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Abstract

In this monograph, the impact of cooperation on the performance of
wireless cellular systems is studied from an information-theoretic stand-
point, focusing on simple formulations typically referred to as Wyner-
type models. Following ongoing research and standardization efforts,
the text covers two main classes of cooperation strategies. The first
class is cooperation at the base station (BS) level, which is also known



as Multi-Cell Processing (MCP), network Multiple-Input Multiple-
Output (MIMO), or Coordinated Multi-Point transmission/reception
(CoMP). With MCP, cooperative decoding, for the uplink, or encoding,
for the downlink, is enabled at the BSs. MCP is made possible by the
presence of an architecture of, typically wired, backhaul links connect-
ing individual BSs to a central processor (CP) or to one another. The
second class of cooperative strategies allows cooperation in the form of
relaying for conveying data between Mobile Stations (MSs) and BSs in
either the uplink or the downlink. Relaying can be enabled by two pos-
sible architectures. A first option is to deploy dedicated Relay Stations
(RSs) that are tasked with forwarding uplink or downlink traffic. The
second option is for the MSs to act as RSs for other MSs.

MCP is first studied under ideal conditions on the backhaul links,
namely by assuming that all BSs are connected to a CP with unlimited-
capacity links. Both Gaussian (nonfading) and flat-fading channels are
analyzed, for the uplink and the downlink, and analytical insights are
drawn into the performance advantages of MCP in different relevant
operating regimes. Performance comparison is performed with standard
Single-Cell Processing (SCP) techniques, whereby each BS decodes, in
the uplink, or encodes, in the downlink, independently, as implemented
with different spatial reuse factors. Then, practical constraints on the
backhaul architecture enabling MCP are introduced. Specifically, three
common settings are studied. In the first, all the BSs are connected to a
CP via finite-capacity links. In the second, only BSs in adjacent cells are
connected via (finite-capacity) backhaul links. In the third, only a sub-
set of BSs is connected to a CP for joint encoding/decoding (clustered
cooperation). Achievable rates for the three settings are studied and
compared for both the uplink and the downlink.

The performance advantages of relaying are analyzed for cellular
systems with dedicated RSs and with cooperative MSs. Different tech-
niques are reviewed that require varying degrees of information about
system parameters at the MSs, RSs, and BSs. Performance is investi-
gated with both MCP and SCP, revealing a profound interplay between
cooperation at the BS level and relaying. Finally, various open problems
are pointed out.



1
Introduction

In this section, we provide a brief introduction to the subject of this
monograph and discuss the goals and outline of the text.

1.1 Motivation

Cooperative communication refers to the coordinated transmission
or reception by some nodes of a given communication network (see,
e.g., [48]). In the context of wireless cellular systems, cooperation is
being currently studied in both academic research activities and stan-
dardization efforts in two different forms.

• Multi-Cell Processing (MCP): The first type of
cooperative strategies is at the base station (BS) level, and
is known as Multi-Cell Processing (MCP), network Multiple-
Input Multiple-Output (MIMO) [122] or Coordinated Multi-
Point transmission/reception (CoMP), with the last term
being used in the 4th Generation (4G)-Long Term Evolu-
tion (LTE)-Advanced cellular standard (see, e.g., [3]). With
MCP, cooperative decoding, for the uplink, or encoding, for
the downlink, is enabled at the BSs. MCP is made possible
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4 Introduction

by the presence of an architecture of, typically wired, back-
haul links connecting individual BSs to a central processor
(CP), or to one another.

• Relaying : The second class allows cooperation in the form
of relaying for conveying data between Mobile Stations (MSs)
and BSs in either the uplink or downlink. Relaying can be
enabled by two possible architectures. A first option is to
deploy dedicated Relay Stations (RSs) that are tasked with
forwarding uplink or downlink traffic. The second option is
for the MSs to act as RSs for other MSs.

The two approaches have different merits and expected perfor-
mance gains, as discussed below. Overall, they are seen as extremely
promising strategies to overcome the current problem of “bandwidth
crunch” affecting cellular systems due to the ever increasing capacity
demands [19].

By enabling joint encoding and decoding across multiple cells, MCP
has the capability to turn inter-cell interference from one of the main
limitations on the system performance, as it is in conventional non-
cooperative cellular systems, into an asset. For instance, focusing on
the downlink, thanks to inter-cell “interference”, MCP enables all the
BSs to communicate to any MS in the system in a cooperative fashion.
This allows the BSs to control, and potentially cancel, inter-cell inter-
ference, and thus to serve the MSs at a rate that is not limited by such
interference. Similar considerations apply to the uplink as well.

Beside interference mitigation, through BS cooperation, MCP
allows beamforming, diversity, and multiuser diversity gains to be har-
nessed. The first of these gains refers to the possibility of performing
coherent decoding or encoding across multiple BSs so as to boost the
effective signal-to-noise ratio (SNR) in the uplink or downlink. The
second, diversity, refers to the possibility of leveraging different signal
paths from transmitter to receiver in order to increase the probability
the transmitted signal is received with a sufficiently large SNR. The
third, multiuser diversity, accounts for the design degrees of freedom
afforded by the ability to schedule different users depending on their
channel conditions across the whole network.
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Relaying, instead, is mostly seen as a way to extend the coverage
of a given BS by enabling multihop transmission between an MS and
a BS (see, e.g., [55, 110]). Equivalently, it can also be seen as a means
to reduce the required transmission energy in the uplink or downlink
for given SNR requirements. Relaying also enables beamforming and
diversity gains to be harnessed via cooperation between MSs or between
MSs and RSs (see, e.g., [51]).

1.2 Approach and Goals

The analysis of MCP was initiated in the early works [33, 132] for the
uplink and in [96] for the downlink. The analysis in these works is based
on the assumption that the BSs are connected via unrestricted back-
haul links (error-free and unlimited capacity) to a CP and focuses on
models that, in information-theoretic terms, can be seen as symmetric
Gaussian multiple access or broadcast interference channels. In these
models, typically referred to as Wyner-type models, a number of users
per cell are served by a single-antenna BS, as in a multiple access or
broadcast channel, and interference takes place only between adjacent
cells, as in partially connected interference networks. Both the models
where cells are arranged along a line or in a more conventional bidi-
mensional geometry can be considered, where the first class may model
systems deployed along a highway, railroad, or long corridor (see [122]
for an implementation-based study), while the second applies to more
general scenarios.

Wyner-type models are simple abstractions of cellular systems.
They capture well one of the main aspects of such settings, namely
the locality of inter-cell interference. The advantage of addressing the
study of given transmission strategies on such models is the possibil-
ity to obtain analytical insights. These insights provide an invaluable
stepping stone for the simulation-based studies that are necessary for a
full performance assessment under more realistic operating conditions
(see, e.g., [135] for further considerations on this point).

In this monograph, we aim at providing an information-theoretic
view of the advantages of cooperation in wireless cellular systems in
terms of MCP, relaying and their interplay. In order to enable analysis,



6 Introduction

we will adopt Wyner-type models. The treatment reviews a number of
results available in the literature in a unified fashion that reveals their
connections and illuminates general conclusions. We will keep the treat-
ment as self-contained as possible, but we will privilege intuition over
analytical details and technicalities. In particular, we will not provide
any detailed proof. In doing so, our goal here is to provide an under-
standing of the performance of the cooperative techniques at hand and
of the analytical tools used for this purpose.

As research in the field is still ongoing, the treatment will be far
from complete, and we will point to open problems along the way.
Nevertheless, we feel that the available results are mature and complete
enough to warrant the treatment given in this text. We will provide a
clear pointer to the main references used in compiling this monograph.
However, we will not attempt to provide a comprehensive bibliography
on the subject of cooperation for cellular system. It should also be
emphasized that the focus here is based purely on information-theoretic
arguments and is limited to Wyner-type models. In particular, we will
leave out discussion of other more complex models and of important
issues such as the signal-processing aspects of optimal beamforming
and power allocation. A more complete list of references in this regard
can be found in [28]. Previous shorter tutorials can be found in [92, 93].

1.3 Outline

The text is organized as follows. In Section 2, the models that will be
adopted for analysis throughout the monograph are presented. Then,
in Section 3, results are discussed that provide the performance of MCP
under ideal conditions on the backhaul links, namely by assuming that
all BSs are connected to a CP with unlimited-capacity links, and with-
out accounting for fading. Section 4 extends these results from the
Gaussian model studied in the previous section to flat-fading channels
for both uplink and downlink. Performance comparison is performed
with standard Single-Cell Processing (SCP) techniques, whereby each
BS decodes, in the uplink, or encodes, in the downlink, independently,
as implemented with different spatial reuse factors. In Sections 5 and 6,
practical constraints on the backhaul architecture enabling MCP are
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introduced for the uplink and downlink, respectively. Specifically, three
common settings are studied. In the first, all BSs are connected in a
CP via finite-capacity links. In the second, only BSs in adjacent cells
are connected via (finite-capacity) backhaul links. In the third, only a
subset of nearby BSs is connected to a CP for joint encoding/decoding
(clustered cooperation). The performance advantages of relaying are
finally analyzed for cellular systems with dedicated RSs (Section 7)
and with cooperative MSs (Section 8) over Gaussian channels. Differ-
ent techniques are proposed that require varying degrees of informa-
tion about system parameters at the MSs, RSs, and BSs. Performance
is analyzed with both MCP and SCP, revealing a profound interplay
between cooperation at the BSs and relaying.



2
Cellular Models

In this section, we review the basic system models that will be con-
sidered throughout this monograph. We focus our attention on linear
Wyner-type models, as done in the original works [33, 132]. Note that
extension of the given results to planar models is possible, though not
always straightforward, and we refer to [113] for further discussion on
this point. In the following, we first introduce standard Wyner-type
models for the uplink and downlink, and then present extensions that
encompass practical limitations on the backhaul links and for relaying.

2.1 Uplink

A linear Wyner-type model, sketched in Figure 2.1, is characterized by
M cells arranged along a line (as for a highway, railway, or corridor),
each with a single-antenna BS and K single-antenna MSs. In this class
of models, inter-cell interference at a given BS is limited to L� BSs to
the left and Lr to the right of the BS at hand (left and right are taken
with respect to the reader’s viewpoint). Considering the uplink, the
baseband received signal at the m-th BS, m ∈ [1,M ], at a given time
instant t ∈ [1,n] (n is the size of the transmitted block) can then be

8
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… …

cell number

mobile

m - 1 

base station

m m + 1

h m,0h m−1,0 hm+1,0

1,mh1,−mh 1,1 −+mh1,1−mh

Fig. 2.1 A linear Wyner-type model with Lr = L� = 1 and K = 3.

written as

ym(t) =
Lr∑

l=−L�

hT
m,l(t)xm+l(t) + zm(t), (2.1)

where xm(t) is the K × 1 (complex) vector of signals transmitted by
the K MSs in the m-th cell, the K × 1 vector hm,k(t) contains the
channel gains toward the m-th BS from mobiles placed k cells apart
(see Figure 2.1 for an illustration) and zm(t) is complex Gaussian noise
with unit power, assumed to be uncorrelated over BS index m and
time t.1 Denoting as [x]k the k-th element of vector x, we assume equal
per-user per-block power constraints

1
n

n∑
t=1

E[|[xm(t)]k|2] ≤ P

K
, (2.2)

for all m ∈ [1,M ] and k ∈ [1,K], so that the per-cell per-block power
constraint is given by P . Notice that model (Equation (2.1)) assumes
full frame and symbol-level synchronization among all MSs, even
though extensions of the available results may be possible in the asyn-
chronous case following, e.g., [123]. Also, note that in some scenarios,
it may be more relevant to impose a per-symbol, rather than per-block,
power constraint, as in E[|[xm(t)]k|2] ≤ P

K for all t∈ [1,n]. The latter
will be considered only when explicitly mentioned.

1 Spatially correlated noise could arise, for instance, due to interference from other wireless
systems. However, if such correlation is known at the receivers, it can be compensated via
whitening leading to model (Equation (2.1)).
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The model (Equation (2.1)) discussed above reduces to the following
special cases that will be referred to throughout the monograph:

• Gaussian Wyner model : This corresponds to a static
scenario with symmetric intercell interference and cell-
homogeneous channel gains, i.e., we have L� = Lr = L and
hm,k(t) = αk1 (−L ≤ k ≤ L) with αk = α−k and α0 = 1. We
emphasize that these gains are assumed to be real for simplic-
ity of presentation, but that most results are easily extended
to complex-valued inter-cell gains. By cell-homogeneous, we
mean that the channel gains do not depend on the cell index
m, but only on the distance between cells. Note that this
implies that all users in the same cell share the same path
loss toward all BSs, as it is approximately the case if all users
are located at the center of the cell. This model is clearly a
crude approximation of reality, but it captures, at least to a
first order, the locality of intercell interference. The param-
eter L is referred to as the intercell interference span, as it
measures how many cells on the left or right of any cell affect
reception at the corresponding BS. We will often refer to the
original Wyner model in [33, 132] which corresponds to the
special case L = 1, for which we have, denoting α1 as α for
simplicity, the baseband received signal as

ym(t) = 1Txm(t) + α1Txm+1(t) + α1Txm−1(t) + zm(t).
(2.3)

Note that 1Tx is simply the sum of all elements in the vec-
tor x. This model is sketched in Figure 2.2 for reference.

• Gaussian soft-handoff model : This corresponds to a
static cell-homogeneous system like the Gaussian Wyner
model, in which, however, there is no symmetry in the inter-
cell channel gains. Specifically, we have intercell interference
only from the cells to the left as L� = L, Lr = 0 and hm,k(t) =
αk1, (0 ≤ k ≤ L) with α0 = 1, where, as above, αk ≥ 0 are
deterministic (real) quantities. A standard scenario is the
special case L = 1, studied, e.g., in [43, 118], for which the
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… …
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m - 1  
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Fig. 2.2 The Gaussian linear Wyner model with L = 1 and K = 1.

… …

cell number

mobile

m - 1 
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m m + 1

α α
1 11

Fig. 2.3 The Gaussian linear soft-handoff model with L = 1 and K = 1.

baseband received signal is given by

ym(t) = 1Txm(t) + α1Txm−1(t) + zm(t), (2.4)

where we have again denoted α1 as α for simplicity. This
special case clarifies the name “soft-handoff”. In fact, model
(Equation (2.4)) accounts for a simple scenario where the
MSs are placed at the border between two cells, so that the
signal transmitted by each MS is received with nonnegligible
power only by two BSs, the local BS and the BS on the right
(see Figure 2.3);

• Fading Wyner model : This model incorporates fading,
accounted for by random channel gains hm,k(t), in the Gaus-
sian Wyner model. In particular, we have L� = Lr = L and
hm,k(t) = αkh̃m,k(t) (−L ≤ k ≤ L), where vectors h̃m,k(t),
t ∈ [1,n], are independent over m and k and distributed
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according to a joint distribution πk with power of each
entry of h̃m,k(t) normalized to one. For simplicity, similar
to the Gaussian Wyner model, statistical symmetric inter-
cell interference is assumed, i.e., αk = α−k (and α0 = 1) and
πk = π−k. As for temporal variations, two scenarios are typ-
ical: (i) Quasistatic fading : Channels h̃m,k(t) are constant
over the transmission of a given codeword (i.e., for t ∈ [1,n]);
and (ii) Ergodic fading : Channels h̃m,k(t) vary in an ergodic
fashion along the symbols of the codeword. The ergodic
model was studied in [111] with L = 1; and

• Fading soft-handoff model : This model is the fading
counterpart of the Gaussian soft-handoff model, and has
L� = L, Lr = 0, and hm,k(t) = αkh̃m,k(t) (0 ≤ k ≤ L) where
h̃m,k(t) are independent and modeled as for the fading
Wyner model. This scenario was considered in [61] (under
more general conditions on the joint distribution of vectors
h̃m,k(t)).

Where not stated otherwise, for both fading Wyner and fading soft-
handoff models, we assume that the fading gains are modelled accord-
ing to Rayleigh fading, i.e., each entry of h̃m,k(t) is complex Gaussian
with zero mean and unitary power. In the rest of the monograph, we
will concentrate the analysis on Gaussian and fading Wyner and soft-
handoff models.

It is remarked that the purpose of the Wyner model is not that
of proving a means for an exact quantitative prediction of the actual
performance of a real-life cellular system. Rather, its adoption is aimed
at providing insights and general guidelines for the design of cellular
systems that rely on cooperative processing. Moreover, the assumption
of a limited intercell interference span made in the Wyner models is
in practice a reasonable approximation of reality up to a certain SNR
level. In fact, only if the interference is sufficiently below the noise
level, can it be potentially neglected without affecting the analysis (see,
e.g., [68]). Therefore, the results obtained in the rest of the monograph
have always to be considered as valid within the SNR range in which
the Wyner model is a reasonable approximation.



2.1 Uplink 13

2.1.1 Edge Effects

In order to obtain compact and insightful analytical results, it is often
convenient to neglect edge effects. This can be done in two ways. A first
way is to focus on the regime of large number of cells, i.e., M → ∞.

This way, virtually all cells see exactly the same intercell interference
scenario, possibly in a statistical sense, as discussed above.

An alternative approach, considered, e.g., in [33, 118], is to consider
a system in which cells are placed on a circle. Specifically, the system is
as described above, but the cell on the right of the first one (m = 1) is
considered to be the last cell (m = M), and the cell on the right of the
last one (m = M) is considered to be the first one (m = 1). This way,
each cell is affected by statistically homogeneous intercell interference
for any finite M. It is noted that the two models coincide in the limit
of large M and, in practice, results for the two models are very close
for relatively small values of M [113].

2.1.2 Matrix Formulation

We now rewrite the model (Equation (2.1)) in a more compact matrix
form. We drop dependence on time t for simplicity. To proceed, con-
struct an M × MK channel matrix H such that the m-th row col-
lects all channel gains to the m-th BS, i.e., [hT

m,m−1,h
T
m,m−2, . . . ,h

T
m,0,

hT
m,−1, . . . ,h

T
m,−(M−m−1)], where hT

m,k with k /∈ [−Lr,L�] are to be con-
sidered as zero. We can then write the M × 1 vector of received signals
y = [y1, . . . ,yM ]T as

y = Hx + z, (2.5)

where x = [xT
1 · · ·xT

M ]T is the vector of transmitted signals and z the
uncorrelated vector of unit-power complex Gaussian noises. From the
definition above, it is clear that, in general, H is a finite-band matrix (in
the sense that only a finite number of diagonals have nonzero entries).
Moreover, it is not difficult to see that for the Gaussian Wyner and
Gaussian soft-handoff models, the matrix H has a block-Toeplitz struc-
ture, which will be useful in the following.
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2.1.3 Channel State Information (CSI)

For the uplink, we assume that full CSI is available at the BSs, and
also at the CP when MCP is enabled. On the other hand, the MSs are
only informed about the transmission strategy, namely the transmission
codebook, and in particular the transmission rate and power to be
used for transmission. In other words, the MSs cannot modify their
operation based on the current channel conditions. Therefore, for the
uplink, due to practical constraints, we do not consider the possibility
for sophisticated channel-aware scheduling strategies.

We emphasize that assessing the impact of imperfect CSI is of
critical importance in comparing the performance of different system
designs. To this end, an analysis in terms of performance lower bounds
for the uplink can be performed following the standard approach of
[35] of treating the CSI error as an additional source of Gaussian noise.
This way, the analysis presented in this monograph can be adapted to
account also for imperfect CSI. However, we leave a full investigation
of this important point to future work and to related studies such as
[38, 68].

2.2 Downlink

The model for the downlink can be easily obtained from the discussion
above. We will reuse some symbols, since their meaning will be clear
from the context. Define as ym the K × 1 vector of signals received
by the K MSs in the m-th cell, y = [yT

1 · · ·yT
M ]T , and x as the M × 1

transmitted signal by the BSs. We then have

y = H†x + z, (2.6)

where z is the vector of unit-power uncorrelated complex Gaussian
noise and the channel matrix H is defined as above. We assume a per-BS
(and thus per-cell) per-block power constraint 1

n

∑n
t=1 E[|[x(t)]m|2] ≤ P

for all m ∈ [1,M ]. When explicitly mentioned, a per-BS per-symbol
power constraint E[|[x(t)]m|2] ≤ P , for all t∈ [1,n], will also be consid-
ered. Model Equation (2.6) is the dual of Equation (2.5) in the sense
discussed below and in Appendix B.
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For reference, the signal received by the k-th MS in the m-th cell
in the downlink Gaussian Wyner model with L = 1 is given by

[ym(t)]k = xm(t) + αxm+1(t) + αxm−1(t) + zm(t), (2.7)

while for the Gaussian soft-handoff model with L = 1 we have

[ym(t)]k = xm(t) + αxm+1(t) + zm(t), (2.8)

where we recall that xm(t) is the signal transmitted by the m-th BS.

2.2.1 Channel State Information (CSI)

We assume, unless stated otherwise, that the BSs and the CP have
full CSI, while the MSs are informed about the channels affecting
their respective received signals and about the transmission strategy
employed for transmission by the BSs, and by the CP if MCP is enabled.
We note that assessing the impact of imperfect CSI on the downlink
is even more critical than for the uplink. However, this analysis turns
out to be more complex than for the uplink and has been mostly been
dealt with in simulation-based studies (see, e.g., [74, 84]). We remark
that, even in the case of ideal BS cooperation and focusing only on the
multiplexing gain, the problem of assessing the impact of imperfect CSI
at the transmitter is open [54]. However, results for simplified settings
suggest that, with a CSI quality that scales sufficiently fast with the
SNR, the performance of the system is not significantly degraded as
compared to the case of ideal CSI in the high-SNR regime [11]. Here
we leave this important issue to future work.

2.3 Backhaul Architectures for Multi-Cell Processing

In order for MCP to be possible, the BSs must be connected via back-
haul links. For both the uplink and downlink, we will consider the
three following models for the backhaul connections, as illustrated in
Figure 2.4.

• Central processor (CP) with finite-capacity backhaul
(Figure 2.4(a)): In this case, all the BSs are connected to a
CP for joint decoding (for the uplink) or encoding (for the
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cell number m - 1
basestation

m m + 1

base station

(a)

(b)

CP
C C C

CC

Fig. 2.4 Backhaul architectures that enable Multi-Cell Processing.

downlink) via finite-capacity backhaul links of capacity C

(bits/s/Hz), where bandwidth normalization is done with
respect to the spectrum available for the uplink or downlink
transmission. Recall that the original works [33, 96] assume
unlimited backhaul capacity, i.e., C → ∞, whereas here we
will consider also the effect of a finite backhaul capacity C;

• Local finite-capacity backhaul between adjacent BSs
(Figure 2.4(b)): Here the BSs are connected only to their
neighboring BSs, via finite-capacity links of capacity C

(bits/s/Hz), which may be uni- or bidirectional;
• Clustered Cooperation : Multiple CPs are available, one

for each cluster of cells. Clusters of BSs are connected to a
CP for joint encoding/decoding. This scenario is similar to
the first, with the difference that here not all interfering cells
can be jointly processed at the CP, although no capacity
limitation is imposed on the individual links between BSs
and their CP. This is done so as to focus on the impact of
finite-size BS clusters on the performance of MCP (see [91]
for a model that considers both clustered cooperation and
finite-capacity backhaul links).

It is noted that the first two models coincide in the case of unlimited
backhaul capacity C → ∞.

A remark on the choice made here to constrain the capacity C of the
backhaul links is in order. It might seem that, at least for conventional
cellular systems, the backhaul capacity required for macro BSs is not of
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primary concern, and can be considered infinite for practical purposes,
due to the availability of fiber optic cables. A first consideration in
this regard is that, as of today, backhaul links are still for a sizable
fraction copper or wireless [64]. Moreover, copper and wireless links
are overwhelmingly used in heterogeneous cellular to connect the femto-
and pico-BSs to the network (see, e.g., [73]).

A second observation has to do with the capacity needs for
transmission of compressed baseband information from the BS to the
network. This approach is central to many proposals for MCP [64].
For instance, for a single base station supporting three carriers of
Wideband Code Division Multiple Access (W-CDMA) plus 20 MHz
LTE, one needs about 7.7 Gb/s even using advanced compression
strategies [64]. This fills nearly the capacity of an entire 10 Gigabit
Passive Optical Network, thus having very serious implications on
the transmission layer of the system. In fact, this type of capacity
requirement is orders of magnitude larger compared to current systems
in which local decoding is performed. Therefore, even with fiber
optic cables the issue of backhaul capacity limitations is of critical
importance. We finally remark that an alternative solution to this
problem is based on radio over fiber (see, e.g., [89]).

2.4 Linear Wyner Models with Relaying

In modern cellular systems, cooperation is advocated not only for joint
encoding/decoding at the BS level, but also in terms of relaying. There
are two main scenarios where relaying is enabled:

• Dedicated relay stations: Dedicated RSs are deployed in
fixed locations within each cell, and are tasked with relaying
traffic from the MSs to the BSs in the uplink, or from the
BSs to the MSs in the downlink.

• Mobile station relaying : Relaying in the uplink or down-
link is performed by MSs for traffic originating at or intended
for other MSs.

In the following we describe the models that will be considered in this
monograph for the assessment of the performance gains of the two
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approaches at hand. In order to keep the discussion focused, we will
concentrate solely on the uplink.

2.4.1 Linear Wyner Model with Dedicated Relay Stations

Here we describe the model that will be studied to assess the perfor-
mance advantages of the deployment of dedicated RSs. We focus on the
uplink and concentrate on the performance of users that are at the edge
of each cell. This is done since the main benefits of relay deployment
are expected to occur for MSs that happen to be far from the BS, and
thus need to transmit at high power in order to be received at suffi-
cient SNR. In fact, dedicated RSs, if conveniently located between an
MS and a BS provide the possibility for a two-hop transmission from
the MS to the BS, which can reduce the necessary transmitted power
and hence increase coverage.

To model transmission from edge-cell MSs in a way that is amenable
to analysis, we consider the model in Figure 2.5, where the direct link
from MS to BS is assumed to be so small that it can be, as a first
approximation, neglected. Moreover, we assume that a single RS is
present in each cell and is placed between the edge-cell MSs and the
BS. The model thus reduces to a cascade of two Wyner-type models,
one from the MSs to the RSs and one from the RSs to the BSs (see
Figure 2.5). We will refer to these two Wyner models as first and second

…

m - 1 m m + 1
mobile

relay station

cell number

base station

…

α α α α

η

γ γ γ

η η

γ

µ µ

Fig. 2.5 Gaussian Linear Wyner model with dedicated relay stations (L = 1,K = 1).
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hop, respectively. We also assume, where not stated otherwise, that the
relays operate in full-duplex mode. Recent results on the feasibility of
full-duplex transmission can be found in [21].

To simplify the discussion, we present the main system equations
for the case where both hops are Gaussian Wyner models with L = 1
and there is only one user active in each cell (K = 1). Based on the
discussion above, the extension to more general models for the two
hops is immediate. For the first hop, the baseband signal received by
the RS in the m-th cell at time t is given by (cf. Equation (2.3))

y(1)
m (t) = x(1)

m (t) + αx
(1)
m−1(t) + αx

(1)
m+1(t) + µx

(2)
m+1(t)

+µx
(2)
m−1(t) + z(1)

m (t), (2.9)

where the superscript identifies the hop, so that x
(1)
m (t) is the signal

transmitted by the m-th MS (in the first hop), x
(2)
m (t) is the signal

transmitted by the m-th RS (in the second hop) and z
(1)
m (t) is complex

Gaussian noise affecting reception at the m-th RS, assumed to have
power σ2

1. Note that from Equation (2.9) reception at the RS in the
m-th cell is affected by the inter-cell interference from MSs and RSs in
adjacent cells (see Figure 2.5).2 Similarly the baseband signal received
at the m-th BS is given by

y(2)
m (t) = ηx(2)

m (t) + γx
(2)
m−1(t) + γx

(2)
m+1(t) + z(2)

m (t), (2.10)

where definitions follow as above and z
(2)
m (t) is complex Gaussian with

power σ2
2.

Finally, power constraints are imposed on the MSs as (cf.
Equation (2.12))

1
n

n∑
t=1

E[|x(1)
m (t)|2] ≤ P, (2.11)

2 The fact that the path loss is the same toward the adjacent BSs is not at odds with the
assumption that the MS is at the cell edge if one considers cells that have some extension on
the plane. In fact, the MS can be facing its BS in a direction orthogonal to the deployment
of cells and thus still be in a symmetric position with respect to the neighboring cells.
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and on the RSs as

1
n

n∑
t=1

E[|x(2)
m (t)|2] ≤ Q, (2.12)

Full CSI is assumed at both transmitters and receivers.

2.4.2 Linear Wyner Model with Mobile Cooperation

In systems where dedicated RSs are not available, it is still possible
for MSs to obtain gains from relaying as long as the MSs are enabled
to forward traffic on behalf of other MSs. In order for MSs to perform
relaying, it is necessary for the relaying MS to obtain some information
about the signal or the message of the MS whose signal should be
forwarded to the BS. This can take place in two main ways:

• Out-of-band Cooperation : Each MS is able to communi-
cate with nearby MSs using a different radio interface than
the one used for communication to the BS. For instance,
inter-MS communication may take place over a Wi-Fi link,
while transmission to the BS may be over a 3G or 4G cellular
link.

• In-band Cooperation : Each MS is able to receive in the
same bandwidth used for communication to the BSs. This
way, each MS can overhear the signals sent by neighbor-
ing MSs. Note that here we assume full-duplex transmission
so that each MS is able to transmit and receive at the same
time.

MSs can communicate, and hence cooperate, with other MSs in the
same cell and/or in different cells. Note that the latter case is practi-
cally relevant for MSs close to the edge of the cells. The performance
advantages achievable by cooperating with same-cell MSs are akin to
the relaying gains attainable with dedicated RSs. Indeed, in both cases,
performance gains arise due to the potential power savings due to multi-
hop communication toward the same-cell BS. Instead, cooperation with
MSs in other cells enables a different type of gains when implemented
along with MCP. In fact, the signal of any m-th MS, when forwarded
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Fig. 2.6 A linear Gaussian Wyner model with out-of-band MS cooperation.
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Fig. 2.7 A linear Gaussian Wyner model with in-band MS cooperation.

by an MS in a different cell, say the (m + 1)-th, will be received with
large power by the (m + 1)-th BS. With MCP, this transmission cre-
ates an alternative path for the signal of the m-th MS to reach the CP.
Moreover, such path can combine constructively with the direct one in
order to provide coherent (beamforming) gains.

We consider two models for inter-cell cooperation. The first, mod-
elling out-of-band cooperation, is shown in Figure 2.6. Here MSs in
adjacent cells are connected with orthogonal links of capacity C(MS)

(bits/s/Hz) in either direction. In the second, modelling in-band
cooperation, the signal received by the m-th MS is given by

y(MS)
m (t) = κxm+1(t) + κxm−1(t) + z(MS)

m (t), (2.13)

where κ ≥ 0 is a channel gain modelling the quality of the inter-MS
links and z

(MS)
m (t) is the unit-power complex Gaussian noise affecting

reception at the m-th MS. This is shown in Figure 2.7. Full CSI is
assumed at both transmitters and receivers.



3
Multi-Cell Processing in Gaussian Channels

In this section, we elaborate on the per-cell sum-rate achievable for the
uplink of Wyner-type models without relaying. We will focus on the
Gaussian Wyner model, while fading models are discussed in Section 4.
Note that, as discussed in the previous section, the works [33, 132]
consider only the case L = 1 (in Equation (2.1)) so the analysis pre-
sented here is more general.

The per-cell sum-rate provides an important performance metric,
since it measures the overall amount of information carried by the
network per cell. Moreover, in symmetric channels such as the Wyner
and soft-handoff models studied here, achievability of a per-cell sum-
rate R implies also achievability of a per-MS rate equal to R/M . It is
noted that, in some analyses, one might be interested in a more refined
understanding of the system performance in terms of achievable rate
regions for all users in the system or for given groups of users in the
system (e.g., users at the border of the cell versus users in the interior
of the cell). This analysis is not considered in this monograph and is
mostly a problem that remains open for research.

22
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3.1 Uplink

In this section, we analyze the uplink of a Gaussian Wyner model.

3.1.1 Single-Cell Processing and Spatial Reuse

Consider at first a baseline scheme, where SCP is performed, so that
each BS decodes individually its own K users by treating users in other
cells as Gaussian noise. A standard technique to cope with intercell
interference is spatial reuse, which consists of activating at a given time
(or equivalently in a given subband) only one cell every F ≥ 1 cells.
The parameter F is referred to as the spatial reuse factor. SCP with
spatial reuse is easily seen to achieve the following per-cell sum-rate (in
bits/s/Hz):

RSCP (P,F ) =


1
F

log2

(
1 +

FP

1 + 2FP
∑�L/F �

k=1 α2
kF

)
if F ≤ L

1
F

log2(1 + FP ) if F > L

,

(3.1)

where L is the intercell interference span.
Rate (Equation (3.1)) is obtained by either one of the following

techniques:

• Wide-Band (WB) transmission: All users in a given cell
transmit at the same time with power FP/K. We empha-
size that, since we focus on frequency-flat channels, a WB
transmission does not imply frequency selectivity here, but
only transmission across all the available spectral resources.

• Intra-cell Time Division Multiple Access (TDMA): Each user
in a cell transmits with power FP for a fraction of time 1/K.

That both techniques attain rate (Equation (3.1)) follows from the
well-known results on the sum-capacity of a Gaussian multiple access
channel [17]. Moreover, from such results, it can be seen that, with both
WB and intra-cell TDMA, users can be allocated an equal share of
the overall per-cell sum-rate. Moreover, WB allows for more flexibility
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in the rate allocation, while still obtaining Equation (3.1), whereas
intra-cell TDMA is not able to support different users’ rates without
performance loss.

It is also noted that achievability of Equation (3.1) hinges on the
per-block power constraint. In fact, the power allocations above sat-
isfy the per-block power constraint (Equation (2.12)), due to the fact
that each cell transmits for a fraction 1/F of the time and, for intra-
cell TDMA, users are active for a fraction 1/FK of the time. With
a per-symbol power constraint of P/K per user, instead, the per-cell
sum-rate of SCP would be limited to

1
F

log2

(
1 +

aP/K

1 + 2P
∑�L/F �

k=1 α2
kF

)
if F ≤ L

1
F

log2(1 + aP/K) if F > L

, (3.2)

where a = K for WB and a = 1 for intra-cell TDMA. Therefore, with
per-symbol power constraints, WB is advantageous over intra-cell
TDMA.

Finally, we remark that, while still considering SCP processing, per-
formance could be in principle improved by informing each BS of the
codebooks of the interfering MSs belonging to other cells. This would
allow each BS to perform joint decoding of the useful and interfer-
ing signals, rather than necessarily treating interference as noise. We
will discuss related techniques in Section 4 and we refer to references
[149] and [67] for application to the Gaussian Wyner and soft-handoff
models, respectively.

3.1.1.1 Extreme-SNR Analysis

In order to get further insight into the performance of SCP, we resort
here, as will be often done in this monograph, to the analysis of extreme
SNR conditions, namely high- and low-SNR regimes.

By analyzing the performance in the high-SNR regime, one is able
to focus on the effect of interference in the system, by rendering the
impact of noise virtually negligible as compared to that of interference.
In other words, to fix the ideas, in this regime, the performance is ruled
by the signal-to-interference ratio, rather than the SNR. Instead, the
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low-SNR regime provides a complementary viewpoint, by concentrat-
ing on an operating regime where performance is mostly determined
by the SNR, and thus by the amount of (signal) energy available,
rather than by the signal-to-interference ratio. So, broadly speaking,
the high-SNR analysis provides insights into how well interference is
handled by the system, and the low-SNR analysis brings information
about how efficiently energy is used by the system. We now recall some
relevant definitions and apply them to the analysis of the performance
of SCP.

High-SNR Analysis In the high-SNR regime, the main performance
criterion of interest is the per-cell multiplexing gain S∞. For a given
transmission scheme achieving rate R(P ) (bits/s/Hz), this quantity is
defined as

S∞ = lim
P→∞

R(P )
log2 P

, (3.3)

which is measured in (bits/s/Hz/(3 dB)). The per-cell multiplexing
gain provides the slope of the achievable rate R(P ) versus the SNR
measure P on a plot where P is shown in 3 dB units, that is, as
10log10(P )/(10log10 2). Based on the per-cell multiplexing gain, a sys-
tem is said to be interference-limited if the multiplexing gain is zero
and noninterference-limited otherwise. Given the interpretation of the
multiplexing gain, this implies that a system is interference-limited if
its plot of the rate R(P ) versus the SNR P attains a rate floor for
large P .

Applying definition (Equation (3.3)) to the performance (Equa-
tion (3.1)) of SCP, we see that, if the reuse factor F is smaller
than or equal to the intercell interference span L, the system oper-
ates in the interference-limited regime [33, 132]. Instead, if the reuse
factor F is larger than the inter-cell interference span L, SCP with
spatial reuse completely eliminates inter-cell interference and provides
a noninterference-limited behavior with per-cell multiplexing gain equal
to S∞ = 1/F . Since the multiplexing gain of an interference-free system
(i.e., with all intercell power gains equal to zero) is unity, from the dis-
cussion above, we conclude that the presence of inter-cell interference,
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if handled via SCP, leads to a rate degradation with respect to an
interference-free system at high SNR given by a factor equal to F > L.1

Before moving to the low-SNR regime, we note that a more refined
analysis of the high-SNR regime is possible following [69, 94]. In par-
ticular, rather than evaluating only the slope, one can also evaluate the
offset of the curve R(P ) versus P [dB]/(3dB) discussed above. In other
words, the rate R(P ) can be expanded as

R � S∞
(

P [dB]
3dB

− L∞
)

, (3.4)

where L∞ is the so-called high-SNR offset. In this monograph, we will
mostly concentrate on the multiplexing gain S∞. For a thorough dis-
cussion of the high-SNR offset in the context of multicell systems, we
refer the reader to [118].

Low-SNR Analysis In the low-SNR regime, where noise dominates
interference, we can use the formalism of [125] and analyze the
system performance in terms of the minimum (transmit) energy-per-bit
necessary for reliable communications Eb/N0|min and of the so-called
low-SNR (also known as “wideband”) slope S0 (bits/s/Hz/(3 dB)).
Specifically, reference [125] proposes to expand an achievable rate R(P )
as a function of the energy-per-bit

Eb =
P

R(P )
, (3.5)

as

R � S0

3dB

(
Eb

N0
[dB] − Eb

N0 min
[dB]

)
, (3.6)

where N0 is the noise spectral density (normalized to 1 here). Moreover,
reference [125] showed that this quantities can be calculated as Eb

N0 min
=

1
Ṙ(0)

and S0 = (2ln2) (Ṙ(0))2

(−R̈(0))
, where Ṙ(P ) and R̈(P ) represent the first

and second derivative, respectively, of the rate R(P ).

1 This discussion should be tempered by the observation that the high-SNR regime should
always be defined within the limits of approximation of the Wyner model, as discussed in
the previous section. The results obtained from the high-SNR analysis should thus be con-
sidered to be valid only within the SNR range that makes the Wyner model approximation
acceptable.
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Using the expression for the SCP rate (Equation (3.1)), it can be
seen that intercell interference does not cause any increase in the min-
imum (transmit) energy-per-bit necessary for reliable communications
Eb/N0min, which equals ln2 = −1.59dB, as for interference-free chan-
nels. However, if one observes also the slope of the spectral efficiency S0

(bits/s/Hz/(3 dB)), which accounts for a higher-order expansion of the
spectral efficiency as the SNR P → 0, the loss due to intercell interfer-
ence is seen also in the low-SNR regime. In fact, we have the following
result for the rate (Equation (3.1)):

S0 =


2

F
(
1 + 4

∑�L/F �
k=1 α2

kF

) if F ≤ L

2
F

if F > L

, (3.7)

where we recall that interference-free channels have S0 = 2.

As shown below, MCP allows the network to overcome the limita-
tions of SCP and spatial reuse.

3.1.2 MCP with Unlimited Backhaul

We now consider the performance of MCP assuming unlimited-capacity
backhaul links to a CP, i.e., C → ∞. The per-cell sum-capacity
RMCP (P ) with MCP in this scenario (for any M) is given by [132]

RMCP (P ) =
1
M

log2 det
(
I +

P

K
HH†

)
(3.8)

=
1
M

M∑
m=1

log2

(
1+

P

K
λm(HH†)

)
(3.9)

=
∫ ∞

0
log2

(
1+

P

K
x

)
dFHH†(x), (3.10)

where the λm(HH†) are the eigenvalues of the argument matrix and
FHH†(x) is the empirical distribution of such eigenvalues:

FHH†(x) =
1
M

M∑
m=1

1(λm(HH†) ≤ x). (3.11)
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The per-cell capacity (Equation (3.8)) is achieved by performing
ideal multiuser detection at the CP (which can in practice be realized
by following approaches such as in [1]). Moreover, transmission across
all cells takes place with a reuse factor of F = 1, so that all cells are
active at all times. As far as scheduling within each cell is concerned,
both intra-cell TDMA, where users transmit with power P for a fraction
of time 1/K, and the WB scheme, whereby all users transmit with full
power P/K at all times, lead to the same sum-rate.

It is noted again that the optimality of TDMA is strictly depen-
dent on the per-block power constraint (Equation (2.12)), and would
not hold in general under more restrictive conditions, such as per-
symbol power constraints. More general conditions under which TDMA
is optimal, under per-block power constraints, can be found in [33]. For
instance, from [33], it is found that TDMA would generally not be opti-
mal in scenarios where users had different intra- and intercell channel
gains, such as in fading scenarios (see Section 3).

For the Gaussian Wyner model, assuming intra-cell TDMA, the
matrix H is easily seen to be a symmetric Toeplitz matrix with first
column given by [α1α2 · · ·αL0M−L]. This implies that, using Szegö’s
theorem [30], for M → ∞, rate (3.10) can be written in a simple integral
form as [10, 132]

RMCP (P ) =
∫ 1

0
log2

1 + P

(
1 + 2

L∑
k=1

αk cos(2πkθ)

)2
dθ. (3.12)

The following interpretation of expression (Equation (3.12)) is
useful. Consider the case K = 1. This is done without loss of gener-
ality, given the optimality of intra-cell TDMA. We can now identify
the signal received at the CP as the output, for each time instant,
of an Linear Time Invariant (LTI) filter, whose input is given by
the signals transmitted by the MSs and whose impulse response is
hm = δm +

∑L
k=1 αkδm−k +

∑L
k=1 αkδm+k (δm is the Kronecker delta

function). This is illustrated in Figure 3.1 and can be explained as
follows.

The maximum rate for communications over an LTI channel with
frequency response H(θ) =

∑
m hme−j2πmθ is well-known to be given
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Fig. 3.1 LTI interpretation of the signal received over a Gaussian Wyner-type models.

by the maximum over S(θ) of the rate

R(S(θ),H(θ)) =
∫ 1

0
log2

(
1 + S(θ)|H(θ)|2)dθ, (3.13)

where S(θ) is the power spectral density of the input signal (see, e.g.,
[90]). In the Wyner models, the spectrum S(θ) models the spatial cor-
relation of the transmitted signals across different MSs, since the input
signal Xm corresponds to the signal transmitted by the m-th MS. Given
that the MSs cannot cooperate in the scenario at hand, their signals
are necessarily independent. This is because the MSs cannot coordinate
their transmissions since they have no common information. Therefore,
we need to choose S(θ) as a constant in Equation (3.13), which leads
to Equation (3.12). As a side remark, as will be discussed in Section 8,
in case MSs can cooperate, then the input spectrum S(θ) need not be
constant, leading to potential performance gains.

For future reference, we define

Rw(a,b,ρ) =
∫ 1

0
log2

(
1 + ρH(θ)2

)
dθ , (3.14)

where the channel frequency response is H(θ) = b + 2acos(2πθ), as the
maximum rate over a Gaussian Wyner model with direct (same-cell)
gain b (b = 1 in Figure 2.2), intercell interference gain a (a = α in
Figure 2.2) and power constraint ρ (ρ = P in Figure 2.2). We will use
this definition in Section 8.

For the Gaussian soft-handoff model with L = 1, the LTI filter
modelling the effect of intercell interference can be seen to be hm =
δm + αδm−1 and the integral (Equation (3.10)) can be evaluated in
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closed form. Specifically, for the model at hand, we obtain [43, 118]

RMCP (P ) = log2

(
1+(1+α2)P +

√
1+2(1+α2)P +(1−α2)2P 2

2

)
.

(3.15)

3.1.2.1 Extreme-SNR Analysis

Following Section 3.1.1.1, we consider here the performance of MCP
with unlimited-capacity backhaul in the extreme-SNR regimes. First,
the multiplexing gain S∞ of the MCP capacity (Equations (3.12)–
(3.15)) equals one, as for an interference-free scenario. This implies that
MCP is able to overcome the rate loss due to inter-cell interference of
SCP identified above.

For the low-SNR regime, let us start with the Wyner model. The
minimum energy-per-bit is given by

Eb

N0 min
=

ln2

(1 + 2
∑L

k=1 α2
k)

, (3.16)

showing an energy gain due to MCP with respect to SCP and to an
interference-free system given by (1 + 2

∑L
k=1 α2

k). This energy gain can
be interpreted as the array gain due to the fact that the signal trans-
mitted by each MS is received by the CP with a combined power of
(1 + 2

∑L
k=1 α2

k)P across all BSs. The parameter S0 for the special case
L = 1 is instead given by

S0 =
2(1 + 2α2)2

1 + 12α2 + 6α4 . (3.17)

Note that the second-order comparison between MCP and SCP pro-
vided by the low-SNR slope is here less relevant given the gain of MCP
in terms of Eb/N0|min.

For the soft-handoff model, we get

Eb

N0 min
=

loge 2

1 +
∑L

k=1 α2
k

, (3.18)
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showing the expected array gain of (1 +
∑L

k=1 α2
k)P and the low-SNR

slope

S0 =
2(1 + α2)2

1 + 4α2 + α4 . (3.19)

3.1.2.2 Numerical Example

We conclude this section with numerical evaluations of the rates dis-
cussed above for the uplink. Figure 3.2 shows the per-cell sum-rates
achievable by MCP and SCP for the Gaussian Wyner model and the
Gaussian soft-handoff model with L = 1 versus the inter-cell gain α2

(P = 1, K = 1). SCP with reuse factor F = 1 has interference-limited
performance and the achievable rate decreases for increasing interfer-
ence power α2. Since L = 1, a reuse factor F = 2 is instead able to fully
mitigate the inter-cell interference, but the achievable rate improves on
F = 1 only for sufficiently large α2.

The performance gains achievable with MCP are remarkable if the
inter-cell interference α2 is large enough. This shows that with MCP,
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Fig. 3.2 Per-cell sum-rates for the Gaussian Wyner model (solid lines) and Gaussian soft-
handoff models (dashed lines) versus the inter-cell gain α2 (L = 1, P = 10).
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interference should not be generally considered as a hindrance, since
the CP can use the signal received across all BSs. Specifically, in the
Wyner model, it can be seen that if α2 is small enough, the effect of a
larger inter-cell gain does decrease the achievable rate. In this regime,
the joint decoding capabilities of the CP are not sufficient to overcome
the effect of inter-cell interference. However, when α2 is large enough,
this is not the case and MCP provides remarkable gains. Note also
that in the soft-handoff model, the achievable rate with MCP always
increases with α2.

3.2 Downlink

In this section, we briefly turn our attention to the downlink of a
Gaussian Wyner model.

3.2.1 SCP and Spatial Reuse

Achievable rates using SCP and frequency reuse are easily seen to be
given as for the uplink and we refer to Section 3.1.1 for discussion.

3.2.2 MCP with Unlimited Backhaul

As throughout this section, assume that MCP is enabled by unlimited-
capacity backhaul to a CP. The per-cell sum-capacity is derived in [118]
using the uplink–downlink duality results of [142] as (see Appendix B)

RMCP (P ) =
1
M

min
Λ

max
D

log2
det

(
Λ + P

K HDH†)
det(Λ)

, (3.20)

with Λ and D being diagonal MK × MK matrices with the constraints
tr(Λ) ≤ M and tr(D) ≤ M. This rate can be interpreted as the per-
cell sum-rate of a “dual” uplink system with channel gains defined as
in the uplink of the system at hand, but where the m-th MS transmits
with power [D]mm(i.e., the m-th diagonal element of matrix D) and
the noise covariance matrix across the BSs is Λ. In this formulation,
the effects of the per-BS power constraints are reflected by the need to
minimize over Λ (see Appendix B).

The per-cell sum-rate (Equation (3.20)) is known to be achieved
by Dirty Paper Coding (DPC) [15] at the CP [118]. DPC is discussed
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in more technical terms in Appendix A, but, in short, it operates as
follows. The KM users in all cells are sorted in an optimized order,
and the signal intended for each user is encoded in the selected order.
When encoding for a given user, the CP “matches” the signal intended
for the user at hand to the signals of the already encoded users, so
that the effect of the latter on the user’s reception is mitigated. This
“matching” can be done in a number of ways (see, e.g., [24]), but the
main idea is that the CP constructs a large codebook in which each
message is associated with multiple possible code words. Among all the
code words for the message to be encoded, the CP chooses the one that
is “aligned” with the already encoded signals. This allows the CP to
leverage, at least to some extent, rather than necessarily suffer from,
interference from other signals.

For the Gaussian Wyner model, it can be shown that the per-cell
sum-capacity (Equation (3.20)) is exactly equal to the corresponding
capacity for the uplink (Equation (3.12)) for M → ∞. From this fact,
one can conclude that, as for the uplink, intra-cell TDMA, where only
one user is served per-cell, is optimal with Gaussian (unfaded) channels.

3.3 Summary

In this section, we have discussed the performancee advantages of ideal
MCP as implemented via unlimited capacity links connecting BSs and
the CP. We have focused on Gaussian channels, leaving the study of the
impact of fading to the next section. As compared to SCP and spatial
reuse, MCP was found to offer significant gains in both the high-SNR
regime, in which interference is the major performance bottleneck, and
in the low-SNR regime, in which the performance depends mostly on
an efficient use of the available power. In fact, in the high-SNR regime,
thanks to its enhanced interference mitigation capabilities, MCP was
shown to offer multiplexing gains, thus increasing the number of users
that can be served at full rate by the system. In fact, with SCP and spa-
tial reuse, the multiplexing gain is limited by the number of interfering
cells; it becomes zero if the BSs do not have the capability of decod-
ing also the messages transmitted by interfering cells and spatial reuse
is not allowed. Moreover, in the low-SNR regime, MCP was shown
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to provide beamforming gains, being able to coherently combine the
signals received by different BSs. Finally, by using the concept of dual-
ity, it was discussed that, under the given ideal backhaul assumptions,
MCP has the same performance, in terms of per-cell sum-rate, in both
the uplink and the downlink.



4
Multi-Cell Processing in Fading Channels

In the previous section, we elaborated on the potential gains attainable
via MCP in a scenario with no fading and ideal backhaul links. In this
section, we extend the analysis from Gaussian to fading models. We
consider first the uplink and then the downlink, and deal mostly with
ergodic fading. In order to focus on the impact of fading, we will assume
throughout this section unlimited-capacity backhaul connections to the
CP, as in the previous section. The effect of limitations on the backhaul
links will be discussed in the following section.

4.1 Uplink

Here we study the performance of MCP for the uplink of fading Wyner
and soft-handoff models (see Section 2.1), assuming unlimited-capacity
backhaul links to the CP. We focus on ergodic fading, and leave some
discussion on quasistatic fading to Section 4.1.3.

We start by observing that, with ergodic fading, the per-cell sum-
capacity is given by the expectation of Equation (3.10) with respect to
the distribution of HM , i.e.,

Rerg
MCP (P ) = E(RMCP (P )) . (4.1)

35
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This conclusion follows from standard information-theoretic consider-
ations (see, e.g., [22]). It accounts for the fact that, if the fading is
ergodic, encoding over a sufficiently long period enables averaging of
the effect of fading. Note that we have added a subscript to the chan-
nel matrix HM defined in the previous section in order to stress its
dependence on M .

Following arguments similar to the ones put forth in the previous
section, this rate can be seen to be achieved by the WB scheme, so that
all users transmit with full power at all times, along with joint decoding
at the CP. However, unlike the Gaussian (unfaded) models discussed in
the previous section, the per-cell sum-rate achieved by intra-cell TDMA
is generally smaller. This is in line with standard results on multiple
access channels (see, e.g., [17, 95]) and can be interpreted as follows.
With fading and intra-cell TDMA, if the currently scheduled user has
an unfavorable channel state, then the current transmission time is, in
some sense, wasted. In contrast, if all users are concurrently scheduled
as with WB, then the unfavorable channel conditions of some users are
potentially compensated for by the good channel conditions of other
users, thus leading to possible performance gains. This can be seen
as an instance of the gains attainable via multiuser diversity. Evalu-
ating Equation (4.1) analytically turns out to be a generally complex
problem, and it will be studied below for both the Wyner and the
soft-handoff models.

Before discussing the evaluation of Equation (4.1) further, we note
that the performance of SCP with spatial reuse can be obtained
by taking the expectation of the rates achievable in the corre-
sponding Gaussian models with respect to the channel gains (these
rates can be calculated by adapting Equation (3.1)). By doing so,
it can be seen that, with SCP, intra-cell TDMA may be advan-
tageous over WB for F ≤ L if the intercell interference is large
enough [95]. This is because intra-cell TDMA reduces the overall power
of the intercell interference. Some further performance comparisons
between intra-cell TDMA and spatial reuse in the presence of MCP
for the soft-handoff model with L = 1 and Rayleigh fading can be
found in [63].
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4.1.1 Wyner Model

Evaluating Equation (3.1) analytically can be potentially attempted
as the number of cells M , and thus the M × MK matrix HM , grows
large using (large) random matrix analytical tools. This is an attractive
option since related results are often proved to be valid also for rela-
tively small values of M (see, e.g., [113] and discussion below). Many
recent studies have indeed successfully analyzed the asymptotic rates of
various vector channels using results from the theory of random matri-
ces. In Appendix D, we provide an introduction to concepts of random
matrix analysis that are useful for the discussion.

In most cases where random matrix analysis bears fruit, the num-
ber of random variables present in the random matrix involved grows
quadratically in the size of the matrix HM , so that “self-averaging” is
strong enough to ensure convergence of the empirical measure Equa-
tion (3.11) of the eigenvalues as M grows large, and to derive equations
for the corresponding limiting spectrum (or its Stieltjes transform; see
Appendix D). In particular, this is possible if the normalized continuous
power profile of HM , which is defined with r, t ∈ [0,1] as

PM (r, t) � E(|[HM ]i,j |2) i − 1
M

≤ r <
i

M
,

j − 1
MK

≤ t <
j

MK
, (4.2)

converges uniformly to a bounded, piecewise continuous function as
M → ∞, see e.g., [121] (see also [2] for fluctuation results).

In the fading Wyner model (and also in the soft-handoff model to
be discussed in Section 4.1.2), the matrix HMH†

M , which appears in
the rate (Equation (3.1)) we are interested in evaluating, is a finite-
band matrix [116]. Therefore, the number of random variables grows
linearly in the size of the matrix. For this class of matrices, it is easy to
verify that for K fixed, PM (r, t) does not converge uniformly, so that
standard techniques are not applicable.

While standard random matrix tools are not useful for our pur-
poses, reference [62] proved that under light assumptions on the fading
coefficients, RMCP (P ) converges almost surely as M goes to infinity,
and the limit is expressed as a function of the Lyapunov exponent of
sequence of fixed-size random matrices. This result is demonstrated
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by using a version of the Thouless formula for the strip (see [62] for
further details). It is also shown that Rerg

MCP (P ) converges to the same
quantity as well, thereby proving that the ergodic sum-rate converges
as the number of cells goes to infinity. The work [62] provides also
a useful relationship between the value of Rerg

MCP (P ) for M → ∞, say
Rerg,∞

MCP (P ), and the corresponding per-cell ergodic rates for finite M ,
say Rerg,M

MCP (P ). In particular, it is proved that

M

M + L� + Lr
E

(
R̃M

MCP

(
M + L� + Lr

M
P

))
≤ Rerg,∞

MCP (P )

≤ E(R̃M
MCP (P )),

where R̃M
MCP (P ) is the per-cell sum-rate of a slightly different model

where one adds L� cells without MSs on the left and Lr on the right at
the boundaries of the system.

While [62] proves convergence of the ergodic rate as M grows large,
this result does not provide per se much insight into the performance
of MCP. To this end, we will instead use different bounding or approxi-
mation techniques below, and we will study performance in asymptotic
SNR regimes.

4.1.1.1 Wide-Band Transmission (Large Number K

of Users Per Cell)

Consider the case in which the number of users per cell K is large while
the total power per cell P is kept constant. Recall that in the fading
Wyner model the channel gains of all MSs have the same statistics.
Applying the strong law of large numbers, the entries of 1

K HMH†
M thus

consolidate almost surely (a.s.) to their mean values, so that matrix
1
K HMH†

M becomes a Toeplitz matrix (with deterministic entries) [111].
Then, as done in the previous section, by applying Szegö’s theorem [30],
for M → ∞, the per-cell sum-rate capacity for the linear fading Wyner
model is given by R∞

MCP (P ) = Rerg,∞
MCP (P ), where

R∞
MCP (P ) =

∫ 1

0
log2

1 + Pσ2
(
1 + 2

∑L
k=1 α2

k

)
+P (1 − σ2)

(
1 + 2

∑L
k=1 αk cos(2πkθ)

)2

dθ,

(4.3)
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in which σ2 is the variance of each fading coefficient. We remark that
the rate (Equation (4.3)) does not depend on the actual (stationary and
ergodic) distribution of an individual fading distribution but only on its
first two moments. Note also that this result recovers Equation (3.12)
for σ2 = 0, which corresponds to an unfaded scenario.

For σ2 = 1, as assumed throughout this monograph when consider-
ing fading, we get

R∞
MCP (P ) = log2

(
1 + P

(
1 + 2

L∑
k=1

α2
k

))
. (4.4)

This latter simple expression shows that MCP, when the number of
users is large, is able not only to fully mitigate the intercell interference,
as can be seen from the unitary multiplexing gain, but also to leverage
the beamforming gain of 1 + 2

∑L
k=1 α2

k afforded by the reception of
multiple BSs.

A few more remarks are in order. It can be proved, similar to [111],
that Equation (4.3) is increasing in σ2 and is maximized for σ2 = 1 as
for Rayleigh fading. This implies that fading is beneficial with respect
to a Gaussian channel with gains equal to the average of the fading
coefficients, in the limit when the number of users per-cell increases
without bound. It is remarked that the performance advantages due
to fading may not hold for a finite number of users K. This can be
easily seen by noticing that for K = 1 and no inter-cell interference
(α = 0), one obtains a point-to-point link for which fading is known
not to increase the rate [111, 118]. The advantages of fading for a
sufficiently large number of MSs can be interpreted, as argued above,
in terms of multiuser diversity. In fact, if the number of users is large
enough, it is likely that a sufficient number of users will experience
better than average channel conditions, thus compensating for the bad
channel conditions of other users.

Applying Jensen’s inequality to the rate expression (Equa-
tion (4.1)), it can be seen that Equation (4.4) is also an upper bound
on the ergodic per-cell capacity for any number of users K [111].

Figures 4.1 and 4.2, plotted for the linear Wyner model with L = 1
and Rayleigh fading, demonstrate the tightness of the asymptotic
expression (and upper bound) (Equation (4.4)) already for a moderate
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Fig. 4.1 Per-cell sum-rates versus Eb/N0 for the uplink of the fading Wyner model (Rayleigh
fading, L = 1, α = 0.4).
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number of users K. The fact that the presence of fading is beneficial
with large K for all values of P and α is also demonstrated in the
figures.

4.1.1.2 Moment Bounds for Intra-Cell TDMA

An alternative approach to approximating the ergodic per-cell sum-rate
Rerg,∞

MCP is proposed in [111] for a fading Wyner model with L = 1 and
fading coefficient with uniformly distributed phase (e.g., Rayleigh fad-
ing). Focusing on the intra-cell TDMA protocol, or equivalently K = 1,
bounds on Rerg,∞

MCP were found that depend on the moments of the eigen-
value distribution (Equation (3.11)). Specifically, it was first shown
that the average unordered eigenvalue distribution E(FHMH†

M
) con-

verges weakly to a unique distribution F as the number of cells increases
without bound, M → ∞.1 In addition, using a standard weighted paths
summation over a restricted grid, the limiting values of the first several
moments of this distribution were calculated. For example, listed below
are the first two limiting moments:

M1 = m2 + 2m2α
2 (4.5)

and

M2 = m4 + 8m2
2α

2 + (4m2
2 + 2m4)α4, (4.6)

where mi is the i-th power moment of the amplitude of an individual
fading coefficient. Following [49] the upper and lower principle repre-
sentations of F can be used to produce analytical lower and upper
bounds on the per-cell sum-rate capacity. For instance, listed below are
the lower and upper bounds of order n = 2 derived by this method are
as follows:

(M1)2

M2
log

(
1 + P

M2

M1

)
≤ Rerg,∞

MCP ≤ log(1 + PM1), (4.7)

where M1 and M2 are the first and second limit moments of F given
above. It is noted that this procedure can be extended in principle,

1 It is conjectured that using similar methods the spectrum can be proved to converge a.s.
to a unique limit as well.
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although in a tedious manner, for any finite K, or also for Wyner like
models where inter-cell interference stems from farther cells.

Examining the moment bounds (orders n = 8, 10) calculated for
Rayleigh fading and presented in Figure 4.2, reveals that the bounds
get tighter as the order n increases. Additional calculations [111] (not
presented here) show that the bounds are tighter when P decreases. In
addition, these calculations reveal that the rate of MCP with Rayleigh
fading can be larger than for the corresponding Gaussian channel even
for K = 1 but only for certain values of α and P . Following up the
discussion above, this can be explained by the fact that with MCP inter-
cell interference may not be deleterious, as explained in the discussion
around Figure 3.2, and that fading allows the network to potentially
leverage the good channel gains from any MS to any other BS it affects.

4.1.1.3 Free-Probability Approximation

In [56], the limiting spectrum of 1
1+2α2 HMH†

M for the fading Wyner
model with Lr = L� = 1 has been loosely shown by free probability
tools to be approximated by the Marŏenko–Pastur distribution [121]
(see Appendix D) with parameter K (number of users per-cell). The
approximation is shown to match fairly well Monte-Carlo simulations
for relatively large values of α and for Rayleigh fading. To demonstrate
the approximation inaccuracy in the low α regime, we note that in the
extreme case of α = 0, the eigenvalues are evidently exponentially dis-
tributed, with no finite support, in contrast to the Marŏenko–Pastur
distribution.

4.1.1.4 Extreme-SNR Analysis

Here we adopt the extreme-SNR analysis presented in Section 3.1.1.1
in order to get further insight into the performance of MCP over fading
channels.

Recall from Section 3.1.1.1, the low-SNR regime is characterized
through the minimum transmit Eb/N0 that enables reliable communi-
cations, i.e., Eb/N0min, and the low-SNR spectral efficiency slope S0.
Using the results in [125] as in Section 3.1.1.1, the low-SNR parame-
ters for the per-cell sum-rate capacity of the fading Wyner model with
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L = 1 are given for Rayleigh fading by2 [117]

Eb

N0 min
=

ln2
1 + 2α2 and S0 =

2K

1 + K
. (4.8)

Comparing these results with the corresponding parameters in the
Gaussian (unfaded) Wyner model, namely Equations (3.16) and (3.17),
reveals that fading does not entail any loss or gain in performance in
terms of Eb

N0 min
. In particular, the beamforming gain of 1 + 2α2 is still

achievable. Instead, the second-order analysis afforded by considera-
tions of S0 shows that, with low SNR, fading is beneficial when the
number of users per cell exceeds a certain threshold which is a decreas-
ing function of α [113].

Turning to the high-SNR regime, it is proved in [62] that the multi-
plexing gain is unity, just as for the corresponding Gaussian model (an
expression for the so-called power offset is also given as a function of a
Lyapunov exponent).

4.1.2 Soft-Handoff Model

We now discuss evaluation of the MCP per-cell sum-rate (Equa-
tion (4.1)) for the soft-handoff model with L = 1. Unlike the Wyner
model, here the matrix HMH†

M has a Jacobi structure, that is, it is
tridiagonal. This fact, as discussed in [118] facilitates analytical treat-
ment beyond what is known to be possible for the Wyner model. This
was already seen for the Gaussian scenario (see Equation (3.15)). In the
following, we discuss some of the available results for fading models.
We remark that, despite the simplified model, finding a closed-form
analytical expression for the ergodic rate achieved by MCP for general
fading statistics and finite number K of users per-cell remains an open
problem.

4.1.2.1 Intra-Cell TDMA

Here we focus on the per-cell sum-rates achieved by intra-cell TDMA,
or equivalently when K = 1, and Rayleigh fading with α = 1. In this

2 This result can be extended in a straightforward yet tedious manner to Wyner-like models
with arbitrary L.
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scenario, extending the discussion around Figure 3.1, it can be seen that
the achievable per-cell sum-rate equals the capacity of an LTI system
where the impulse response has two taps, corresponding to the fading
coefficients toward a given BS. This scenario was studied by Narula
in [78]. As also discussed in Appendix D, Narula’s main observation was
that the diagonal entries {dm} of the Cholesky decomposition applied to
GM = IM + PHMH†

M form a discrete-time continuous space Markov
chain with a unique ergodic stationary distribution as M → ∞ given by

fd(x) =
log(x)e− x

P

Ei
( 1

P̄

)
P

, x ≥ 1, (4.9)

where Ei(x) =
∫ ∞
x

exp(−t)
t dt is the exponential integral function. Fur-

ther, as proved in [78], the strong law of large numbers holds for the
sequence {logdm} as M → ∞. Hence, the average per-cell sum-rate
capacity of the intra-cell TDMA scheme (K = 1) can be proved to be
given by

Rerg,∞
MCP (P ) =

∫ ∞

1

(log(x))2e− x
P

Ei
( 1

P

)
P

dx. (4.10)

Note that Narula’s approach is based on an explicit calculation of
the stationary distribution fd, and is thus limited to Rayleigh fading. It
has not be thus far possible to extend this result to other fading distri-
butions or even to different values of the inter-cell interference factor α.
An exception to this is the case with uniform phase fading, where the
amplitude of all fading gains is (deterministically) equal to one and the
phases are uniformly distributed. In this simpler scenario, considered in
[43], the per-cell sum-rate capacity is shown to coincide with that of the
corresponding Gaussian model, namely Equation (3.15), as M → ∞.

4.1.2.2 Wide-Band Transmission

Following [78], it is also possible to obtain a nontrivial upper bound on
the per-cell sum-rate of the WB scheme with finite K and infinite num-
ber of cells M → ∞, in the presence of zero-mean unit power (m1 = 0,
m2 = 1) fading (e.g., Rayleigh fading) and α = 1. This bound is given
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by

Rerg,∞
MCP (P ) ≤ log

(
1 + 2P +

√
(1 + 2P )2 − (4P 2/K)

2

)
. (4.11)

It is proved in [118] for K = 1 (intra-cell TDMA protocol) and extended
to an arbitrary K in [63]. The derivation is carried out by using the
fact that the determinant of a Jacobi matrix is equal to a weighted sum
of the determinants of its two largest principal sub-matrices.

It is noted that for K = 1, the upper bound (Equation (4.11))
coincides with the per-cell sum-rate capacity (Equation (3.15)) of the
Gaussian soft-handoff model. It follows that the presence of Rayleigh
fading cannot increase the rates of the intra-cell TDMA protocol in the
soft-handoff model with α = 1. This is in contrast to the Wyner model,
as explained above. Nevertheless, it is shown in [118] that already for
K = 2 users the presence of fading may be beneficial at least for low
SNR values. Note that the bound is tight for K → ∞ since in this
regime the strong law of large numbers can be invoked to show that
the per-cell sum-rate is given by Equation (3.15).

In Figure 4.3 the per-cell sum-rate bound (Equation (4.11)) is shown
for K = 1,2,5,∞, along with the exact rate expression for intra-cell
TDMA (4.10), and a Monte-Carlo simulation for K = 2 and M = 40,
as a function of the transmitted Eb/N0.3 It is noted that the bound
for K = 1 coincides with the corresponding nonfading per-cell sum-
rate (Equation (3.15)). The tightness of the bounds with increasing
numbers of users per-cell is apparent already for K = 2. In addi-
tion, the fact that Rayleigh fading is beneficial for K > 1 is also
visible.

4.1.3 Quasistatic Fading

With quasistatic fading, the outage capacity is typically used as a per-
formance measure [82]. This is, generally speaking, the maximum rate
that guarantees reliable transmission for a given percentage of channel
realizations (the complement of whose measure is referred to as outage

3 Recall that REb/N0 = P .
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Fig. 4.3 Per-cell sum-rates versus Eb/N0 for the uplink of the fading soft-handoff model
(Rayleigh fading, L = 1, α = 1).

probability). This setting implies either lack of CSI at the users (so that
rate adaptation is not possible) or inelastic constant-rate applications.
Using such a performance index in a large-scale cellular system with
MCP proves to be challenging. In fact, on the one hand, defining out-
age as the event where any of the users’ messages are not correctly
decoded leads to uninteresting results as the number of cells M grows
large; on the other hand, defining individual outage events, as studied
in [77] for a two-user multiple-access channel, appears to be analytically
intractable for large systems.

A tractable performance measure is instead obtained by considering
the achievable per-cell sum-rate (Equation (3.8)) for given channel real-
izations in the limit as the number of users per cell K and/or the num-
ber of cells M grow large, where the limit is defined in an almost sure
sense. It is noted that such per-cell sum-rate is achievable by appropri-
ate choice of distinct rates by the MSs, and such choice depends on the
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current realization of the channel matrices. The practical significance of
this performance measure is thus limited to instances in which, thanks
to appropriate signalling, such rate adaptation is possible.

The relations between rate expressions supported by quasistatic and
ergodic channels in Wyner models is studied in [61]. As mentioned ear-
lier, the rate RMCP (P ) is shown to converge almost surely to Rerg,∞

MCP (P )
as M → ∞. Therefore, in the limit of M → ∞, the outage probability
equals one if the transmitted per-cell sum-rate is larger than Rerg,∞

MCP (P )
and zero otherwise. Moreover, in [61], a central limit theorem is shown
for RMCP (P ) that characterizes the outage probability for large val-
ues of M . In particular, it is proved that the fluctuations of RMCP (P )
decrease like 1/

√
M as M goes to infinity.

4.1.4 DS-CDMA

The previous sections focused mostly on the optimal performance in
a cellular uplink with MCP, and showed that WB transmission with
joint decoding is optimal over fading channels. Here, instead, we con-
sider the performance of a practical and widely adopted transmis-
sion scheme, namely Direct Sequence-Code Division Multiple Access
(DS-CDMA). We focus on the fading Wyner model and assume that
the users employ binary spreading sequences with a chip-level inter-
leaver and spreading factor, or processing gain, equal to N . Note that,
in practical DS-CDMA systems, symbol-level interleaving may be used
instead, but the current assumption simplifies the analysis, making it
possible to employ random matrix tools (see Appendix D). Further
discussion on this assumption can be found in [117].

We analyze the asymptotic regime in which both the number of users
per cell K and the processing gain N go to infinity, while their ratio
goes to some finite constant, which is denoted by β = limK,N→∞ K/N

and is referred to as the “cell-load”. Moreover, in order to impose fur-
ther practical constraints on the design, it is assumed that joint decod-
ing is possible only among BSs belonging to the same cluster of M

cells. More precisely, the signals received at each of the BSs within a
cluster are jointly processed by exploiting the knowledge of signatures



48 Multi-Cell Processing in Fading Channels

and codebooks of all intra-cluster users, while the codebooks of out-
of-cluster users are unknown and their signature sequences are known.
This is an example of cluster decoding, which will be further consid-
ered in the next section. The CP employs either the optimum joint
decoder or a more practical linear minimum mean square error (MMSE)
decoder. We follow the treatment in [117].

Since transmission involves N chips per symbol, the baseband signal
received by the CP for the cluster of concern consists of MN chip-level
samples, which we write as

yM
1 = HxM+1

0 + nM
1 , (4.12)

where yM
1 = (yT

1 ,yT
2 , . . . ,yT

M )T is the MN × 1 vector received by the
cluster M BSs, xM+1

0 = (xT
0 ,xT

1 , . . . ,xT
M ,xT

M+1)
T is the (M + 2)K × 1

transmitted symbols vector by the MK cluster users and the two
interfering cells, and nM

1 = (nT
1 ,nT

2 . . . ,nT
M )T is the MN × 1 additive

complex Gaussian noise vector received by the cluster M cells sites.
Note that the BSs in the cluster are numbered as 1, . . . ,M , while the
interfering, out-of-cluster, cells are 0 and M. The MN × (M + 2)K
channel transfer matrix H is given by

H =

αS0 ◦ H1,0 0 0
0 H̃ 0
0 0 αSM+1 ◦ HM,M+1

, (4.13)

where ◦ stands for the Hadamard product, defined for arbitrary equal
sized matrices A and B as

[A ◦ B]i,j � [A]i,j [B]i,j , (4.14)

and H̃ is an MN × MK matrix given by
S1 ◦ H1,1 αS2 ◦ H1,2 0 · · · 0
αS1 ◦ H2,1 S2 ◦ H2,2 αS3 ◦ H2,3 0 0

0 αS2 ◦ H3,2 S3 ◦ H3,3 αS4 ◦ H3,4 · · ·
. . .

. . .
. . .

0 · · · 0 αSM−1 ◦ HM,M−1 SM ◦ HM,M

.

(4.15)
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The entries of the N × K matrices {Hm,n} are the channel fades
affecting the signals transmitted by users in the n-th cell at a chip-
level, as observed by the m-th BS. With the underlying chip-level
interleaver assumption, the entries of Hm,n matrices become indepen-
dent and identically distributed (i.i.d.) zero-mean circularly symmetric
complex Gaussian random variables, with unit variances (correspond-
ing to Rayleigh fading). The matrices are also assumed to be statisti-
cally independent for different values of m and n. The N × K matrices
{Sm} denote the binary signature matrices, with the columns of the
matrix Sm being the spreading sequences of the users operating in the
m-th cell. It is assumed that the entries of the signature matrices are
binary i.i.d. random variables taking the values {−1/

√
N,1/

√
N} with

equal probability. Independence of the spreading sequences of different
users is also assumed. It is noted that the matrices αS0 ◦ H1,0 and
αSM+1 ◦ HM,M+1 account for the inter-cell interference received by
the cluster cell sites 1 and M , respectively.

4.1.4.1 Optimum Receiver

The per-cell ergodic sum-rate of the optimum receiver, which performs
joint decoding, is given by [117]

Rerg
M,opt(P ) = RM − 2

M
RI , (4.16)

where

RM =
1
M

lim
N,K→∞

K
N

→β

1
N

E{logdet(I + PH̃H̃
†
)}, (4.17)

and

RI = lim
N,K→∞

K
N

→β

1
N

E{logdet(I + α2PGG†)}, (4.18)

with the N × K matrix G in Equation (4.18) being the channel transfer
matrix corresponding to users of cell 0, whose signals are received at
cell site 1, given by

G = S0 ◦ H1,0. (4.19)
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Rate RM can be interpreted as the average per-cell spectral effi-
ciency in the case in which the receiver also tries to decode the trans-
missions of users in the two cluster-adjacent cells (assuming that their
codebooks are now also known at the receiver). With the underlying
assumption of binary spreading sequences, and independent circularly
symmetric Gaussian channel fades, the entries of the channel transfer
matrix H are marginally Gaussian. Furthermore, they are indepen-
dent and hence jointly Gaussian (and uncorrelated). With this obser-
vation, a practical version of Girko’s law (see Appendix D) can be used,
obtaining

RM =
1
M

M+1∑
m=0

β log(1 + ΓM (m)(1 + 2α2)βP )

+
1
M

M∑
m=1

log

(
1 +

m+1∑
k=m−1

[PM ]m,kβP

1 + ΓM (k)(1 + 2α2)βP

)

− 1
M

M+1∑
m=0

βΓM (m)ΥM (m) loge, (4.20)

where the discrete-index asymptotic power profile M × (M + 2) matrix
PM is given by

PM =


α2 1 α2 0 · · · 0
0 α2 α2 0 · · · 0
...

. . . . . . . . . . . . . . .
...

0 0 · · · 0 α2 α2

 (4.21)

with the rows of PM being enumerated as l = {1, . . . ,M} and the
columns enumerated as m = {0, . . . ,(M + 1)}. Moreover, the values of
the discrete-index function {ΓM (m)}M+1

m=0 are given by the unique solu-
tions to the following set of equations:

ΓM (m) =
1

β(1 + 2α2)

m+1∑
l=m−1

[PM ]l,m
1 +

∑l+1
k=l−1

[PM ]l,kβP

1+ΓM (k)(1+2α2)βP

, (4.22)
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for m = 0,1, . . . ,M + 1, where “out-of-range” indices should be ignored.
Finally, we have

ΥM (m) =
(1 + 2α2)βP

1 + ΓM (m)(1 + 2α2)βP
, m = 0,1, . . . ,M + 1, (4.23)

for m = 0,1, . . . ,M + 1. The quantity RI may be interpreted as the
spectral efficiency of an optimum receiver in a single isolated cell with
homogeneous fading [126], and with a scaled SNR of α2P :

RI = β log
(
1 + α2P − 1

4
F(α2P,β)

)
+ log

(
1 + α2Pβ − 1

4
F(α2P,β)

)
− loge

4α2P
F(α2P,β) (4.24)

where

F(x,z) �
(√

x(1 +
√

z)2 + 1 −
√

x(1 − √
z)2 + 1

)2

. (4.25)

Low-SNR Analysis

Having derived the general expressions above, we can now obtain more
insight into the performance of the optimum receiver with DS-CDMA
by analyzing the low-SNR behavior. The low-SNR characterization of
the optimum receiver is summarized as follows [117]:

Eb

N0 min
=

log2[
1 + 2α2

(
1 − 1

M

)] ,

S0 =
2β

1 + β

[
1 + 2α2(1 − 1

M )
]2[

1 + 4α2
(
1 − 1

(1+β)M

)
+ 4α4

(
1 − (3+β)

2(1+β)M

)] .

(4.26)

It can be seen that the optimum receiver is able to harness the
beamforming gain, which approaches (1 + 2α2) as the cluster sizes
M increase. Moreover, it is observed that the slope S0 increases
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monotonically with the cell load β. This implies that, in the low-SNR
regime, it is optimal to increase the cell load as much as possible. This
conclusion can be justified by noting that in the low-SNR regime the
main performance impediment is set by noise and not by interference, so
that increasing the number of users per cell is generally advantageous.

High-SNR Analysis

We now turn to the high-SNR regime. For M ≥ 2, the multiplexing
gain is given by [117]

S∞ =



β, β ≤ M

M + 2

1 − 2
M

β,
M

M + 2
< β ≤ 1

1 − 2
M

, 1 ≤ β.

(4.27)

From this result, it is observed that taking β → ∞ is no longer optimum
in this regime. In fact, the optimum value of β in terms of the high-SNR
slope approaches M

M+2 as the SNR grows. Moreover, it is interesting to
note that when M = 2 (and also M = 1 [143]), taking β → ∞ makes the
performance interference limited, so that the multiplexing gain is zero.
In contrast, for M ≥ 3, the performance of the optimum receiver is no
longer interference limited when β → ∞, although, as noted above, an
unbounded cell load is a strictly suboptimum choice in the high SNR
regime.

4.1.4.2 Linear MMSE Receiver

We now consider the performance of a more practical linear MMSE
receiver. Noting that the quantity ΓM (m)(1 + 2α2)βP is the Signal-to-
Interference-plus-Noise Ratio (SINR) at the output of the linear MMSE
receiver, we obtain the ergodic sum-rate as [117]

Rerg
M,MMSE (P ) =

1
M

M∑
m=1

β log(1 + ΓM (m)(1 + 2α2)βP ). (4.28)
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Low-SNR Analysis

The low-SNR characterization of the linear MMSE receiver is summa-
rized as follows for M ≥ 2 [117]:

Eb

N0 min
=

log2[
1 + 2α2

(
1 − 1

M

)]
S0 =

2β

1 + 2β

[
1 + 2α2(1 − 1

M )
]2[

1 + 4α2
(
1 − 1+β

(1+2β)M

)
+ 4α4

(
1 − 3+4β

(1+2β)M

)] .

(4.29)

This analysis shows that the linear MMSE receiver is able to harness the
same beamforming gains as the optimum receiver. Moreover, the slope
of Equation (4.29) monotonically increases with β which establishes
the optimality of taking β → ∞ for the linear MMSE receiver in the
low-SNR regime, as shown for the optimum receiver.

4.2 Downlink

We now turn to the analysis of the achievable per-cell sum-rate for the
downlink in the presence of MCP with unlimited-capacity backhaul for
both fading soft-handoff and fading Wyner models. Focusing on ergodic
fading, the per-cell sum-capacity is given by Rerg

MCP (P ) = E[RMCP (P )],
where RMCP (P ) is obtained as Equation (3.20). Similar to RMCP (P )
for Gaussian models, this rate is attained via DPC (see Appendix A).
Evaluating this quantity is even more complex than for the uplink due
to the min–max operation involved, which arises as a consequence of the
per-BS power constraint, as revealed by the duality analysis reported
in Appendix B. Therefore, as for the uplink, we will focus on obtaining
analytical insights via approximations and asymptotic results in the
following.

4.2.1 Soft-handoff Model

We start by analyzing the soft-handoff model with L = 1 and α = 1.
The choice L = 1 is made for analytical convenience in order to
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overcome the difficulties identified above (extension to any α does not
pose additional challenges).

4.2.1.1 Large Number K of Users Per Cell

We focus here on the scenario in which the number of users per cell, K,
is large and derive upper and lower bounds on the ergodic per-cell
sum-rate Rerg

MCP (P ) for Rayleigh fading. The discussion follows [118].
Before starting the treatment, it is useful to recall that for K large [98]
the per-cell sum-rate of a system without inter-cell interference scales
as log logK. This means that, as the number of MSs in the system
increases, the system is able to transmit at a larger sum-rate, while
keeping the transmit power and bandwidth constant. As further dis-
cussed below, this gain is enabled by selecting, and thus allocating
power to, the MSs with the best channel conditions. This can be seen
as another instance of the benefits of multiuser diversity. We empha-
size that this particular multiuser diversity gain was not considered
for the uplink, since we have assumed that the MSs do not have CSI
and thus cannot perform channel-aware scheduling (although in prin-
ciple channel-aware scheduling can be performed at the CP if channel
coherence time permits).

We now study the effects of inter-cell interference on the achievable
rate by deriving lower and upper bounds on the ergodic per-cell sum-
rate Rerg

MCP (P ). From Equation (3.20), a lower bound on Rerg
MCP (P ) can

be obtained by fixing a diagonal matrix D and minimizing over the
noise covariance Λ. Fixing a matrix D is equivalent to deciding on a
particular power allocation across the MSs in the dual uplink (see Sec-
tion 3.2.2). A convenient scheduling for the dual uplink is the following:
only users received in the dual uplink channel with fade power levels
exceeding some threshold Lth are allowed to transmit. As K → ∞,
the number of active users per cell with this scheme can be shown to
crystallize to K0 � Ke−2Lth , so that all active users can transmit at
equal powers 1/K0 to meet the power constraint tr(D) ≤ M in Equa-
tion (3.20). The threshold Lth is selected so that, as K → ∞, we have
K0 → ∞, so that the law of large numbers can be invoked. As demon-
strated in [118], minimizing Equation (3.20) when D is selected as
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above is accomplished by choosing Λ = I. This way, we have obtained
a lower bound on Rerg

MCP (P ), which selecting K0 = Ke−2Lth = Kε, and
hence Lth = 1−ε

2 logK, where 0 < ε < 1, is given by

Rerg
MCP (P ) ≥ log2(1 + P ((1 − ε) logK + 2)). (4.30)

We remark that the considered scheduling scheme for the dual
uplink channel translates into a downlink DPC-based transmission
scheme that achieves the corresponding sum-rate via the transfor-
mations derived in [127]. We also note that considering a scheduling
scheme, where all users transmit simultaneously with equal powers,
produces an achievable average per-cell sum-rate of log(1 + 2P ). This
shows that the lack of scheduling fails to produce the multiuser diversity
gain factor of (1 − ε) logK, confirming the discussion above regarding
the performance gains attainable by only serving the users with the
best channel conditions.

An upper bound on Rerg
MCP (P ) can be instead obtained by fixing a

matrix Λ = I and then optimizing over D. A further upper bound on
the so obtained optimal value can be found by bounding the channel
fades by the strongest fading gain received at each cell site (over all
intra-cell users), and observing that the maximum of K i.i.d. exponen-
tially distributed random variables scales as logK (neglecting smaller
terms) for K 	 1 [98]. This leads to

Rerg
MCP (P ) ≤ log2(1 + 2P logK). (4.31)

The above bounds are rather tight, and for ε 
 1 the gap between
the two bounds is less than 1 bit/s/Hz in the high-SNR region. More-
over, one can conclude from the two bounds that the per-cell sum-rate
capacity scales as log logK for K 	 1, as for the interference-free sys-
tem. In other words, interference, when MCP is used, does not ham-
per the gains achievable via multiuser diversity. In fact, a suboptimal
scheme proposed in [112] is shown to achieve the same scaling law even
without employing optimal DPC encoding. The scheme is based on
zero-forcing (ZF) beamforming and a simple user selection (schedul-
ing) rule whereby one user is served in each cell at any given time in
an intra-cell TDMA fashion, and is discussed in Section 4.2.3.
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4.2.1.2 Extreme-SNR Analysis

We now analyze the performance of MCP for the downlink in the
extreme SNR regimes by leveraging the bounds obtained above. Recall
that the results here hold for large K and that we have set α = 1. We
first remark that the multiplexing gain with MCP is unitary. This is
consistent with the results obtained for the uplink and shows the ability
of MCP to mitigate the effect of interference.

We then study the low-SNR regime. The low-SNR parameters can
be characterized (for any number of cells M ≥ 3) as

log2
2logK

≤ Eb

N0 min
≤ log2

(1 − ε) logK + 2
(4.32)

and

S0 = 2. (4.33)

We recall that in the absence of fading, for the Gaussian soft-handoff
model at hand, we have Eb/N0min = log2/2 and S0 = 4/3 [118]. Note
that the factor 2 in Eb

N0 min
= log2/2 accounts for the beamforming gain

in the model at hand. Comparing with the results in the absence
of fading, the equations above demonstrate the beneficial effect of
fading on the downlink. Specifically, the minimum transmit Eb

N0
that

enables reliable communication is decreased at least by a factor of
2/((1 − ε) logK + 2), while the low-SNR slope is increased by a factor
of 1.5 for large K. This is a manifestation of the gains of multiuser
diversity. In particular, here the multiuser gains are shown to depend on
Eb
N0 min

, and to increase with, K, unlike the uplink (cf. Equation (4.8)).
This can be explained following the same reasoning used above to
justify the rate scaling of log logK with increasing numbers of users,
demonstrating the advantages of scheduling only the best users.

4.2.2 Wyner Model

In this section, we study the fading Wyner model with Rayleigh fading,
L = 1 and any value of α2, following a similar approach to the one used
for the soft-handoff model.
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4.2.2.1 Large Number K of Users Per Cell

Using the same bounding techniques discussed above, for an arbitrary
number of cells (M > 2) with many users (K 	 1), the per-cell sum-
rate capacity for the Wyner model is bounded by (ignoring small orders
of logK)

log2(1 + P ((1 − ε) logK + 1 + 2α2))

≤ RMCP (P ) ≤ log2(1 + (1 + 2α2)P logK), (4.34)

for some ε → 0, as K → ∞. The bounds (Equation (4.34)) show the
same log logK multiuser diversity gain as for the soft-handoff (and the
inter-cell interference-free) system.

4.2.2.2 Extreme-SNR Analysis

Similar results as for the soft-handoff model are also obtained when
analyzing the extreme-SNR behavior. In fact, in the high-SNR regime,
the multiplexing gain can be again shown to be unitary, whereas in the
low-SNR regime we have

log2
(1 + 2α2) logK

≤ Eb

N0 min
≤ log2

(1 − ε) logK + 1 + 2α2 (4.35)

and

S0 = 2. (4.36)

4.2.3 Distributed Zero-Forcing Beamforming

In the previous sections, we have derived bounds on the maximum
achievable per-cell sum-rate. As was discussed, the optimal performance
is attained by DPC techniques, which are generally complex to imple-
ment. Here, instead, we analyze the performance of a practical and well-
established alternative to optimal DPC schemes, namely zero-forcing
beamforming (ZFBF) with a simple scheduling strategy. As will be
shown, ZFBF is an attractive scheme, since it attains noninterference-
limited performance, while requiring only single-user coding/decoding
techniques. Analysis for a general MIMO Gaussian broadcast channel
with sum-power constraint was presented in [136], while this section
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discusses the analysis for the Gaussian and fading Wyner models (with
per-BS power constraints), following [112]. We refer to [5, 7] for related
recent results.

We assume the system to be operated according to an intra-cell
TDMA protocol. ZFBF is based on transmission via linear precoding
from all the BSs. In particular, the signal x transmitted by the BSs
(see Equation (2.6)) is given by x = Bu, where u is the M × 1 vector
of symbols intended for the M scheduled users, one per cell, and B is
the M × M beamforming matrix. The received signal (Equation (2.6))
thus becomes

y = H†Bu + z, (4.37)

where we have neglected the subscript M in the channel matrix for
simplicity of notation. The beamforming matrix B is selected so as to
eliminate inter-cell interference. This leads to

B =

√
MP

trace((HH†)−1)
(H†)−1. (4.38)

Note that the definition (Equation (4.38)) only ensures the sum-power
constraint, but it will be argued below that it also satisfies the required
per-BS power constraints. Substituting Equation (4.38) into Equa-
tion (4.37), the received signal vector reduces to

y =

√
MP

trace
(
(HH†)−1

) u + z. (4.39)

Thanks to ZFBF, as seen in Equation (4.39), the downlink channel
has been decomposed into a set of M identical independent parallel
single-user channels, one for each MS.

We now consider separately the Gaussian and fading Wyner models.

4.2.3.1 Gaussian Wyner Model

From Equation (4.39), the per-cell sum-rate achievable by ZFBF is
given by

Rzfbf(P ) = log2

(
1 +

MP

trace(HH†)−1

)
, (4.40)
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where the channel matrix H is a symmetric circulant Toeplitz matrix
with first column given by [1 α 0M−2]. Moreover, by symmetry, it can
be seen that the transmission power per-BS, which is given by

[BB†]m,m =
MP [(HH†)−1]m,m

trace(HH†)−1 (4.41)

is equal for all BSs m.
Applying Szegö’s theorem [30], the average per-cell sum-rate of the

ZFBF scheme is given for α < 1/2, by

Rzfbf(P ) =
M→∞

log2(1 + (1 − 4α2)
3
2 P ). (4.42)

Equation (4.42) clearly shows the noninterference-limited behavior of
ZFBF. Moreover, comparing Equation (4.42) with Equation (3.1), it
can be seen that the ZFBF scheme is superior to SCP with spatial
reuse F = 2 when the SNR P is above a certain threshold

Pt(α) =
2(1 − (1 − 4α2)

3
2 )

(1 − 4α2)3
, (4.43)

which is an increasing function of α. As a technical remark, it is noted
that for α = 1/2 the circulant channel transfer matrix H is singular and
channel inversion methods such as ZFBF are not applicable. Moreover,
H is not guaranteed to be nonsingular for α > 1/2 and any finite num-
ber of cells M .

4.2.3.2 Fading Wyner Model

Having obtained some insight into the performance of ZFBF in a setting
without fading, we now turn to the analysis of the fading Wyner model.
In order to implement intra-cell TDMA while still leveraging multiuser
diversity, we consider a simple scheduling algorithm that selects for
each fading block (or TDMA slot) the user with the maximum chan-
nel gain for transmission in each cell. The resulting channel transfer
matrix H† of this suboptimal scheduling consists of diagonal entries
whose absolute values squared are the maximum of K independent
exponentially distributed random variables (as for Rayleigh fading).
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The other nonzero entries are on the two diagonals above and below
the main diagonal and are complex Gaussian random variables with
power α2. It can be proved that this scheme ensures in probability
an equal per-cell power (Equation (4.41)) equal to P , asymptotically
with increasing number of users per-cell. We finally remark that, in
case matrix H is ill-conditioned, the CP can start replacing the “best”
users by their second “best” users until the resulting matrix H is well
behaved. Since we assume that K 	 1, the overall statistics are not
expected to change by this user-replacing procedure.

We now need to evaluate the ergodic per-cell sum-rate

Rerg
zfbf(P ) = E

{
log2

(
1 +

MP

trace((HH†)−1)

)}
. (4.44)

Leveraging the special structure of the channel transfer matrix H†

described above, it can be proved that the ergodic per-cell sum-rate
capacity (Equation (4.44)) scales as log logK as the number K of users
per cell increases [112]. This demonstrates that the ZFBF is able to
fully harness the multiuser diversity gains in the regime of large K. This
result, can be intuitively explained by the fact that due to the schedul-
ing process, (HH†) “becomes” diagonal (logKIM ) as K increases.
Accordingly, for large K, (HH†)−1 “behaves” like (IM/ logK), and
Rerg

zfbf(P ) in Equation (4.44) is approximated by

R∗
zfbf

∼=
K�1

log2(1 + P logK). (4.45)

4.2.3.3 Numerical Results

In Figure 4.4 the ergodic per-cell sum-rate of the ZFBF scheme is
compared with the sum-rate capacity (Equation (3.20)), obtained via
Monte Carlo simulations, for K = 100 and α = 0.4. The gap between
the performance of ZFBF and the capacity is explained by the fact that
the ZFBF scheme does not exploit antenna gains, but only attempts
to eliminate inter-cell interference. Performance is also compared with
SCP with F = 1 and F = 2.
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Fig. 4.4 Per-cell sum-rates versus Eb/N0 for the downlink of the fading Wyner model
(Rayleigh fading, L = 1, α = 0.4).

4.3 Summary

In this section, we have analyzed the performance benefits of MCP in
the presence of fading. A first observation has been that the beamform-
ing and multiplexing gains that were identified in the previous section
in the absence of fading continue to hold with fading. Moreover, we have
seen that, with fading, additional gains become available due to mul-
tiuser diversity. The latter derives from the presence of multiple users
per cell with independent channel realizations. Therefore, while with-
out fading the number K of users per cell does not play a relevant role
(under the assumption that the power remains constant with K), this
is not the case in fading channels. Specifically, for the uplink, under the
assumption of channel-independent scheduling, we have observed that
multiuser diversity gains arise if K is sufficiently large, while for small K

having fewer users per cell can be preferable. Instead, for the downlink,
with channel-aware scheduling, MCP enables the system to harness
a logarithmic gain as a function of K due to multiuser diversity for
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all K and SNR levels. We emphasize that, if channel-aware scheduling
is allowed for the uplink as well, then it is possible to obtain the same
multiuser diversity gains obtained here for the downlink (see [118]).
We have also studied the performance of practical system implemen-
tations in both the uplink, via DS-CDMA, and downlink, via ZFBF,
and obtained performance comparable with that obtained under ideal
conditions.



5
Constrained Multi-Cell Processing: Uplink

The previous sections analyzed the performance of MCP with
unlimited-capacity backhaul links to a CP. The analysis has thus
assessed the advantages of MCP with respect to SCP, with possible
spatial reuse, under ideal conditions for the backhaul links. This leaves
open the issue of addressing the actual performance advantages of MCP
once limitations on the backhaul links are accounted for. This is the
subject of this section, where we focus on the uplink. Discussion of
the downlink is postponed to the next section. We follow the classifi-
cation in Section 2.3 and consider first limited-capacity backhaul links
to the CP, then finite-capacity links between adjacent BSs and finally
clustered cooperation. We will consider Gaussian and (ergodic) fading
Wyner and soft-handoff models.

5.1 Finite-Capacity Backhaul to a Central Processor

In this section, we consider the impact of finite-capacity backhaul
between BSs and CP, as shown in Figure 2.4(a). Recall that we assume
that each BS is connected to the CP via a backhaul link of capacity C

(bits/s/Hz).

63
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5.1.1 Upper Bound and Definitions

To provide a benchmark result, we observe that the achievable per-cell
sum-rate can be upper bounded by the so-called cut-set upper bound
(see, e.g., [17]). This bound dictates that the rate R(P,C) achievable
by any scheme with power constraint P and backhaul capacity C must
satisfy

R(P,C) ≤ RUB(P,C) = min{C,RMCP (P )}, (5.1)

where RMCP (P ) is defined in Equation (3.8) and represents the per-cell
sum-rate capacity with unlimited-capacity backhaul links. For ergodic
fading, a similar relationship holds with Rerg

MCP (P ) = E[RMCP (P )] in
lieu of RMCP (P ). The cut-set bound (Equation (5.1)) merely states
that the per-cell sum-capacity cannot be larger than the minimum of
the (per-cell) backhaul capacity C and of the rate attainable with ideal
backhaul.

We now study how close one can get to the upper bound
(Equation (5.1)). We do this by considering separately two types of
MCP strategies.

• Oblivious BSs: The BSs are assumed to have no decod-
ing power. This enables implementation with “light” BSs,
that only need to have a radio transceiver and minimal
baseband processing capabilities. The BSs are also not
required to be informed about the MSs’ codebooks. We
refer to this scenario as “oblivious BSs”. Note that, due
to capacity limitations on the digital link to the CP,
oblivious BSs cannot directly forward the received radio
signal (say, using radio-over-fiber technologies), but instead
have to compress the received signal before communicating to
the CP.

• Informed BS : The BSs have full decoding capabilities. We
refer to this scenario as “informed BSs”, since in this case
the BSs must be aware of the MSs’ codebooks in order to
perform decoding.
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5.1.2 Oblivious Base Stations

Here we study the performance achievable with oblivious BSs for Gaus-
sian Wyner and Gaussian soft-handoff models. The corresponding fad-
ing models are studied in Section 5.6. For simplicity, we focus on the
case K = 1, or equivalently intra-cell TDMA. This is without loss of
generality, given the optimality of the intra-cell TDMA in Gaussian
models (see Section 2).

We consider the following scheme, proposed in [85]. The basic idea is
that each oblivious BS compresses the received signal to C (bits/s/Hz)
and sends some function of the compressed index to the CP. The CP
then performs decoding based on the information received from the
BSs. To be more specific, design of the compression scheme can lever-
age the fact that the signals received by different BSs are correlated,
since they are the result of the same set of signals propagating from
MSs to BSs. This allows the BSs to reduce the rate, and thus the
backhaul capacity, required to communicate the compression indices
to the CP. Compression strategies that leverage signal correlation are
typically referred to as distributed source coding and the compres-
sion problem at hand as the “CEO problem”, which is introduced in
Appendix C.

As discussed in Appendix C, distributed source coding strategies
operate by transmitting a function (referred to as a “bin”) of the
compression index to the CP, thus reducing the required backhaul rate.
Thanks to the signal correlation, the CP is in principle able to recover
the compression indices, and hence the signals compressed by the RSs
(i.e., the CP “decompresses”). Decoding can then take place at the CP
based on the decompressed signals. Reference [85] instead proposes a
different, and potentially better, approach, whereby the CP performs
joint decompression and decoding of all compressed signals and mes-
sages of all active MSs. Incidentally, this approach to joint decompres-
sion and decoding has been also later found to be useful in many other
scenarios [65]. We remark that the scheme at hand can also be defined
as “Compress-and-Forward” (CF) following standard terminology for
relaying [48] (see also Section 6).
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References [85, 86] prove that the following per-cell rate is achievable
by the scheme discussed above for a system characterized by the channel
matrix H as M → ∞:

Robl(P,C) = lim
M→∞

1
M

log2 det(I + (1 − 2−r∗
)PHH†), (5.2)

where r∗ is the solution of the equation1

F (P,r∗) = C − r∗, (5.3)

in which we have defined the function

F (P,r) � lim
M→∞

1
M

log2 det(I + (1 − 2−r)PHH†). (5.4)

Note that in this section, we do not explicitly denote the fact that the
achievable rates correspond to the regime M → ∞ in order to simplify
the notation.

Since the result (Equation (5.2)) holds for any channel matrix H,
it applies in particular for the Gaussian Wyner and Gaussian soft-
handoff models. Comparing the rate (Equation (5.2)) with the per-cell
rate (Equation (3.8)) achievable with no limitations on the back-
haul, it can be seen that a finite-capacity backhaul entails an SNR
loss of 1/(1 − 2−r∗

). Note in fact that, when C → ∞, then we have
r∗ → ∞ and Equation (5.2) reduces to the per-cell rate capacity (Equa-
tion (3.8)). The parameter r∗ can be interpreted as the rate that the
BSs have to invest for compressing the noise in the received signals
[83]. In this regard, we emphasize that the BS cannot avoid compress-
ing channel noise since it cannot decode the useful signal and thus
separate signal and noise. The condition (Equation (5.3)) imposes the
requirement that the achievable per-cell rate be equal to the amount
of backhaul capacity left once the portion r∗ wasted for noise compres-
sion is accounted for. Finally, we emphasize that Robl(P,C) ≤ C due
to (5.3), as it should be by the upper bound (5.1).

It can also be seen that if no inter-cell interference is present,
i.e., α = 0, the rate (Equation (5.2)) reduces to [85]

Robl(P,C) = log2

(
1 + P

1 − 2−C

1 + P2−C

)
. (5.5)

1 For finite C, the implicit (Equation (5.3)) is easily solved numerically, since F (P,r) can
be shown to be monotonic in r for the symmetric models at hand.
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Comparison with the rate log2(1 + P ) achievable with ideal backhaul
links shows an SNR degradation of 1+P2−C

1−2−C .
We can now specialize the general result (Equation (5.2)) to both

the Gaussian Wyner and the Gaussian soft-handoff models with L = 1.
For the Wyner model, we get

Robl(P,C) = F (P,r∗)

=
∫ 1

0
log2(1 + P (1 − 2−r∗

)(1 + 2αcos2πθ)2)dθ, (5.6)

where r∗ is the unique solution to the fixed point equation F (P,r∗) =
C − r∗. Alternatively, for the soft-handoff model, it is possible to get
a more explicit expression as

Robl(P,C) = F (P,r∗)

= log2

(
1 + (1 + α2)P + 2α22−CP 2

2(1 + 2−CP )(1 + α22−CP )

+

√
1 + 2(1 + α2)P + ((1 − α2)2 + 4α22−C)P 2

2(1 + 2−CP )(1 + α22−CP )

)
.

(5.7)

Note that the two results above reduce to Equations (3.12) and (3.15),
respectively, for C → ∞.

5.1.2.1 Low-SNR Analysis

Next we study the low-SNR characterization of the oblivious scheme
discussed above. It is proved in [86] that the low-SNR parameters are
given by

Eb

N0 min
=

Ẽb

N0 min

1
1 − 2−C

(5.8)

and

S0 = S̃0
1

1 + S̃0
2−C

1−2−C

, (5.9)

where Ẽb
N0 min

and S̃0 are the minimum transmitted energy per bit
required for reliable communication and the low-SNR slope of the
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per-cell capacity with unlimited backhaul links, namely RMCP (P ) =
Robl(P,∞) = F (P,∞).

This result confirms and quantifies for the low-SNR regime the
insight offered above on the effect of a limited-capacity backhaul. In
particular, it is seen that oblivious BSs are able to obtain the ideal
performance with unlimited backhaul up to an SNR loss given by
1/(1 − 2−C). Therefore, for instance, by allocating at least C ≈ 3.2
(bits/s/Hz) to the backhaul network, the minimum energy required
for reliable communication of the limited channel will not increase by
more than 0.5 (dB) when compared to that needed with unlimited
backhaul.

5.1.2.2 High-SNR Analysis

Here we study the high-SNR characterization of the performance
achievable with oblivious BSs. Similar to the results in the previous
subsection, the high-SNR analysis is general and the results are applica-
ble for Gaussian Wyner and soft-handoff models. We first observe from
the upper bound (Equation (5.1)) that for a fixed backhaul capacity C

and large SNR P , the per-cell rate is at most C. Note that this rate
is achieved by the oblivious strategy for P → ∞, as can be seen from
Equations (5.2) and (5.3). It follows that, for fixed backhaul capacity
C, no matter which strategy is used, the rate is finite and the system
has a zero multiplexing gain (i.e., S∞ = 0).

Based on the discussion above, the following question arises: How
should the backhaul capacity C scale with P in order for the system
to maintain a unit multiplexing gain (as in the inter-cell interference-
free system)? Reference [86] shows that a scaling of log2 P suffices to
achieve unit multiplexing gain (and in fact also the high-SNR offset of
an interference-free system).

5.1.2.3 Fading Channels

In this section, we address the performance of MCP with oblivious
BSs for fading Wyner and soft-handoff models. We assume, as usual,
Rayleigh fading with unit power. A first observation is that, as seen in
the previous section, with fading, the intra-cell TDMA protocol is no
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longer optimal and the WB protocol is to be preferred. We thus adopt
the WB protocol in the following and set K ≥ 1. Similar to Equa-
tion (5.2), it can be shown that the oblivious scheme, implemented
along with the WB protocol, achieves the following ergodic per-cell
sum-rate:

Rerg
obl (P,C) = F (P,r∗)

= lim
M−→∞

max
E[rm(H)]=r∗

E

[
1
M

log2

(
det

(
I

+
P

K
diag(1 − 2−rm(H))M

m=1HH†
))]

(5.10)

where the functions rm(H) must be chosen so that condition (Equa-
tion (5.3)) holds. Note that in Equation (5.10), the rate rm(H) is to be
interpreted as the rate that the m-th BS has to invest for compressing
channel noise when the channel realization is H. In order to simplify
the evaluation of Equation (5.10), we will consider a lower bound on
Rerg

obl (P,C), which is achieved by setting rm(H) = r∗, irrespective of the
channel realization.

Unfortunately, an explicit evaluation of Equation (5.10) is com-
plicated in general. Therefore, in the following, we will consider var-
ious approximations and asymptotic regimes in order to get further
insight into Equation (5.10). We consider the Wyner model and the
soft-handoff model separately.

Wyner Model

For the Wyner model with L = 1, assuming that the number of users
K per-cell is large (and also M is large as in Equation (5.10)), it is
possible to evaluate Equation (5.10) as

Rerg
obl (P,C) = log2

(
1 +

(1 + 2α2)P (1 − 2−C)
1 + (1 + 2α2)P2−C

)
. (5.11)

Hence, the rate of the limited network equals the rate of the
single user Gaussian channel (Equation (5.5)) but with enhanced
power P (1 + 2α2). This complies with the observation made around
Equation (4.4), to which Equation (5.11) reduces for C → ∞. In par-
ticular, comparison with Equation (4.4) shows again that the effect
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of finite capacity, even in the presence of fading, can be accounted
for by an SNR loss, which in the regime of large K is given by
(1 + (1 + 2α2)P2−C)/(1 − 2−C).

Soft-Handoff Model

For the soft-handoff model with L = 1, reference [86] obtains an upper
bound:

Rerg
obl (P,C) ≤ log2

 1 + P (1 + α2) + 2P 2α22−C/K

2(1 + P (1 + α2)2−C + P 2α22−2C/K)

+

√
(1 + P (1 + α2))2 − 4P 2α2(1 − 2−C)/K

2(1 + P (1 + α2)2−C + P 2α22−2C/K)

, (5.12)

which can be shown to be tight in the regimes C → ∞ and/or for
K → ∞. In the latter case, in particular, we obtain

Rerg
obl (P,C) = log2

(
1 + P

(1 + α2)(1 − 2−C)
1 + P (1 + α2)2−C

)
, (5.13)

which shows the same SNR loss as compared to the unlimited capacity
rate as found above for the Wyner model [86].

5.1.3 Informed Base Stations

As shown in the previous section, an implementation of MCP with
oblivious BSs is able to closely approximate the performance achiev-
able with an unlimited-capacity backhaul (as studied in the previ-
ous section) as long as the capacity C is large enough (see also
Section 5.1.5). We now turn to assessing the further performance gains
that can be accrued by endowing the BSs with decoding capabilities.
These potential gains can be explained in light of Equations (5.2) and
(5.10). In fact, it was discussed above that Equations (5.2) and (5.10)
demonstrate that the performance with oblivious BSs is limited by
the fact that the BSs inevitably have to invest some of the backhaul
link capacity to compress noise, rather than signal, information. By
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leveraging decoding capabilities the BSs may instead be able to distin-
guish, at least partially, signal from noise, thus decreasing the effective
noise and increasing the efficiency of the backhaul usage. It is noted
that the discussed performance gains come at the price not only of
more processing power at the BSs, but also of the signaling necessary
to inform the BSs of the codebooks selected by the MSs of interest (see
below). Thus, this is the informed BSs situation mentioned above.

As an initial remark on the advantages of informed BSs, we note
that local decoding at the BSs is expected to be beneficial when
inter-cell interference is small and/or when the backhaul capacity C

is small. In fact, if inter-cell interference is small, decoding can take
place at a BS without hindrance from other cells’ signals and, further-
more, no performance gains can be accrued by leveraging the signals
received by other cells via MCP. Instead, if C is sufficiently small, as
discussed above, it becomes imperative to use the backhaul more effi-
ciently than with oblivious BSs. The analysis below quantifies these
considerations.

To assess the benefits of informed BSs, we focus on Gaussian models
and we evaluate the performance of a simple scheme that leverages
decoding at the BSs. Analysis of the corresponding performance for
fading models can be found in [86]. We will limit the analysis to one
user per cell, K = 1, or equivalently to intra-cell TDMA. Analysis of a
more sophisticated scheme is given in Section 5.1.4

According to the scheme considered here, each user splits its infor-
mation bits (message) into two parts. It then transmits the sum of two
signals, one encoding the first part of the message with power βP and
the other encoding the second part with the remaining power (1 − β)P ,
with 0 ≤ β ≤ 1. The first part of the message is intended to be decoded
at the CP, while the latter is decoded by the same-cell BS. The idea is
that the BS decodes part of the message of the same-cell MS and sends
the decoded bits directly to the CP. The decoded signal can then be
cancelled from the received signal, which is finally compressed as was
done in the oblivious strategy presented above. We will refer to the
messages to be decoded by the BS as “local” messages.

We denote the rate of the local message in each cell as Rd(β), where
we emphasize the dependence on the power split factor β. To evaluate
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this rate, we assume that the BS either tries to decode the local message
of the same-cell MS by treating all other signals as noise, or instead
attempts joint decoding of all the local messages of the MSs, whose
signal it receives. Specifically, in the latter case, for the Wyner model
with L = 1, joint decoding of the signal of the same-cell MS and of the
MSs in the two adjacent cells is performed, while for the soft-handoff
model with L = 1 the MS of only one adjacent cell is received and
decoded. By selecting the best decoder given the channel conditions,
using well-known results on multiple access channels (see, e.g., [17]),
we obtain, for the Wyner model [95]

R̄d(β) = max
{

log2

(
1 +

(1 − β)P
1 + (β + 2α2)P

)
,

min
{

1
2

log2

(
1 +

(1 − β)2α2P

1 + β(1 + 2α2)P

)
,

1
3

log2

(
1 +

(1 + 2α2)(1 − β)P
1 + β(1 + 2α2)P

)}}
, (5.14)

and for the soft-handoff model

R̄d(β) = max
{

log2

(
1 +

(1 − β)P
1 + (β + α2)P

)
,

1
2

log2

(
1 +

(1 − β)(1 + α2)P
1 + β(1 + α2)P

)}
. (5.15)

The actual local message rate is

Rd(β) = min{R̄d(β),C}, (5.16)

since the decoded message must be sent to the CP over the backhaul,
and thus enough capacity on the latter must be available.

Having decoded and cancelled the local message of the same-cell
MS, each BS, as explained above, compresses the received signal as
for the oblivious scheme. This leads to the following achievable per-cell
rate:

Rinf (P,C) = max
0≤β≤1

{F (βP,r∗) + Rd(β)}, (5.17)
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where F (βP,r∗) is defined in Equation (5.4) and evaluates as Equa-
tions (5.6) and (5.7) for the Gaussian Wyner and soft-handoff models
with L = 1, respectively. Moreover, the rate r∗ is the solution of the
equation

F (βP,r∗) = C − Rd(β) − r∗. (5.18)

The rate (Equation (5.17)) can be interpreted in light of the rate
splitting strategy at hand: the overall per-cell rate is the sum of the
rate Rd(β) of the local message and the rate F (βP,r∗) of the message
to be decoded at the CP using the oblivious strategy. As for the latter,
note that the amount of backhaul capacity left after transmission of
the local message is C − Rd(β), so that the condition (Equation (5.3))
is modified as in Equation (5.18). Moreover, the rate (Equation (5.17))
can be optimized with respect to the power split factor β. In this regard,
if no inter-cell interference is present (α = 0), it is easy to see that the
power allocation β = 0 maximizes Equation (5.17), so that only local
messages are transmitted. In fact, in the absence of interference, there
is nothing to be gained by allowing centralized decoding at the CP and
a multihop decode-and-forward scheme is to be preferred. Indeed, via
comparison with the cut-set bound (Equation (5.1)), it can be seen that
with α = 0, the considered scheme with β = 0 is optimal. It is expected
that increasing β becomes more and more advantageous as α increases,
due to the potential advantages of MCP when the inter-cell channel
gains are large enough (see Figure 3.2).

We finally remark that it turns out that the rate Rinf (P,C) can be
sometimes improved by a time-sharing technique, in which a fraction of
time is devoted to transmitting only local messages (β = 0), while for
the rest of time the oblivious strategy (β = 1) is used. In the following,
further analysis of this time-sharing technique with optimized time-
sharing fraction is provided in extreme-SNR regimes.

5.1.3.1 Low-SNR Analysis

Reference [86] shows that the low-SNR characterization of the time-
sharing based scheme discussed above (which uses local decoding and
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oblivious operation in different time-slots) is as follows:

Eb

N0 min
=

1

λo

(
Eb
N0

d

min

)−1
+ (1 − λo)

(
Eb
N0

obl

min

)−1 and

S0 =

(
Eb
N0

dec

min

)−2

λo

(
Sd

0
)−1

(
Eb
N0

d

min

)−2
+ (1 − λo)

(
Sobl

0
)−1

(
Eb
N0

obl

min

)−2 ,

(5.19)

with optimized time-fraction

λo = 1 − C

r∗ (5.20)

and r∗ = max{C, r̃}, where r̃ is the unique solution of

2−r̃(1 + r̃ log2) =
2α2

1 + 2α2 , (5.21)

for the Gaussian Wyner model and

2−r̃(1 + r̃ log2) =
α2

1 + α2 , (5.22)

for the Gaussian soft-handoff model. In Equation (5.19) the super-
script (·)obl indicates the low-SNR parameters of the oblivious scheme
obtained in Section 5.5, where r∗ as defined above is written in place
of C, and the notation (·)d indicates the low-SNR parameters of
the local decoding rate Rd(β) (Equation (5.16)). These can be easily
calculated as

Eb

N0

d

min
= log2; Sd

0 =
2

1 + 4α2 , (5.23)

for the Wyner model and

Eb

N0

d

min
= log2; Sd

0 =
2

1 + 2α2 , (5.24)

for the soft-handoff model.
Equation (5.19) relates the low-SNR parameters of the time-sharing

scheme at hand with those of the two strategies upon which it is based,
namely transmitting only local messages (β = 0) and the oblivious
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strategy (β = 1). The parameter λo in Equation (5.20) represents the
optimized fraction of time that is devoted to transmitting local mes-
sages. From Equation (5.20), it can be thus seen that, as the backhaul
capacity C increases, it becomes more advantageous to employ the
oblivious scheme for a larger fraction of time. In particular, allocat-
ing resources (time) to transmitting local message is beneficial in the
low-SNR regime only when C is below a certain threshold r̃ calcu-
lated from Equation (5.21) or Equation (5.22). The parameter r̃ can be
seen to be a decreasing function of the intra-cell interference factor α,
which implies that the range of values of C for which local decoding
is advantageous decreases for increasing α. This quantifies the initial
observations made above about the expected gains of informed BSs.
As an example, when there is no inter-cell interference (α = 0) then
r̃ = ∞ and local decoding is optimal for any C. In contrast, for α = 0.2
numerical calculation reveals that r̃ ≈ 2.15. Hence, deploying informed
BSs is beneficial when C � 2.15.

5.1.3.2 High-SNR Analysis

As seen above for α = 0, using only local decoding is optimal. We thus
focus on the case α > 0. In this setting, it is easy to see that, as the
SNR P and the capacity C grow large, it becomes less and less benefi-
cial to transmit local messages. In fact, using only local decoding, the
multiplexing gain would be limited to 1/3 for the Wyner model and
1/2 for the soft-handoff model, even for an unlimited-capacity back-
haul (see, e.g., [119]). Instead, as seen in Section 5.1.2.2, oblivious BSs
can achieve the interference-free multiplexing gain of one if C scales
sufficiently fast with P .

We finally note that the qualitative conclusions given in this section
on the performance of informed BSs carry over, with minor modifica-
tions, also to fading channels, as it is discussed in [86].

5.1.4 Informed Base Stations with Structured Coding

The potential performance gains of informed BSs were studied above
based on the analysis of a simple transmission scheme, whereby each
BS decodes parts of the signals transmitted by the MSs in their radio
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range. In [79], instead, it is proposed that the BSs, rather than decoding
the individual messages (or parts thereof) of the MSs, decode a function
of such messages or, more precisely, of the corresponding transmitted
codewords. The key idea that enables this operation is the use of a spe-
cial class of codebooks that have the property that a sum of codewords
is another codeword in the same codebook. This implies that decoding
a single codeword from the codebook is as easy, or as difficult, as decod-
ing a sum of two codewords. A class of codes that have this property is
given by nested lattice codes. An introduction to nested lattice codes
can be found in [145] and references therein.

To elaborate, each MS employs the same nested lattice code and the
signal received at any m-th BS can be written for the Wyner Gaussian
model from Equation (2.1) as ym =

∑L
k=−L αkxm−k + zm. Recalling

that a lattice code is a discrete group, the (modulo2) sum of the lattice
codeword xm−k, weighted by integer coefficients, is still a codeword in
the same lattice code and can thus be decoded by the m-th BS. The
problem is that the channel coefficients αk are generally not integers.
The m-th BS can, however, decode an arbitrary linear combination∑L

k=−L bkxm−k with bk ∈ Z (and by symmetry bk = b−k) and b0 
= 0
and treat the remaining part of the signal as Gaussian noise. The index
of the decoded codeword can then be sent to the CP, which decodes
based on all received linear combinations. This leads to the achievable
rate [79]3

RLAT (P,C)

= min

{
C, max

(b0,...,bL)∈B
− log2

(
b2
0 +2

L∑
k=1

b2
k − P (b0 +2

∑L
k=1 αkbk)2

1+P (1+2
∑L

k=1 α2
k)

)}
,

(5.25)

where B ={(b0, . . . , bL) ∈ Z : b0 
= 0 and b2
0 + 2

∑L
k=1 b2

k ≤ 1 + P (1 +
2
∑L

k=1 α2
k)}.

A low-complexity implementation of the scheme outlined above,
which is often referred to as “compute-and-forward” is proposed in [36].

2 The modulo operation is taken with respect to the coarse lattice forming the nested lattice
code.

3 [79] considers the special case L = 1.
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Reference [79] also proves that the rate (Equation (5.25)) can be
improved upon by superimposing additional “private” messages to
be decoded at the local BS to the lattice codewords. This modifies
the interference pattern so that the sharp performance degradations
observed for some values of the inter-cell channel gains (see Figure 5.2)
are mitigated.

5.1.5 Numerical Results

We now provide some numerical examples that corroborate the results
in this section pertaining to the effect of a limited-capacity backhaul.
Consider a Gaussian Wyner model with L = 1, K = 1 user per cell and
P = 10 dB. In Figure 5.1, the per-cell sum-rate is shown versus the
inter-cell gain α for the case of unlimited-capacity backhaul, oblivious
BSs and informed BSs with C = 6 (bits/s/Hz). It can be seen that the
limitation on the capacity of the backhaul leads to a fairly small loss
of per-cell sum-rate even for values of backhaul capacity that are less
than double the rate transmitted per cell. Moreover, as expected from
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oblivious BSs and informed BS for a Gaussian Wyner model with L = 1, K = 1 user per
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Fig. 5.2 Per-cell sum-rates versus the inter-cell gain α for unlimited-capacity backhaul,
oblivious BSs, lattice-based schemes and informed BS with transmission of only local mes-
sages (“Only local dec”) for a Gaussian Wyner model with L = 1, K = 1 user per cell,
C = 3.5 (bits/s/Hz) and P = 15dB.

the analysis, deploying informed BSs leads to a performance gain for
sufficiently small inter-cell interference α.

For the same channel with P = 15 dB and C = 3.5 (bits/s/Hz),
we then add comparison with the lattice-based scheme mentioned
above in Figure 5.2. It can be seen that the lattice-based scheme,
and its enhancement (with “private” messages), outperforms the
oblivious scheme for sufficiently low or high inter-cell interference α.
The figure also shows the performance of a scheme with informed
BSs where only local messages are transmitted (“Only local dec” in
the figure), demonstrating the poor performance of local decoding for
large inter-cell interference.

5.2 Local Backhaul between Adjacent BSs

In this section, we study the performance of MCP as afforded by the
presence of local backhaul links between BSs (Figure 2.4(b)). Where not
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stated otherwise, we focus on a Gaussian soft-handoff model with L = 1
and a large number of cells (M → ∞). As will be discussed below, the
soft-handoff model enables us to isolate key ideas and techniques, and
to highlight the main conceptual differences with the scenario studied
above of MCP via global (though possibly limited-capacity) connec-
tions to a CP. We also consider K = 1 or equivalently intra-cell TDMA.

Assume that each BS, say the m-th, is connected via backhaul links
to the (m + 1)-th BS, as shown in Figure 5.3. Each backhaul link has
capacity C (bits/s/Hz). Thanks to the backhaul links, each m-th BS
can decode based not only on the locally received signal ym but also
on the information received on the backhaul from the BSs on the left.
We will later consider briefly also the case in which the backhaul link
between two adjacent BSs can also be used for communication from
the (m + 1)-th BS to the m-th one.

The reason for emphasizing the backhaul connections toward the
right has to do with the following fact. The m-th BS receives (with
unitary gain) the signal of the MS that affects the (m + 1)-th BS.
Therefore, thanks to the backhaul links with the given rightward direc-
tion, information about the interference can be communicated. Instead,
a backhaul link in the opposite direction could only provide additional
information about the signal, but not the interference. Therefore, a
backhaul structure such as in Figure 5.3 has the potential to mitigate
the interference and thus to overcome the limitations of SCP at high
SNR, while a backhaul link in the opposite direction cannot be as effec-
tive in combating interference. Clearly, in a more realistic scenario, or
even in the Wyner model, each BS measures a signal correlated with
both the useful signal and the interference of the BSs to which it is

… …α α α

mX 1mX − 2mX −1mX /

1mY / mY 1mY − 2mY −

C C C

Fig. 5.3 A soft-handoff model with L = 1, K = 1, and local backhaul links to adjacent BSs.
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connected. The soft-handoff model thus enables the aspect of interfer-
ence management via local backhaul connections to be isolated.

Following the discussion above about the role of codebook infor-
mation, we will consider both the scenario in which each BS is aware
only of the local (same-cell) codebooks and that in which BSs can also
exploit the knowledge of the codebooks used in adjacent (interfering)
cells. Note that a fully oblivious cell as considered in the previous sec-
tion does not apply to the scenario of interest here since decoding must
be performed at the BS level. We will show below that, unlike the back-
haul setting of the previous section, here major gains (even in terms
of multiplexing gain) can be harnessed with enhanced codebook infor-
mation. This points to the fact that the cost for signaling codebook
information in the presence of a local backhaul topology is more likely
to be worthwhile from a system design viewpoint than in the presence
of global backhaul connectivity to a CP.

5.2.1 Performance Bounds and High-SNR Analysis

In this section, we discuss bounds on the per-cell rate achievable for the
setting of Figure 5.3. Moreover, to emphasize the capability of different
strategies to mitigate interference, we will also focus on the high-SNR
regime and address performance in terms of multiplexing gain.

5.2.1.1 Upper Bound

A first observation made in [108] is that, irrespective of the code-
book information available at the BSs, the per-cell rate can be upper
bounded as

R(P,C) ≤ min{RMCP (P ), RU (P,C)}, (5.26)

where RMCP (P ) is in Equation (3.15) and

RU (P,C) =
1
2

[
log2(1 + P ) + log2

(
1 +

P

1 + α2P

)]
+ C. (5.27)

As shown in [108], the latter upper bound is obtained by noticing
that the backhaul cannot increase the sum-rate by more than C

(bits/s/Hz), and that the sum-rate with C = 0 is upper bounded by
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the sum-capacity of a Z-interference channel (which is obtained in [87]
and given by log2 (1 + P ) + log2

(
1 + P/(1 + α2P )

)
).

Similar to what was observed above for the setting of global back-
haul connectivity, we note from Equation (5.26) that the multiplexing
gain with fixed backhaul capacity C is limited to 1/2, and is achieved by
SCP with spatial reuse F = 2. Instead, if we let the backhaul capacity
scale with P as β logP with 0 ≤ β ≤ 1, then, from Equation (5.26), we
see that the multiplexing gain is limited by min{1, 1/2 + β}. Accord-
ing to this bound, a scaling of 1

2 logP is thus potentially sufficient to
achieve unitary multiplexing gain. This contrasts with global backhaul
connectivity, where, it was shown above, it is necessary and sufficient
for C to scale as logP to achieve such a result, and thus perfect inter-
ference mitigation in the high-SNR regime. We will discuss below to
what extent the gains promised by Equation (5.27) are achievable.

5.2.1.2 Local Codebook Information

Consider now the per-cell achievable rate in the case in which each
BS knows only the codebook employed by the same-cell MS. Following
[108], we consider the following strategy based on successive decoding.
Namely, starting with the first (m = 1) BS and ending with the last
(m = M) BS (recall Figure 5.3), we operate as follows. Once the m-th
BS has decoded its local message, it can compress the decoded code-
word via a rate-C quantization codebook and send the corresponding
index over the backhaul link to the (m + 1)-th BS. The latter then
proceeds to decode its local message based on the received signal and
the quantized codeword received over the backhaul link. The procedure
repeats similarly for all the BSs. We refer to this scheme as Codeword
Compression (CC). The rationale, as explained above, is that the com-
pressed codeword provides information about the interference signal
for the recipient BS. It is proved in [108] that this scheme achieves the
per-cell sum-rate

RCC (P,C) = log2

1 +
P

1 + α2P

(
1 − 1

1+ 1

1+ α2P
1+P

1
2C−1

)
. (5.28)
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To obtain further insight into the interference mitigation capabil-
ities of this scheme, we analyze its multiplexing gain. We note that
CC leads to interference-limited performance (if not coupled with spa-
tial reuse [108]), unless we let C → ∞. In fact, with C → ∞, perfect
interference cancellation is possible, and RCC → log2(1 + P ); therefore,
in the regime C → ∞, the CC scheme is not interference-limited and
achieves a multiplexing gain of one.

We now remark that the CC scheme has the drawback of requir-
ing a large delay for BSs with large indices due to the successive
decoding procedure. It is therefore of interest to consider the perfor-
mance of a scheme that has instead zero delay. This is accomplished
by having each m-th BS compress and forward the received signal
(instead of the decoded codeword). In this case, the backhaul quan-
tization codebook is then used for the purpose of compressing the
received signal. We refer to this transmission strategy as Signal Com-
pression (SC). It was shown in [108] that the following rate is achievable
with SC:

RSC (P,C) = log2

1 +
P

1 + α2P
(
1 − 1

1+α2+(1+σ2)/P

)
, (5.29)

with

σ2 =
P (1 + α2) + 1 − α2P 2(1 + P (1 + α2))

2C − 1
. (5.30)

This result emphasizes the importance of successive decoding for
proper interference mitigation. In fact, by taking C → ∞, we see that,
unlike CC, the SC scheme is interference-limited. We recall that this
is because the interference from other cells cannot be decoded and
cancelled due to the presence of only local codebook information.

5.2.1.3 Enhanced Codebook Information

In this section, we investigate the performance advantage that can be
accrued with enhanced codebook information at the BSs. Namely, we
assume that the channel codebook employed by a given m-th MS is
known not only at the local m-th BS but also at the (m + 1)-th. As
will be discussed in the sequel, this further information allows: (i) to
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perform joint decoding of the local message and of (possibly part of) the
interfering message (of the (m + 1)-th MS) at the m-th BS; and (ii) to
adopt more sophisticated quantization strategies on the backhaul link
that exploit the side information available at the receiving BS regarding
the channel codebook [20].

We first investigate a successive decoding strategy that differs from
the CC technique described above in that: (i) joint decoding of the
messages of the m-th and (m + 1)-th is carried out at each m-th BS;
and (ii) instead of compressing the decoded codeword, any m-th BS
bins (compresses) directly the decided message, exploiting the fact that
the channel codebook is known at the (m + 1)-th BS [20]. To elaborate,
assume at first that R > C. The (m − 1)-th BS decodes the local mes-
sage and sends the index of the bin in which the message falls to the
m-th BS. The m-th BS then jointly decodes as explained above based
on the received signal and the bin index received over the backhaul link.
If R ≤ C, then the entire message Wm−1 can be sent over the backhaul
link and the interference-free rate R = log(1 + P ) is achievable. More
generally, we obtain the achievable per-cell rate

RDC(P,C) = min

{
log2(1 + P ), log2

(
1 + α2P

)
+ C,

1
2 log2(1 + (1 + α2)P ) + C

2

}
, (5.31)

where we refer to the scheme at hand as Decision Compression (DC).
Due to the joint decoding carried out at each BS, the DC scheme is

noninterference-limited for any fixed value of C, even without employ-
ing spatial reuse F = 2. This is unlike the approaches discussed above,
in which joint decoding was ruled out by the absence of information
about the interfering MS’s codebook. Moreover, assume now that the
backhaul capacity scales with P as β logP with 0 < β ≤ 1. It is then
easy to see from Equation (5.31) that the multiplexing gain of DC
becomes (β + 1)/2, which is generally less than the upper bound min{1,

1/2 + β} derived above, but it achieves the maximum multiplexing
gain of unity as long as the capacity C scales as logP (β = 1). It is
currently not known whether the multiplexing gain of min{1, 1/2 + β}
is achievable for any 0 < β ≤ 1. Finally, we remark that, with DC, for
any fixed P, the interference-free performance log(1 + P ) is achieved
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from (5.31) if

C ≥ max{log2((1 + P )/(1 + α2P )), log2((1 + P )2/(1 + (1 + α2)P ))}
= log2((1 + P )2/(1 + (1 + α2)P )). (5.32)

Notice that this contrasts with the CC scheme where it was necessary
to take C → ∞ to achieve rate log(1 + P ).

We finally remark that reference [108] also considers the case in
which the backhaul links can be used in both directions and obtains
transmission strategies that generalize the ones presented above.

5.2.1.4 Numerical Results

Here, we further corroborate the results discussed above via numerical
results. Figure 5.4 shows the derived achievable rates versus the SNR
P for α2 = 0.6 and C = 3. The interference-limited behavior of the
schemes based on local codebook information, namely CC and SC,
is apparent, unlike DC. Moreover, the performance gain of CC over SC
measures the advantages of allowing for some decoding delay.
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Fig. 5.5 Per-cell achievable rates versus the backhaul capacity C (bits/s/Hz) for a system
with local backhaul connections (α2 = 0.6 and P = 3dB).

Figure 5.5 shows the achievable rates versus the capacity C for
α2 = 0.6 and P = 3 dB. It is confirmed that for sufficiently large C,
both CC and DC-based schemes are able to achieve the interference-
free rate log(1 + P ) � 1.59, which approaches the upper bound (Equa-
tion (5.27)). Moreover, again, the advantages of allowing decoding
delays are clear in the gain of the CC and DC techniques over SC.

5.3 Clustered Cooperation

We finally consider the clustered decoding scenario of Figure 2.4. In
this scenario, clusters of BSs are connected to a different CP that is
tasked with decoding the signals of a specified subset of MSs. Clusters
of BSs can be overlapping or not, and no communication is possible
between different CPs. Each CP must thus decode the assigned users
based only on the signals received on the backhaul links from the BSs.

An example of clustered decoding is shown in Figure 5.6 for a
Gaussian soft-handoff model with L = 1 and K = 1. In the example,
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Fig. 5.6 A soft-handoff model with L = 1, K = 1, and clustered decoding.

clusters contain two cells with an overlap of one BS and each CP
decodes a single MS. In particular, as shown in the figure, the first
CP (“Receiver 1” in the figure) is connected to the BSs in the first
and second cells and is tasked with decoding the MS in the first cell,
the second CP is connected to the second and third cell and decodes
the second MS, and so on. This particular clustering choice enables
each CP to “see” the signal of the MS of interest as it is received
from two BSs (plus inter-cell interference as noise). We refer to the
previous section for further discussion on this point. Note that this
scenario is in fact somewhat related to the setting of local backhaul
studied above, since each CP has access to information from the BS
in the same cell of the MS to be decoded and from the one on its
right. The main difference is that, unlike the local backhaul case the
CP cannot collect received signal information from BSs other than
the ones to which it is directly connected. Recall that we assume
unlimited-capacity backhaul links in this section.

In Section 5.3.2 we consider a more general setting, in which the CP
tasked with decoding the m-th MS has access to the signal received,
not only by the m-th BS, but also by jr BSs on the right and j� BSs
on the left.

5.3.1 Performance Bounds and High-SNR Analysis

We first discuss a lower bound on the achievable per-cell rate for the sce-
nario in Figure 5.6 that was derived in [59]. This is obtained by adapt-
ing transmission strategies similar to the standard techniques proposed
in [32] for transmission over interference channels. Specifically, as done
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with informed BSs, each m-th transmitter (MS) splits its information
bits into two independent parts, which are then encoded over inde-
pendent codebooks and transmitted by superposition. The idea is that
one part, referred to as “private”, is to be decoded only by the m-th
receiver (i.e., the BS in the same cell), while the other part, referred to
as “public” is to be decoded by BSs m − 1, m, and m + 1. Note that
BS m − 1 does not “see” the m-th MS directly but only through the
signal obtained via the backhaul by the m-th BS. The private message
is sent with power βP , while the common message is transmitted with
the remaining power (1 − β)P for a power split parameter 0 ≤ β ≤ 1.
Expression of the corresponding achievable rate can be found in [59].

Reference [59] also obtains the following upper bound on the achiev-
able rates with clustered decoding by adapting the analysis in [47,
Theorem 2] and [97]:

R(P ) ≤ 1
3

log2

[
(1 + (1 + α + α2)P )

·(1 + (1 − α + α2)P )(1 + (1 + α2)P )2

(1 + P )(1 + α2P )

]
. (5.33)

Figure 5.7 shows the performance obtained with clustered cooper-
ation in terms of the scheme discussed above (labeled with “lower”
in the figure) and of the upper bound (Equation (5.33)). For reference,
the per-cell sum-rate (Equation (3.15)) attained with ideal MCP is also
shown, along with the per-cell sum-rate achievable with local backhaul
connections via the DC scheme. We set α2 = 0.6. Recall that the DC
scheme only requires knowledge of the codebook used by one adjacent
BS, whereas the decoder for each cluster here needs to have access to
the codebook of an additional BS. The figure shows that the local back-
haul architecture is potentially advantageous as long as the capacity C

is large enough. In fact, as explained in the previous section, by lever-
aging local backhaul connections, one can propagate information from
remote BSs, which can be beneficial for interference management.

5.3.2 High-SNR Analysis

Some further insight can be obtained by studying the high-SNR regime.
In this regard, a simple observation is that the multiplexing gain should
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be at least 2/3. Indeed, it is enough to shut off one MS out of every
three at any time. This way, the two BSs neighboring the silent MS
are able to receive at least one signal free of interference. Since two
out of three MSs can transmit without any interference, a multiplex-
ing gain of 2/3 is attained with this simple scheduling scheme. The
upper bound (Equation (5.33)) shows that this is also the maximum
multiplexing gain, proving the high-SNR optimality of the scheduling
strategy mentioned above in terms of multiplexing gain.

We now turn to the more general model in which each CP is con-
nected with j� BSs on the left and jr BSs on the right. Reference [58]
obtains the maximum multiplexing gain of this setting as

S∞ =
j� + jr + 1
j� + jr + 2

. (5.34)

Note that this result recovers the conclusion of the discussion above for
jr = 1 and j� = 0. The result (Equation (5.34)) shows that with local
backhaul connections the multiplexing gain is always less than one, but
it is larger than 1/2 as achievable with SCP and spatial reuse F = 2
(see Section 3.1.1.1). Moreover, this shows that (for the soft-handoff
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model), left or right side information has the same impact on the mul-
tiplexing gain. Finally, multiplexing gain (Equation (5.34)) is shown to
be achieved by successive interference cancellation at the BSs, where
BSs exchange information about the decoded signals, similar to the CC
technique discussed above. Therefore, this scheme requires knowledge
of the codebooks used in adjacent cells by the BSs.

5.4 Summary

In this section, we have analyzed the impact of the backhaul archi-
tecture and of limitations on the available backhaul capacity on the
performance of MCP for the uplink. We have first considered global,
but finite-capacity, backhaul connectivity to a CP. In this case, it was
shown that the approach of deploying oblivious BSs, which merely act
by compressing the received signal, has the potential to achieve a large
fraction of the gains promised by MCP with reasonable backhaul capac-
ities, namely of the order of the operating per-cell sum-rate. In partic-
ular, the analysis has shown that the performance loss of oblivious BSs
with respect to ideal MCP can be quantified by an SNR degradation
that vanishes exponentially with the backhaul capacity C. It was also
pointed out that performance can be further improved by leveraging
some knowledge of the MSs’ codebooks, especially through structured
coding strategies.

We have then considered different types of backhaul architectures
in which the BSs are either connected to one another, or are connected
to a CP that serves only a cluster of cells. In both cases, unlike the
backhaul architecture considered above, the critical role of codebook
information at the BSs, or at the cluster CP, was pointed out, especially
in the high-SNR regime. Moreover, it was found that, if the backhaul
capacity is sufficiently large, the capability of BSs to propagate inter-
ference information through inter-BSs backhaul links makes it possible
to achieve rates, especially in the high-SNR regime, that cannot be
attained by clustered decoding.



6
Constrained Multi-Cell Processing: Downlink

In this section, we turn to the downlink and address the performance
of MCP in the presence of limitations in the backhaul links. As in
the previous section, we will consider first limited-capacity backhaul
to a CP, then finite-capacity links between adjacent BSs and finally
clustered cooperation (see Section 2.3). We focus on Gaussian models,
leaving the impact of fading to future work.

6.1 Finite-Capacity Backhaul to a Central Processor

Let us start by considering the setting in Figure 2.4(a). Here, the CP,
which has the available information messages intended for the MSs in
all cells, is connected to each BS via a backhaul link with capacity C

(bits/s/Hz). We focus on the soft-handoff model with L = 1. The per-
cell sum-rate capacity RMCP (P ) for the ideal case of unlimited C was
discussed in Section 3.2.2 and is given by Equation (3.15), as obtained
via duality arguments (see Appendix B). It is recalled that the capacity
is achieved by means of DPC (see Appendix A). With an arbitrary
value for C, considerations similar to the uplink show that the per-cell

90
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sum-rate is limited, as for the uplink, by

R(P,C) ≤ RUB(P,C) = min{C,RMCP (P )}. (6.1)

Therefore, the same arguments as used in Section 5.1 apply, demon-
strating that the optimal multiplexing gain of one can be achieved only
if C scales as logP.

We now study how close one can get to the upper bound (Equa-
tion (6.1)). As for the uplink, we do this by considering separately two
types of MCP strategies. In the first, the BSs are assumed to have no
encoding capabilities. This enables implementation with “light” BSs,
that only need to have a radio transceiver and minimal baseband pro-
cessing. The BSs are also not required to be informed about the code-
books used by the CP to communicate with the MSs. Following the
nomenclature in the previous section, we refer to this scenario as that
with oblivious BSs. We then investigate the performance with BSs that
have some encoding capabilities. Again, we refer to this scenario as that
with informed BSs, since in this case the BSs must be aware of the
codebooks employed in other cells.

6.1.1 Oblivious Base Stations

We start by considering the rate achievable with oblivious BSs. For
this scenario, reference [107] proposes the following scheme, assuming
intra-cell TDMA (K = 1). The CP performs encoding using DPC as
if the backhaul were of unlimited capacity (see Section 3.2.2). This
operation produces one codeword per BS. To convey such codewords
to the BSs over the finite-capacity backhaul links, each is quantized
to C (bits/s/Hz). The index of the compressed codeword is then sent
to the corresponding BS. Each BS simply forwards the received com-
pressed codeword, after appropriate scaling so as to satisfy the power
constraint. In designing DPC at the CP, the CP accounts for the fact
that the BSs forward inevitably also quantization noise, which leads to
an SNR loss. The following per-cell rate is proved to be achievable:

Robl(P,C) = log2

1+(1+α2)P̃ +
√

1 + 2(1 + α2)P̃ + (1 − α2)2P̃ 2

2

,

(6.2)
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where

P̃ =
P

1+(1+α2)P
2C−1 + 1

. (6.3)

Comparing the per-cell rate Equation (6.2) with Equation (3.15),
which is the maximum achievable with unlimited backhaul links, reveals
that the performance loss due to a finite C translates into an SNR
degradation of a factor 1+(1+α2)P

2C−1 + 1. Note that for C → ∞, this SNR
loss vanishes, and the rate (Equation (6.2)) reduces to Equation (3.15).
Recall that similar conclusions were obtained also for the uplink in
Section 5.1.2. The parallel between the two situations is further dis-
cussed below by focusing on the extreme-SNR analysis.

Similar to the uplink, a coding strategy based on structured codes
can also be devised, as proposed in [37].

6.1.1.1 Extreme-SNR Analysis

Let us start with the high-SNR regime. Substituting C = β log2 P in
Equation (6.2), it can be seen that the multiplexing gain with this
choice is given by min(r,1), so that the optimal multiplexing gain of 1
can be achieved by having C scale as log2 P, which is optimal according
to our discussion about the upper bound.

In the low-SNR regime, characterization of the performance is given
by Equations (5.8) and (5.9), exactly as for the uplink. This result
confirms the parallels between the considered schemes for uplink and
downlink. It is recalled that Equation (5.8) implies that the SNR loss
with respect to the ideal performance with unlimited backhaul in the
low-SNR regime is given by 1/(1 − 2−C).

6.1.2 Informed Base Stations

In the previous section, it was shown that, as for the uplink, obliv-
ious BSs are able to achieve capacity if the backhaul capacity C is
large enough. However, if a more efficient use of the backhaul is nec-
essary, deploying informed BSs becomes mandatory. Moreover, if the
inter-cell interference α is small, the SNR loss due to the oblivious
BS implementation overcomes the gains that are possible with MCP,
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and thus informed BSs become especially beneficial. In this section, we
study these issues by studying the performance of a scheme proposed
in [107].

We observed that design of a transmission scheme with informed
BSs is less straightforward than for the uplink. In fact, for the downlink
adapting the encoding strategy at a given BS based on the encoding
operations (codebooks) of another has a chain effect on all other BSs
whose operation depends on the codebook of the BS at hand. This issue
is further explored in [107], where a number of additional techniques
are proposed and evaluated. Here we bypass this issue by considering
only information about the codebook intended for the same-cell BS. We
will see that the simple technique considered here addresses, at least
partly, the issues mentioned above.

The idea is the following. Consider a soft-handoff model with L = 1.
If a BS knew the signal transmitted by the BS that interferes with the
MS in the same cell, it could use DPC and cancel such interference
(see Appendix B). In the considered scheme, the CP thus sends to each
BS a quantized version of the codeword of the interfering BS along
with the message intended for the same-cell BS. Note that the CP
can precalculate all the codewords transmitted by all BSs. Each BS
can then perform DPC over the quantized interfering signal. Reference
[107] shows that the following per-cell rate is achievable:

Rinf(P,C) =

{
C if C ≤ log2

(
1 + P

1+α2P

)
R′

inf(P,C) otherwise
(6.4)

where

R′
inf(P,C) = log2

(
1 − 2C

α2P
+

√
1 +

2C+1

α2

(
2 +

1
P

)
+

22C

α4P 2

)
− 1

(6.5)
for α > 0 and log2(1 + P ) for α = 0.

A first observation is that if C is large, this scheme achieves
log2(1 + P ), thus fully mitigating interference, but failing to harness
the array gains achievable with MCP. However, following the discus-
sion above, if C ≤ log2(1 + P/(1 + α2P )) or α = 0, then the scheme
is optimal. In these cases, in fact, the upper bound (Equation (6.1))
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can be achieved simply by having the CP forward only local message
information to the BS and each MS decodes by treating inter-cell inter-
ference (if present) as noise. However, the scaling law of C required to
achieve a multiplexing gain of one can be seen to be 2logP , which is
double what is required by the oblivious strategy (see more on this in
the next section).

6.1.3 Numerical Results

Figures 6.1 and 6.2 show the per-cell rates achievable by the oblivious
implementation of MCP and by the simple strategy based on informed
BSs, discussed above versus the backhaul capacity C and the inter-cell
gain α2, respectively, for P = 10 dB. Specifically, for α = 1, Figure 6.1
suggests that, just as we concluded for the uplink, a backhaul capacity
that is 2–3 times the per-cell transmission rate is enough to achieve
performance close to the upper bound. Moreover, for this setting, the
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Fig. 6.1 Per-cell achievable rates for the downlink of a soft-handoff model with the oblivious
and informed implementations of MCP versus the backhaul capacity C (L =1, P = 10dB,
α = 1).
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Fig. 6.2 Per-cell achievable rates for the downlink of a soft-handoff model with the oblivious
and informed implementations of MCP versus the inter-cell gain α2 (L =1, P = 10dB, C = 6
(bits/s/Hz)).

inter-cell factor α is very large, so that MCP, even if implemented
with oblivious BSs, outperforms the simple informed technique also
for small backhaul capacity C. Further insight into the comparison
between oblivious and informed implementation can be gathered from
Figure 6.2, which for C = 6 (bits/s/Hz), shows that for small inter-cell
interference gains, an informed implementation is beneficial.

6.2 Local Backhaul between Adjacent BSs

In this section, we study the performance of MCP as afforded by the
presence of local backhaul links between adjacent BSs as shown in
Figure 2.4(b). We focus on a Gaussian soft-handoff model with L = 1
and K = 1. Our main aim here, following the discussion above, is to
illustrate some of the main differences between designing transmission
strategies for the uplink and downlink in this scenario. In particular,
we recall that in Section 5.2.1.3, a decoding strategy was devised
for the counterpart uplink model (Figure 5.3) that, when backhaul
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capacity scales with P as logP , achieves the maximum multiplexing
gain of one. This uplink strategy is based on successive decoding and
hinges on the availability at each m-th BS of the codebook used also
in the (m − 1)-th cell (which creates interference). We now discuss the
performance of a related strategy based on successive encoding based
on the proposal in [107].

A first observation is that in the model at hand, while interference
from the m-th cell affects the (m + 1)-th in the uplink, the opposite is
true in the downlink, so that the signal of the (m + 1)-th BS affects the
m-th MS. Therefore, if the goal is to successively remove interference,
encoding should be performed from the last cell (m = M) toward the
first (m = 1), in the opposite order with respect to the successive decod-
ing technique used in the uplink. A similar phenomenon is observed also
in the context of uplink–downlink duality as explained in Appendix B.
Therefore, we assume here that the backhaul links are operated from
the (m + 1)-th to the m-th BS. Moreover, as discussed above, while
in the uplink a change in the decoding strategy at one BS does not
affect the others, a modification in the encoding function of one BS
does affect the performance in other cells via interference. This com-
plicates the design and has implications on the codebook information
necessary at each BS.

To elaborate, consider the following scheme. The M -th BS, not
suffering from any interference, transmits with a standard codebook
to its MS. The (M − 1)-th BS receives the message sent by the M -th
BS over the backhaul, and, based on the knowledge of the codebook of
the M -th BS, can use DPC and obtain an interference-free rate. Now, in
order for the (M − 2)-th BS to know the interference affecting its MS,
both the message of BS M − 1 and BS M must be received over the
backhaul, and the corresponding codebooks must also be known. This
is because the signal sent by the interfering (M − 1)-th BS depends also
on the message of the M -th. In general, for DPC at the m-th BS to
be successful, the messages of BSs m + 1, . . . ,M must be received over
the backhaul and the corresponding codebooks known. This should be
contrasted with the successive decoding strategy of Section 5.2.1.3, in
which it was sufficient to transmit only one message over the backhaul
and to know only one additional codebook.
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In order not to create a bottleneck on the backhaul link, we assume
that the scheme described above can be implemented only in J succes-
sive cells. This way, each BS should only know the encoding functions,
and receive the messages, of the J − 1 BSs preceding it according to
the encoding order. As pointed out in [53], this can be implemented by
“turning off” one out of every (J + 1) BS and consider the clusters of J

BSs in between silent BSs. The following rate can thereby be achieved:

R(P,C) = max
J

min
{

C

J − 1
,

(
J

J + 1

)
log2(1 + P )

}
. (6.6)

Note that the rates in all cells can be made uniform by time sharing
of different scheduling patterns [107]. Moreover, in Equation (6.6), the
first term is due to the requirements for communication over the back-
haul, while the second accounts for the fact that, at any given time,
only J out of J + 1 cells are active.

We now address the requirements of this scheme in terms of back-
haul in order to achieve the optimal multiplexing gain of one. It can
be seen that, for any fixed cluster size J , the maximum multiplexing
gain is J/(J + 1) < 1, irrespective of the scaling of C. In particular,
achieving this rate scaling requires the backhaul capacity C to grow
as (J − 1) log2 P . Therefore, a unitary multiplexing gain can only be
approached at the cost of increasing the backhaul capacity much faster
than required for the uplink of the same scenario.

The discussion above points to the inefficiency, at least in the regime
of high SNR, of successive encoding based on “hard” information sent
over the backhaul links. A related strategy based on transmission of
“soft” information can hence be devised similar to the development in
Section 6.1.2. In this strategy, each m-th BS sends to the (m − 1)-th
a compressed version of the transmitted codeword over the backhaul.
This strategy, following [107], can be proved to achieve

R(P,C) = log2

(
1 +

P

1 + α2P
2C

)
. (6.7)

It can thus be seen that the optimal multiplexing gain of one is achieved
with the scaling of logP , as for the uplink.
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6.3 Clustered Cooperation

We finally consider the clustered decoding scenario of Figure 2.4 and
focus again on the Gaussian soft-handoff model with L = 1 and K = 1.
We assume, similar to Section 5.3, that each BS can encode based not
only on the local message but also of the messages of j� cells on the
left and jr cells on the right. We concentrate on the high-SNR regime
and ask whether the result (Equation (5.34)) obtained for the uplink
still holds for the downlink. Given the differences between uplink and
downlink highlighted above, this is not immediately clear.

References [52, 57] show that the multiplexing gain (Equa-
tion (5.34)), reported here for convenience,

S∞ =
j� + jr + 1
j� + jr + 2

, (6.8)

is indeed achievable (and also optimal). This is shown by exploiting a
technique that operates in a similar fashion as the one presented in the
previous section. In particular, the idea is to silence some BSs, thereby
splitting the network into noninterfering subnetworks which can be
treated separately. In each subnetwork, some of the BSs use simple
single-user encoding schemes and some of the transmitters use DPC.
The multiplexing-gain per user in Equation (6.8) shows an equivalence
between having message of BSs on the right or on the left.

6.4 Summary

In this section, we have studied the impact of backhaul architecture and
of limitations on the backhaul capacity on the downlink by focusing
on Gaussian channels. For Gaussian channels, Section 2 demonstrated
that, thanks to duality, the maximum per-cell sum-rate achievable in
the downlink is the same as that in the uplink. This section has lent
evidence to the fact that the same fact holds to some extent also in
the presence of limitations in the backhaul, although a full theoretical
understanding on this point is still lacking. To elaborate, considering
at first global, but finite-capacity, connectivity from BSs to the CP, we
have seen that an oblivious deployment of BSs has a similar effect as in
the uplink. It is, in fact, able to approximate the ideal performance with
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an SNR loss that decays exponentially with the backhaul capacity C.
With local backhaul connections between BSs, it was argued that, in
order to perform interference mitigation as effective (in the high-SNR
regime) as for the uplink, BSs should exchange soft information about
the transmitted signals, rather than hard information about the trans-
mitted messages. The latter approach was instead seen to provide excel-
lent performance in the uplink in the previous section. This asymmetry
is due to the fact that, in the downlink, the need to control interference
via precoding ties the transmission strategies of all the BSs. Therefore,
the interference experienced at an MS does not depend solely on the
messages communicated to the MSs in the adjacent cells, but also on
those of cells further apart, which are not directly interfering with the
MS at hand. Instead, in the uplink, interference depends only on the
message transmitted by the MSs in the adjacent cells (since the MSs
do not cooperate). Finally, with clustered BS cooperation, an uplink–
downlink duality was shown to hold in the high-SNR regime in terms
of multiplexing gain.



7
Dedicated Relays

In this section, we address the performance of cooperation in cellu-
lar networks in the presence of dedicated relay stations, following the
uplink model discussed in Section 2.4.1 (see Figure 2.5). We consider
the performance of two classes of strategies. The first, referred to as
“nonregenerative” relaying, includes strategies in which the RSs do not
decode the signal transmitted by the MSs, but instead forward “soft”
information toward the BSs. In this class, we will consider techniques
based on Amplify-and-Forward (AF) and Compress-and-Forward (CF)
relaying techniques. The second class, referred to as “regenerative”
relaying, is such that the RSs decode, at least partially, the signal
received from the MSs before forwarding. This second class includes
techniques based on Decode-and-Forward (DF) relaying. For an intro-
duction to the protocols DF, AF, and CF, we refer the reader to [48].

Central to our discussion will be the interplay between the relaying
technique and the implementation of SCP or MCP decoding. As will
be concluded, the design choice of the best relaying technique depends
critically on whether SCP or MCP is implemented. In order to simplify
the analysis, when considering MCP we will assume unlimited back-
haul links to a CP. The effect of limitations in the backhaul can be in

100
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principle studied by combining the analysis below with that presented
in Section 5. We finally remark that, while we assume full-duplex relays,
the analysis can be easily adapted to half-duplex relays (see [102]).

7.1 Upper Bound

We first derive an upper bound on the achievable per-cell rate. We do
so by leveraging cut-set arguments as already done in previous sections,
see, e.g., Section 5.1. To this end, observe that the per-cell sum-rate can
never be larger than the per-cell sum-capacity of the first hop (MSs-
to-RSs) for the case in which the RSs are able to fully cooperate for
the decoding. In other words, the achievable rate cannot be better than
that of an MCP system in which the CP is directly connected to all
relays. Using the definition (cf. Equation (3.14))

Rw(a,b,ρ) =
∫ 1

0
log2

(
1 + ρH(θ)2

)
dθ , (7.1)

where H(θ) = b + 2acos(2πθ), this implies the following upper bound
on the achievable per-cell rate:

R(P ) ≤ Rw(α,β,ρ1), (7.2)

where ρ1 = P/σ2
1, and σ2

1 is the noise power for the first hop. Moreover,
the per-cell sum-rate cannot be greater than that achievable on the
second hop (RSs-to-BSs) for the case in which the RSs are fully coop-
erative for transmission to the BSs. Note that this statement would
not be correct if one did not allow cooperation at the RS level. This
is because, as can be seen via cut-set arguments, the relays can poten-
tially correlate their transmissions thanks to the (correlated) signals
received from the MSs. This argument leads to the upper bound

R(P ) ≤ Rwf
w (η,γ,ρ2), (7.3)

where we define

Rwf
w (η,γ,ρ2) = max

∫ 1

0
log2

(
1 + ρ2S(θ)H(θ)2

)
dθ, (7.4)

with H(θ) = η + 2γ cos(2πθ) and ρ2 = Q/σ2
2, and where the maximiza-

tion is taken over all functions S(θ) such that
∫ 1
0 S(θ)dθ = 1. The rate
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(Equation (7.4)) can be seen, from the discussion in Section 3.1.2, to
correspond to the maximum per-cell capacity of a Gaussian Wyner
model with channel gains as in the second hop and with full transmit-
ter cooperation. The optimization of Equation (7.4) is well-known to
be given by the so-called waterfilling solution, which leads to

Rwf
w (η,γ,ρ2) =

∫ 1

0
log2

(
1 + ρ2

(
ν − 1

H(θ)2

)+

H(θ)

)
dθ

s.t.
∫ 1

0

(
ν − 1

H(θ)2

)+

dθ = 1. (7.5)

Equation (7.5) can be expressed in a closed-form expression for a certain
range of the channel parameters (see [105]).

Overall, we obtain that the per-cell sum-rate is upper bounded as

R(P ) ≤ RUB(P ) = min{Rw(α,β,ρ1),Rwf
w (η,γ,ρ2)}. (7.6)

We remark that since both arguments of Equation (7.6) increase
with SNR it is easily verified that RUB →

ρ1→∞ Rwf
w (η,γ,ρ2) and that

RUB →
ρ2→∞ Rw(α,β,ρ1). This means that if the SNR in the first hop,

ρ1, is large, the performance is limited by the upper bound on the
per-cell sum-rate of the second hop, and vice versa when ρ2 → ∞.

7.2 Nonregenerative Relaying

In this section, we study the performance of nonregenerative tech-
niques, namely CF and AF, for the system presented in Section 2.4.1.
With nonregenerative strategies, the RSs need not know the codebooks
used by any MS. Therefore, using the nomenclature employed in previ-
ous sections, we can say that the RSs are oblivious. This section follows
mostly reference [114]. Throughout, we assume a large number of cells
(M → ∞) and follow the model presented in Section 2.4.1.

7.2.1 Amplify-and-Forward (AF)

In this section, we assess the performance of an AF-based scheme,
whereby the RSs amplify and forward the received signal with an inte-
ger delay of λ ≥ 1 symbols. More specifically, with (·)(1), (·)(2) denoting
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the association to the first (MS-to-RS) and second (RS-to-BS) hops, as
in Section 2.4.1, the m-th RS transmits x

(2)
m,t = gy

(1)
t with y

(1)
t given in

Equation (2.9) and g ≥ 0 being the amplification gain. This is selected
to satisfy the average power limitation

σ2
r (g) � E{|x(2)

m,t|2} ≤ Q,

which satisfies the per-block power constraint (Equation (2.12)). Note
that, for simplicity of notation, here we include the time index t ∈ [1,n]
in the subscript, unlike the notation used so far. Using Equation (2.9),
the signal transmitted by the m-th RS can thus also be written as

x
(2)
m,t = g · (βx

(1)
m,t−λ + αx

(1)
m−1,t−λ + αx

(1)
m+1,t−λ

+µx
(2)
m−1,t−λ + µx

(2)
m+1,t−λ + z

(1)
m,t−λ). (7.7)

We now study the performance of this scheme with MCP or SCP with
reuse F = 1.

7.2.1.1 Multi-cell Processing

In this section, we assume that the signals received at all BSs are jointly
decoded by the CP. The CP is connected to the BSs via ideal backhaul
links and is assumed to be aware of the codebooks of all the MSs. It is
noted that using similar arguments as in [132], it can be shown that in
this setup an intra-cell TDMA protocol is optimal.

Extending the LTI interpretation of the Wyner model given in
Section 3.1.2 (see Figure 3.1), the received signal y

(1)
n,t at the RSs (Equa-

tion (2.9)) and the received signal y
(2)
n,t at the BSs (Equation (2.10))

can be interpreted, given Equation (7.7), as a two-dimensional LTI
system with input x

(1)
m,t. Note that this is unlike the LTI system used

for the Wyner model in Figure 3.1 in which the single dimension cor-
responds to the BS index. Here in fact the two dimensions correspond
to the BS index (m) and the time index (t). We emphasize that the
need to account for the temporal dimension follows from the feedback
introduced by the fact that the relays overhear each other through the
channel gain µ.
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Fig. 7.1 Equivalent two-dimensional LTI channel.

The block diagram of this equivalent two-dimensional LTI system
is depicted in Figure 7.1 where the impulse responses are given by

h1m,t = δt(αδm−1 + βδm + αδm+1)

h2m,t = δt(ηδm−1 + γδm + ηδm+1)

hrm,t = gδt−λδm and

h3m,t = µδt(δm−1 + δm+1), (7.8)

where we recall that δn denotes the Kronecker delta function. The cor-
responding frequency responses are given by

H1(θ,ϕ) = β + 2αcos2πθ

H2(θ,ϕ) = γ + 2η cos2πθ

Hr(θ,ϕ) = ge−j2πλϕ and

H3(θ,ϕ) = 2µcos2πθ. (7.9)

where θ and ϕ are the spatial frequency (as in Section 3.1.2) and
the temporal frequency, respectively. Since the noise processes z(1)

and z(2) are zero mean i.i.d. complex Gaussian and statistically inde-
pendent of each other and of the input signal x(1), the received signals
(Equation (2.10)) are at the BSs can be expressed as

y(2)
m,n = sm,n + qm,n, (7.10)

where sm,n and qm,n are zero mean wide sense stationary (WSS)
statistically independent processes representing the useful part of the
signal and the noise, respectively. Therefore, using a two-dimensional
formulation of Szegö’s theorem [132], the per-cell rate achievable by the
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considered scheme is given by

RAF−MCP(P ) =
∫ 1

0

∫ 1

0
log2

(
1 +

SS(θ,ϕ)
SN (θ,ϕ)

)
dϕdθ, (7.11)

where SS(θ,ϕ) and SN (θ,ϕ) are the power spectral density of S and N,

respectively. These can be obtained as

SS(θ,ϕ) = P |HS(θ,ϕ)|2 = P

∣∣∣∣ H1HrH2

1 − HrH3

∣∣∣∣2 , (7.12)

and

SN (θ,ϕ) = σ2
1 |HN (θ,ϕ)|2 + σ2

2 = σ2
1

∣∣∣∣ HrH2

1 − HrH3

∣∣∣∣2 + σ2
2, (7.13)

where the transfer functions H1, H2, Hr, and H3 are defined in
Equation (7.9).

Analytical evaluation of Equation (7.11) leads to [114, Appendix A]

RAF−MCP (P ) =
∫ 1

0
log2

(
A + B +

√
(A + B)2 − C2

B +
√

B2 − C2

)
dθ, (7.14)

where

A � Pg2(β + 2αcos2πθ)2(γ + 2η cos2πθ)2

B � σ2
1g

2(γ + 2η cos2πθ)2 + σ2
2(1 + 4g2µ2 cos2 2πθ) and

C � 4σ2
2gµcos2πθ.

Furthermore, the optimal relay gain go is the unique solution to the
equation σ2

r (g) = Q where

σ2
r (g) =

(Pβ2 + σ2
1)g

2√
1 − (2µg)4

+
4Pα2g2√

1 − (2µg)2 + 1 − (2µg)2
. (7.15)

It can be proved, as implied by the result above, that the optimal
relay gain go is such that the RSs use their full power Q, and that
go −→

Q→∞
1/(2µ). Moreover, it can be seen that the performance of AF

is not interference limited, achieving the full multiplexing gain of one,
and that it is independent of the actual RS delay λ.

Some further remarks are in order. In the case where the RSs employ
directional antennas pointed toward their local BSs and they are in
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sufficiently elevated positions to avoid multipath (see also discussions
in [103, 104]), there is no inter-relay interference and µ = 0. In this case,
the general expression (Equation (7.14)) reduces to

RAF−MCP−DA(P )

=
∫ 1

0
log2

(
1+

Pg2(β + 2αcos2πθ)2(γ + 2η cos2πθ)2

σ2
1g

2(γ + 2η cos2πθ)2 + σ2
2

)
dθ. (7.16)

In addition, by setting µ = 0 in Equation (7.15) we obtain the optimal
RS amplification gain as

g2
o =

Q

P (β2 + 2α2) + σ2
1
. (7.17)

Finally, we remark that, in the case of half-duplex operation,
the RSs are not capable of simultaneous receive–transmit operation.
Accordingly, the time is divided into equal slots: during odd numbered
slots the MSs are transmitting with power 2P and the RSs only receive,
while during even numbered slots the MSs are silent and the RSs trans-
mit. It is easily verified that the per-cell sum-rate in this case is given by
multiplying the rates obtained above by 1/2 while replacing P and Q,
respectively, with 2P and 2Q.

7.2.1.2 Single-cell Processing

We now assess the performance of the AF strategy when a conventional
SCP scheme with spatial reuse factor F = 1 is implemented. Recall that
for SCP each BS must be aware of the codebooks of its own MS only, as
it treats all other cells’ signals as interference. In this case, the output
signal (Equation (2.10)) can be expressed as

y
(2)
m,t = sU m,t + sIm,t + qm,t, (7.18)

with the following definition. The useful part of the output signal sU

is defined as

sU m,t =
∞∑

l=−∞
hS0,t−lx

(1)
m,l.

We define hS and hN as the signal and noise space–time
impulse response functions whose frequency responses are given in



7.2 Nonregenerative Relaying 107

Equations (7.12) and (7.13), respectively. The interference part of the
output signal sI is defined as

sIm,t =
∞∑

l1=−∞
l1 �=m

∞∑
l2=−∞

hSm−l1,t−l2x
(1)
l1,l2

,

and the equivalent noise is defined as

qm,t =
∞∑

l1=−∞

∞∑
l2=−∞

hN m−l1,t−l2z
(1)
l1,l2

+ z
(2)
m,t.

Since x(1), z(1), and z(2) are independent of each other, zero-mean com-
plex Gaussian and i.i.d. in space and time, it is easily verified that sU ,
sI , and q are independent and zero-mean complex Gaussian as well. It
is also evident that for each m the processes are WSS along the time
axis t. Accordingly, the received signal (Equation (7.18)) at the m-th
BS can be seen as the output of an LTI system with additive colored
independent interference and noise. Accordingly, the per-cell sum-rate
of SCP with AF relaying is given for an arbitrary relay gain 0 < g < go,
by [114, Appendix B]

RAF−SCP (P ) =
∫ 1

0
log2

(
1 +

SU (ϕ)
SI(ϕ) + SN (ϕ)

)
dϕ, (7.19)

where SU (ϕ), SI(ϕ), and SN (ϕ) are the power spectral densities of the
useful signal, interference, and noise, respectively:

SU (ϕ) = P

∣∣∣∣∫ 1

0
HS(θ,ϕ)dθ

∣∣∣∣2
SI(ϕ) = P

∫ 1

0
|HS(θ,ϕ)|2 dθ − P

∣∣∣∣∫ 1

0
HS(θ,ϕ)dθ

∣∣∣∣2 and

SN (ϕ) = σ2
1

∫ 1

0
|HN (θ,ϕ)|2 dθ + σ2

2.

We note that, in contrast to the MCP scheme studied above, the
performance of the AF strategy with SCP is interference limited. More-
over, it is also easy to verify that the achievable rate (Equation (7.19))
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is independent of the actual RS delay value λ. Finally, it will be veri-
fied below that, with SCP, due to the effect of interference, it turns out
that it is not always optimal to employ the full transmission power Q

at the RSs.

7.2.2 Compress-and-Forward (CF)

We now consider a transmission scheme that still requires no codebook
information at the RSs, as for the AF scheme discussed above, but in
which more processing capabilities are needed at the RSs. The CF-
based strategy organizes transmission into successive blocks. The idea
is that the RSs compress the signal received in any block and forward
it in the next block to the BSs. We detail the strategy for MCP and
SCP below.

7.2.2.1 Multi-cell Processing

With MCP, compression is done as if the RSs were connected by finite-
capacity backhaul links directly to the CP. Note that this is clearly not
the case since the RSs have to communicate with the BSs, which are
in turn connected with unlimited-capacity links to the CP. The com-
pression scheme is the same as discussed in Section 5.1.2. In particular,
using the distributed coding strategies discussed therein, each RS in
each block produces a compression index, which is binned to produce
a bin index as explained in Appendix C. This is sent to the BSs by
treating the RS-to-BS hop as a regular Wyner model. The CP then
will decode over the second hop using standard MCP techniques and
recover the bin indices. From the bin indices, using the same process-
ing as for the CEO problem (see Appendix C), the CP can perform
joint decompression and decoding as done in the oblivious scheme of
Section 5.1.2.

The previous discussion hides a difference between the CF scheme
considered here and the oblivious strategy of Section 3. In fact, here, by
decoding the RSs’ codewords, the CP acquires some information that
is correlated with the signals received and compressed by the RSs. In
fact, note that the RSs’ received signals (Equation (2.10)) are corre-
lated with the RSs’ transmitted codewords {x

(2)
m (t)}. Therefore, while
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compressing and binning their received signals, the RSs can leverage
the fact that the CP will have correlated side information when decom-
pressing. This further improves the efficiency of the use of the backhaul
links.

The following per-cell rate can be shown to be achievable by the
CF-MCP scheme [114, Appendix C]:

RCF−MCP(P ) = Rw(α,β,ρ1(1 − 2−r∗
)), (7.20)

where r∗ ≥ 0 is the unique solution to the following fixed point equation:

Rw(α,β,ρ1(1 − 2−r∗
)) = Rw(η,γ,ρ2) − r∗. (7.21)

Note that since Rw(α,β,ρ1(1 − 2−r)) is monotonic in r, Equation (7.21)
is easily solved numerically.

The rate (Equation (7.20)) can be easily explained by recalling
the expression (Equation (5.6)) for the per-cell rate achievable by the
oblivious scheme of Section 3 and related discussion. In fact, as for
Equation (5.6), the rate (Equation (7.20)) shows that the CF scheme
with MCP attains the maximum rate achievable if the RSs were all
connected with ideal backhaul links to the CP (i.e., the bound (Equa-
tion (7.2))), but with an SNR loss given by (1 − 2−r∗

). The parameter
r∗has the interpretation of the per-cell RS-to-BS rate that the RSs have
to waste transmitting observation noise.

The analysis above reveals another important fact: the consid-
ered CF-MCP performs as if there is no inter-relay interference (i.e.,
µ = 0). This is a consequence of exploiting the side information about
the RSs’ codewords when designing the compression and decompres-
sion/decoding strategy. Moreover, it can be verified that, as with
the AF-MCP scheme, the use of the full relay power Q is opti-
mal. Finally, it is easily verified that when ρ1 → ∞ then r∗ → 0, and
RCF−MCP (P ) does not achieve the upper bound (Equation (7.6)).
This is since RCF−MCP →

ρ1→∞ Rw(η,γ,ρ2) ≤ Rwf
w (η,γ,ρ2). On the other

extreme when ρ2 → ∞ then r∗ → ∞, and Rcf−mcp achieves the upper
bound RCF−MCP →

ρ2→∞ Rw(α,β,ρ1). In other words, CF-MCP works

well when the performance is limited by the SNR on the first hop,
while the second hop has a large SNR.
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7.2.2.2 Single-Cell Processing

We now analyze the performance of the CF scheme in the presence of
SCP with reuse factor F = 1. Recall that in this case each BS must be
aware of its local MS and RS codebooks only, and decodes its signals
treating other BSs’ signals as noise. Each RS quantizes its received
signal and transmits it to its local BS. Before describing the scheme
in detail let us define the SINR at each RS and each BS ρ̃1, and ρ̃2,
respectively, as

ρ̃1 � Pβ2

σ2
1 + 2α2P + 2µ2Q

and ρ̃2 � Qγ2

σ2
2 + 2η2Q

. (7.22)

In addition, we denote the capacity of the single-user Gaussian channel
with SNR ρ to be Rg(ρ) = log2(1 + ρ) for simplicity.

According to the considered CF-SCP scheme, each RS compresses
the received signal and then bins the compressed index. The bin index
is transmitted to the same-cell BS. Each BS performs joint decompres-
sion/decoding of the message transmitted by the same-cell MS. It is
easily verified that applying the CF-SCP scheme, as explained above,
each cell (MS, RS, and BS) becomes equivalent to a multihop channel
where CF is employed at the RS. This channel was studied in [85].
Using the results therein, we can show that an achievable per-cell rate
is given by

RCF−SCP = Rg(ρ̃1(1 − 2−r∗
)), (7.23)

where r∗ ≥ 0 is the unique solution to the following fixed point equation:

Rg(ρ̃1(1 − 2−r∗
)) = Rg(ρ̃2) − r∗, (7.24)

where ρ̃1 and ρ̃2 are the SINRs at each RS and each BS, respectively,
as defined above. In contrast to the MCP scheme analysis, here we can
analytically solve Equation (7.24). Specifically, the achievable rate of
Equation (7.23) is explicitly given by

RCF−SCP(P ) = log2

(
(1 + ρ̃1)(1 + ρ̃2)

1 + ρ̃1 + ρ̃2

)
. (7.25)

As a remark, it is noted that the rate (Equation (7.25)) can also
be achieved without joint decompression/decoding, but instead with
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standard binning and successive decompression and decoding; see,
e.g., [18]. In other words, with SCP, there is no need for more complex
joint decoding/decompression strategies.

Examining the rate (Equation (7.25)) it is easily verified that it
increases with the local path gains (β2,γ2) while it decreases with the
inter-cell path gains (α2,η2,µ2). Hence, in contrast to the MCP scheme,
the inter-relay interference is deleterious for the SCP scheme, which
is interference-limited. In addition, the rate increases with the MSs’
power and using the full power P is beneficial. On the other hand
increasing the RSs’ power unboundedly reduces ρ̃1 to zero which drives
RCF−SCP(P ) to zero as well. In particular, fixing the MSs’ power P ,
the optimal RSs’ power that maximizes the rate is given by

Qo = min

{
Q,

√
((2α2 + β2)P + σ2

1)σ
2
2

2µ2(2η2 + γ2)

}
. (7.26)

This shows that, as with AF-SCP, also with CF-SCP it is generally not
optimal for the RSs to use all the available power.

7.3 Regenerative Relaying

In this section, following [102], we consider alternative relaying schemes
for the system described in Section 2.4.1. Unlike the nonregenerative
strategies studied in the previous section, the techniques analyzed here
are regenerative in the sense that the RSs decode the signals sent by
(some of) the MSs. Therefore, we refer to the strategies considered
here as DF-based. Note that in order for DF-based strategies to be
employed, the RSs must be informed about the codebooks of the MSs
whose signals are to be decoded (see details below). Another relevant
difference between the techniques proposed here and the nonregenera-
tive strategies is that the latter do not require any change at the MS
level, while the former generally do. In other words, with nonregener-
ative strategies, the RSs are transparent to the MSs, while this is in
general not the case for regenerative strategies.

We organize the rest of this section as follows. First, we discuss the
operation in the first hop. Then, we turn to the second hop and discuss
per-cell achievable rates for SCP and finally for MCP. Throughout, to



112 Dedicated Relays

simplify the analysis, we set µ = 0 (i.e., no inter-relay interference).
Achievable schemes with µ > 0 can be obtained by assuming that each
RS treats the signals from other RSs as additive noise, thus raising
the noise level by 2µ2P . More sophisticated strategies where the inter-
relay links are used to aid relay cooperation are possible, but will not
be considered here.

7.3.1 Operation in the First Hop

Similar to the informed BS strategy of Section 5.3, the idea here is
to use rate splitting [32], whereby the information bits of each MS
are split into two parts. The first part, referred to as “private,” is
transmitted with power β1P and is decoded only by the same-cell BS,
with 0 ≤ β1 ≤ 1. The second part, referred to as “public” or “com-
mon”, is transmitted with power (1 − β1)P and is decoded not only
at the local BS but also at the adjacent BSs. Therefore, each m-th RS
jointly decodes four messages: the private message and the common
message of the same-cell MS, and the common messages of the two
adjacent-cell MSs, namely m − 1 and m + 1. The private messages of
the two adjacent-cell MSs are instead considered as the interference
terms with power 2α2β1P. The channel seen at any m-th RS is then
a four-user Multiple Access Channel (MAC) with equivalent Gaussian
noise with power σ2

1 + 2α2β1P. Accordingly, using well-known results
on the capacity of MACs (see, e.g., [17]), for each choice of the power
allocation factor β1, the achievable per-cell rates of the private message
part (R1p) and of the common part (R1c) are limited by the 15 inequal-
ities defining the corresponding MAC capacity region, which are easily
shown to reduce to

R1p ≤ Rg

(
β1ρ1

ν2 + 2α2βρ1

)
� Rmax

1p (β1) (7.27)

R1c ≤ min
{

1
2
Rg

(
2α2(1 − β1)ρ1

ν2 + 2α2β1ρ1

)
, (7.28)

1
3
Rg

(
(2α2 + 1)(1 − β1)ρ1

ν2 + 2α2ββ1ρ

)}
(7.29)

� min{Rmax,1
1c (β1), Rmax,2

1c (β1)} (7.30)
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R1p + 2R1c ≤ Rg

(
β1ρ1 + 2α2(1 − β1)ρ1

ν2 + 2α2β1ρ1

)
(7.31)

� Rsum,1
1 (β1) (7.32)

R1p + 3R1c ≤ Rg

(
β1ρ1 + (2α2 + 1)(1 − β1)ρ1

ν2 + 2α2β1ρ1

)
(7.33)

� Rsum,2
1 (β1), (7.34)

where ν2 = 1 and we recall the definition Rg(P ) = log2(1 + P ). Notice
that in writing the conditions above we have removed dominated
inequalities. We refer to the region of rates (R1p,R2p) satisfying the
inequalities above as R1(β1).

The rate region identified by the inequalities above for a given power
allocation β1 is a polyhedron. It can be shown that for each power allo-
cation β, the maximum rate R1p + R1c attainable in the first hop is
obtained in one of the vertices of this polyhedron [102]. Moreover, the
rate pair (R1p,R1c) corresponding to the maximum sum-rate can be
achieved via successive interference cancellation by first jointly decod-
ing the common messages, treating the private information as noise,
then cancelling the decoded common messages and finally decoding
the same-cell private message. Specifically, the maximum rate for a
given power allocation β1 is given by

Rmax
1 (β1) = Rmax

1p (β1) (7.35)

+min(R1
1c(β1), R2

1c(β1)), (7.36)

with Equation (7.27) and

R1
1c(β1) =

1
2
Rg

(
2α2(1 − β1)ρ1

ν2 + (2α2 + 1)β1ρ1

)
and (7.37)

R2
1c(β1) =

1
3
Rg

(
(2α2 + 1)(1−)ρ1

ν2 + (2α2 + 1)β1ρ1

)
, (7.38)

where ν2 = 1.

7.3.2 Single-Cell Processing

Having described the system operation for the first hop, we now turn
to the second hop. We describe two techniques assuming that each BS
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performs decoding independently from other BSs according to SCP
with spatial reuse F = 1.

7.3.2.1 Noncooperative Relay Stations

As explained, with rate splitting in the first hop, each RS, say the m-th,
decodes in each block the private message and the common message
of the same-cell MS, along with the common messages of the adjacent
cells. A simple approach is for the m-th relay to neglect the knowledge
of the common messages of adjacent cells and to simply retransmit to
the local BS the private and common messages of the same-cell MS.
This is done using rate splitting and interference cancellation exactly as
explained in the previous section for the first hop. Note that the total
rate R1p + R1c, delivered to the RSs by the MSs in the first hop, can be
now split into two streams, one private and one common, in a generally
different share with respect to the first hop. In particular, a different
power allocation between private and common parts, say β2, can be
used in the second hop, so that the private message is transmitted with
power β2Q and the common message with power (1 − β2)Q. Note that,
in order to implement this scheme, each BS must be informed of the pri-
vate codebook used by the same-cell MS and of the common codebooks
employed by the same-cell MSs and the two adjacent-cell MSs.

Following the previous section, we can thus obtain the maximum
per-cell rate that can be transmitted in the second hop as (recall
Equation (7.35))

Rmax
2 (β2) = Rmax

2p (β2) (7.39)

+min(R1
2c(β2), R2

2c(β2)), (7.40)

where Rmax
2p (β2), R1

2c(β2), and R2
2c(β2) are obtained from Equa-

tions (7.27), (7.37) and (7.38), respectively, where subscript “2” should
be substituted for “1” and parameters (γ2,η2) should be written in lieu
of (ν2,α2).

Since with rate splitting in both hops the two hops are operated
independently, the optimal strategy is to transmit in both hops at the
maximum sum-rates Rmax

1 (β1) and Rmax
2 (β2) for given power alloca-

tions β1 and β2. It follows that, optimizing over the power allocation
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on both hops, the rate achievable with rate splitting in both hops is

RDF−SCP−NO−COOP (P ) = min
i=1,2

max
0≤βi≤1

Rmax
i (βi). (7.41)

7.3.2.2 Cooperative Relay Stations

In this section, we investigate the performance of an alternative trans-
mission scheme for the second hop that leverages the common infor-
mation gathered at the RSs as a by-product of the use of rate splitting
in the first hop. This contrasts with the naive scheme discussed above
whereby the common messages from adjacent cells were neglected when
transmitting in the second hop.

The rate splitting-based scheme discussed above for transmission
from RSs to BSs fails to exploit the knowledge of the common messages
of adjacent cells at any m-th RS. Based on this side information, any
m-th cell could cooperate with the adjacent cells m − 1 (and m + 1) in
order to deliver the common messages of these cells to the intended
BS in cell m − 1 (and m + 1). To this end, we consider a super-
position scheme whereby RSs cooperate for transmission of common
information toward the goal of achieving coherent power combining at
the BSs.

The private and common messages are the ones sent in the first hop
by the MSs and therefore have rates R1p and R1c, respectively. We focus
on a simple power allocation among the transmitted codewords by the
RSs, whereby the total power Q is divided according to a parameter β2

as above, so that power β2Q is used for transmission by the RSs of
the private part and the power (1 − β2)Q is equally shared among the
three cooperative common signals. As in the previous section, each BS
is assumed to know the private codebook used by the same-cell MS and
of the common codebooks employed by the same-cell MSs and the two
adjacent-cell MSs in order to enable joint decoding. Specifically, each
BS performs joint decoding of four messages: the private message and
the common message of the same-cell MS, and the common messages
of the two adjacent-cell MSs, namely m − 1 and m + 1. The common
messages of cells m − 2 and m + 2 are considered as interference by
the m-th BS.
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It can be seen that any m-th BS observes a four-user MAC
with equivalent noise power σ2

2 + 2η2(β2Q + (1 − β2)Q/3). Therefore,
similarly to the discussion above, the achievable rates (R1p,P1c) of the
private and common information must satisfy

R1p ≤ Rg

(
γ2β2ρ2

1 + 2η2(β2ρ2 + (1 − β2)Q/3)

)
R1c ≤ min

{
1
2
Rg

(
2(γ + η)2(1 − β2)ρ2

1 + 2η2(β2ρ2 + (1 − β2)ρ2/3)

)
,

1
3
Rg

(
(2(γ + η)2 + (γ + 2η)2)(1 − β2)ρ2

1 + 2η2(β2ρ2 + (1 − β2)ρ2/3)

)}
R1p + 2R1c ≤ Rg

(
γ2β2ρ2 + 2(γ + η)2(1 − β2)ρ2

1 + 2η2(β2ρ2 + (1 − β2)ρ2/3)

)
R1p + 3R1c ≤ Rg

(
γ2β2ρ2 + (2(γ + η)2 + (γ + 2η)2)(1 − β2)ρ2

1 + 2η2(β2ρ2 + (1 − β2)ρ2/3)

)
.

We refer to the polytope of rates (R1p,R1c) satisfying the inequalities
above as RCOOP (β2). It is noted that the effect of RS cooperation is seen
above in the beamforming (array) gains due to coherent combining,
which are reflected in the effective channel gains (γ + η)2 and (γ +
2η)2. Focusing on the m-th BS, the first, (γ + η)2, accounts for the
effective channel gains of the common message of cells m − 1 and m +
1, which are received both directly and via the signal transmitted by
the m-th RS. The second, (γ + 2η)2, accounts for the effective channel
gain of the common message of the m-th RS, which is received, not
only through direct transmission, but also via the signals relayed by
the (m − 1)-th and the (m + 1)-th RSs.

The maximum achievable rate with rate splitting in the first hop and
cooperative transmission in the second hop, according to the coding
scheme described above, can be then found by solving the following
optimization problem:

RDF−SCP−COOP (P ) = max
R1p,R1c,β1,β2

R1p + R1c (7.42)

s.t.


0 ≤ β1,β2 ≤ 1

(R1p,R1c) ∈ R1(β1)∩
RCOOP (β2).

(7.43)
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Notice that for each choice of the power allocation (β1,β2), the
optimization problem (Equation (7.42)) can be solved by linear
programming.

7.3.3 Multi-Cell Processing

In this section we consider the performance of DF-based schemes with
MCP. We assume the use of rate splitting in the first hop, whereas in
the second hop the cooperative transmission scheme discussed above,
which aims at coherent power combining at the BSs for the common
messages, is employed. Following this scheme, similar to what was done
above, we can interpret the received signal at the BSs as an equivalent
LTI system with inputs given by the signals transmitted by the RSs. In
particular, defining as x

(2)
p,m and x

(2)
c,m the codewords transmitted by the

RSs that encode the private and common messages of the m-th MS,
one can easily prove that the received signal at the m-th BS is given by

y(2)
m = hp,m ∗ x(2)

p,m + hc,m ∗ x(2)
c,m + z(2)

m , (7.44)

where “∗” denotes convolution and the finite-impulse response filters
hnc,m and hc,m are given by

hp,m = ηδm+1 + γδm + ηδm−1 and (7.45)

hc,m = ηδm+2 + (γ + η)δm+1 + (γ + 2η)δm

+(γ + η)δm−1 + ηδm−2, (7.46)

with δm denoting the Kronecker delta function. The channel (Equa-
tion (7.44)) is a Gaussian MAC with inter-symbol interference, so that
the achievable rates (R1p,R1c) in the second hop must satisfy the con-
ditions [13]

R1p ≤ Rw(η,γ,β2Q)

R1c ≤
∫ 1

0
Rg

(
(1 − β2)Q

3
(γ + 2η + 2(γ + η)cos(2πθ)

+2η cos(4πθ))2
)

dθ
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R1p + R1c ≤
∫ 1

0
Rg

(
β2Q(γ + 2η cos(2πθ))2

+
(1 − β2)Q

3
(γ + 2η + +2(γ + η)cos(2πθ)

+2η cos(4πθ))2
)

dθ,

where we used the definition (7.1). We refer to the polytope of rates
(R1p,R1c) described by the inequalities above as RMCP (β1,β2).

Finally, accounting for both first and second hops, the rate achiev-
able with rate splitting, relay cooperation and multi-cell processing can
be obtained by solving the following optimization problem:

Rmcp = max
R1p,R1c,β1,β2

R1p + R1c (7.47)

s.t.


0 ≤ β1,β2 ≤ 1

(R1p,R1c) ∈ R1(β1,β2)∩
RMCP (β1,β2).

(7.48)

Notice again that, for fixed power allocation (β1,β2), problem (Equa-
tion (7.47)) can be solved by linear programming.

7.4 Numerical Results

We first provide a performance comparison of the DF-based techniques
that we have just presented and then discussed a comparison among
all schemes. Figure 7.2 shows the achievable per-cell rates by the con-
sidered regenerative schemes for ρ1 = 2, ρ2 = 1, σ2

1 = σ2
2 = 1, γ2 = 1,

µ2 = 0 versus the inter-cell gains α2 = η2. We compare the per-cell rates
achievable with SCP with and without RS cooperation and with MCP.
As for the DF-SCP technique without RS cooperation, we also show
the special case β1 = β2 = 1, which corresponds to no rate splitting,
i.e., to transmission of only private messages. This scheme is of interest
for its simplicity and because it can be implemented by maintaining the
deployment of relays transparent to the MSs, since the latter do not
have to change their transmission strategies. For reference, we plot the
maximum rate achievable on the first hop with rate splitting and opti-
mal power allocation Rmax

1 (Equation (7.35)). This provides an upper
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bound on the per-cell achievable rate for the considered DF-based tech-
niques in the scenario at hand where the SNR in the second hop creates
the performance bottleneck (since ρ2 = ρ1/2).

It can be seen that rate splitting is advantageous with respect to
single-rate transmission (i.e., β1 = β2 = 1) if the inter-cell gains α2 = η2

are large enough. Moreover, cooperation at the relays provides relevant
performance gains and allows the network to achieve the upper bound
Rmax

1 for α2 = η2 large enough. Finally, MCP allows the upper bound
Rmax

1 to be achieved for a larger range of α2 = η2 than SCP with RS
cooperation.

We now present a comparison among the regenerative and the non-
regenerative schemes discussed in this section for γ2 = 1, α2 = η2 = 0.2,
σ2

1 = σ2
2 = 1, µ2 = 0.1, ρ1 = 10 versus the ratio ρ2/ρ1 in Figure 7.3. For

DF, we consider strategies with relay cooperation. A first critical obser-
vation is the interplay between the deployment of SCP or MCP and
the choice of relaying strategies. Specifically, it can be seen that if SCP
is employed, DF is advantageous with respect to CF, and also with
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respect to AF, if the power of the MSs is sufficiently larger than that
of the RSs and thus ρ2/ρ1 is sufficiently larger than one. It is noted
that CF performs very poorly due to its inability, unlike DF and AF,
to beamform the users’ signals toward the BSs. However, if MCP is in
place, the situation is remarkably different in that DF is outperformed
by both CF and AF unless the MSs’ power is sufficiently larger than
that of the relays. This is because DF is limited by the performance
bottleneck due to the need to decode at the RSs, which prevents the
system from benefiting from MCP. Finally, it is seen that the proposed
CF scheme performs close to optimal if the relay power is sufficiently
large.

7.5 Summary

In this section, we have studied the performance of cellular systems
with RSs and with conventional SCP or with MCP. We have focused on
Gaussian channels and considered the deployment of RSs as a means
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to extend the system coverage for the uplink. We have investigated
both regenerative techniques, which require the RSs to know the MSs’
codebooks and are typically nontransparent to the MSs, and nonregen-
erative techniques, which do not require any codebook knowledge at
the RSs and are transparent to the MSs. We have seen that the design
of the relaying techniques depends critically on whether SCP or MCP is
implemented. In fact, if SCP is employed, regenerative techniques (DF)
are seen to be advantageous with respect to nonregenerative strategies,
unless the relay power is sufficiently large, in which case AF has compa-
rable performance. Instead, if MCP is in place, DF is outperformed by
both nonregenerative techniques, CF and AF, unless the MSs’ power is
sufficiently larger than that of the relays. This is because the decoding
requirement at the relays of DF can set the performance bottleneck,
thus nullifying the potential gains attainable with MCP.



8
Mobile Station Cooperation

In this section, we address the impact of cooperation in cellular net-
works when there is cooperation at the MS level. We follow the uplink
model discussed in Section 2.4.2 and consider first out-of-band coop-
eration and then in-band cooperation. We recall that in both cases
we study cooperation between MSs in adjacent cells. As explained in
Section 2.4.2, inter-cell MS cooperation is useful if MCP is deployed,
since, thanks to MCP, the signal relayed by an adjacent-cell MS can be
exploited by the CP for decoding. For this reason, we will focus solely
on MCP here. It is noted that some analysis of intra-cell cooperation
can be found in [105]. We remark that MS cooperation raises issues
related to privacy and altruistic versus selfish behavior that are not
considered here (see, e.g., [50]).

8.1 Upper Bound

We start by first deriving an upper bound on the per-cell rate achiev-
able by exploiting inter-MS cooperation for the model presented in
Section 2.4.2. Specifically, as pointed out in Section 2.4.2, an upper
bound on the per-rate achievable with inter-MS cooperation is given by

R(P ) ≤ RUB(P ) = Rwf
w (α,1,P ), (8.1)
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where Rwf
w (α,1,P ) is as defined in Equation (7.5), where it was found

to be equal to

Rwf
w (α,1,P ) =

∫ 1

0
log2

(
1 +

(
ν − 1

H(θ)2

)+

H(θ)

)
dθ

s.t.
∫ 1

0

(
ν − 1

H(θ)2

)+

dθ = P, (8.2)

with H(θ) = 1 + 2αcos(2πθ). This bound follows again from cut-set
arguments.

In order to interpret Equation (8.1) and obtain insights into the
possible gains attainable with inter-cell MS cooperation, it is useful to
recall that Rwf

w (α,1,P ) is given by

Rwf
w (α,1,P ) = max

∫ 1

0
log(1 + P · H(θ)2S(θ))dθ, (8.3)

where the maximum is taken over the input power spectral density
S(θ) such that the power constraint

∫ 1
0 S(f)df = 1 is satisfied. (This

can be shown to be given by the “waterfilling” solution S(θ) =
(
ν −

1
PH(θ)2

)+
where the parameter ν ≥ 0 is selected so as to satisfy the

power constraint.) Now, from the discussion in Section 3.1.2, we know
that the power spectral density S(θ) accounts for the correlation among
the signals sent by the MSs. The MSs are able to correlate their signal
only if they have exchanged information so as to have common data on
which correlation can be built. Note that this is the same mechanism
that allowed us to obtain RS cooperation in Section 7. Also, recall that
a constant S(θ) represents noncooperative MSs, while a nonconstant
S(θ) is possible only if cooperation at the MSs is enabled.

In light of the discussion above and of Equation (8.3), the optimal
correlation of the MSs’ signals corresponds to the waterfilling solution.
By examining this solution and its corresponding time-domain trans-
form, one can conclude that, in order for such a power spectral density
to be realized, correlation needs to span a large number of MSs, espe-
cially if α is large enough. In other words, many MSs would have to
exchange information in order for the upper bound to be achieved.
Note that clearly if α = 0 neither MCP nor inter-cell MS cooperation
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Fig. 8.1 Comparison between the optimal (waterfilling) correlation of the signals transmit-
ted by the MSs and approximations obtained where each MS can cooperate only with Kc

on the left and on the right (α = 0.2 and P = 2).

can provide performance gains. An example for α = 0.2 and P = 2 is
shown in Figure 8.1. There, the optimal waterfilling power spectral den-
sity S(θ) is compared with the best approximation achievable if each
MS is able to cooperate only with Kc MSs on the left and on the right.
It is seen that, even for a relatively small value of α, the number of coop-
erating MSs must be rather large in order to approximate the optimal
input correlation and thus the optimal cooperative strategy. Further
details on how this example was generated will be provided below.

8.2 Out-of-Band Cooperation

In this section, we analyze the performance gains attainable with out-
of-band MS cooperation. From Section 2.4.2, it is recalled that out-
of-band cooperation amounts to having each MS connected to the
two MSs in adjacent cells via finite-capacity links of capacity C(MS)

(bits/s/Hz). Moreover, transmission on each inter-MS out-of-band link
can be performed in parallel and without interference to/from the
transmissions to the BSs. This implies that, by arranging transmissions
in successive blocks, the MSs can exchange information on the inter-MS
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links in a given block, while transmitting to the BSs, and then use the
exchanged information in the next block. By pipelining transmissions,
this guarantees that in each block the MS can cooperate when transmit-
ting to the BSs based on the signals exchanged over the inter-MS links.

8.2.1 An Achievable Rate

In this section, we derive an achievable rate for the model at hand and
discuss some of the implications of this result. The scheme, proposed in
[105], works as follows. We employ again rate splitting so that each m-th
MS splits its information bits into two parts, private and common, of
rates Rc and Rp (bits/s/Hz), respectively. Then, it shares the common
part with the 2Kc neighboring MSs in cells m + i with i = −Kc,−Kc +
1, . . . ,−1,1, . . . ,Kc, i.e., with Kc MSs on the left and Kc on the right.
This is realized by sending the common message over all the inter-MS
links between the m-th MS and the (m + i)-th MS. Notice that, after
this information exchange, each m-th MS is aware of the 2Kc common
messages beside its own. Moreover, the need to send these messages on
the inter-MS links is easily seen to impose the constraint

Rc ≤ C(MS)

Kc
. (8.4)

In the block following the information exchange above, each com-
mon message can then be transmitted cooperatively by all the 2K + 1
MSs that have acquired the information in the conferencing phase.
Moreover, superimposed on the codewords encoding the common mes-
sages, each MS also sends its private message. Transmission is per-
formed in a way similar to the way RSs format their transmissions
in the cooperative strategy discussed in Section 7.3.2.2. The following
per-cell rate is achieved:

R(P,C(MS)) = max
β,hc

min

{∫ 1

0
log(1 + βPH(θ)2

+(1 − β)PH (θ)2|Hc(θ)|2)dθ,∫ 1

0
log(1 + βPH(θ)2)dθ +

C(MS)

Kc

}
, (8.5)
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where 0 ≤ β ≤ 1 is the power allocation coefficient between private and
common messages, hc = [hc,−Kc · · ·hc,Kc ]T is a symmetric complex vec-
tor of 2Kc + 1 entries with unitary norm, ‖hc‖2 = 1, and

Hc(θ) =
Kc∑

m=−Kc

hc,m exp(−j2πθm). (8.6)

As shown by the result above, the impact of inter-cell MS cooper-
ation, using the considered scheme, is equivalent to that of allowing
precoding (pre-equalization) of the common information by a 2Kc + 1
finite-impulse filter hc with frequency response Hc(θ) Equation (8.6) on
the LTI system H(θ) that accounts for the Wyner model. This allows
the correlation of the signals transmitted by the MSs, as far as the
common messages are concerned, to be given by |Hc(θ)|2. As can be
inferred from Equation (8.5), instead, the private messages are sent
with a constant power spectral density (i.e., without cooperation). We
emphasize that, while the number of taps of the filter hc increases with
the number of cooperative MSs, the overall achievable rate may suffer
according to Equation (8.5) due to the need to exchange more infor-
mation among MSs. We further explore this trade-off below with a
numerical example.

8.2.2 Asymptotic Optimality

The scheme considered above is easily seen to be optimal for C → ∞,

Kc → ∞ and C(MS)

Kc
≥ RUB(P ). This can be proved by noting that the

rate (Equation (8.5)) equals the upper bound (Equation (8.1)) under
the conditions in the proposition above by setting β = 0 and recall-
ing that the optimal (waterfilling) power spectral density S(θ) can be
approximated arbitrarily well by the frequency response |Hc(θ)|2 in
Equation (8.6) as the number of taps 2Kc + 1 increases unboundedly;
see Figure 8.1 for an illustration. Note that, in particular, this argu-
ment implies that, under the given asymptotic conditions, it is optimal
to allocate all the power to the common messages.

We also remark that, while here we do not consider fading chan-
nels, it is apparent from the discussion above that the advantages of
inter-cell MS cooperation are related to the possibility of optimizing
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the transmission strategy based on the knowledge of the channel struc-
ture at the MSs. Therefore, inter-cell conferencing is expected not to
provide any performance gain over fading channels in the absence of
channel state information at the MSs. This claim can be substantiated
by using the results in [121], where it is shown that, in the case of
independent fading channels, even in the presence of statistical chan-
nel state information at the transmitters (i.e., at the MSs) the optimal
power allocation is asymptotically uniform so that cooperation at the
MSs does not provide any advantage.1

8.2.3 Low-SNR Analysis

We now further analyze the performance of the inter-cell MS coop-
erative scheme at hand in the low-SNR regime. The goal is to assess
to what extent the minimum energy per bit required for reliable com-
munication obtained with ideal MS cooperation is attainable with the
scheme discussed above. First, we remark that from Equation (8.1),
with ideal MS cooperation, we can ideally achieve

Eb

N0 min,UB
=

ln2
(1 + 2α2)2

. (8.7)

The latter can be proved by noticing that, when the SNR tends to
zero (P → 0), it is optimal to allocate all the available power around
the maximum value of the channel transfer function, maxθ H(θ)2 =
(1 + 2α)2, which occurs at θ = 0. In other words, the optimal waterfill-
ing power allocation is S(θ) = δ(θ), where δ(θ) is a Dirac delta function.
This result implies, when compared with the minimum energy per bit
(Equation (3.16)) attainable without MS cooperation, that MS coop-
eration can lead, ideally, to a power gain of 1 + 2α2.

We now analyze Equation (8.5). In [105], the following approxima-
tion is derived:

Eb

N0 min
� ln2

(1 + 2α)2
(
1 − 8απ2

3(1+2α)K2
c

) . (8.8)

1 This result holds for channels with column-regular gain matrices (see the definition in
[121]). The channel considered here belongs to this class when M → ∞.
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This shows that the minimum energy per bit achievable with inter-cell
MS cooperation is a decreasing function of the number Kc of cooper-
ating MSs and, as expected from the discussion above, tends to the
optimal performance (8.7) by letting Kc → ∞.

8.2.4 Numerical Results

As discussed above, increasing Kc is always beneficial in obtaining
a better approximation of the optimal (waterfilling) power spectral
density. However, due to the finite inter-MS capacity C(MS), it is
not necessarily advantageous in terms of the achievable rate (Equa-
tion (8.5)). To show this, Figures 8.2 and 8.3 present the achievable
per-cell rate (Equation (8.5)) versus the inter-cell gain α along with
the lower bound obtained by setting C(MS) = 0 (which corresponds to
Equation (3.12)) and the upper bound (Equation (8.1)) for C(MS) = 1
and C(MS) = 10 (bits/s/Hz), respectively, with P = 2. Figure 8.2 shows
that, with C(MS) = 1, while increasing the cooperating MSs from
Kc = 1 to 2 increases the achievable rate, further increments of the
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MS cooperation with C(MS) = 1 (bits/s/Hz) (P = 2).
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MS cooperation with C(MS) = 10 (bits/s/Hz) (P = 2).

inter-MS capacity C(MS) are disadvantageous, according to the trade-
off mentioned above. With a larger capacity C(MS) = 10, Figure 8.3
shows that very relevant performance gains can be harnessed by
increasing the number of cooperating MSs, especially from Kc = 1 to
Kc = 2. Moreover, as expected from the discussion above, having suffi-
ciently large inter-MS capacity C(MS) and number of cooperating MSs
Kc (with C(MS)/Kc ≥ RUB) enables the upper bound (Equation (8.1))
to be approached.

8.3 In-Band Cooperation

The previous section showed that with out-of-band links of sufficiently
large capacity, inter-MS cooperation is able to achieve the performance
promised by the upper bound obtained under the assumption of ideal
MS cooperation. These gains are substantial, as precisely quantified
above in the low-SNR regime. In this section, we study how much of
the promised gains can be instead realized if out-of-band links are not
available for inter-cell MS cooperation. Instead, the MSs are assumed
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to be able to receive on the same bandwidth they use for transmission
to the BSs, as detailed in Section 2.4.2 (see Figure 2.7). This reception
capability of the MSs can be capitalized upon by letting the MSs convey
information to adjacent MSs by encoding such information on the same
signal used for transmission to the BSs.

To elaborate, we focus on a technique proposed in [106]. The tech-
nique attempts to mimic the approach used for out-of-band MS cooper-
ation in that each MS performs rate splitting into private and common
parts, and then shares the common part with Kc MSs on the right and
Kc on the left. Note that such information exchange must occur on the
same bandwidth used for communication to the BSs so that, apart from
the power allocated for transmission of private and common messages,
a fraction of the power should also be used for signalling the common
information to nearby users. To illustrate this point, we take a brief
detour and discuss a MAC with only two users and a destination.

8.3.1 Gaussian Multiple Access Channel
With In-Band Cooperation

Consider a symmetric Gaussian MAC, in which two users communi-
cate with a destination. The signal received by the destination at time
instant t is given by

y(t) = x1(t) + x2(t) + z(t), i = 1,2, . . . ,n, (8.9)

where the noise sequence z(t) is i.i.d. complex Gaussian with unit power
and we enforce a power constraint of P on both transmitters. The m-th
MS, similar to Equation (8.10), receives the following signal at time t:

y(MS)
m (t) = κxm′(t) + z(MS)

m (t), (8.10)

where m′ = 2 if m = 1 and m′ = 1 if m = 2. Note that the noises at the
destination and at the corresponding MS may be correlated, as this will
not affect our results [106]. From Equation (8.10), each MS overhears
the signal transmitted by the other with a channel gain κ ≥ 0.

We start by observing that, with ideal cooperation, the per-user
rate

RUB(P ) =
1
2

log2(1 + 4P ) (8.11)
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can be achieved, since with full cooperation, a beamforming (array)
gain of 2 can be attained. The rate (Equation (8.11)) provides an upper
bound on the achievable rate with any form of cooperation. To assess
to what extent this upper bound can be realized, we study below an
achievable scheme.

Using standard tools (see, e.g., [131]), the following per-user rate R

(bits/s/Hz) can be shown to be achievable:

R(P ) = max
0≤β,ν≤1

min


1
2

log2(1 + 2βP ) + Rc,

1
2

log2(1 + 2P + 2ν(1 − β)P )

, (8.12)

with

Rc = log
(

1 +
κ2(1 − ν)(1 − β)P

1 + κ2βP

)
. (8.13)

The rate (Equations (8.12) and (8.13)) is achieved again by rate
splitting. However, here a further level of power allocation is necessary
in order to account for inter-MS signalling. Specifically, each MS splits
its rate and powers between a private and a common part, so that the
rate R is split as R = Rp + Rc (as above, subscripts denote private “p”
and common “c” parts), and power βP is devoted to private message
transmission and (1 − β)P to common message transmission. As for
the out-of-band strategy, the private part is sent to the BS without
any cooperation from the other MS, while transmission of the common
part benefits from the cooperation with the other MS. Unlike the out-
of-band strategy, in order to enable cooperative transmission, a fraction
(1 − ν) of the common power (1 − β)P must be devoted to signalling
the common message to the other MS (while the rest is used for trans-
mission to the BSs). To be precise, transmission is organized into blocks
so that the information signalled in a certain block is used in the next
for cooperation. Condition (Equation (8.13)) guarantees that each MS
is able to decode the signalling message (of rate Rc) from the other
MS. The remaining power ν(1 − β)P is then employed for cooperative
transmission to the BS.

It can be seen from Equation (8.12) that, if κ is large enough, it is
optimal to invest all the power in the common message (β � 0) and to
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dedicate a vanishingly small portion of such power to signalling (and
ν � 1). This way, the considered scheme approaches the upper bound
Equation (8.12) set by the full-cooperation scenario.

8.3.2 An Achievable Rate

We now aim at extending the strategy presented above for a two-user
Gaussian model to the Wyner model with in-band cooperation pre-
sented in Section 2.4.2 (see Figure 2.7). Using a block-based strategy
similar to the one presented above, we obtain the following. As for
the out-of-band strategy of the previous section, we define an inte-
ger Kc > 0, and a complex symmetric vector hc = [hc,−Kc · · ·hc,Kc ]T

with unit norm, ‖hc‖2 = 1, and its Fourier transform Hc(θ) as in
Equation (8.6). As we will see, these quantities have analogous def-
initions as for the out-of-band strategy. Moreover, we recall that
H(θ) = 1 + 2αcos(2πθ) is the transfer function accounting for the oper-
ation of the Wyner model on the signals transmitted by the MSs. It is
proved in [106] that the following per-cell rate is achievable:

R(P ) = max
β,ν1,ν2,hc

min



∫ 1

0
log2(1 + βPH(θ)2)dθ + Rc,∫ 1

0
log2(1 + βPH(θ)

+ν1(1 − β)P |Hc(θ)|2H(θ)2)df


(8.14)

with 0 ≤ β, ν1,ν2 ≤ 1 and

Rc = min



1
2

log2

(
1 +

κ22(1 − β)P (1 − ν1)(1 − ν2)
1 + κ2(2|hc,Kc

|2(1 − β)Pν1 + 2βP )

)
,

1
2(Kc − 1)

log2

(
1 +

κ2(1 − β)P (1 − ν1)ν2

1 + κ2(2|hc,Kc |2(1 − β)Pν1 + 2βP )

)
,

1
2Kc

log2

(
1 +

κ2(1 − β)P (1 − ν1)(2 − ν2)
1 + κ2(2|hc,Kc |2(1 − β)Pν2

1 + 2βP )

)
,

1
2Kc − 1

log2

(
1 +

κ2Pc(1 − ν1)
1 + κ2(2|hc,Kc

|2(1 − β)Pν1 + 2βP )

)
,

1
1 + Kc

log2

(
1 +

κ2(1 − β)(P/2)(1 − ν1)(4 − 3ν2)
1 + κ2(2|hc,Kc

|2(1 − β)Pν1 + 2β)P )

)



.

(8.15)
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The rate (Equations (8.14) and (8.15)) is achieved via a block-based
scheme that uses rate and power splitting in a way that resembles
the scheme for the two-user Gaussian MAC described above. Specifi-
cally, as for that basic scenario, each MS divides its resources between
transmission of private and common information, where the latter is
transmitted cooperatively by the MSs to the BSs. Moreover, in order
to enable cooperation, the MSs exchange signalling information about
the common messages. The main issue is how to perform this task in an
effective manner. As explained below, this can be done by using decode-
and-forward techniques and exploiting the side information available
at each MS regarding the signals generated at the MS itself or already
decoded by it.

In Equations (8.14) and (8.15), the common-part power (1 − β)P
is divided between the power used for cooperative transmission to the
BSs, given by ν1(1 − β)P , and the power used for signalling to other
MSs so as to enable cooperation, given by (1 − ν1)(1 − β)P. The latter
power is in turn split between the power employed to forward sig-
nalling information received from neighbors (ν2(1 − β)P (1 − ν1)) and
locally generated common information ((1 − ν2)(1 − β)P (1 − ν1)). We
emphasize that the parameter ν1 is especially critical as it accounts
for the trade-off between power used for cooperative transmission to
the BSs and that used for signalling among MSs. We also remark that,
as shown in [106], selecting the common rate Rc as in Equation (8.15)
guarantees correct decoding of the signalling messages at the MSs, while
condition (Equation (8.14)) enables correct decoding at the CP.

It was noted above that for a two-user Gaussian MAC, if the MS
measurements are of good enough quality, the scheme at hand is able
to attain the upper bound corresponding to full cooperation. The same
conclusion applies to the rate (Equations (8.12) and (8.13)) for the
Wyner model at hand. In fact, if κ is large enough, by devoting all
power to common message transmission (β � 0) and dedicating a van-
ishingly small portion of such power to signalling (ν1 � 1), one can
get arbitrarily close to the upper bound Equation (8.1). The reasons
for this are analogous to the ones provided above for out-of-band MS
cooperation.
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8.3.3 Numerical Results

In this section, we provide some numerical results to obtain insight
into the performance and limitations of the achievable rate derived
above. For comparison, we consider the rate (Equation (3.12)) achiev-
able with no MS cooperation (κ = 0), which sets a lower bound, and the
upper bound (Equation (8.1)) corresponding to ideal MS cooperation.
Figure 8.4 shows the achievable rate (Equation (8.5)) versus the SNR
P as compared to lower and upper bounds for α = 0.8, κ2 = 20 dB and
for different values of the number of cooperating terminals Kc = 1,2,

and 3. It is noted that the optimal fraction of common power v1 used for
cooperative transmission decreases with Kc (not shown), as expected,
since more power is required for signalling as the number of common
messages to be delivered increases. We also remark that increasing the
number of cooperating MSs beyond Kc = 3 is deleterious in terms of
achievable rates in this example, due to the limitations in terms of
resources for signalling. This is consistent with the analysis above for
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out-of-band cooperation. Also shown is the case κ2 = 30 dB, Kc = 2. It
is seen that, if κ2 is sufficiently large, the proposed scheme enables rel-
evant rate gains with respect to no cooperation, and allows the system
to partially bridge the gap to the upper bound corresponding to full
cooperation.

This fact is further investigated in Figure 8.5 where the rates dis-
cussed above are shown versus κ2 for α = 0.6 and P = −2 dB. Figure 8.5
confirms that, for sufficiently large κ and Kc, the performance of the
proposed scheme attains the upper bound of full cooperation.

8.4 Summary

In this section, we have studied the potential performance gains achiev-
able with inter-cell MS cooperation and MCP for the uplink, assuming
Gaussian channels. Via a low-SNR analysis, we have seen that, ideally,
MS cooperation offers additional SNR (beamforming) gains on top of
what is already achieved thanks to MCP. We have then investigated
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to what extent such gains can be realized. Considering at first the
availability of out-of-band inter-MS links, we have seen that relevant
performance gains can be attained even with inter-MS links with capac-
ities of the order of the desired per-cell sum-rates. We have then argued
that, if the inter-MS links have to share the same bandwidth as the
uplink transmission, then MS cooperation provides significant gains
only in the presence of very strong inter-MS links.



9
Concluding Remarks

This monograph has investigated, via information-theoretic arguments,
the advantages of cooperation in cellular systems. Cooperation among
the BSs, or MCP, has been shown to be able to potentially increase the
capacity of the network by an amount that depends critically on
the inter-cell interference span. While initial work demonstrated these
performance benefits under idealistic conditions, including absence of
fading and unrestricted backhaul links, the work reviewed here has con-
firmed the promise of MCP under more practical conditions. The per-
formance benefits of cooperation at the MS level have been reviewed as
well, along with considerations regarding the strong interplay between
the design of relaying strategies and of MCP techniques. The presen-
tation has also briefly touched upon the potential gains achievable by
exploiting novel transmission strategies such as structured codes [120].

As per our goals set forth in Section 1, the treatment has focused
on simple models that allowed insightful conclusions to be reached via
analysis. We remark that, while the models at hand may be consid-
ered naive, comparisons with more complex, and analytically involved,
models has often found the insights obtained from the simple models at
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hand valuable and reasonably accurate (see, e.g., [135]). In this regard,
we emphasize that the models considered in this monograph overcome
some of the limitations of the original Wyner-like models in [33, 132].
For instance, different users’ locations can be accounted for, at least to
some extent, by modifying appropriately the distribution of the fading
channel gains – a fact that is sometimes overlooked in related litera-
ture. In the treatment, we have emphasized the role of architectural
constraints, such as limitations on the backhaul links and on the relay
deployment, on the performance gains achievable through cooperative
techniques. The reviewed research activity, while admittedly incom-
plete, provides a clear picture of the potential of cooperation in cellular
systems. However, it also leaves open a number of critical issues that
more refined, but likely less compact, analyses need to address. We list
below some of the current research challenges.

1. More complex Wyner-type models: While the analysis has
focused on linear models, more complex scenarios such as
planar models or models with random interfering spans are of
interest in practice. We note that planar models have received
some attention, starting with the original paper by Wyner
[132] (see also [10, 99]), but many of the aspects covered
in this text for linear models are yet to be addressed. We
also remark that treatment of such models motivates fur-
ther mathematical research in random matrix theory, e.g.,
on band random matrices.

2. Channel State Information (CSI) availability : CSI is known
to constitute a bottleneck on the system performance in some
operating regimes (see, e.g., [120]). For instance, CSI issues
may affect the ability of the network to enlarge the size of
cell clusters for MCP. Bounds on the capacity under channel
uncertainty are then needed. Moreover, the implications of
limited backhaul capacity on the collection and distribution
of CSI are critical aspects yet to be explored. Novel concepts
such as retrospective CSI, which allows “completely stale”
CSI to be profitably used, are potentially of interest as well
[70, 72, 134].
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3. Interference alignment : The current state-of-the-art around
the idea of interference alignment, summarized in [40], leaves
open the question as to what is the potential role of such
techniques in complex systems with practical limitations on
CSI and coordination.

4. MIMO cellular systems: In the monograph, we have assumed
single-antenna BSs and MSs. Extension of the analysis to
multiantenna nodes is timely and of great practical interest.
We note that the analysis of this setting is related to the
study of DS-CDMA presented in Section 4.

5. Structured codes: While some initial effort in applying
structured codes to cellular system has been reported in
Section 5.1.4, further work is needed in order to assess the
relevance of this technology under more general conditions.

6. Green networking and energy efficiency : Toward the goal of
reducing the energy expenditure of the network [34], various
techniques become of interest, such as cell-site duty cycling.
Analysis of such scenarios could benefit from the techniques
developed in [60, 115].



A
Gelfand–Pinsker Precoding and

Dirty Paper Coding

Channels with random states known at the transmitter have attracted
considerable attention by the research community in view of their cen-
tral role in many settings of practical interest (see, e.g., [44] for an
elaborate review). Here we review the so-called Gel’fand and Pinsker
(GP) problem, along with the Dirty Paper Coding (DPC) technique.

A.1 GP and DPC

The capacity of the single-user memoryless channel with random
parameters (“states”) has been obtained by Gel’fand and Pinsker
(GP) in [27], while assuming that the state sequence is completely
known noncausally at the transmitter but unknown at the receiver.
The corresponding (memoryless) channel is defined via the conditional
probability p(y|x,s), where X is the channel input, Y is the channel
output, and S is the (input independent) state. The latter is assumed
to be i.i.d. over channel uses with distribution p(s). The capacity of
this channel is given in the following form of an optimization problem
[27] over the conditional distributions of an auxiliary random variable,
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U , and the channel input given the interference sequence:

C = sup
p(x,u|s)

{I(U ; Y ) − I(U ; S)} . (A.1)

Furthermore, it can be shown that it is enough to take the supremum
over all joint distributions such that the channel input is a deterministic
function of the auxiliary random variable and the interference [12], i.e.,

p(x,u|s) = 1{x = f(u,s)}p(u|s), (A.2)

where f(u,s) is some deterministic function.
A particular case of the GP setting is a channel of the form

Y = X + S + Z, (A.3)

where Z ∼ N(0,N) is additive Gaussian noise, S ∼ N(0,Q) is additive
Gaussian interference independent of Z, and the input is constrained
by E[X2] ≤ P . This channel was considered by Costa in [15], and the
setting was coined “writing on dirty paper”. Costa’s remarkable result
was that the GP capacity (Equation (A.1)) for this channel is the same
as if the interference were not present, i.e., 1

2 log(1 + P
N ). The capac-

ity is obtained letting p(u|s) be a Gaussian distribution N(αS,P ) and
f(u,s) = u − αs, where α is some constant. Costa showed that the
optimum choice for α in this setting is α = P

P+N . Thus, the proposed
coding technique, commonly referred to as “dirty paper coding”, com-
pletely eliminates the impact of interference, while being fully known
noncausally at the transmitter.

It was later shown in [14] that the same rate can be achieved for
arbitrary noise distribution, provided that the interference is Gaussian
i.i.d., or for arbitrary interference distribution provided that the noise is
Gaussian (possibly colored). This was extended in [23, 147] to arbitrary
interference (arbitrary interference statistics, or even arbitrary interfer-
ence sequences, where the transmitter knows the individual sequence
but ignores its statistics), provided that the transmitter and receiver
share a common dither signal. The DPC scheme was extended to vector
Gaussian interference channels in [139, 140]. The choice of the constant
α has also been studied from a variety of standpoints (see, e.g., [25, 26]).
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A.2 Application to Broadcast Channels

We now consider the application of DPC to a MIMO Gaussian broad-
cast channel (GBC). We keep the discussion general and consider a
MIMO GBC, in which the transmitter has M antennas and the k-th
user, k = 1, . . . ,K, has rk antennas. The rk × 1 signal received by the
k-th user can be written as

yk = Hkx + zk, (A.4)

where x is the M × 1 transmitted signal, Hk ∈ C
rk×M denotes the

channel transfer matrix from the transmitter to the receiver of user k,
and zk is the vector of uncorrelated unit-power complex Gaussian noises
affecting user k, k = 1, . . . ,K. We can rearrange the received signals in
a matrix form as

y =

H1
...

HK

x +

 z1
...

zK

 � Hx + z. (A.5)

We denote the covariance matrix of the transmitted signal as Σx �
E

{
xx†}, and assume that the transmitter is subject to an average

power constraint TrΣx ≤ P . The focus in the following is first on the
case in which the channel transfer matrix H is fixed throughout the
transmission, while assuming full channel state information is available
to the transmitter and the receivers. Note that in the MCP scenarios
considered in the text (see Equation (2.6)), the transmitter consists of
the M BSs, we have rk = 1 and the number of users is KM . The use
of K here for the total number of users should not create confusion.

The application of the DPC scheme for the MIMO GBC has been
suggested by Caire and Shamai in [12]. Considering first for simplic-
ity the two-user case (K = 2), the idea is to use Gaussian coding for
encoding the information of user 2, and then encode the information
of user 1 using the DPC scheme while treating the (encoded) signal
to be transmitted to user 2 as an additive interference signal known
noncausally at the encoder. The actual channel input (the transmitted
signal) is the superposition of the encoded signals of the two users. At
the receiving ends, user 2 decodes the Gaussian code and suffers from
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an additional Gaussian interference, due to the signal transmitted to
user 1. User 1, on the other hand, due to the DPC scheme employed at
the transmitter, effectively experiences no interference and decodes its
data as if the signal intended for user 2 were not present. Obviously,
the role of the users can be reversed, as the particular encoding order
affects the achievable rates of each. This successive encoding scheme
can be naturally extended to more than two users, as discussed below.

Consider the general MIMO GBC introduced above. Based on the
extension of DPC to vector channels in [139], the DPC achievable region
for the MIMO GBC can be defined as (see Equation (A.4))

RDPC(P,H1,...,K) = conv

 ⋃
π∈Π

⋃
Σ1,...,ΣK

(RDPC
1 (π,Σ1,...,K ,H1,...,K), . . . ,

RDPC
K (π,Σ1,...,K ,H1,...,K))

 , (A.6)

where Π is the set of all permutations on {1, . . . ,K}, and the per-
mutation π ∈ Π corresponds to a reverse encoding order such that
user πK+1−j is the j-th user to be encoded. The unions in Equa-
tion (A.6) are taken over all possible encoding orders, and over all
power allocation matrices Σk � E

{
xkx

†
k

}
� 0 ∀k (with xk represent-

ing the transmit vector corresponding to user k, and x =
∑K

k=1xk),
such that Tr(

∑K
k=1Σk) ≤ P . The rates RDPC

ik are defined through

RDPC
k (π,Σ1,...,K ,H1,...,K) = log

det
(
Hπk

(
∑k

j=1Σπj )H
†
πk + I

)
det

(
Hπk

(
∑k−1

j=1 Σπj )H
†
πk + I

)
k = 1, . . . ,K. (A.7)

The key importance of the DPC region stems from the fact that it
determines the entire capacity region of the MIMO GBC, as was proved
in [130]. The result therein in fact extends the optimality of the DPC
region to more general input constraints than the sum-power constraint,
as stated as follows. Let S be a compact set of positive semidefinite
M × M matrices and consider the MIMO GBC in Equation (A.4) with
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input constraint E
{
xx†} � S for some S ∈ S. Then, the capacity region

of this channel is given by

CBC(S,H1,...,K) =
⋃
S∈S

RDPC(S,H1,...,K). (A.8)

So far, the discussion has assumed the channels composing the
transfer matrix H in Equation (A.4) to be fixed. When the channels
are time-varying and ergodic, while retaining the assumptions of full
channel state information at the transmitter and receivers, the ergodic
capacity region of the MIMO GBC is obtained by averaging Equa-
tion (A.8) with respect to the channel statistics (while modifying the
constraints to be on the average input constraints). It is noted here that
this motivates the search for power allocation schemes for the ergodic
time varying channel. Some aspects of the problem are investigated for
example in [41, 42, 46, 76], and references therein.



B
Uplink and Downlink Duality

Here we provide a brief introduction to the concept of uplink–downlink
duality. For generality, we focus on the MIMO GBC introduced in
Appendix A. Although the capacity region of the MIMO GBC is known
as discussed in Appendix A, some considerable difficulties still remain.
More specifically, the DPC achievable region specified in Equation (A.6)
has no closed-form solution for its boundary points. Also, since the
per-user rates RDPC

i (π,Σ1,...,K ,H1,...,K) in Equation (A.7) are neither
concave nor convex, the direct numerical analysis of the boundaries
of the DPC achievable region is a formidable task. To overcome this
problem, it is useful to consider a dual MAC, and exploit the duality
properties of the MAC and broadcast channel (BC), referred to also as
“uplink–downlink duality”.

The dual uplink is defined as a MAC with K users, equipped with rk

(k = 1, . . . ,K) antennas, each transmitting to a receiver equipped with
M antennas. The channel transfer matrices between the k-th user and
the receiver are given by H†

k, where Hk, k = 1, . . . ,K, are the channel
transfer matrices of the original BC as defined in Equation (A.5). The
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general channel model for this dual uplink is given by

ỹ =
K∑

k=1

H†
kx̃k + z̃, (B.1)

where the notation (̃·) is used to designate quantities corresponding
to the dual uplink. Here z̃ denotes the M × 1 zero-mean complex
Gaussian noise at the dual uplink’s receiver (z̃ ∼ Nc(0,I[M×M ])), and
x̃k, k = 1, . . . ,K, are the channel inputs due to the K users. Assume
the following individual covariance matrix constraint E

{
xkx

†
k

}
� P̃k,

k = 1, . . . ,K. Then, using the fact that the vertices of the MAC’s capac-
ity region are achieved by Gaussian codes and successive decoding, the
capacity region of the dual uplink can be written as

C̃MAC(P̃1,...,K ,H†
1,...,K)

= conv

{ ⋃
π∈Π

{(R1, . . . ,RK) : Rk = RMAC
k (π,P̃1,...,K ,H†

1,...,K)∀ i}
}

,

(B.2)

where π is the decoding order such that πj corresponds to the j-th user
to be decoded (note the difference with respect to Equation (A.6)), and
where

RMAC
i (π,P̃1,...,K ,H†

1,...,K)

= logdet

I +

 K∑
j=i+1

H†
πj

P̃πjHπj + I

−1

H†
πi

P̃πiHπi

. (B.3)

Consider now a MAC with a total power constraint∑K
k=1 Tr

(
E

{
xkx

†
k

})
≤ P (i.e., a constraint on the sum of the

powers of all users). In this case, the capacity region of the MAC is
given by [138]

CUnion(P,H†
1,...,K) =

⋃
Tr(

∑K
k=1 P̃k)≤P

C̃MAC(P̃1,...,K ,H†
1,...,K), (B.4)

where the union is over all matrices P̃k � 0 ∀k, such that
Tr

(∑K
k=1 P̃k

)
≤ P . The duality between this capacity region for the
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MIMO MAC of Equation (A.5) and the DPC achievable region for the
BC of Equation (A.5), was established in [127, 128] and can be stated as

CUnion(P,H†
1,...,K) = RDPC(P,H1,...,K), (B.5)

where RDPC(P,H1,...,K) is given in Equation (A.6).
In addition to the general statement of capacity region duality

presented above, a MAC-to-BC transformation is proposed in [127].
The transformation finds, for any set of input covariance matri-
ces, and a given decoding order π of the users in the MAC while
assuming successive cancellation at the receiver, a set of BC trans-
mit covariance matrices (one per each of the users) with the same
sum power as that of the MAC input covariance matrices, that
achieve the same rate vector in the BC with the reverse encoding
order π (and vice versa). That is, the transformation guarantees that
RMAC

k (π,P̃1,...,K ,H†
1,...,K) = RDPC

k (π,Σ1,...,K ,H1,...,K) (note again the
different interpretation of π in both cases). The duality relation of
Equation (B.5) enables the characterization of the boundaries of the
DPC region by means of the convex dual MAC capacity region. The
boundaries of CUnion(P,H†

1,...,K) can be calculated using interior-point
methods [9].

The uplink–downlink duality principle turns out to be particularly
useful for obtaining the MIMO GBC sum-rate capacity. In fact, results
for the sum-rate capacity of the MIMO GBC preceded the derivation
of the full capacity region. It was already shown in [12, 127, 128, 140]
that the DPC strategy achieves the sum-rate capacity of the MIMO
GBC, that is,

CBC(P,H1,...,K) = max
R1,...,K∈RDPC(P,H1,...,K)

K∑
k=1

Rk. (B.6)

The above result, in the most general form, was proved using the Sato
upper bound [88] (an approach originally suggested in [12]) in order to
give an upper limit on the sum-rate capacity, and then showing that
this upper bound is achievable with the DPC scheme. Accordingly, the
capacity of the cooperative channel (i.e., allowing the users’ receivers
to cooperate in order to decode a single message) is used as an upper
bound on the sum-rate capacity of the BC. Since in the BC the users
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cannot cooperate, the actual sum-rate capacity of the GBC is inde-
pendent of the correlations between the noise vectors at the receivers
of each of the users. The sum-rate capacity is therefore bounded by
the corresponding capacity of the cooperative channel with the “least
favorable” noise vector z, with structure as in Equation (A.5), where
the marginals of the vectors {zk} have identity (or smaller) covari-
ance matrices (as originally defined in Equation (A.5)). We note here
that the proof in [140] does not rely on uplink–downlink duality, but
rather on a decision-feedback equalization approach where the decision-
feedback equalizer is employed as a joint receiver in the cooperative BC
(an approach that enabled the proof to hold not only for a sum-power
constraint but for general convex input constraints).

Particularizing, however, to the case of single-antenna users, then
using the uplink–downlink duality principle, the downlink sum-rate
capacity can be compactly formulated by means of the following
maximization problem [127, 128]:

CBC(P ) = sup
D∈A

logdet(I + H†DH), (B.7)

where A is the set of K × K diagonal matrices D with TrD ≤ P . As
can be observed the logdet(·) expression to be maximized is the expres-
sion for the sum-rate capacity of the single-user MIMO channel, with
the difference that the maximization is over diagonal input covariance
matrices, which is due to the fact that no user cooperation can be
assumed in the dual uplink.

The sum-rate expressions of Equations (B.6) and (B.7) address the
case in which the downlink is subject to a total input power constraint.
However, with MCP, one has to deal with individual per-antenna power
constraints. In [141] a connection is established between the duality
of the Gaussian vector MAC and BC, and the Lagrangian duality in
minimax optimization (the reader is referred to [137] for an elaborate
discussion in this framework). This new minimax duality allows the
optimal transmit covariance matrix and the least-favorable noise for
the BC to be characterized in terms of the dual variables. Further,
it allows BC–MAC duality to be generalized to BCs with arbitrary
linear constraints. In particular, it is shown that the sum-rate capacity
of the Gaussian multi-antenna BC, with individual per-antenna power
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constraints [Σx]k,k ≤ Pk, is the same as the sum capacity of a dual
MAC with a sum power constraint, and with a diagonal and uncertain
noise:

min
Λx

max
Λz

log
det(Λz + H†ΛxH)

det(Λz)
, (B.8)

where Λx and Λz are diagonal with TrΛx ≤ 1, and
∑

k Pk[Λz]k,k ≤ 1
(note that the per-antenna power constraints are incorporated in the
noise constraint in the dual problem). This reduces to Equation (3.20)
for the scenario of interest in Section 2. We refer to [148] for further
results on uplink-downlink duality.



C
The CEO Problem

The Chief Executive Officer (CEO) problem refers to the distributed
source coding setting of Figure C.1. The formulation consists of a single
random source X which is measured by many “agents” subject to some
noise. The agents need to forward their observations to the CEO. The
CEO wishes to use the observations in order to estimate the source X.
The agents communicate to the CEO through unidirectional links from
each of them to the CEO. These links have finite capacities. The objec-
tive is to minimize the average distortion of the estimation at the CEO,
given the finite capacities of the links between the agents and the CEO.
Note that, when the links are of infinite capacity, the problem reduces
to a simple estimation problem.

For a more formal description of the problem, let Xn be an i.i.d.
source of n symbols, and let the received signals at M agents be
{Y n

i }M
i=1. The received signals are generated in an i.i.d. fashion accord-

ing to the conditional probability PYi|X(yi|x). All agents are connected
to the CEO with links with finite capacities of {Ci}M

i=1 bits per source
symbol, respectively. The estimate X̂n at the receiver is produced based
on the messages received from the agents. The objective is to minimize
the average distortion between Xn and X̂n for some distortion metric.
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Agent
A2

Agent
A1

Destination
X^

C1

C2

Y1

Y2

P(Y1,Y2|X)XSource

Fig. C.1 The CEO setting. A source X is observed by two agents through a memoryless
channel. The agents process their measurements and forward messages to the destination,
which is referred to as the CEO. The CEO reproduces the estimate X̂. Note that the agents
cannot cooperate in sending their messages to the CEO.

The CEO problem was introduced by Berger et al. [6], where both
upper and lower bounds on the minimum sum-rate required to obtain a
given distortion level were derived. In particular, [6] showed that, when
the number of agents is taken to infinity, i.e., M → ∞, the distortion
is nonzero even if the sum-rate is larger than the entropy of X, that is,∑M

i=1 Ci > H(X). This conclusion demonstrates the loss due to the fact
that the physically separated agents are not able to cooperate before
forwarding their messages to the CEO. In fact, if the agents could pool
together their observations, as M → ∞, they could first estimate X

to an arbitrary degree of accuracy (e.g., for additive noise channels
PYi|X(yi|x)), and then convey the latter to the CEO with sum-rate
equal to H(X).

The compression scheme proposed in [6] employs random coding,
in which the signal Y n

i received by the i-th agent is compressed using
a given codebook Un

i . This compression step allows Y n
i to be repre-

sented as Un
i within some average distortion. This step is sufficient

to achieve optimality (in terms of minimum required rate for a given
distortion level) in the case of a single agent. But, in the case of more
than one agent, the compressed codewords from the agents are typically
dependent, due to the correlation of the received signals Y n

i . Therefore,
additional compression gains can be acquired by leveraging such cor-
relation. A standard way to do this is via partitioning or binning of
the compression codebook Un

i . The basic idea is that each agent will
inform the CEO only about the partition (or bin) in which the com-
pressed codeword Un

i is located. The CEO will then recover all the code-
words Un

i for i = 1, . . . ,M via joint decoding by leveraging the signal
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correlations. This binning operation leads to optimal performance in
some scenarios, such as lossless compression [109] and lossy compres-
sion with side information [133]. It is, however, not necessarily optimal
for the CEO problem. Note that the CEO estimates the source letter-
by-letter using classical estimation theory for i.i.d. sources, based on
the codewords Un

i for i = 1, . . . ,M .
Reference [6] mainly considered discrete-alphabet signals. Further

work, such as [80, 129], extended several derivations done in [6] to
continuous-alphabet signals with quadratic distortion measure and
Gaussian statistics. A full solution for this setting is given in [81]
and [83]. The CEO problem has also been treated in many other papers
from different standpoints. For example, reference [146] derived a lattice
based approach to the CEO problem and [71, 129] presented practical
approaches for implementing CEO systems.



D
Some Results from Random Matrix Theory

In this appendix, we provide a brief introduction to some of the results
of random matrix theory that have found application to the study of
cellular systems, as reviewed in this monograph. The treatment is based
on [121], to which we refer for further discussion.

D.1 Preliminaries

Most of the literature that studies various aspects of cellular systems
eventually deals with memoryless linear vector channels of the form

y = Hx + n, (D.1)

where x is the K-dimensional input vector, y is the N -dimensional
output vector, the N -dimensional vector n models an additive zero-
mean circularly symmetric Gaussian noise, and H is the N × K

random channel transfer matrix. All the above quantities are in
general complex-valued. The above model applies to a wide variety
of system settings incorporating in particular the impacts of fading,
multi-antenna, and multicell systems, as discussed in this monograph.

In addition to aspects such as input constraints, the informa-
tion available at either transmitter(s) or receiver(s) and the level of
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cooperation between them, system performance in the different settings
that can be described by Equation (D.1) heavily depends on the sta-
tistical properties of the entries of H. In particular, as discussed in
Section 3 (Section 3.1.2), a key tool for system performance analysis
in such cases is the characterization of the singular value distribution
of H, or of related quantities.

To see that, let Fn
A denote the empirical cumulative distribution

function of the eigenvalues of an n × n Hermitian matrix A (also
referred to as the “spectrum”, or “empirical distribution” [121]). It
is defined as

Fn
A(x) =

1
n

n∑
i=1

1{λi(A) ≤ x}, (D.2)

where λ1(A), . . . ,λn(A) are the eigenvalues of A and 1{·} is the indica-
tor function. This definition was used in Equation (3.11), but here we
emphasize its dependence on the dimension of the matrix. If Fn

A con-
verges as n → ∞, then the corresponding limit (also referred to as the
asymptotic spectrum, or asymptotic empirical distribution) is denoted
by FA [121].

Assume now that the entries of the input vector x are i.i.d. and
Gaussian, then the normalized input–output mutual information of
(D.1) conditioned on the channel matrix H is

1
N

I(x;y|H) =
1
N

logdet(I + SNRHH†)

=
1
N

N∑
i=1

log(1 + SNRλi(HH†))

=
∫ ∞

0
log(1 + SNRx) · FN

HH† , (D.3)

where SNR denotes the transmit SNR,

SNR =
NE

{‖x‖2
}

KE {‖n‖2} , (D.4)

and λi(HH†) denotes the i-th squared singular value of H. Further
assuming that the channel is stationary and ergodic, and that its real-
izations are known at the receiver, the expectation of Equation (D.3)
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with respect to H gives the ergodic channel capacity (per degree
of freedom). Alternatively, treating the mutual information in Equa-
tion (D.3) as a random variable, its distribution specifies the outage
capacity [8].

Another performance measure of practical interest is the MMSE
achieved by linear processing of the received signals, which also deter-
mines the maximum achievable output SINR. For an arbitrary N × K

matrix H, recall that the nonzero singular values of H and H† are
identical, and hence [121]

NFN
HH† − NU (x) = KFK

H†H − KU (x), (D.5)

where U (x) is the unit-step function (U (x) = 0, x ≤ 0 ; U (x) = 1,
x > 0). It then follows that for i.i.d. inputs, the arithmetic mean of the
MMSE (which is a function of H) is given by [124]

1
K

min
M∈CK×N

E
{‖x − My‖2} =

1
K

Tr((I + SNRH†H)−1)

=
1
K

K∑
i=1

1
1 + SNRλi(H†H)

=
∫ ∞

0

1
1 + SNRx

· FK
H†H

=
N

K

∫ ∞

0

1
1 + SNRx

· FN
HH† − N − K

K
,

(D.6)

where the expectation is with respect to x and n, and the last equality
follows from Equation (D.5). The two performance measures are cou-
pled through the following relation (see an elaboration in [31]):

SNR
∂

∂SNR
logdet(I + SNRHH†) = K − Tr((I + SNRH†H)−1). (D.7)

The above examples let us conclude that the empirical distribu-
tion of the squared singular values of the channel matrix H deter-
mines both the capacity and the MMSE with linear processing for the
channel in Equation (D.1). In the simple case in which the entries
of H are i.i.d. and Gaussian, the expected empirical distribution of
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the squared singular values can be explicitly expressed. In many other
cases of interest useful results and insights can be obtained by focusing
on the asymptotic regime, in which the number of rows and columns
of H both go to infinity, while their ratio goes to some arbitrary
constant. In this regime, the empirical (squared) singular value dis-
tribution converges (for certain cases of interest) to a limiting deter-
ministic distribution. Furthermore, the convergence of the asymptotic
distribution is insensitive to the actual probability distribution func-
tion (p.d.f.) of the random entries of H, the results exhibit an ergodic
behavior, and the convergence to the asymptotic limit is fast. Analyses
based on asymptotic random matrix theory can therefore be consid-
ered to provide good predictions of the performance of practical finite
dimensional systems, a fact that has motivated the extensive use of
these tools in recent years.

In the following subsections, a representative sample of useful ran-
dom matrix theory results is briefly reviewed, focusing on those results
mostly relevant to the problems investigated in this monograph. The
review in this appendix is based heavily on [121], which includes an out-
standing comprehensive summary of the state-of-the-art in this field.
This appendix is provided mainly to make the current monograph more
self-contained. The reader is referred to [121] and references therein for
proofs and a more detailed description of the results. A related reference
is also [16].

D.2 Transforms

In many wireless communications problems of interest the limiting
spectrum of the random matrix of concern cannot be obtained in an
explicit form, but rather in terms of certain transforms of its distri-
bution. Fortunately, these transforms can be related to system per-
formance measures of interest, and therefore provide useful analytical
tools. In the following, some key transforms are briefly reviewed.

D.2.1 Stieltjes Transform

The Stieltjes transform of a cumulative distribution function FX(·) of
a real-valued random variable X is defined by the following function of
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complex arguments:

SX(z) = E

{
1

X − z

}
=

∫ ∞

−∞
1

λ − z
dFX(λ). (D.8)

It is customary to restrict the domain of SX(z) to arguments hav-
ing positive imaginary parts. Also, by Equation (D.8) the signs of the
imaginary parts of z and SX(z) coincide. The Stieltjes transform has
the following inversion formula:

fX(λ) = lim
ω→0+

1
π

Im[SX(λ + jω)] (D.9)

where fX(λ) is the p.d.f. of the random variable X.

D.2.2 η-Transform

The η-transform of a nonnegative random variable X is

ηX(γ) = E

{
1

1 + γX

}
(D.10)

where γ is a nonnegative real number (thus ηX(γ) ∈ (0,1]). The η-
transform has an engineering interpretation. In particular, in many
cases of interest, such as multiuser systems, the η-transform gives the
ratio of the expected SINR at the output of a linear MMSE (multiuser)
receiver, and the single-user SNR, corresponding to the notion of mul-
tiuser efficiency in multiuser detection [124]. The η-transform is also
related to the Stieltjes transform through

ηX(γ) =
SX

(
− 1

γ

)
γ

, (D.11)

which either requires analytic continuation or the inclusion of the neg-
ative real line in the domain of SX(·) [121].

D.2.3 Shannon Transform

The Shannon transform of a nonnegative random variable X is
defined as

VX(γ) = E {log(1 + γX)} , (D.12)
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where γ is a nonnegative real number. The Shannon transform is related
to the Stieltjes and η-transform through [121]

γ

loge

∂

∂γ
VX(γ) = 1 − 1

γ
SX

(
−1

γ

)
= 1 − ηX(γ). (D.13)

The Shannon transform of the empirical distribution of the eigenvalues
of HH† gives the ergodic capacity of the Gaussian linear vector channel
in Equation (D.1) for i.i.d. inputs (see Equation (D.3)).

D.3 Asymptotic Results

The following subsections include some of the main results on the lim-
iting empirical eigenvalue distribution of random matrices of particular
relevance to this monograph.

D.3.1 The Marc̆enko–Pastur Law and Its Generalizations

Theorem D.1 [75, 121, Theorem 2.35]. Consider an N × K

matrix H whose entries are independent zero-mean complex (or real)
random variables with variances 1

N and fourth moments of order O( 1
N2 ).

As K,N → ∞ with K
N → β, the empirical distribution of H†H con-

verges almost surely to a nonrandom limiting distribution having den-
sity function

fβ(x) =
(

1 − 1
β

)+

δ(x) +

√
(x − a)+(b − x)+

2πβx
(D.14)

where (z)+ = max(0,z) and

a = (1 −
√

β)2, b = (1 +
√

β)2 .

The distribution in Equation (D.14) gives the Marc̆enko–Pastur law
with ratio index β. It is noted that the zero-mean condition for the
entries of H can be relaxed to entries having identical means, and the
condition on their fourth moments can be relaxed to a Lindeberg-type
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condition ([4, Theorem 2.8]):

1
δ2K

∑
i,j

E
{

|[H]i,j |2 1{|[H]i,j | ≥ δ}
}

→ 0 ∀δ > 0. (D.15)

The limiting empirical distribution of the eigenvalues of HH† converges
almost surely to a nonrandom limit whose density function is

f̃β(x) = (1 − β)δ(x) + βfβ(x)

= (1 − β)+δ(x) +

√
(x − a)+(b − x)+

2πx
. (D.16)

Theorem D.2[75, 101, 121, Theorem 2.38]. Let H be an N × K

matrix whose entries are i.i.d. complex random variables with zero
means and variances 1

N . Further, let T be a K × K real diagonal ran-
dom matrix whose empirical eigenvalue distribution converges almost
surely to the distribution of a random variable T, and let W0 be
an N × N Hermitian complex random matrix with empirical eigen-
value distribution converging almost surely to a nonrandom distri-
bution whose Stieltjes transform is S0. Then, if H, T, and W0 are
independent, the empirical eigenvalue distribution of

W = W0 + HTH† (D.17)

converges almost surely, as K,N → ∞ with K
N → β, to a nonrandom

distribution whose Stieltjes transform S(·) satisfies

S(z) = S0

(
z − βE

{
T

1 + TS(z)

})
. (D.18)

Particularizing to the case in which W0 = 0, while relaxing the
conditions to a Hermitian matrix T, the following results for the
η-transform and Shannon transform of the limiting empirical eigen-
value distribution can be derived based on [100].

Theorem D.3 [121, Theorem 2.39]. Let H be an N × K matrix
whose entries are i.i.d. complex random variables with variances 1

N .
Further, let T be a K × K Hermitian nonnegative random matrix,
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independent of H, whose empirical eigenvalue distribution converges
almost surely to a nonrandom limit. Then, the empirical eigenvalue dis-
tribution of HTH† converges almost surely, as K,N → ∞ with K

N → β,
to a distribution whose η-transform ηHTH†(·) satisfies

1 = η + β(1 − ηT(γη)), (D.19)

while its Shannon transform satisfies

VHTH†(γ) = βVT(ηγ) + log
1
η

+ (η − 1) loge, (D.20)

where η stands for the corresponding value of ηHTH†(·).

The condition of i.i.d. entries can be relaxed to independent entries
with common means and variances 1

N satisfying the Lindeberg-type
condition (Equation (D.15)).

Returning to Theorem D.2, while focusing on the particular case of
T = I, then ηT(γ) = 1

1+γ and Equation (D.19) becomes

η = 1 − β +
β

1 + γη
, (D.21)

yielding an explicit solution, which is the η-transform of the Marc̆enko–
Pastur distribution f̃β (Equation (D.16)):

η(γ) = 1 − F(γ,β)
4γ

. (D.22)

Here F(x,z) is the function introduced in [126]:

F(x,z) =
(√

x(1 +
√

z)2 + 1 −
√

x(1 − √
z)2 + 1

)2

. (D.23)

The corresponding Shannon transform in this case is explicitly given by

VHH† = β log
(

1 + γ − 1
4
F(γ,β)

)
+log

(
1 + γβ − 1

4
F(γβ)

)
− F(γ,β)

4γ
loge. (D.24)
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D.3.2 The Girko Law

In some wireless communications problems of interest, the entries of the
underlying channel transfer matrix are no longer i.i.d. random variables
(in particular, they do not have identical means and variances), as
required for the basic Marc̆enko–Pastur law to hold. For such settings
a useful result is the following theorem by Girko [29], which also forms
the basis for several wireless communications related random matrix
theory results of recent years. The following formulation is due to [121],
and the reader is referred to [45] for an alternative representation of
the original result of [29].

Consider an N × K random matrix H whose entries have variances

Var[Hi,j ] =
[P]i,j
N

, (D.25)

with P an N × K deterministic matrix having uniformly bounded
entries. For each N let

vN : [0,1) × [0,1) → R

be the variance profile function given by

vN (x,y) = [P]i,j ,
i − 1
N

≤ x <
i

N
,

j − 1
K

≤ y <
j

K
. (D.26)

Whenever vN (x,y) converges uniformly to a limiting bounded measur-
able function v(x,y), we define this limit as the asymptotic variance
profile of H.

Theorem D.4 [121, Theorem 2.50]. Let H be an N × K ran-
dom matrix whose entries are independent zero-mean complex random
variables (arbitrarily distributed) satisfying the Lindeberg condition
(D.15), and with variances

E
{

|[H]i,j |2
}

=
[P]i,j
N

, (D.27)

where P is an N × K deterministic matrix with uniformly bounded
entries, from which the asymptotic variance profile of H, denoted
v(x,y), can be obtained as defined above. As K,N → ∞ with K

N → β,
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the empirical eigenvalue distribution of HH† converges almost surely
to a limiting distribution whose η-transform is

ηHH†(γ) = E
{
ΓHH†(X,γ)

}
, (D.28)

with ΓHH†(x,γ) satisfying the equations

ΓHH†(x,γ) =
1

1 + βγE
{
v(x,Y)ΥHH†(Y,γ)

} and (D.29)

ΥHH†(y,γ) =
1

1 + γE
{
v(X,y)ΓHH†(X,γ)

} , (D.30)

where X and Y are independent random variables uniform on [0,1].

The Shannon transform of the asymptotic spectrum of HH† is given
by [121]

VHH†(γ) = βE
{
log(1 + γE

{
v(X,Y)ΓHH†(X,γ) |Y}

)
}

+E
{
log(1 + γβE

{
v(X,Y)ΥHH†(Y,γ) |X}

)
}

−γβE
{
v(X,Y)ΓHH†(X,γ)ΥHH†(Y,γ)

}
loge (D.31)

with ΓHH†(·, ·) and ΥHH†(·, ·) defined as in Equations (D.29) and
(D.30), respectively.

D.3.3 Asymptotic Results for Band Matrices

Consider the case in which the matrix H is square N × N and can be
expressed as

H = G ◦ H̃, (D.32)

where A ◦ B denotes the Hadamard product of the matrices A and B,
H̃ consists of i.i.d. standard complex Gaussian random variables, and
[G]i,j = σi,j , where σ2

i,j is the variance of the (i, j)-th entry in H. The
matrix G can be referred to, in the context of wireless MIMO channels,
as the channel pattern mask [66].
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The particular case in which G is a circulant matrix given by

[G]i,j =



1 if j = (i + l mod N),

where l =


−D − 1

2
, . . . ,

D − 1
2

if D is odd,

−D

2
+ 1, . . . ,

D

2
if D is even,

0 otherwise,
(D.33)

is considered in [66] and used to represent various practical physical
channel scattering scenarios (the channel model is referred to therein
as a D-connected channel). Other cases of interest are the ones in which
G is a Toeplitz matrix. In particular, the cases in which the nonzero row
elements of G are {α,1,α}, for some constant α ∈ (0,1], corresponding
to the Wyner model, or {1,1}, have been the basis for several analyses
of multicell systems, some of which are reviewed in the main body of
this monograph (see, e.g., [78, 111, 132]).

For the case in which the band size (D in Equation (D.33)) grows
with the matrix dimensions at an appropriate rate, an explicit result
on the limiting spectral distribution is given in [66, Theorem 4]. In
contrast, the derivation of explicit results on the limiting spectral dis-
tributions of band matrices, when the band size does not grow with the
matrix dimensions, poses considerable difficulties (see, e.g., the discus-
sion in [116]).

One of the rare exceptions in which explicit limiting results can be
obtained for finite-band matrices is reported in [78]. The result therein
focuses on the case in which the channel transfer matrix H is equal to

H =


α2,1 α1,1 0 · · ·
0 α2,2 α2,1 0 · · ·

. . .
α2,N α1,N

, (D.34)

where the entries {αi,j} are i.i.d. zero-mean circularly symmet-
ric complex Gaussian random variables with unit variances (this
model corresponds to case in which the power mask matrix G of
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Equation (D.33) is Toeplitz, with basic nonzero row elements {1,1}).
Let A be defined as the covariance matrix

A = I + γHH†, (D.35)

where γ is a real nonnegative constant. Applying the Cholesky decom-
position, the matrix A is decomposed as A = LDU, where L and U
are lower and upper triangular matrices, respectively, with unit diago-
nal entries, and D is a diagonal matrix. From this decomposition, the
k-th diagonal element of D is given by

dk = 1 + γ(|α1,k|2 + |α2,k|2) − γ2 |α1,k−1|2 |α2,k|2
dk−1

= 1 + γ |α1,k|2 + γ |α2,k|2
(

1 − γ
|α1,k−1|2

dk−1

)
. (D.36)

The main result in [78] (in the context of random matrix theory) can
now be summarized as follows.

Theorem D.5. As N → ∞, the diagonal elements {dk} of the
Cholesky decomposition matrix D may be viewed as a first order
discrete-time continuous space Markov chain, with an ergodic station-
ary distribution given by

fd(x) =
log(x)e− x

γ

Ei
(

1
γ

)
γ

, x ≥ 1 , (D.37)

where Ei(x) =
∫ ∞
1

exp(−xt)
t dt is the exponential integral function.

For the case in which the power mask matrix G is Toeplitz, with
nonzero row elements {α,1,α}, corresponding to the Wyner model,
the power moments of the limiting eigenvalue distribution of HH† can
be calculated for any finite order, as shown in [111]. When the entries
of H are zero-mean and Gaussian, the empirical eigenvalue distribution
of HH† was shown in [111] to converge weakly to a unique limiting
distribution. Some generalizations and additional characterization of
the Shannon-transform of the limiting distribution can be found in [62].
However, explicitly determining the limiting distribution itself, as well
as any of its useful transforms, is still an open problem [116].



Abbreviations and Acronyms

BC: Broadcast Channel
BS: Base Station
CP: Central Processor
CSI: Channel State Information
DPC: Dirty Paper Coding
GBC: Gaussian Broadcast Channel
MAC: Multiple Access Channel
MCP: Multi-Cell Processing
MIMO: Multiple-Input Multiple-Output
MMSE: Minimum Mean Square Error
MS: Mobile Station
RS: Relay Station
SCP: Single-Cell Processing
SINR: Signal-to-Interference-plus-Noise Ratio
SNR: Signal-to-Noise Ratio
TDMA: Time Division Multiple Access
WB: Wide-Band
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[126] S. Verdú and S. Shamai (Shitz), “Spectral efficiency of CDMA with ran-
dom spreading,” IEEE Transactions on Information Theory, vol. 45, no. 2,
pp. 622–640, March 1999.



176 References

[127] S. Vishwanath, N. Jindal, and A. Goldsmith, “Duality, achievable rates, and
sum-rate capacity of Gaussian MIMO broadcast channels,” IEEE Transac-
tions on Information Theory, vol. 49, no. 10, pp. 2658–2669, October 2003.

[128] P. Viswanath and D. N. C. Tse, “Sum capacity of the vector Gaussian broad-
cast channel and uplink-downlink duality,” IEEE Transactions on Information
Theory, vol. 49, no. 8, pp. 1912–1921, August 2003.

[129] H. Viswanathan and T. Berger, “The quadratic Gaussian CEO problem,”
IEEE Transactions on Information Theory, vol. 43, no. 5, pp. 1549–1559,
September 1997.

[130] H. Weingarten, Y. Steinberg, and S. Shamai (Shitz), “The capacity region of
the Gaussian multiple-input multiple-output broadcast channel,” IEEE Trans-
actions on Information Theory, vol. 52, no. 9, pp. 3936–3964, September 2006.

[131] F. M. J. Willems, “Information theoretical results for the discrete memory-
less multiple access channel,” PhD Thesis, Katholieke Universiteit, Leuven,
Belgium, December 1982.

[132] A. D. Wyner, “Shannon-theoretic approach to a Gaussian cellular multiple-
access channel,” IEEE Transactions on Information Theory, vol. 40, no. 6,
pp. 1713–1727, November 1994.

[133] A. D. Wyner and J. Ziv, “The rate-distortion function for source coding with
side information at the decoder,” IEEE Transactions on Information Theory,
vol. 22, no. 1, pp. 1–10, January 1976.

[134] J. Xu, J. G. Andrews, and S. A. Jafar, “Broadcast channels with delayed
finite-rate feedback: Predict or observe?,” CoRR, abs/1105.3686, 2011.

[135] J. Xu, J. Zhang, and J. G. Andrews, “On the accuracy of the Wyner model in
cellular networks,” IEEE Transactions on Wireless Communications, vol. 10,
no. 9, pp. 3098–3109, September 2011.

[136] T. Yoo and A. Goldsmith, “Optimality of zero-forcing beam forming with
multiuser diversity,” in Proceedings of the IEEE International Conference on
Communications, Seoul, South Korea, May 2005.

[137] W. Yu, “Uplink–downlink duality via minimax duality,” IEEE Transactions
on Information Theory, vol. 52, no. 2, pp. 361–374, February 2006.

[138] W. Yu, “Competition and cooperation in multiuser communication environ-
ments,” PhD Thesis, Stanford University, Stanford, CA, USA, June 2002.

[139] W. Yu and J. M. Cioffi, “Trellis precoding for the broadcast channel,” in
Proceedings of IEEE Global Telecommunications Conference, San Antonio,
TX, USA, November 2001.

[140] W. Yu and J. M. Cioffi, “Sum capacity of Gaussian vector broadcast channels,”
IEEE Transactions on Information Theory, vol. 50, no. 9, pp. 1875–1892,
September 2004.

[141] W. Yu and T. Lan, “Minimax duality of Gaussian vector broadcast channels,”
in Proceedings of the 2004 IEEE International Symposium on Information
Theory, p. 177, Chicago, IL, USA, June–July 2004.

[142] W. Yu and T. Lan, “Transmitter optimization for the multi-antenna downlink
with per-antenna power constraints,” IEEE Transactions on Signal Process-
ing, vol. 55, no. 6, pp. 2646–2660, June 2007.



References 177

[143] B. M. Zaidel, S. Shamai (Shitz), and S. Verdú, “Multi-cell uplink spectral
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