the case for the
compression of the channel matrices, since they are assumed
to be independent across different BSs7.

A practical way to implement distributed source cod-
ing is by means of successive compression [39]. Ac-
cordingly, one defines a permutation π of the indices of
the BSs. Then, the quantized data signal Ŷd,j , for j ∈
NB , are successively recovered at the CU in the order
Ŷd,π(1), Ŷd,π(2), . . . , Ŷd,π(NB). Specifically, when decom-
pressing the signal Ŷd,π(j), the CU uses the previously
recovered compressed data signals Ŷd,Sj , where Ŷd,Sj in-
cludes all Ŷd,i with i ∈ Sj = {π(1), . . . , π(j − 1)}. Given
the correlation among the received signals, the use of this
side information can improve the reproduction quality of the
decompressed signals Ŷd,j . This has been previously studied
in the presence of perfect CSI in [5], [14]–[16].

In this section, we aim at optimizing the ergodic achievable
sum-rate, assuming distributed source coding for the com-
pression of the received data signals, as implemented via
successive compression. To this end, similar to [14] [15],

7Strictly speaking, the channel estimates are correlated, due to the cor-
relation of the estimation errors. However, at sufficiently large SNR, this
correlation is expected negligible and is hence not further considered here.

Algorithm 1 Greedy algorithm for the multi-BS case

1: Initialize set S to be an empty set, i.e., S0 = ∅.
2: for n = 1 to NB do
3: Obtain j∗ = argmaxj∈NB\Sn−1

R∗
j where R∗

j is the
optimal value of the problem

maximize Rj in (36) (34a)

s.t. backhaul constraint (see Section VI-B, C, D) (34b)

4: Update the set Sn = Sn−1

⋃{j∗} and the permutation
π∗(n) = j∗.

5: Assign a solution of (34) for j = j∗ to the optimal
σ2
p,π∗(n) and Rd,π∗(n)

6: end for
7: return π∗, {σ2

p,1, . . . , σ
2
p,NB

}, and {Rd,1, . . . ,Rd,NB}

we adopt a sequential approach for the optimization of the
quantization parameters across the BSs. As in the previous
section, we consider compression strategies based on separate,
joint, and joint adaptive compression of estimated CSI and
received data signal.

A. Problem Definition

Here we define the optimization problem and the proposed
sequential solution. We recall that we need to optimize the
compression parameters (σ2

p,j ,Rd,j) for all j ∈ NB along
with the BS order π used for successive compression. Each
BS uses the test channel (15) for the training phase and (16)
for the data phase. Therefore, by the chain rule for the mutual
information, given a permutation π, the ergodic sum-capacity
can be written as

1

T
I
(
Xd; Ŷd|Ĥ

)
=

1

T

NB∑
j=1

I
(
Xd; Ŷd,π(j)|Ĥ, Ŷd,Sj

)
. (35)

We remark that the rate 1
T I

(
Xd; Ŷd,π(j)|Ĥ, Ŷd,Sj

)
can be

interpreted as the contribution of the j-th BS to the ergodic
sum-capacity. This term can be bounded, similar to the pre-
vious sections by overestimating the effect of noise, leading
to a lower bound 1

T I
(
Xd; Ŷd,π(j)|Ĥ, Ŷd,Sj

)
≥ Rj (see,

Proposition 5 below).
The proposed approach to the optimization of the ergodic

achievable sum-rate
∑NB

j=1 Rj with respect to the order π

and the compression parameters σ2
p,j and Rd,j for all j ∈

NB is summarized in Algorithm 1. Specially, we propose
a greedy algorithm, whereby at each step, the j-th BS is
selected that maximizes the contribution Rj of its received
signal to the sum-rate. The rate maximization step in (34)
is discussed in the next section considering separate, joint,
or joint adaptive compression building on the analysis in the
previous section. Note that the constraint in (34b) depends on
the type of compression adopted. Also, we observe that the
proposed algorithm can be run at the CU, which only requires
knowledge of the statistics of the channels, and that the j-th
optimal compression parameters σ2

p,j and Rd,j obtained from
Algorithm 1 can be transmitted to the j-th BS by the CU.
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Cd,j =
1

T
I
(
Yd,j; Ŷd,j |Ŷd,Sj , ĤSj

)
≤ Td

T

⎛⎝log2 det
⎛⎝INr,j+

E
[
ĤjRX|ŶSj

,ĤĤ†
j+
(
σ2
p,j+

εj
Nt

)
RX|ŶSj

,Ĥ

]
+INr,j

σ2
d,j

⎞⎠⎞⎠ . (39)

B. Separate Compression of Channel and Received Data
Signal

In this subsection, we solve the problem (34) for a given j-
th BS assuming separate compression of channel and received
data signal. As in Section V-A, we choose Rd,j = σ2

d,jINr,j

and hence the optimization is over the pair (σ2
p,j , σ

2
d,j).

Proposition 5: Let Cp,j and Cd,j denote respectively the
backhaul rates allocated for the transmission of the com-
pressed channel estimates (15) and of the compressed received
signals (16) on the backhaul link from the j-th BS to the CU.
For a given a permutation π, the ergodic achievable sum-rate
Rj in (34a) for the j-th BS with separate compression strategy
is given as

Rj =
Td

T
E
[
log2 det

(
INr,π(j)

(36)

+Ĥπ(j)RX|ŶSj
,ĤĤ†

π(j)

(
Rd,π(j) + σ2

pe,π(j)INr,π(j)

)−1
)]

,

with σ2
pe,j = tr(RX|ŶSj

,Ĥ)
(
σ2
p,j +

εj
Nt

)
+ 1, where εj =∑NM

i=1 Nt,iσ
2
eji ; with Ĥj being distributed as in (15); and the

conditional correlation matrix RX|ŶS ,Ĥ is defined as

RX|ŶSj
,Ĥ = RX −RXŶSj

|ĤR−1

ŶSj
|ĤR†

XŶSj
|Ĥ (37)

=
Pd

Nt
INt−

(
Pd

Nt

)2

Ĥ†
Sj

(
Pd

Nt

(
ĤSjĤ

†
Sj
+NtRp,Sj+Rε,Sj

)
+Rd,Sj + INr,Sj

)−1

ĤSj ,

with Rd,Sj , Rp,Sj and Rε,Sj being block diagonal matrices
with main diagonals given by [Rd,π(1), . . . ,Rd,π(j−1)],
[σ2

p,π(1)INr,π(1)
, . . . , σ2

p,π(j−1)INr,π(j−1)
] and

[επ(1)INr,π(1)
, . . . , επ(j−1)INr,π(j−1)

], respectively. Moreover,
the quantization noise powers (σ2

p,j , σ
2
d,j) for the j-th BS

must satisfy the backhaul constraint Cp,j + Cd,j = Cj in
(34b), where

Cp,j =
Nr,j

T
log2

⎛⎜⎝
∏NM

i=1

(
σ2
h̃ji

)Nt,i

(σ2
p,j)

Nt

⎞⎟⎠ (38)

and Cd,j is defined in (39), with σ2
h̃ji

being given in (13).
Proof: The ergodic achievable sum-rate Rj is evaluated

as in Lemma 1. As for the backhaul constraint, the only
difference with respect to Section V-A is the presence of the
side information (ŶSj , ĤSj ) at the CU. Since the channel
and side information are independent, the relationships (23)-
(24) between the CSI quantization error σ2

p,j and Cp,j are
unchanged, and hence the backhaul rate used for transmitting
the estimated CSI can be written as (38). Instead, using the
well-known Wyner-Ziv theorem (see, e.g., [27, Section 11.3]),
the rate Cd,j needed to compress the data received signal Yd,j

given the side information (Ŷd,Sj , ĤSj ) available at the CU
is given by (39) (cf. (12)).

Note that for j = 1, the rate (36) and backhaul rate (39)
equal (20) and (22b), respectively. Moreover, the optimization
of (36) requires a one-dimensional search over Cp,j or Cd,j

as for the single BS case in Section V-A.
Remark 7: As Remark 3, with Rayleigh fading (i.e., K =

0), we can calculate the quantization error variance σ2
d,j by

solving (39) as

σ2
d,j =

Pd − P 2
d

Nt

(∑
k∈Sj

Nr,k(1−σ2
p,k− εk

Nt
)

1+Pd+σ2
d,k

)
+ 1

2TCd,j/Nr,jTd − 1
. (40)

�
C. Joint Compression of Channel and Received Data Signal

We now tackle problem (34) assuming joint compression
of channel and received data signal. As in Section V-B,
we assume an uncorrelated compression covariance Rd,j =
σ2
d,jINr,j in the test channel (16).
Proposition 6: For a given a permutation π, the ergodic

achievable sum-rate Rj for the j-th BS with joint compression
strategy is given by (36). Moreover, the quantization noise
powers (σ2

p,j , σ
2
d,j) for the j-th BS must satisfy the backhaul

constraint Cp,j + Cd,j = Cj in (34b), where

Cd,j=
Td

T

(
E
[
log2det

(
ĤjRX|ŶSj

,ĤĤ†
j+

(
σ2
pe,j+σ2

d,j

)
INr,j

)]
−Nr,j log2

(
σ2
d,j

))
, (41)

and Cp,j is defined in (38), with σ2
pe,j =

tr(RX|ŶSj
,Ĥ)

(
σ2
p,j +

εj
Nt

)
+ 1 and RX|ŶS ,Ĥ being defined

in (37).
Proof: Following similar considerations as above and as

in Section V-B, given side information Ŷd,Sj and ĤSj , the rate
required on the backhaul with joint compression of channel
and received data signal is

Cj =
1

T
I
(
Yd,j, H̃j ; Ŷd,j, Ĥj |Ŷd,Sj , ĤSj

)
(42)

=
1

T

(
I
(
H̃j ; Ĥj

)
+ I

(
Yd,j; Ŷd,j|Ĥj , Ŷd,Sj , ĤSj

))
,

where the second equality can be shown similar to the deriva-
tions in Appendix A. From the maximum entropy theorem,
the equality (43) implies the constraint Cj = Cp,j+Cd,j with
Cp,j in (38) and Cd,j in (41).

Note that for NB = 1, (41) reduces to (26). Further-
more, maximization of (36) requires a search over the space
(σ2

p,j , σ
2
d,j) as for the single BS case in Section V-B.

D. Joint Adaptive Compression of Channel and Received Data
Signal

Considering joint adaptive compression, the backhaul con-
straint is still given by (43), but now we consider the quan-
tization noise Qd,j to have a covariance matrix Rd,j that is
allowed to depend on the channel estimate Ĥj and on the
estimates ĤSj of the previously selected BSs.
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Proposition 7: For a given a permutation π, the ergodic
achievable sum-rate Rj for the j-th BS with joint adaptive
compression strategy is given as (36) with Rd,j(ĤSj∪{j}) in
lieu of Rd,j . Moreover, the quantization noise power σ2

p,j and
the covariance matrices Rd,j(ĤSj∪{j}) for the j-th BS must
satisfy the backhaul constraint Cp,j + Cd,j = Cj in (34b),
where

Cd,j =
Td

T
E
[
log2 det

(
INr,j +RYj |ŶSj

,ĤR−1
d,j(ĤSj∪{j})

)]
,

(43)
as a function of Rd,j(ĤSj∪{j}), Cp,j is defined in (38) and
we have

RYj |ŶSj
,Ĥ = ĤjRX|ŶSj

,ĤĤ†
j + σ2

pe,jINr,j , (44)

with σ2
pe,j = tr(RX|ŶSj

,Ĥ)
(
σ2
p,j +

εj
Nt

)
+ 1.

Proof: Using (43) and following similar steps as in
Appendix A, we obtain the relationship Cj = Cp,j+Cd,j , with
Cp,j in (38) and Cd,j in (43), between the backhaul capacity
and the quantization noise statistics (σ2

p,j ,Rd,j(ĤSj∪{j})).
As in Section V-C, we can now solve problem (34) with

respect to the compression covariance matrix Rd,j(ĤSj∪{j}),
as reported in the proposition below.

Proposition 8: Define the eigenvalue decomposition

RYj|ŶS ,Ĥ = Uj(ĤSj∪{j})

·diag(t1(ĤSj∪{j}), . . . , tNr,j(ĤSj∪{j}))U
†
j(ĤSj∪{j}). (45)

The problem of maximizing the ergodic achievable sum-rate
(36) under the constraint Cj = Cp,j + Cd,j , with Cp,j in
(38) and Cd,j in (43), admits the solution Rd,j(ĤSj∪{j}) =
Uj(ĤSj∪{j})diag(λ1(ĤSj∪{j}), . . . , λNr,j(ĤSj∪{j}))−1

U†
j(ĤSj∪{j}), where the inverse eigenvalues are given as

λ∗
n(ĤSj∪{j}) =

[
1

μj

(
1

σ2
pe,j

− 1

tn(ĤSj∪{j})

)
− 1

σ2
pe,j

]+
,

(46)
for all n = 1, . . . , Nr,j; σ2

pe,j is given in (36); the Lagrange
multiplier μ∗

j is such that the condition Cj = Cp,j + Cd,j ,
with Cp,j in (38) and Cd,j in (43), is satisfied with equality.

Proof: The proof follows in a similar fashion [38, Ap-
pendix B] as Proposition 4 and is not detailed here.

VII. SEMI-COHERENT PROCESSING

In Section III-A, we have discussed the reference non-
coherent strategy, whereby no pilots are transmitted. In the
following sections, we have instead elaborated on the CFE
and ECF schemes that transfer pilot information or CSI from
the BS to the CU over the backhaul links. Here, we propose
a novel “semi-coherent” scheme that, similar to non-coherent
processing, operates without transmitting CSI or pilot infor-
mation to the CU, although pilot signals are transmitted by the
MSs as in the CFE and ECF schemes. With the proposed semi-
coherent approach, each BS estimates the CSI, performs local
equalization and compresses the equalized signal. The CU then
performs joint decoding using a mismatched decoding metric
[34]. Since the analysis of this scheme is an open problem
in the presence of multiple MSs, even with a single BS and
ideal backhaul, we focus here on a single MS and single BS

for simplicity of analysis. This case is expected to provide
insight that carry over to more general scenarios.

The MS operates as described in Section II, while the BS
estimates the CSI as in (13) and then equalizes the received
data signal. Recall that the latter is given in (3b) and hence
can be written as Yd = H̃Xd + Z̃d, where the estimated
channel H̃ is defined in (13) and the equivalent noise is given
as Z̃d = EXd + Zd with channel estimation error E in (14).

The BS performs MMSE equalization8 of the data signal
based on the channel estimate H̃. Accordingly, we can write
the equalized signal as

GYd = Xd +
(
GH̃− INt

)
Xd +GZ̃d, (47)

where the equalizing matrix G is given as G = (H̃†H̃+(σ2
e+

Nt

Pd
)INt)

−1H̃†. The equalized data signal (47) is compressed
by the BS and forwarded to the CU on the backhaul link. The
compressed equalized data signal X̂d is obtained as

X̂d = Xd +
(
GH̃− INt

)
Xd +GZ̃d +Qd

= Xd + Ẑd, (48)

where the quantization noise matrix Qd has i.i.d. CN (0, σ2
d)

entries, and the effective noise Ẑd, conditioned on the channel
estimate H̃, has covariance matrix

RẐ|H̃=
Pd

Nt
(GH̃−INt)(GH̃−INt)

†+(
Pd

Nt
σ2
e+1)GG†+σ2

dINt .

(49)
From the compressed signal in (48), the CU performs

decoding by choosing the codeword (Xd,1, . . . ,Xd,n) in the
codebook, where n is the number of coherence blocks on
which coding takes place. Given the lack of CSI at the re-
ceiver, investigating the performance of the optimal, maximum
likelihood, decoder is not an easy task. To tackle this issue,
we assume that the receiver employs the mismatched nearest
neighbor metric

n∑
k=1

γk ‖ X̂d,k −Xd,k ‖2 . (50)

In (50), the weighting factors γk are known to the CU, as
further discussed below, and hence the metric (50) can be
computed at the CU even in the absence of CSI. It is also
noted that the metric (50) is generally mismatched to the actual
signal model (48), since in (49) the noise covariance RZ|H̃
is not a multiple of the identity matrix and depends on the
channel estimate H̃, which is not known at the CU.

We first consider the case in which an equal weighting fac-
tor is used in (50) for all coherence blocks, i.e., γk = γ for all
k, and hence the metric (50) reduces to

∑
k γ||X̂d,k−Xd,k||2.

An ergodic rate achievable with scheme is derived next.
Lemma 2: An ergodic achievable rate with semi-coherent

processing and constant weights γk = γ in (50) is given by

R =
Td

T
sup
γ>0

{
Nt log2

(
1 + γ

Pd

Nt

)
+ γPd

(
1 + γ

Pd

Nt

)−1

−γ2Pd

Nt

(
1 + γ

Pd

Nt

)−1

E
[
tr
(
RẐ|H̃

)]}
, (51)

8Other types of linear equalization could be considered as well following
the same steps.
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where RẐ|H̃ is given in (49) and we have σ2
d = Pd+1

2TC/(NrTd)−1
.

The expression in (51) is taken with respect to H̃.
Proof: The equation (51) follows immediately from [34,

Eq. (19)].
Next, we briefly consider also the possibility to choose the

weighting factors γk in the decoding metric (50) as a function
of a one-bit per-coherence block CSI sent on the backhaul
from BS to CU. Specifically, we fix a threshold ω ≥ 0 on the
CSI. Then, we choose the weighting coefficient γk to be small,
γk = γb, when the CSI is of poor quality, i.e., ||H̃|| < ω, and
to be large, γk = γg, when the CSI is of good quality, i.e.,
||H̃|| ≥ ω. The idea is that coherence blocks with poor CSI
should be weighted less. Note that the one-bit CSI message on
the backhaul requires the condition C > 1/T to be satisfied.

Proposition 9: An ergodic rate achievable with semi-
coherent processing and selective weights is given as

R =
Td

T
sup

γb,γg ,ω>0

{
E

[
Nt log2

(
1 + Γ

Pd

Nt

)
(52)

+ΓPd

(
1 + Γ

Pd

Nt

)−1

−Γ2Pd

Nt

(
1+Γ

Pd

Nt

)−1

tr
(
RẐ|H̃

)]}
,

where RẐ|H̃ is given in (49) and we have σ2
d =

Pd+1
2(TC−1)/(NrTd)−1

The expectation in (52) is taken with respect

to H̃ and to the random variable Γ, which is defined as Γ = γb
with probability Pr[||H̃|| < ω] and Γ = γg with probability
Pr[||H̃|| ≥ ω].

Proof: The equation (52) follows again directly from [34,
Eq. (19)].

VIII. NUMERICAL RESULTS

In this section, we evaluate the performance of the proposed
compression strategies for the uplink of a multi-cell system.
Throughout, we assume that every MS is subject to the same
power constraint P and that each BS has the same backhaul
capacity C, that is Pi = P for i ∈ NM and Cj = C for
j ∈ NB . Moreover, we set H̄j = 1Nr,j×Nt . We optimize over
the power allocation (Pp, Pd) and we set Tp = Nt (except for
the non-coherent scheme where Tp = 0), which was shown to
be optimal in [19] for a point-to-point link with no backhaul
limitation.

We start by considering case of a single MS and a single BS,
namely NB = 1 and NM = 1 and consider the performance
of the ECF schemes, of CFE and of non-coherent and semi-
coherent processing. For the latter, we focus on the semi-
coherent scheme with one-bit CSI and without one-bit CSI.
Fig. 2 and Fig. 3 show the ergodic achievable sum-rate for all
the mentioned schemes as function of the backhaul capacity
C and coherence time T 9, respectively. For reference, in both
figures, we also show the upper bound obtained by standard
cut-set arguments, namely min(C,Rnc), where Rnc is the
non-coherent capacity of the MS-BS channel [29]. In Fig.

9Consider a multicarrier system. The coherence bandwidth can be ap-
proximated as 1/(50στ ), where στ is the delay spread [40]. Therefore, by
imposing 1/(50στ ) = TΔf , where Δf is the subcarrier spacing, one can
find that a delay spread equal to στ = 1/(50TΔf) causes a coherent block
equal to T channel uses. For instance, with Δf = 15kHz, as for LTE
systems, we get that T = 1 corresponds to στ = 13μs.
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Fig. 2. Ergodic achievable sum-rate vs. backhaul capacity (NB = NM = 1,
Nt = Nr = 1, P = 20dB, T = 10, and K = 0).

2, we set Nt = Nr = 1, power P = 20dB, coherence
time T = 10 and consider Rayleigh fading channel, i.e.,
K = 0. At low backhaul capacity C (here, C < 4), it is
seen that the semi-coherent strategy is to be preferred due to
its ability to devote the limited backhaul resources to convey
only information about the data block to the CU. Note that
the semi-coherent scheme with one-bit CSI outperforms the
case with no CSI unless the backhaul capacity C is smaller
or very close to 1/T (i.e., the overhead for the one-bit CSI
on the backhaul). Conversely, for sufficiently large backhaul
capacities (here, C > 7), the non-coherent approach turns out
to be advantageous. This is because, when the compression
noise is negligible, the achievable rate is upper bounded by the
non-coherent capacity10 (see, e.g., [29]). Instead, for interme-
diate backhaul values, ECF and CFE schemes are the preferred
choice. Concerning the comparison between ECF and CFE,
Fig. 2 demonstrates that the ECF strategy is advantageous.
In particular, for the scenario at hand, CFE performs as ECF
with separate compression as discussed in Section V-A. How-
ever, progressively more complex ECF schemes have better
performance, with the joint adaptive strategy outperforming
the joint approach and the separate strategy. Finally, we note
that the gains obtained by more complex ECF compression
strategies are especially pronounced in the region of interest
of moderate backhaul capacity, in which the backhaul capacity
is at a premium and should be used efficiently.

The effect of an increase of the coherence time on the
ergodic achievable sum-rate is instead investigated with Nt =
Nr = 1, backhaul capacity C = 6, power P = 20dB,
and Rayleigh fading in Fig. 3. The figure illustrates that the
non-coherent strategy is clearly advantageous over the other
schemes for T = 1 given that it operates without transmitting
any pilot signal. Moreover, ECF with Joint adaptive compres-
sion is especially advantageous for large coherence time due
to the increased relevance of an efficient compression of the
data signal when Td 
 Tp.

We now turn to consider a multiple BSs and multiple

10In a non-coherent information-theoretic set-up, the optimization of the
transmit signals allows, as a special case, the selection of a pilot-based
transmission in which all codewords contain the same training sequence.
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MSs scenario with NB = NM = 2, Nt = Nr = 4 and
focus on the comparison among the different proposed ECF
schemes and CFE11. The performance comparison among
the proposed ECF schemes discussed above is confirmed by
the results reported in Fig. 4, 5 and 6. Fig. 4 shows the
ergodic achievable sum-rate of the three compression methods
versus the transmit power P with backhaul capacity C = 6,
coherence time T = 10, channel gain αji = 1 for all
j ∈ NB , i ∈ NM , and Rayleigh fading channel (K = 0). It is
seen that the performance gains of more complex compression
strategies is more evident in the high SNR regime, in which
the compression noise imposes a significant bottleneck to the
system performance.

In Fig. 5, the ergodic achievable sum-rate is plotted versus
the inter-cell channel gain αji assumed to be the same for all
i �= j, while αjj = 1 for j ∈ NB , with backhaul capacity C =
6, power P = 20dB, coherence time T = 10 and Rayleigh
fading. As it is well known (see, e.g., [2]), at low inter-cell
gain, the inter-cell interference is deleterious; instead, when

11With multiple BSs and MSs, evaluating the non-coherent capacities, and
thus also the cut-set bound is an open problem. Moreover, the evaluation of
the performance of semi-coherent strategies is left for future work.
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Fig. 5. Ergodic achievable sum-rate vs. inter-cell gain αji (NB = NM = 2,
Nt = Nr = 4, C = 6, P = 20dB, T = 10 and K = 0).
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the inter-cell gain is large enough, the central decoder can
take advantage of the additional signal paths and the sum-rate
increases.

Finally, we show the impact of the Rician factor K in
Fig. 6 with backhaul capacity C = 6, power P = 20dB
and channel gain αji = 1 for all j ∈ NB , i ∈ NM . We
observe that the performance of the joint adaptive compression
method approaches that of the joint compression method
as the Rician factor K increases. This is because the joint
adaptive compression scheme is based on an optimization of
the compression strategy that adapts the quantization error on
the data signal to the channel estimates for each coherence
block. Therefore, in the presence of reduced channel variations
due to a larger Rician factor K , the performance gain of the
adaptive joint approach are reduced.

IX. CONCLUSION

In this paper, we have studied the design of the backhaul
compression strategies for the uplink of network MIMO
systems by accounting for both CSI and data transfer from
the BSs to the CU. Motivated by the information-theoretic
optimization of separate estimation and compression, we
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have adopted an Estimate-Compress-Forward (ECF) approach,
whereby the BSs first estimate the CSI and then forward
the compressed CSI to the CU. The alternative Compress-
Forward-Estimate (CFE) approach, already studied in previous
work, is also considered for reference along with non-coherent
transmission. Various schemes of increasing complexity are
proposed that aim at optimizing the ergodic achievable sum-
rate subject to backhaul constraints. Specifically, separate
and joint data signal and CSI compression strategies are
devised. Moreover, in the presence of multiple BSs, we have
combined the proposed backhaul strategies with distributed
source coding to leverage the received signal correlation
across BSs. From numerical results, we have observed that
the ECF approach outperforms the CFE approach, and that
more complex joint compression strategies have significant
advantages in the regime of intermediate backhaul capacity,
in which the backhaul capacity should be used efficiently,
and for sufficiently large SNR and channel coherence times.
Finally, we have proposed a semi-coherent strategy that does
not convey any CSI or pilot information over the backhaul
links. It was seen by numerical results that this scheme is
large enough, while the latter is advantageous in the regime
of low backhaul capacity.

APPENDIX A

In this Appendix, we derive equality (27) and the condition
C = Cp + Cd, with Cp in (23) and Cd in (26). We start by
evaluating 1

T I(Yd, H̃; Ŷd, Ĥ) in (27) as follows:

1

T
I(Yd, H̃; Ŷd, Ĥ) =

1

T

(
I(Yd, H̃; Ĥ) + I(Yd, H̃; Ŷd|Ĥ)

)
=

1

T

(
I(H̃; Ĥ) + I(Yd; Ĥ|H̃) + I(Yd, H̃; Ŷd|Ĥ)

)
(a)
=

1

T

(
I(H̃; Ĥ) + I(Yd, H̃; Ŷd|Ĥ)

)
=

1

T

(
I(H̃; Ĥ) + I(Yd; Ŷd|Ĥ) + I(H̃; Ŷd|Ĥ,Yd)

)
(b)
=

1

T

(
I(H̃; Ĥ) + I(Yd; Ŷd|Ĥ)

)
=

1

T

(
I(H̃; Ĥ) + h(Ŷd|Ĥ)− h(Qd)

)
, (53)

where (a) is from the fact that I(Yd; Ĥ|H̃) = 0 due to
(14)-(15), and (b) is form the fact that I(H̃; Ŷd|Ĥ,Yd) =
I(Qp;Qd|Ĥ,Yd) = I(Qp;Qd) = 0. Note that (b) proves
(27). We can now bound

h(Ŷd|Ĥ) ≤ TdE

[
log2 det

(
Pd

Nt
ĤĤ† +

(
σ2
pe + σ2

d

)
INr

)
+ log2 (2πe)

Nr

]
= Td

(
Nr log2 (2πe) +Nr log2

(
σ2
pe + σ2

d

)
+E

[
log2 det

(
INr + ρeffĤĤ†

)])
, (54)

where ρeff is defined in (21). The inequality in (54) follows
from the maximum entropy theorem because Ŷd is not
Gaussian distributed. Using (54) in (53) proves the condition
C = Cp + Cd, with Cp in (23) and Cd in (26).
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