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Abstract

This paper presents a novel model, called TomAbd, that endows
autonomous agents with Theory of Mind capabilities. TomAbd agents
are able to simulate the perspective of the world that their peers have and
reason from their perspective. Furthermore, TomAbd agents can reason
from the perspective of others down to an arbitrary level of recursion,
using Theory of Mind of nth order. By combining the previous capa-
bility with abductive reasoning, TomAbd agents can infer the beliefs
that others were relying upon to select their actions, hence putting
them in a more informed position when it comes to their own decision-
making. We have tested the TomAbd model in the challenging domain
of Hanabi, a game characterised by cooperation and imperfect informa-
tion. Our results show that the abilities granted by the TomAbd model
boost the performance of the team along a variety of metrics, including
final score, efficiency of communication, and uncertainty reduction.

Keywords: Theory of Mind, abductive reasoning, agent-oriented
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1 Introduction

The emergent field of social AI deals with the formulation and implementation
of autonomous agents that can successfully act as part of a larger society,
made up of other software agents as well as humans [1, 2]. In human social life,
an essential requirement for effective participation is the ability to interpret
and predict the behaviour of others in terms of their mental states, such as
their beliefs, goals and desires. This ability to put oneself in the position of
others and reason from their perspective is called Theory of Mind (ToM) and
is closely related to feelings of empathy [3] and moral judgements [4].

The work presented here starts from the assumption that, just as humans
need a functioning ToM, if autonomous software agents are to operate satis-
factorily in social contexts, they also need some implementation of the abilities
that ToM endows humans with [5]. In particular, in domains where agents
have to deal with partial observability, agents can benefit by engaging in the

(a) First-order ToM.

(b) Second-order ToM.

(c) Third-order ToM.

Fig. 1: Outline of the reasoning process captured by the TomAbd agent
model.
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type of reasoning pictured in Figure 1: agents can infer additional knowledge
from observing the actions performed by others and deducing the beliefs that
their peers were relying upon to select those actions. This process can be
achieved directly as in Figure 1a, where an observer adopts the perspective of
an actor to provide an explanation for their action, or through one (Figure 1b)
or more (Figure 1c) intermediaries, where the observer adopts the perspec-
tive of the actor through an arbitrary number of agents. Hence, agents can
use other agents as “sensors” with the purpose of being in a more informed
position when it comes to their own decision-making. The backward inference
from observations (actions by others) to their underlying motivations is called
abductive reasoning and, together with ToM, is a central component of the
agent model presented here.

The main contribution of this work is the TomAbd agent model, which
combines the two capacities mentioned above (Theory of Mind and abduction)
to provide the reasoning displayed in Figure 1. This paper builds on a previous,
much-reduced, preliminary version [6]. Here, we propose a completely domain-
independent model where agents observe the actions of others, adopt their
perspective and generate explanations that justify their choice of action. We
cover all the steps involved in this reasoning process: from the switch from the
agent’s perspective to that of a peer’s, to the generation, post-processing and
update of previous explanations as the state of the system evolves. In addition,
we also provide a complementary decision-making function that takes into
account the gathered abductive explanations.

We implement the TomAbd agent model in Jason [7], an agent-oriented
programming language based on the Belief- Desire-Intention (BDI) architec-
ture. Given the functionalities of our model, the ToM capabilities of TomAbd
agents are strongly skewed towards the perception step of the BDI reason-
ing cycle (i.e. upon observation of an action by another agent, generate a
plausible explanation for it). Nonetheless, we open up an avenue to introduce
ToM reasoning into the deliberation step of the BDI cycle as well through a
complementary decision-making function.

Furthermore, we have applied the TomAbd agent model to Hanabi, a
cooperative card game that we use as our benchmark. We clearly indicate the
specific domain-dependent choices necessary in this application, that need not
be shared for other domains. We analyse the model’s performance on a number
of metrics, namely absolute team score and information gain and value. Our
assessment quantifies the gains that can be unequivocally attributed to the
ToM abilities of the agents.

This paper is organised as follows. In Section 2 we provide the necessary
background on Theory of Mind, abductive reasoning and the Hanabi game.
The central contribution of this paper, the TomAbd agent model, is exposed
in detail in Section 3. Then, in Section 4 we cover some issues related to
the implementation and potential customisations of the model components.
Section 5 presents the performance results of theTomAbd agent model applied
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to the Hanabi domain. Finally, Section 6 compares our work with related
approaches, and we conclude in Section 7.

2 Background

2.1 Theory of Mind

The first building block of the TomAbd agent model is Theory of Mind (ToM).
Broadly defined, ToM is the human cognitive ability to perceive, understand
and interpret others in terms of their mental attitudes, such as their beliefs,
emotions, desires and intentions [8]. Humans routinely interpret the behaviour
of others in terms of their mental states, and this ability is considered essential
for language and participation in social life [3].

ToM is not an innate ability. It is an empirically established fact that
children develop a ToM at around the age of 4 [9]. It has been demonstrated
that around this age, children are able to assign false beliefs to others, by
having them undertake the Sally-Anne test [10]. The child is told the following
story, accompanied by dolls or puppets: Sally puts her ball in a basket and
goes out to play; while she is outside Anne takes the ball from the basket and
puts it in a box; then Sally comes back in. The child is asked where will Sally
look for her ball. Children with a developed ToM are able to identify that Sally
will look for her ball inside the basket, thus correctly assigning a false belief
to the character, that they themselves know to be untrue.

During the 1980s, the ToM hypothesis of autism gained traction, which
states that deficits in the development of ToM satisfactorily explain the main
symptoms of autism. This hypothesis argues that the inability to process men-
tal states leads to a lack of reciprocity in social interactions [10]. Although
a deficiency in the identification and interpretation of mental states remains
uncontested as a cause of autism, it is no longer viewed as the only one, and the
disorder is now studied as a complex condition involving a variety of cognitive
mechanisms [11, 12].

Within philosophy and psychology, two distinct accounts of ToM exist:
Theory ToM (TT) and Simulation ToM (ST) [13]. The TT account views the
cognitive abilities assigned to ToM as the consequence of a theory-like body
of implicit knowledge. This knowledge is conceived as a set of general rules
and laws concerned with the deployment of mental concepts, analogous to
a theory of folk psychology. This theory is applied inferentially to attribute
beliefs, goals, and other mental states and predict subsequent actions.

In contrast, the ST account views the predictions of ToM not as a result of
inference, but through the use of one’s own cognitive processes and mechanisms
to build a model of the minds of others and the processes happening therein.
Hence, to attribute mental states and predict the actions of others, one imag-
ines oneself as being in the other agent’s position. Once there, humans apply
their own cognitive processes, engaging in a sort of simulation of the minds
of others. This internal simulation is very closely related to empathy, since it
essentially consists of experiencing the world from the perspective of someone
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else. In this work, we adhere more closely to the ST account than to the TT
one, as we view the former as having a clearer path to becoming operational.
In our TomAbd model, agents simulate themselves to be in the position of
another, and then apply abductive reasoning (covered in Section 2.2) to infer
their beliefs.

Formally, ToM statements can be expressed using the language of epistemic
logic, which studies the logical properties of knowledge, belief, and related
concepts [14, 15]. The belief of agent i is expressed using modal operator Bi.
Although modal operators also exist for other mental states such as desires and
intentions [16], we focus on B, since the ToM abilities of our agent model are
manifested by having the agent’s own beliefs replaced by an estimation of the
beliefs of others. Then, the statement Biϕ is read as “agent i believes that ϕ”.

ToM statements can be expressed by nesting the previous beliefs about the
state of the world. Therefore, statement BiBjϕ is read as “i believes that j
believes ϕ”. This corresponds to a first-order ToM statement from the per-
spective of i. Subsequent nesting results in statements of higher order. For
example, BiBjBkϕ is read as “i believes that j believes that k believes ϕ”,
a second-order ToM statement. This recursion can be extended down to an
arbitrary nesting level. In general, an n-th order ToM statement is expressed
as BiBj1 . . . Bjn−1Bjnϕ and is read as “i believes that j1 believes . . . that jn−1

believes that jn believes ϕ”. The psychologist Corballis argued that, in fact,
the ability to think recursively beyond the first nesting level, as in ToM state-
ments of second order and beyond, is a uniquely human capacity that sets us
apart from all other species [17, 18].

Within AI, implementations of ToM are often categorised under the
umbrella of techniques for modelling others [19]. In the majority of cases, these
techniques are applied to competitive domains, where they are referred to as
opponent modelling [20, 21]. ToM for autonomous software agents has so far
been developed in a somewhat fragmented fashion, with every camp within
the field implementing it according to their own techniques and methods.

In machine learning, prominent work by Rabinowitz et al. [22] has mod-
elled ToM as a meta-learning process, where an architecture composed of
several deep neural networks (DNN) is trained on past trajectories of a
variety of agents, including random, reinforcement learning (RL) and goal-
directed agents, to predict action at the next time-step. The component of the
architecture most related to ToM is the mental net, which parses trajectory
observations into a generic mental state embedding. It is not specified what
kind of mental states (i.e. beliefs or goals) these embeddings represent. In con-
trast, Wang et al. [23] also use an architecture based on DNNs for reaching
consensus in multi-agent cooperative settings. Their ToM net explicitly esti-
mates the goal that others are currently pursuing based on local observations.
Finally, an alternative approach by Jara-Ettinger [24] proposes to formalise
the acquisition of a ToM as an inverse reinforcement learning (IRL) problem.
However, these approaches have drawn some criticism for their inability to
mimic the actual operation of the human mind, as the direct mapping from
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past to future behaviour bypasses the modelling of relevant mental attitudes,
such as desires and emotions [25]. By contrast, in our work ToM is used to
derive explicit beliefs. We leave the expansion of the model to include other
mental states, such as desires and intentions, for future work.

ToM approaches have also been investigated from an analytical game the-
oretical perspective. De Weerd et al. [26, 27] show that the marginal benefits
of employing ToM diminish with the nesting level in competitive scenarios.
In particular, while first-order and second-order ToM present a clear advan-
tage with respect to opponents with ToM abilities of lower order (or no ToM
capacity at all), the benefits of using higher-order ToM are outweighed by
the complexity it entails. The same authors also prove that high-order ToM
is beneficial in dynamic environments, with the magnitude of the benefits
increasing with the uncertainty of the scenario [28]. It is therefore important
to devise techniques that attempt to measure the information gained through
the addition of ToM of any order, a concern also considered in this paper.

Finally, symbolic approaches to ToM have studied the effects of announce-
ments on the beliefs of others and the ripple-down effects on their desires
and the actions they motivate in response, for the purposes of deception and
manipulation [29, 30].

2.2 Abductive Logic Programming

The second main component of the TomAbd agent model is abductive rea-
soning. Abduction is a logical inference paradigm that differs from traditional
deductive reasoning [31]. Classical deduction makes inference following the
modus ponens rule: from knowledge of ϕ and of the implication ϕ → ψ, ψ is
inferred as true. In contrast, abduction makes inferences in the opposite direc-
tion: from knowledge of the implication ϕ→ ψ and the observation of ψ, ϕ is
inferred as a possible explanation for ψ.

Hence, instead of inferring conclusions deductively, abduction is concerned
with the derivation of hypothesis that can satisfactorily explain an observed
phenomenon. For this reason, abduction is broadly defined as “inference to
the best explanation” [32], where the notion of best needs to be specified by
some domain-dependent optimality criterion. Abduction is also distinct from
the inference paradigm of inductive reasoning [33]. While induction works on
a body of observations to derive a general principle, explanations inferred in
abductive reasoning consist of extensional knowledge, i.e. knowledge that only
applies to the domain under examination.

In the context of logic programming, the implementation of abductive rea-
soning is called Abductive Logic Programming (ALP) [34, 35], defined as
follows.

Definition 1 An Abductive Logic Programming theory is a tuple ⟨T,A, IC⟩, where:

• T is a logic program representing expert knowledge in the domain;
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• A is a set of ground abducibles (which are often defined by their predicate
symbol), with the restriction that no element in A appears as the head of a
clause in T ; and

• IC is a set of integrity constraints, i.e. a set of formulas that cannot be
violated.

Then, an abductive explanation is defined as follows.

Definition 2 Given an ALP theory ⟨T,A, IC⟩ and an observation Q, an abductive
explanation ∆ for Q is a subset of abducibles ∆ ⊆ A such that:

• T ∪∆ |= Q; and
• T ∪∆ verifies IC.

The verification mentioned in Definition 2 can take one of two views [34].
First, the stronger entailment view states that the extension of T with expla-
nation ∆ needs to derive the set of constraints, T ∪ ∆ |= IC. Second, the
weaker consistency view states that it is enough for the extended logic pro-
gram not to violate IC, i.e. T ∪ ∆ ∪ IC is satisfiable, or T ∪ ∆ ̸|= ¬IC. In
this work, we adhere to the latter view. We do not model integrity constraints
directly but rather their negation. We introduce into the agent program for-
mulas that should never hold true through special rules called impossibility
clauses. More details on this are provided in Section 3.1. Taking the consis-
tency position allows us to work with incomplete abductive explanations that
need not complement the current knowledge base to the extent that IC can
be derived, but that nonetheless provide valuable information.

In practice, most existing ALP frameworks compute abductive explana-
tions using some extension of classical Selective Linear Definite (SLD) clause
resolution, or its negation-as-failure counterpart SLDNF [36–39]. The cur-
rent state-of-the-art integrates abduction in Probabilistic Logic Programming
(PLP), where the optimal explanation is considered to be the one that is com-
patible with the constraints and simultaneously maximises the joint probability
of the query and the constraints [40].

The purpose of computing abductive explanations is to expand an existing
knowledge base KB, which may or may not correspond to the logic program T
used to compute explanation ∆ in the first place. During knowledge expansion,
which occurs one formula at a time, the following four scenarios may arise [34].

1. The new information can already be derived from the existing explanation,
KB ∪∆ ≡ KB, and hence ∆ is uninformative.

2. KB can be split into two disjoint parts, KB = KB1 ∪KB2, such that one
of them, together with the new information, implies the second, KB1∪∆ |=
KB2. In the worst case, the addition of ∆ renders a part of the original
knowledge base redundant.



Springer Nature 2021 LATEX template

8 Combining ToM and Abduction

3. The new information ∆ violates the logical consistency of KB. To integrate
the two, it is necessary to modify and/or reject a number of the assumptions
in KB or in ∆ that lead to the inconsistency.

4. ∆ is independent and compatible with KB. This is the most desirable case,
as ∆ can be assimilated into KB in a straightforward manner.

In the TomAbd agent model, we deal with scenarios 1 and 3 through the
post-processing of the generated abductive explanations by the explanation
revision function (ERF). Essentially, uninformative explanations (scenario 1)

(a) Game set-up. (b) Discard a card.

(c) Play a card correctly. (d) Play a card incorrectly.

(e) Give a colour hint. (f) Give a rank hint.

Fig. 2: Basic set-up for the Hanabi game and actions that can be performed.
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as well as explanations that violate the integrity of the current belief base
(scenario 3) are discarded. More details are provided in Section 3.3.

Hence, the addition of abductive explanations does not affect the correct-
ness ofKB, but it may affect its efficiency. The addition of δ into the knowledge
base may subsume some information already there, as anticipated by scenario
2. However, in the TomAbd model, we do not check whether a new expla-
nation renders part of the knowledge base redundant. We work with dynamic
belief bases, which change as agents update their perceptions of the environ-
ment. When the system evolves and an agent’s perception of it changes, some
abductive explanations currently in the belief base need to be dropped because
they are no longer correct, or they are now redundant. This operation is per-
formed by the explanation update function (EUF), covered in Section 3.3.
If, due to the addition of δ, a part of the belief base had been discarded, it
would raise the issue of whether it needs to be recovered once the explanation
that caused it to become irrelevant is dropped. We bypass this question by
retaining all of the belief base upon adding an explanation, provided that this
explanation has previously passed all the redundancy and consistency checks.

2.3 The Hanabi Game

In this paper, we use the Hanabi game as a running example for the presenta-
tion of the TomAbd agent model and to evaluate its performance. Hanabi has
been by other AI researchers as a testbed to test techniques for multi-agent
cooperation [41, 42]. Hanabi is an award-winning1 card game, where a team
of two to five players work together towards a common objective. The goal of
the team is to build stacks of cards of five different colours (blue, green, yel-
low, red and white), with the stacks composed of a card of rank 1, followed by
a card of rank 2, and so on, until the stack is completed with a card of rank
5. A typical setup of an ongoing Hanabi game appears in Figure 2a.

At the start of the game, players are handed four or five cards, depending
on the size of the team. Players place their cards in a way such that everyone
except themselves can see them. For example, the setup in Figure 2a is drawn
from the perspective of player Alice, who cannot see her own cards but has
access to Bob’s and Cathy’s cards. Initially, no stack has any card on it (their
size is 0). Additionally, eight information tokens (the round blue and black
chips in Figure 2) and three live tokens (the heart-shaped chips in Figure 2)
are placed on the table.

Players take turns in order, one at a time, in which they must perform
one of three actions. First, they can discard a card (Figure 2b). Here, the
player picks a card from their hand and places it in the discard pile, which is
observable by everyone. By doing so, they recover one spent information token
(which is spent by giving hints) and replace the vacant slot in their hand with
a card drawn from the deck. A player cannot discard a card if there are no
information tokens to recover.

1https://www.spiel-des-jahres.de/en/games/hanabi/

https://www.spiel-des-jahres.de/en/games/hanabi/
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Second, players can play cards from their hand. They pick a card and place
it on the stack of the corresponding colour. Players need not state in which
stack they are going to play their card before they do so. In other words, they
are allowed to play “blindly”. There are two possible outcomes to this move.
The card is correctly played if its rank is exactly 1 unit over the size of the
stack of the card’s colour. For example, in Figure 2c Alice plays her white 3
card on the white stack, which has size 2 (i.e. there is a white 1 card at the
bottom and a white 2 card in top of it). After a card is played correctly, the
team score is increased by 1 unit (the score corresponds to the sum of the ranks
at the top of each stack). Moreover, if a player correctly places a card of rank
5 and therefore completes one stack, one information token is recovered for
the team, assuming there are some tokens left to recover. Finally, the player
replaces the gap in their hand with a card from the deck.

The card is incorrectly played if the rank does not match the size of the
stack plus 1. For example, in Figure 2d Alice attempts to play a blue 5 while
the blue stack has size of 2. If this happens, the player places the card they
attempted to play in the discard pile, and replaces it with a new card from
the deck. Furthermore, the whole team loses one of their life tokens.

Third, players can give hints to one another about the cards they hold.
Hints are publicly announced, i.e. everyone hears them. Players can hint to
one another about the colour (Figure 2e) or rank of their cards (Figure 2f).
In order to give a hint, the moving player must spend one information token.
The team must have at least one information token, which is spent when the
hint is given. When players give hints to others, they must indicate all of the
receiver’s cards that match the colour or rank being hinted. For example, in
Figure 2e, Alice has to tell Bob where all of his white cards are. Alice is not
allowed to tell Bob only the colour of a card in a single slot if he has other
cards of the same colour. Analogously, in Figure 2f, Alice tells Cathy which of
her cards have rank 1, not mentioning their colour, regardless of any previous
hints.

There are three possible ways in which a game of Hanabi might end. First,
the players might manage to complete all of the stacks up to size 5, hence
finishing the game with the maximum score of 25. Second, the team might
lose all three life tokens. In this case, immediately after losing the third life
token, the game finishes with the minimum score of 0. Third and last, after a
player has drawn the final card from the deck, all participants take one more
turn. After that, the game finishes with score equal to the sum of the size of
the stacks.

The Hanabi game has three features that make it particularly interesting to
test techniques for modelling others. This has led some researchers to point to
Hanabi as the next great challenge to be undertaken by the AI community [41].
The first feature is the purely cooperative nature of the game, since all partic-
ipants have a common goal, which is to build the stacks as high as possible.
Consequently, players can benefit from understanding the mental state of oth-
ers, such as their intentions with respect to their cards, or the short-term goals
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they want to achieve during the course of a game. Additionally, the effective-
ness of the developed approaches can be experimentally assessed through the
final score.

Second, players in Hanabi have to cope with partial observability (or imper-
fect information, the preferred term in the game theory community), as players
can see everyone else’s cards but not their own. To cope with this, players pro-
vide information to one another through hints. There are two facets to these
hints. One is the explicit information carried by the hint, i.e. the colour or
rank of the cards directly involved. The other facet is the additional implicit
information that can be derived from understanding the intention of the player
making a move when they provide a hint.

To understand this second facet, consider the situation displayed in
Figure 2a. It is Alice’s turn to move, and she decides to give a colour hint to
Cathy, pointing to her rightmost card as being the only red card she has. In
principle, Cathy now only knows that her rightmost card is red, and all oth-
ers are not. However, Cathy may be able to understand that Alice would only
provide such a hint if she wanted her to play that card, and since it is red and
the red stack has size 3, Cathy’s card must be a red 4. Cathy can draw such
a conclusion from the observation of the current state of the game, and an
assumption about the strategy that Alice is following. In the TomAbd agent
model, this implicit information is identified with the abductive explanations
that agents are able to generate by taking the perspective of the player making
the move.

Finally, the third interesting feature of Hanabi is the fact that the sharing
of information is quantified through discrete tokens that must be managed as
a collective resource. Agents must manage the number of hint tokens available
altogether, by balancing the need to provide a hint in the current state of the
game versus discarding a card to recover a token that then becomes available
for another hint.

Previous work on autonomous Hanabi-playing agents has followed one of
two approaches: rule-based and reinforcement learning (RL) agents. Rule-
based Hanabi bots [43–47] play following a set of pre-coded rules. In contrast,
RL bots [41, 48–50] apply single-agent or multi-agent RL techniques to learn
a policy for the game. Sarmasi et al. [51] have compiled a database of
Hanabi-playing agents developed so far.

Our TomAbd agent models relies on a pre-coded strategy to decide what
action to take next and hence aligns more closely with the rule-based approach.
However, our agent model is agnostic with respect to the specifics of the strat-
egy that the agent follows. In contrast, previous work on rule-based agents for
Hanabi [43–47] has focused on the details of the developed strategies. Also,
unlike both rule-based and RL agents, our agent model is domain-independent,
and it is applied to Hanabi as a test case. The type of reasoning that TomAbd
agents engage in is general but can be useful for this particular game.

Autonomous agents for Hanabi can be evaluated in three different settings:
self-play, where all the participants of the team follow the same approach
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and strategy; cross-play, where teams are composed of heterogeneous software
agents; and human-play, where teams include human players. The majority of
the current research on Hanabi AI evaluates performance during self-play, as
we do in this paper. In self-play, RL agents outperform rule-based agents, with
the former routinely achieving average scores of around 23 points, while the
latter struggle to break into 20 points for the average score. The current state-
of-the-art for Hanabi AI combines both RL and rule-based techniques, and
produced an average score of 24.6 in self-play [49]. To achieve that, first, one
agent learns a game-playing policy while all other team members follow the
same pre-coded strategy. Second, all agents use multi-agent learning, where
they perform the same joint policy update after every iteration, if feasible. If
not, they fall back on the same set of pre-coded rules.

Although RL agents display superior performance in self-play, they require
a computationally intensive learning process. Additionally, in a recent sur-
vey [42] several types of rule-based or RL agents were paired with human
players, forming teams of 2. Despite there being no statistically significant
difference in game score between rule-based and RL teammates, humans
perceived rule-based agents as more reliable and predictable, while express-
ing feelings of confusion and frustration more often when paired with RL
teammates.

Fig. 3: Architecture of the TomAbd agent model.
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3 Agent model

In the current section, we detail the TomAbd agent model, which constitutes
the core of this work. First, we outline the agent architecture, its compo-
nents and introduce some necessary notation. Later, we explain how these
components operate.

3.1 Preliminaries

TomAbd is a symbolic, domain-independent agent model with the ability
to adopt the point of view of fellow agents, down to an arbitrary level of
recursion. Consider the traditional multi-agent setting, where a set of agents
A = {i, j, k, . . .} operate in a shared environment. For the remainder of
Section 3, the explanations are presented from the perspective of an arbi-
trary observer agent i; i.e. we will be considering the cognitive processes that
i autonomously undertakes when it observes its fellow agents taking actions.

The main components of the TomAbd agent model are presented in
Figure 3. Rectangles represent belief base (BB) data structures. Hexagons rep-
resent immutable functions, that are not customisable. Diamonds represent
functions for whom only default implementations are provided, and that allow
users to customise them according to their application’s needs. The rounded
square for BUF corresponds to the belief update function, a common func-
tionality for situated agents. We do not define this function in our work, but
tailor the default BUF method in our language of choice to include some oper-
ations on the gathered abductive explanations. Details on this are provided in
Section 4.

The agent architecture is composed of the main BB data structure which
contains the logic program that the agent is currently working with, plus a
backup to store the agent’s own beliefs when switching to another agent’s per-
spective. At all times, the BB contains a logic program: a set of ground literals
representing facts about the world and a set of rules representing relationships
between literals. We denote by Ti the logic program of agent i; i.e. the content
of their BB at initialization time. Ti is composed of the following components.

1. Percepts are ground literals that represent the information that the agent
receives from the environment. Incoming percepts update the BB according
to the belief update function (BUF in Figure 3). For example, in a situation
of Hanabi like the one displayed in Figure 2, agent Alice would receive the
following percepts:

has card colour(bob,4,blue)

has card rank(bob,4,3)

These indicate that Alice observes Bob having a card of colour blue and
rank 3 in his fourth slot (counting from the left). We assume, implicitly,
that the agents are limited by partial observability, meaning that they do
not perceive all the information there is to know about the environment. In
general, different agents will have access to different parts of the environ-
ment, and will receive different percepts. In the Hanabi game in particular,
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players do not a priori know about their own cards or about the order of
cards in the deck.

2. Domain-related clauses are traditional logic programming rules that
establish relationships between facts in the domain. For example, the fol-
lowing clause expresses that, in Hanabi, a card of colour C and rank R is
playable if the size Sz of the corresponding stack is one unit below the rank
of the card.

playable(C,R) :- colour(C), rank(R), stack(C,Sz), Sz=R-1.

3. Impossibility clauses have atom imp as their head and whose body
contains literals that cannot hold simultaneously true. They capture the
constraints of the domain, if there are any. For example, in the Hanabi
game, the following clause states that a player P cannot have cards of two
different colours, C1 and C2, in the same slot S.2

imp :-

player(P), slot(S), colour(C1), colour(C2),

has card colour(P,S,C1), has card colour(P,S,C2), C1\== C2.

As stated in Section 2.2, we adopt the consistency view when it comes to
verifying the expansion of the belief base with an abductive explanation. To
incorporate integrity constraints into an agent’s program, we need a mech-
anism that triggers an exceptional event when one or several constraints
are violated. This is precisely the role of the impossibility clauses.

To clarify, consider an impossibility clause imp :- Conj. The conjunc-
tion Conj in its body corresponds to a formula that should never hold true.
In other words, its negation ¬Conj is equivalent to a traditional integrity
constraint IC that can never be violated. Therefore, the derivation of imp
indicates that IC has been violated. To avoid this, the generated abductive
explanations undergo post-processing operations where they are filtered out
if their expansion into the program causes the derivation of imp.

4. Theory of Mind clauses are rules that are essential to the agent’s
cognitive ability to put itself in the shoes of others. They function as a
meta-interpreter on the agent’s current program to generate an estimation
of another agent’s program. ToM clauses have the literal believes(Ag,F)
as their head, to express the fact that agent i believes that agent Ag knows
about some fact F. In the Hanabi domain, the following ToM clause indi-
cates that agent i believes that player Agj can see the card that a third
player Agk has in their S-th slot, and, in particular, Agj can observe its
colour C.

believes(Agj,has card colour(Agk,S,C)) :-

player(Agj), player(Agk), slot(S), colour(C),

has card colour(Agk,S,C), Agj\==Agk.

2Note that Jason, our implementation language of choice, does not include any default mech-
anisms to check the consistency of an agent’s BB, i.e. an agent may simultaneously believe b and
∼ b. It hence becomes the responsibility of the agent developer to implement, if needed, additional
mechanisms to avoid such inconsistencies, which the TomAbd agent model achieves through the
introduction of impossibility clauses.
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5. Abducible clauses have literal abducible(F) at their head, and express
what missing beliefs can potentially be added to agent i’s BB to obtain
a more detailed representation of the state of the system. The definition
of the literals that may be missing from an agent’s BB is a domain-
dependent component of the program. For example, in the Hanabi domain,
the following belief indicates that, from the viewpoint of i, a player P

may have, in their S-th slot, a card of colour C if i does not already hold
a belief about the colour of the card in S, nor does i explicitly hold a
belief explicitly indicating that P does not have a card of colour C in S.3

abducible(has card colour(P,S,C)) :-

player(P),slot(S),colour(C),

not has card colour(P,S, ),

not ∼has card colour(P,S,C).

6. Action selection clauses are a set of rules with head action(Ag,Act)

[priority(n)] that indicate the pre-conditions for agent Ag to select and
execute action Act. These clauses correspond to agent i’s beliefs about the
other agents’ strategies (for instances where Ag = j, j ̸= i) as well as,
potentially, agent i’s own strategy (for instance when Ag = i). The head is
annotated with a priority(n) literal, where n is a number (any number,
not necessarily an integer). These priorities state in which order the action
selection clauses should be considered when they are queried. Details about
the action selection are provided in Section 3.4.

As an example for the Hanabi domain, the following clause indicates
that a participant P should play their card in slot S if it is of a playable
colour C and rank R.

action(Ag,play card(S)) [priority(3.0)] :-

player turn(Ag), slot(S),

has card colour(Ag,S,C), has card rank(Ag,S,R),

playable(C,R).

The action selection clauses are used by TomAbd agents to compute
abductive explanations from the observation of actions by other agents.
Hence, it is compulsory that they capture agent i’s beliefs about the strat-
egy agent j ̸= i is following. Nonetheless, the TomAbd model is flexible
concerning whether such action selection clauses also implement agent i’s
own strategy. The action selection function presented in Section 3.4 cer-
tainly provides an avenue to use action selection clauses during the agent’s
own practical reasoning. However, this is a complement to the TomAbd
model (whose focus is on the generation and maintenance of abductive
explanations using ToM) rather than a fundamental component.

So far, we have presented the components of the logical program of a
TomAbd agent. Now, we move on to explain how they are utilised. The dis-
tinguishing feature of our agent model is the ability to put themselves in the
shoes of others. For example, when engaging in first-order ToM (recursive

3We distinguish between strong negation (∼Fact) and negation as failure (not Fact). In
epistemic logic notation, they are expressed as Bi[∼ ϕ] and ∼ Biϕ, respectively.
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level 1), agent i changes their perception of the world to the way in which
they believe that some other agent j is perceiving it. In epistemic logic nota-
tion, these are the beliefs denoted by BiBjϕ. In other words, in an attempt
to perceive the world how i believes j is perceiving it, agent i’s BB changes
to BBj

i = {ϕ | believes(j, ϕ)}, where BBj
i denotes i’s estimation of j’s BB

given i’s current logic program.
However, the TomAbd agent model is not limited to first-order ToM. It

can, in fact, switch its perception of the world to that of another agent down
to an arbitrary level of recursion. For example, agent i may want to view the
world in the way that they believe j believes that k is perceiving it. This
corresponds to second-order ToM and is expressed as BiBjBkϕ in epistemic
logic notation. In particular, i may want to estimate j’s estimation of itself.
This is equivalent to the previous case BiBjBkϕ with i = k, BiBjBiϕ.

The nesting exposed in the previous paragraph can be extended to an arbi-
trary level of recursion: agent i attempts to view the world how it believes that
j believes . . . that k believes that l views it. This is denoted by BiBj . . . BkBlϕ.
We define the sequence of agent perspectives [j,. . . , k, l] recursively adopted
by i as a viewpoint :

Definition 3 For agent i, a viewpoint is an ordered sequence of agent designators
[j,. . . , k, l] where there are no two consecutive equal elements and the first element
is different from i.

Hence, when we talk about agent i adopting viewpoint [j, . . . , k, l] we mean
the process by which agent i switches its own perspective of the world by the
one it believes that j believes . . . that k believes that l has. To do this, agent i
has to modify its own program Ti, contained in its main BB, by the estimation
that it can build of j’s estimation . . . of k’s estimation of l’s program. This
new program will, in general, indeed be an estimation since agents have access
to (possibly) overlapping but different features of the environment. We denote
this estimated program by Ti,j,...,k, and define it as follows:

Definition 4 Given agent i with logic program Ti, i’s estimation of viewpoint
[j,. . . , k, l] is a new logic program Ti,j,...,k,l:

Ti,j,...,k,l = {ϕ | Ti,j,...,k |= believes(l, ϕ)} (1)

Equation (1) indicates that, in order to estimate the BB of the next agent
whose perspective is to be adopted, the agent must query its current BB to find
all the ground literals that, according to the ToM rules, the next agent knows
about. Therefore, agent i must substitute their current program by the set of
unifications to the second variable in believes(Ag,F). In other words, agent i
runs the query believes(ag,F) in its BB and obtains a set of unifications for
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Algorithm 1 Function AdoptViewpoint(vp)

Input: vp ([j, . . . , k, l]), a viewpoint according to Definition 3.
Result: agent i substitutes Ti by Ti,j,...,k,l in their BB.

1: CopyBBToBackup()
2: for p in vp do
3: BBp

i ← {ϕ | BB |= believes(p, ϕ)}
4: BB ← BBp

i

5: end for

F as output, {F 7→ ϕ1, . . . , F 7→ ϕn}, where ϕi, i = 1, . . . , n denotes a groud lit-
eral (e.g. has card colour(alice,3,red), has card rank(bob,1,5)). Then,
agent i substitutes the contents in its BB by the set {ϕ1, . . . , ϕn}.

The operationalisation of Definition 4 is presented in function
AdoptViewpoint, Algorithm 1. It takes as its only argument a viewpoint as
defined in Definition 3. Given this viewpoint, agent i adopts it, first, by saving
a copy of its own BB in the backup. Then, i queries the ToM clauses with the
next agent whose perspective is to be estimated as their first argument. The
result of this operation becomes agent i’s new BB, and they move on to the
next iteration.

3.2 The TomAbductionTask Function

Function AdoptViewpoint captures the nth-order Theory of Mind capabili-
ties in the TomAbd agent model, for arbitrary integer value of n. However, the
purpose of switching one’s perspective is to be able to reason from the point of
view of another agent. Therefore, it is not enough for i to invoke AdoptPer-
spective. It should, once the switch has occurred, infer the motivation for the
actions taken by the other. This reasoning process is implemented in the core
function of the TomAbd agent model, TomAbductionTask, in Algorithm 2.

TomAbductionTask takes three arguments as input: an observer view-
point, an acting agent l and the action l took al. The last two are straightfor-
ward to understand. The observer viewpoint is a list as defined in Definition 3.
It indicates what ToM order i is engaging in, and through which other agents
it is estimating the perception that the actor l has of the world. For exam-
ple, suppose i would like to understand why l chose al directly. In this case,
i observes its peer’s action from its own perspective. The observer viewpoint
would, in this case, correspond to the empty list (“[ ]”). However, i might want
to understand why a third agent j thinks that l made their choice. Then, i is
observing l’s action through j, and hence the observer viewpoint is [j]. This
viewpoint can be subsequently extended to any desired level of recursion. For
example, agent i may want to estimate the impression that actor l thinks
they are making on agent j when executing al. This corresponds to observer
viewpoint [l, j].

The first step of TomAbductionTask (Lines 1 and 2) is to build the
actor’s viewpoint by simply appending actor agent l to the observer viewpoint
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Algorithm 2 Function TomAbductionTask(obsV p, l, al)

Input: obsV p, observer viewpoint.
l, acting agent.
al, action.

Output: Φ′
act, actLit, Φ

′
obs, obsLit: explanations Φ

′
{·} that justify the elec-

tion of action al by actor agent l, from the actor’s and the observer’s viewpoint,
respectively; and the literals {·}Lit containing those explanations in a format
suitable to be added to a logic program.

1: actV p← obsV p.Append(l)
2: AdoptViewpoint(actV p)
3: BB ← BB ∪ {viewpoint(actor)}
4: Φ← Abduce(action(l, al))
5: Φ′

act ← ERF(Φ)
6: actLit ← BuildAbdLit(actV p, Φ′

act)
7: RecoverBackup()
8: AdoptViewpoint(obsV p)
9: BB ← BB ∪ {viewpoint(observer)}

10: Φ′
obs ← ERF(Φ)

11: obsLit ← BuildAbdLit(obsV p, Φ′
obs)

12: RecoverBackup()
13: return ⟨Φ′

act, actLit, Φ
′
obs, obsLit⟩

and to adopt it by calling AdoptPerspective. Now, agent i is in a position
to reason from the perspective of the actor, possibly through a number of
intermediate observers. In the simplest case, agent i is switching its logical
program Ti to the program it estimates actor l to be working with, i.e. Ti,l.
This case corresponds to agent i engaging in first-order ToM at the time of
adopting the actor’s viewpoint. Alternatively, agent i may switch its program
Ti to the program they estimate that j1 estimates that . . . jn−1 estimates that
jn is working with, Ti,j1,...,jn−1,jn , this time engaging in nth-order ToM.

Once the actor’s viewpoint has been adopted, the agent uses ALP to
generate abductive explanations that justify agent l’s action al. The ALP
theory that the agent uses is composed of its current BB (in the general
case, Ti,j,...,k,l), and the set of abducibles derived from it, which we denote as
Ai,j,...,k,l:

Ai,j,...,k,l = {α | Ti,j,...,k,l |= abducible(α)} (2)

The set of plausible abductive explanations is computed by function
Abduce in Line 4 of Algorithm 2, using the set of abducibles defined in
Equation (2). The pseudocode for this function is not provided, as it does
not constitute any technical innovation. The input to this function is the
query Q = action(l, al). The Abduce function consists of an abductive meta-
interpreter, based on classical SLD clause resolution with a small extension.
To compute abductive explanations, this meta-interpreter attempts to prove
the query Q as a traditional goal in SLD clause resolution. However, when it
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encounters a sub-goal that is not provable, before failing the query, it checks
whether this sub-goal can be unified to any element in the set of abducibles
Ai,j,...,k,l. If so, the sub-goal is added to the explanation under construction in
the branch being currently explored.

Function Abduce backtracks upon failure or completion of the query, just
as traditional SLD solvers. Consequently, the output of this function is a set
Φ of m potential explanations. At the same time, every element in Φ is itself
a set of ground abducibles from Ai,j,...,k,l:

Φ = {Φ1, . . . ,Φm}, where Φh = {ϕh1, . . . , ϕhnh
}

and ϕhg ∈ Ai,j,...,k,l,∀h, g
(3)

Once the abductive explanations have been computed, they are first refined
through the application of the explanation revision function, ERF, in Line 5.
Then, they are transformed into a literal, that is, to a format suitable to be
added to a logical program, through the BuildAbdLit function in Line 6.
Both of these steps are reviewed in detail in the next section.

At this point, the abductive explanations have been computed and post-
processed, all from the perspective of the actor, i.e. whilst agent i’s BB contains
Ti,j,...,k,l. However, agent i does not derive this information only so that it
can build a better estimation of the actor’s BB. It also reasons about how
this information affects beliefs at the observer’s viewpoint level. Therefore,
agent i has to first return to its original program Ti by retrieving it from
the backup (Line 7). Then, it adopts the observer’s viewpoint (Line 9) and
perform the same post-processing steps (explanation revision in Line 10 and
format transformation in Line 11) from this new perspective. Eventually, agent
i recovers its original program Ti from the backup in Line 12.

It should be noted that the TomAbductionTask function does not, by
default, add the abductive explanations (or rather, the associated literals gen-
erated by BuildAbdLit) to agent i’s program Ti (observe the dashed arrow
from TomAbductionTask to the BB in Figure 3). Rather, the function
returns the revised explanations and their formatted literals. This choice has
been made to allow flexibility to potential users. If necessary, users can per-
form further reasoning and modifications to the returned explanations. For
example, agent i can decide whether to append the returned literals to their
BB based on some trust metric it has towards the actor.

3.3 Explanation Revision, Assimilation and Update

This section reviews the post-processing operations that are performed on the
raw abductive explanations returned by the Abduce function. In the cases
where the implementations provided are defaults, this is clearly indicated.
Details of how these defaults can be overridden are provided in Section 4.

During the execution of TomAbductionTask, two calls are made to the
explanation revision function (ERF), one from the point of view of the actor
and one from the point of view of the observer. The purpose of this function
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Algorithm 3 Function ERF(Φ) (default explanation revision function)

Input: Φ = {{ϕ11, . . . , ϕ1n1}, . . . , {ϕm1, . . . , ϕmnm}}, a set of m explanations,
each being a set of ground abducibles.
Output: Φ′ = {{ϕ′11, . . . , ϕ′1n′

1
}, . . . , {ϕ′m′1, . . . , ϕ

′
m′n′

m′
}}, a set of m′ refined

explanations.

1: Φ′ ← {}
2: for Φh in Φ do
3: Φ′

h ← {ϕhg | ϕhg ∈ Φh and BB ̸|= ϕhg}
4: if BB ∪ Φ′

h ̸|= imp then
5: Φ′ ← Φ′ ∪ {Φ′

h}
6: end if
7: end for
8: return Φ′

is to refine and/or filter the raw explanations based on the current content of
agent i’s BB, which is either the estimation of the actor’s program Ti,j,...,k,l or
the estimation of the observer’s program Ti,j,...,k.

The default implementation of the ERF function appears in Algorithm 3
and consists of two steps. First, in Line 3, the agent trims every explanation
Φh (a set of ground abducibles) to remove uninformative atoms. Admittedly,
this step only makes a difference when ERF is called from the perspective of
the observer (Line 10 in Algorithm 2), and not from the perspective of the
actor (Line 5 in Algorithm 2). The abduction meta-interpreter does not add
proven sub-goals to the explanation under construction. Therefore, from the
perspective of the actor (where the raw abductive explanations are actually
computed), there cannot be uninformative facts in the explanation sets.

The second step is a consistency check (Lines 4 to 6 in Algorithm 3). This
check takes in every trimmed explanation and inspects whether it, together
with agent i’s current BB, entails any impossibility clause. Recall from the dis-
cussion in Section 3.1 that the derivation of imp is equivalent to an integrity
constraint IC being violated. The impossibility clauses that this check consid-
ers include both domain-related and impossibility clauses derived from prior
executions of TomAbductionTask. If no violation occurs, the explanation
is returned as part of the set of revised explanations.

Here, we have only presented a basic ERF implementation that can be
customised if needed. For example, the ERF could annotate every explana-
tion Φh with an uncertainty metric. Alternatively, it could operate differently
depending on whether it is being called while the agent is working under the
actor or the observer point of view. In fact, the belief addition operations in
Lines 3 and 9 of Algorithm 2 are there precisely to allow for this possibility.
Further details are provided in Section 4.

The set of revised explanations Φ′ is, like the set of raw explanations Φ,
a set of sets of ground abducibles, see Equation (3). Therefore, it is not in
a suitable format to be added to agent i’s BB, which is a logical program
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Algorithm 4 Function BuildAbdLit(vp, Φ)

Input: vp, a viewpoint
Φ = {{ϕ11, . . . , ϕ1n1}, . . . , {ϕm1, . . . , ϕmnm}}, a set of (revised) expla-

nations.
Output: Λ, a literal containing the input explanation, in a format suitable to
be added to the agent’s logical program.

1: Λ← {imp [source(abduction)] :-

(∼ ϕ11 | . . . |∼ ϕ1n1) , . . . , (∼ ϕm1 | . . . |∼ ϕmnm).}
2: vp′ ← Reverse(vp)
3: for p in vp′ do
4: Λ′ ← believes(p,Λ)
5: Λ← Λ′

6: end for
7: return Λ

composed of facts and clauses. The conversion from a set of sets to a clause
that can be added to a logical program is performed by function BuildAbdLit
(short for “build abductive literal”) in Algorithm 4.

To understand how this function operates, consider that a (revised) abduc-
tive explanation Φ = {{ϕ11, . . . , ϕ1n1}, . . . , {ϕm1, . . . , ϕmnm}} can be written
as the following disjunctive normal form (DNF):

Φ = (ϕ11 ∧ . . . ∧ ϕ1n1
) ∨ . . . ∨ (ϕm1 ∧ . . . ∧ ϕmnm

) (4)

The formula in Equation (4) must hold, meaning it has the status of a tra-
ditional IC discussed in Section 2.2. Therefore, its negation ¬Φ must never
hold true. If ¬Φ is derived from the agent’s program, it means that the formula
in Equation (4) has been violated, and an exceptional event (i.e. the deriva-
tion of imp) should be triggered. This observation leads to the use of ¬Φ to
build a new impossibility clause. This new clause has the same format as the
domain-related impossibility clauses presented in Section 3.1 but its head imp

is annotated with source(abduction) to denote that it is not domain-specific
but derived from an abductive reasoning process. This step corresponds to
Line 1 in Algorithm 4.

Nonetheless, this new impossibility clause does not consider the level of
recursion, or, in other words, the viewpoint, where the explanation was gener-
ated. This information needs to be incorporated in Lines 2 to 6. In summary,
if the agent is operating under viewpoint [j, . . . , k, l], BuildAbdLit nests the
abductive impossibility clause constructed in Line 1 into the following literal:

believes(j, . . . , believes(k, believes(l, {imp [source(abduction)] :-

(¬ϕ11 | . . . | ¬ϕ1n1) , . . . , (¬ϕm1 | . . . | ¬ϕmnm)})) . . .).
(5)
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Algorithm 5 Function EUF (default explanation update function)

Result: The agent removes from their BB the abductive literals whose
associated explanation is no longer informative.

1: Σ← {}
2: for all ⟨vp,Φ, lit⟩ in BB do
3: AdoptViewpoint(vp)
4: if BB |= Φ then
5: Σ← Σ ∪ {lit}
6: end if
7: RecoverBackup()
8: end for
9: KB ← KB \ Σ

Therefore, the next time agent i adopts viewpoint [j, . . . , k, l], the bare imp
[source(abduction)] clause will become part of their BB (assuming the user
has decided to add it to Ti in the first place).

Finally, there is one last operation performed on the clauses and literals
derived from TomAbductionTask, which is the update of those that have
been incorporated into the original BB of the agent, Ti, as new percepts are
received. We refer to this operation as the explanation update function (EUF).
In contrast to the other functions presented in this section, the EUF is not
executed within TomAbductionTask, but is called from the belief update
function (BUF, see Figure 3). The BUF is a standard function of the BDI
agent reasoning cycle whose purpose is to update the BB depending on the
percepts received from the environment and the messages passed on by other
agents. Therefore, upon receiving percepts from the environment, the agent
first modifies its ground percept beliefs, and then updates clauses and literals
derived from previous executions of TomAbductionTask, if there are any.

The default implementation of EUF appears in Algorithm 5. In it, agent
i discards previous abductive explanations if they are deemed to be no longer
informative at the viewpoint at which they were generated. To do so, the agent
loops over all the literals that originated from an abductive reasoning process,
denoted by the tuple ⟨vp,Φ, lit⟩ composed of the viewpoint vp where the
explanation Φ originated and the associated literal (or clause) lit (Line 2).
Agent i then adopts viewpoint vp with a routine call to AdoptViewpoint,
and checks if explanation Φ can be derived from the current BB, T[i|vp].

4 If
so, the explanation is deemed to be no longer informative and its associated
literal lit is added to a removal set.

3.4 Action Selection

The functions presented so far constitute the agent’s core cognitive abilities
combining Theory of Mind and abductive reasoning. However, the purpose

4We use Prolog notation for lists [H | T ], where H is the first element (head) and T is the tail
of the list, which is itself another list, possibly empty.
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Algorithm 6 Function SelectAction (default action selection)

Output: a, an action.

1: for all clauses H with head action(Ag,Act) [priority(p)], in descending
order of p do

2: H.Map(Ag 7→ i)
3: B ← H.Body()
4: Γ← SkolemisedAbducibles(B)
5: for all γ in Γ do
6: Π← Instantiate(γ)
7: A ← {}
8: for all π in Π do
9: if BB ∪ π ̸|= imp then

10: aπ ← argmax
a
{m | BB ∪ π |= action(i, a)[priority(m)]}

11: A ← A∪ {aπ}
12: end if
13: end for
14: if A = {a}, ∥A∥ = 1 then
15: return a
16: end if
17: end for
18: end for
19: return null

of undergoing all this cognitive work is for agent i to be in a more informed
position when it comes to i’s own decision-making. To do so, agent i needs
to consider the generated abductive explanations when reasoning about which
action to perform next. We provide such a function, SelectAction in Algo-
rithm 6, which takes into account all the impossibility clauses in the agent’s
BB, including those coming from the output of TomAbductionTask.

Similarly to the ERF and EUF, the provided implementation is a basic
one, and it is customisable. The user can, for example, reason probabilistically
about which action to take next, in case they have associated an uncertainty
metric to the generated abductive explanations. The default implementation
in Algorithm 6 takes a cautious approach, where an action is only selected if
it is the action prescribed by the action selection clauses in all the possible
worlds.

Additionally, the SelectAction function presented here is a complement
to the other functionalities of the TomAbd agent model, and not a core com-
ponent of the model. We provide a default querying mechanism to select an
action given the action selection clauses and the set of current impossibility
constraints. However, the agent developer might decide to use an alternative
implementation that, for instance, does not use the action selection clauses to
pick the action to execute next, or they might decide to not use the Selec-
tAction function at all. This is enabled by the fact that this function has
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been wrapped in an internal action (IA) that can be called from within the
agent code. More details on this point are provided in Section 4.

Algorithm 6 proceeds as follows. First, in Line 1, it retrieves action selection
clauses in descending order of priority, so rules with higher priority take pre-
cendence over rules with lower priority. Then, the variable at the first argument
in the head is unified with the identity of agent i in Line 2.

Second, the body of the clause is retrieved (Line 3) and the set of skolemised
abducibles is built. This is done by function SkolemisedAbducibles (whose
pseudo-code is not provided) in Line 4. This means that whenever an abducible
in the rule body cannot be proven by the agent’s BB (i.e. Ti), its free variables
are substituted by Skolem constants. In general, one action selection clause
will generate several skolemised forms of its abducibles.

Third, the agent searches for all of the potential instantiations of every
skolemised form. This corresponds to the call to function Instantiate in
Line 6. Again, for every set of skolemised abducibles, there will be, in general,
several possible ways of binding their variables. Each of these possible instan-
tiations provides additional beliefs that can partly complement the agent’s BB
to obtain a more complete view of the current state of the world. However, it is
not necessary to complement the agent view to the point of complete observ-
ability, just to add enough information to be able to query the action selection
clause currently under consideration.

The agent only considers the complete instantiations of abducibles that,
together with agent i’s BB, do not lead to an impossibility clause. This check
takes place in Line 9. For those instantiations that pass the check, agent i
queries for the action of maximum priority that is entailed if the grounded
abducibles were part of the BB. As we have seen, for this default implementa-
tion, action selection clauses with higher priority take precedence over clauses
with lower priority. Hence, when querying for actions, the one with the highest
priority is returned.

So, every action selection clause (i.e. an iteration of the loop in Line 1) leads
to several sets of skolemised abducibles. In its turn, every set of skolemised
abducibles (i.e. an iteration of the loop in Line 5) leads to several sets of
ground abducibles. If each of these instantiations leads to the same action
(Line 14), the SelectAction function returns the action in question and
execution continues from the point where the function had been called.

If all the action selection clauses have been processed and no action has
been selected, the SelectAction function returns null. The user is advised
to deal with this situation by including some contingency measure, e.g. use a
default action when SelectAction return null. Further details are provided
in Section 4.

To illustrate how the default SelectAction function works, consider the
action selection clause provided as an example in Section 3.1:

action(Ag,play card(S)) [priority(3.0)] :-

player turn(Ag), slot(S),

has card colour(Ag,S,C), has card rank(Ag,S,R),
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playable(C,R).

Then, after the execution of Line 3, we have:
B ← player turn(i), slot(S),

has card colour(i,S,C), has card rank(i,S,R), playable(C,R).

Now, suppose agent Alice, in the setting of Figure 2a, has the following
information in her BB, derived from a hint:

∼has card rank(i,1,3) [source(hint)]

has card rank(i,2,3) [source(hint)]

∼has card rank(i,3,3) [source(hint)]

has card rank(i,4,3) [source(hint)]

∼has card rank(i,5,3) [source(hint)]

This means that Alice knows that she has cards of rank 3 in her 2nd and 4th
slots, and that she has cards of rank different from 3 at all others.

Then, after execution of Line 4, we have:
Γ← {{has card colour(i,1,sk1), has card rank(i,1,sk2)},

{has card colour(i,2,sk3)},
{has card colour(i,3,sk5), has card rank(i,3,sk6)},
{has card colour(i,4,sk7)},
{has card colour(i,5,sk9), has card rank(i,5,sk10)}}

where skn are Skolem constants.
In addition, suppose that she has in her BB the following IC, derived from

a previous execution of TomAbductionTask:
imp [source(abduction)] :-

∼has card colour(i,2,blue), ∼has card colour(i,2,white).

This IC would have been derived by BuildAbdLit (Algorithm 4) from the
following set of (revised) abductive explanations:

Φ = {{has card colour(i, 2, blue)}, {has card colour(i, 2, white)}}
meaning that, from a previous move by another player, agent i interpreted
that they must have either a blue or a white car in the second slot.

Then, when looping through the second element of Γ, in Line 6, the follow-
ing instantiations will be generated:

Π← {{has card colour(i,2,blue)},
{has card colour(i,2,green)},
{has card colour(i,2,yellow)},
{has card colour(i,2,red)},
{has card colour(i,2,white)}}

Of all the instantiations in Π, only two are compatible with the previous
IC:

{has card colour(i,2,blue)}, {has card colour(i,2,white)}
When querying for which action to select, the two previous instantiations will
lead to play card(2) (due to the action clauses with priority 3.0), and this
will be the return value of the function SelectAction.

4 Implementation



Springer Nature 2021 LATEX template

26 Combining ToM and Abduction

+trigger : context
<− ... ;
tomabd.agent.tom abduction task(

+ObsVp, // a list
+Actor, // an atom
+Action, // a ground literal
−ActorVpExpls, // a list of lists
−ObsVpExpls, // a list of lists
−ActLit, // a literal
−ObsLit // a literal

);
...

Listing 1: Usage of the tomabd.agent.tom abduction task IA. A “+” precedes
variables that must be bound at invocation time, while a “-” precedes variables
that are bound by the IA.

The agent model presented in Section 3 has been implemented in Jason [7],
an agent-oriented programming language based on the BDI architecture. Jason
implements and extends the abstract AgentSpeak language [52], offering a wide
range of features and options for customisation. To utilize the TomAbd in
their projects, the user is required to have prior knowledge on the Jason pro-
gramming language [7, Chapter 3], the basics of the Jason reasoning cycle [7,
Chapter 4] and the customisation of Jason components [7, Chapter 7]. Our
implementation is documented and publicly available under a Creative Com-
mons license.5 It has been packaged into a Java Archive (.jar) file to facilitate
its use as an external library for developers who want to include it in their
applications.

The core of the implementation consists of the tomabd.agent.TomAbdAgent

class, a subclass of Jason’s default agent class. It contains all the methods to
implement the functions in Figure 3 (plus some auxiliaries). Besides the main
BB (inherited from Jason’s default agent class), tomabd.agent.TomAbdAgent also
has a backup BB. The BUF is part of Jason’s default agent class, which we
override in our implementation to include a call to EUF after percepts have
been updated. The abductive reasoner implementing the Abduce function is
included as a set of Prolog-like rules in an AgentSpeak file, which the agent
class automatically includes at initialization time.

A call to the main function of this agent model (TomAbductionTask)
is not included within Jason’s native reasoning cycle, and hence does not
constrain it in any way. Instead, an internal action (IA), tomabd.agent.

tom abduction task, is provided as an interface to the agent’s method. The usage
of this IA is illustrated in Listing 1. Calling TomAbductionTask through

5https://github.com/nmontesg/tomabd

https://github.com/nmontesg/tomabd
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+!trigger : context
<− ... ;
tomabd.agent.select action(Action);
Action. // execute action on the environment

−!trigger[error(ia failed),
error msg(’’internal action tomabd.agent.select action failed’’)]
<− ?default action(DefAct); // look for a default action in the BB
DefAct.

Listing 2: Usage of the tomabd.agent.select action IA and a possible
contingency plan to handle its failure.

an IA allows the agent developer flexibility and control over when to trigger it
from within the application-specific agent code. Furthermore, the invocation
of TomAbductionTask from an IA ensures that the whole function is exe-
cuted within one act() step of the BDI reasoning cycle. Therefore, its execution
does not interfere with changes in the BB that happen during other perceive()

or act() steps (e.g. belief removal or addition operations) of the BDI reasoning
cycle.

We have exposed the reasons why TomAbductionTask is not called from
within the agent’s reasoning cycle, but using an IA interface. In summary,
through an IA the TomAbd agent model provides additional functionalities
to Jason agents, without restricting the use of other custom components nor
placing constraints on the BDI reasoning cycle. Similar remarks apply to the
SelectAction function and its counterpart IA tomabd.agent.select action (also
included in our implementation), which operates similarly to tomabd.agent.

tom abduction task but provides an interface to SelectAction instead. It is
called as tomabd.agent.select action(A), where A is a free variable bounded by
the IA to the return value of SelectAction.

As covered in Section 3.4, if using the default implementation of Selec-
tAction (or any other implementation that may return null), contingency
measures should be put into place to handle the possibility of failure. In List-
ing 2 we propose a strategy to do this. In the first plan, the agent uses the
tomabd.agent.select action IA to decide which action to perform next. If the IA is
successful, the agent goes on to execute it as a standard action on the environ-
ment. If not, the second plan in Listing 2 handles the failure. The annotations
in this plan, namely the error and error msg literals, ensure that this plan han-
dles only the failure of tomabd.agent.select action, not of any other source of
failure in the previous plan (e.g. the failure of execution of Action on the envi-
ronment). In Listing 2, if tomabd.agent.select action fails, the agent queries its
BB to look for a default action, and executes it on the environment.
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public class MyAgent extends TomAbdAgent {

@Override
public ListTermImpl erf(ListTermImpl expls) {

Literal obsViewpoint = Literal.parseLiteral(”viewpoint(observer)”);
Literal actViewpoint = Literal.parseLiteral(”viewpoint(actor)”);
Unifier un = new Unifier();
if (believes(actViewpoint, un)) {

return erfAct(expls);
} else if (believes(obsViewpoint, un)) {

return erfObs(expls);
} else {

throw new RuntimeException(”Error in erf: no valid viewpoint belief”);
}

}

}

Listing 3: Customisation of the ERF function, based on whether the agent
is currently adopting the actor or the observer’s viewpoint.

In Listings 1 and 2, the IAs tomabd.agent.tom abduction task and tomabd.

agent.select action are invoked as part of the body of agent plans. Nonetheless,
similarly to standard Jason IAs, they may also appear in the context of plans. If
that is the case, the execution of the corresponding TomAbductionTask and
SelectAction would be moved to the deliberate() step of the BDI reasoning
cycle. Whether it is more desirable to have the mentioned functions execute
in an act() step (by placing their corresponding IAs in the plan body) or in
a deliberate() step (by placing them in the plan context) is a decision for the
agent developer to take.

In summary, of the agent functions displayed in Figure 3, only TomAb-
ductionTask and SelectAction have a correspondinging IA interface, with
SelectAction being the only one of the two that is customisable. Addition-
ally, the ERF and the EUF are also customisable, but these are called from
within other functions and hence are not accompanied by an IA interface.

To override the default implementation of any of these functions, the devel-
oper needs to write new erf(), euf() and selectAction() methods in an agent
subclass of tomabd.agent.TomAbdAgent. For example, Listing 3 provides an agent
subclass with an alternative implementation of ERF that applies a different
revision function depending on whether the agent is currently working at the
observer’s or at the actor’s perspective.
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5 Results

5.1 Experimental Setting

As a proof of concept, we have applied the TomAbd agent model to the
Hanabi domain presented in Section 2.3, for teams of 2 to 5 players in self-play
mode.6 This means that the teams are homogeneous, composed exclusively
of TomAbd agents. As for the action/2 clauses that implement the team
strategy, Hanabi has a thriving community of online players that have gathered
a set of conventions for the game, called the H-group conventions.7 These
conventions comprise definitions (e.g. what constitutes a save hint or a play
hint) and guidelines to follow during game play. We have taken inspiration
from these conventions to devise our action selection clauses. However, while
these conventions are itemised according to player experience, we have only
made use of the introductory-level ones. Our goal is not to synthesise the
playing strategy that achieves the maximum possible score, but to explore the
usefulness of the capabilities of the TomAbd model in an example domain.
We leave the exploration of more sophisticated conventions for future work.

To trigger the execution of the TomAbductionTask function, partici-
pants publicly broadcast their action of choice prior to execution. To handle
these announcements, we define a Knowledge Query and Manipulation Lan-
guage (KQML) custom performative, publicAction. Agents react to messages
with this performative by executing the tomabd.agent.tom abduction task IA
using first-order ToM. This means that, when adopting the other acting
agent’s viewpoint, agents do not take that perspective through any interme-
diate agents. Hence, agents work with program Ti,l, where i is the observer
and l is the acting agent, when adopting the actor’s viewpoint to generate
explanations. Consequently, the variable ObsVp in Algorithm 2 is bound to
the empty list “[ ]”. Additionally, all the generated literals from the abductive
explanations are immediately incorporated into the agent’s program.

We evaluate the performance of the TomAbd agent model for the Hanabi
domain, using the basic set of H-group conventions and first-order ToM. We
ran 500 games with random seed 0 to 499, for every team size and switching
on/off the call to TomAbductionTask. The simulations were distributed
over 10 nodes at the high performance computing cluster at IIIA-CSIC.8

5.2 Score and Efficiency

The results are first evaluated in terms of the absolute score at the end of every
game. This is the most straightforward performance metric and one that allows
comparison with other work on Hanabi AI. Beyond the absolute score, we also
evaluate teams according to their communication efficiency, which we define
as the ratio between the final score and the total number of hints given during

6The code that applies the TomAbd model to Hanabi is available at https://github.com/
nmontesg/tomabd/examples/hanabi

7https://hanabi.github.io/
8https://www.iiia.csic.es/en-us/research/ars-magna/

https://github.com/nmontesg/tomabd/examples/hanabi
https://github.com/nmontesg/tomabd/examples/hanabi
https://hanabi.github.io/
https://www.iiia.csic.es/en-us/research/ars-magna/
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(a) (b)

Fig. 4: Results for the score (a) and communication efficiency (b). Cyan ruled
boxes correspond to games where agents make use of the capabilities of the
TomAbd agent model, and yellow dotted boxes correspond to games where
they do not. The dashed line on the efficiency plot indicates the bound of two
hints per score point.

the course of a complete game. This metric quantifies how efficient the team
is at turning communication (i.e. hints) into utility (i.e. score). Intuitively, a
lower bound for the efficiency metric is 1

2 , as two hints are needed (one for
colour and one for rank) to completely learn about a card’s identity and be
able to safely play it.

Box plots for the results of performance in terms of score and efficiency are
displayed in Figure 4. Additionally, the experimental distributions are avail-
able in Figure 8 in the Supplementary information. Visually, Figure 4 conveys
that the incorporation of ToM and abductive reasoning capabilities boosts
performance, both in terms of score and efficiency. Furthermore, regardless of
team size, the efficiency is over the lower bound for over 75% of the games
when the ToM and abduction capabilities are used. In contrast, when these
cognitive abilities are switched off, the efficiency falls below the lower bound
for approximately 75% of the runs.

In Table 1 the means and standard deviations for the score and commu-
nication efficiency are provided. Moreover, the average percentage increase
(comparing pairs of games with the same random seed with and without calls
to TomAbductionTask) is displayed in the Improvement row for every team
size. The average scores in Table 1, even with the ToM and abductive reason-
ing switched on, are still far from the current state-of-the-art in Hanabi AI,
with average score of up to 24.6 [49]. Nonetheless, they are in line with the
performance of current rule-based Hanabi-playing bots (see Table 1 by Siu et
al. [42]). Moreover, recall that the goal of this work is not to synthesise the
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Table 1: Average, standard deviation and improvement when using the
TomAbductionTask function for the score and communication efficiency.
Paired samples t-test confirmed that the average score and efficiency are sig-
nificantly better when the TomAbductionTask function is used, regardless
of team size.

Num. players TomAbductionTask Score Efficiency

2
Yes 18.61± 5.92 0.71± 0.22

No 14.57± 2.93 0.46± 0.10

Improvement 27% 54%

3
Yes 17.97± 1.94 0.70± 0.10

No 12.52± 1.56 0.42± 0.07

Improvement 45% 71%

4
Yes 16.50± 1.61 0.64± 0.09

No 11.23± 1.36 0.38± 0.06

Improvement 49% 75%

5
Yes 14.42± 1.37 0.62± 0.09

No 9.23± 1.30 0.33± 0.06

Improvement 59% 91%

optimal team strategy for Hanabi, but to develop a domain-independent agent
model capable of putting itself in the shoes of other agents and reasoning from
their perspective. The Hanabi game was selected as a test bed for this model,
alongside a very simplistic playing strategy. Yet, we anticipate that the results
presented here could be improved through the introduction of more advanced
playing conventions, such as “prompts” and “finesses”.

To confirm the observation that performance is better when agents make
use of the TomAbductionTask function, we used statistical testing. First,
we applied the Shapiro-Wilk test of normality [53] to test that the score and
efficiency distributions in Figure 8 are normally distributed, under all the
experimental conditions. We confirm that this is indeed the case for confidence
level 99%. Second, we used the paired samples t-test [54] to confirm that the
averages for the score and the efficiency, across all team sizes, are significantly
better when the TomAbduction function is used. We used the paired sam-
ples version of the t-test, rather than the independent samples, because games
with equal random seeds are related as far as the sequence of cards that are
dealt from the deck is the same for all. The results confirm that the averages
for the score and the efficiency are significantly better when the TomAbduc-
tionTask function is called with respect to when it is not, across all team
sizes and for confidence level 99%. Therefore, we conclude that the use of
the TomAbductionTask function quantitatively boosts the performance of
teams, independently of their size.
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Once we confirmed that, indeed, the execution of the TomAbduction-
Task function produces significantly better performance in terms of score
and efficiency, we sought to quantify this improvement. As explained earlier,
games of equal team size and random seed are related since the sequence of
dealt cards is the same for both. For this reason, it makes sense to compare
the score and the efficiency for games with the ToM capabilities on and off,
while controlling for team size and seed. To do this, we computed the percent-
age increase in the score and efficiency when using the TomAbductionTask
function, and then aggregated these values into the average across all random
seed. These results are displayed in the Improvement row in Table 1. They
show that there is indeed a notable percentage increase in both score and
efficiency, and this improvement increases monotonically with team size. For
example, the increase in score is around 30% for teams of two players while it
reaches almost 60% for the largest teams (five players).

5.3 Elapsed Time

The results presented in the previous section clearly prove that the use of the
TomAbductionTask function (using first-order ToM and with the selected
action selection rules) has a positive effect on the team performance, both in
their final score and the efficiency of communication. In this section, we analyse
the computational load associated to this performance boost.

In Figure 5 we present the results for the elapsed time of the TomAb-
ductionTask function. Every box contains data on at least 4,000 runs of the
function. The samples in Figure 5 correspond to the execution of the TomAb-
ductionTask function across different games with different random seeds,
and at different stages of the game.

Fig. 5: Execution time of the TomAbductionTask function for the Hanabi
domain with different team sizes.
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Fig. 6: Execution time of the EUF for the Hanabi domain, as a function of
the abductive explanations in the agent’s BB at execution time.

In all cases, the execution of the function has magnitude in the hundreds of
milliseconds. As expected, the elapsed time tends to increase and fall within a
larger range as the team size increases. This is due to the larger BB that agents
have to manage when they are part of a larger team. This results in a larger
space to search through in order to construct the abductive explanations. For
example, for teams of size 2, agents have 10 percepts concerning the rank and
colour of the cards of their fellow player. Meanwhile, for teams of size 5, agents
have 32 percepts about the cards of others.

As explained in Section 4, the TomAbductionTask function (and also
SelectAction) is executed through an IA at the discretion of the developer.
Hence, it is not natively integrated into the BDI reasoning cycle. Nonetheless,
there is one TomAbd-specific function that is called from the BDI reasoning
cycle: EUF, which is called from BUF, a central component of the sensing
step in the Jason reasoning cycle. Hence, to quantify the burden put on the
BDI reasoning cycle by the TomAbd agent model, we have to analyse the
performance of EUF.

In Figure 6 we present the results for the elapsed time of EUF. Every box
contains at least 750 data points. The results are itemized by the number of
explanations in the agent’s BB at the time EUF was executed, since our default
implementation of EUF loops over the literals in the BB that originated from
an abductive reasoning process. There were no instances found with 4 or more
explanations. The results in Figure 6 show that, for the first order ToM we are
using for the Hanabi domain, EUF entails a negligible overhead on the execu-
tion time of the Jason reasoning cycle. Its execution time is around two orders
of magnitude smaller than that of TomAbductionTask and, as expected,
follows an approximately linear trend with respect to the number of abductive
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explanations in the BB. Nonetheless, we expect the execution time of EUF to
increase as higher-order ToM is introduced.

5.4 Information Gain

The previous analyses quantify the overall outcome of a game, either in terms
of score or efficiency, and their computational requirements. Now, in the cur-
rent and the following section, we would like to quantify the amount and
the value of the information that agents derive from the execution of the
TomAbductionTask function.

The analysis that follows relies on some features that are specific to Hanabi
and hence not generally exportable to other domains where theTomAbd agent
model may be applied. The first enabling feature is the fact that Hanabi has
a well-defined set of states that the game might be in at any given moment.
These states are defined by the heights of the stacks, the available information
tokens, the number of lives remaining and the cards in the discard pile, which
are all observable by all players. Additionally, states are also characterised by
the cards at each player’s hand, which are not common knowledge.9

In game theoretical terms, the above feature is referred to as Hanabi being a
game of imperfect yet complete information. In other words, players in Hanabi
do not in general have access to all the information characterising the current
state of the game, but they can infer a finite set of states the game might be
in. Additionally, using domain knowledge (namely, the number of duplicate
identical cards, which depends on their rank) and, potentially, the abductive
explanations currently in their BB, agents can compute, for every slot S in
their hand, the marginal probability distribution for the colour and the rank of

9The sequence of cards in the deck, which is hidden to all players, might also be considered as
part of the state description in Hanabi. However, we prefer to view it as a randomising device
rather than as part of the state description. In any case, its treatment is not relevant to the
analysis in Sections 5.4 and 5.5.

Fig. 7: Outline of the probabilistic analysis of the simulation results.
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their card in S. By examining these probability distributions and comparing
them to the true one (which assigns unit probability to the colour and rank of
the actual card a player holds in S, and zero otherwise), we can quantify the
information gain, which we present in the present section.

The second feature of Hanabi that enables the analysis on information
value in Section 5.5 is the fact that, as any classical game, Hanabi has a set
of well-defined end-states with an assigned numerical utility or score. This
characteristic, together with the previous one, allows us to relate the reduction
in uncertainty of the probability distributions over the cards in player’s slots
with the increase in score when the ToM and abductive reasoning capabilities
of the TomAbd agent model are introduced.

We begin, then, by quantifying the gain in information derived from the
combination of ToM and abductive reasoning. To help with this, consider
Figure 7. Agents maintain a marginal probability distribution over the identity
of the card at each of their slots, i.e. the tuple (C,R) of random variables
corresponding to the card’s colour and rank. At every turn of the game, there
are three distributions to consider: the pre-action distribution before the action
is executed PpreAct

S , the post-action distribution after the action is executed

PpostAct
S , and the post-explanation distribution after the action is executed

and the abductive literals derived from the TomAbductionTask function
have been introduced into the agent’s BB PpostExpl

S . In addition to these three
distributions, the true identity of a card at slot S is denoted as (CS ,RS). We
refer to (CS ,RS) as the ground truth for slot S. Trivially, the true probability
distribution can be considered to be P∗

S(CS ,RS) = 1 and 0 otherwise.
To quantify the distance between two probability distributions, we use

the Kullback-Leibler divergence [55], which defines the relative entropy from
distribution Q to distribution P as:

DKL(P∥Q) =
∑
xi∈X

P (xi) log

(
P (xi)

Q(xi)

)
(6)

If P (xi) = 0 for some i, the contribution of the i-th term is assumed to be null.
The Kullback-Leibler distance quantifies how much information is lost

when approximating P using Q or, alternatively, how much information is
gained by refining Q into P . In the Hanabi game, we are working with prob-
ability distributions over the domain of card identities, which has size 25 (5
colours × 5 ranks). Therefore, for all our computations we take the logarithm
in Equation (6) with base 25.

We evaluate the gain provided by the abductive explanations by com-
paring the distance to the ground truth between the post-action and the
post-explanation distributions at every game turn. Since the ground truth
corresponds to a single card identity with probability 1, the Kullback-Leibler
distance from the two aforementioned distributions to the ground truth is
reduced to:

DKL(P∗
S∥P

{·}
S ) = − log

(
P{·}
S (CS ,RS)

)
(7)
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Table 2: Reduction is distance to the ground truth from the post-action to
the post-explanation distribution.

Num. players %
2 85.33
3 88.29
4 89.43
5 91.49

The results for the percentage reduction in distance between the post-action
and the post-explanation distribution to the ground truth appear in Table 2.
The reduction in distance is large across all teams sizes, starting at around
85% for teams of 2 players, and increasing monotonically with team size up to
a 91% for teams of 5 players.

5.5 Information Value

The previous results indicate that the incorporation of abductive explanations
does shrink the distance to the ground truth to a very large extent. However,
the analysis does not indicate how valuable the information derived from these
abductive explanations is. In other words, how much score are agents able to
draw from the information provided by abductive explanations.

To quantify the score value of abductive explanations, we define the two
following quantities (see Figure 7). First, we define the explicit informa-
tion gain as the Kullback-Leibler distance from the pre-action distribution
to the post-action distribution. Second, we define the implicit information
gain as the Kullback-Leibler distance from the post-action distribution to
the post-explanation distribution. The explicit information gain quantifies the
knowledge acquired just from observing the progress of the game, as new cards
are drawn and revealed. Meanwhile, the implicit information gain quantifies
the knowledge derived only from the abductive explanations.

Next, we define the total explicit information gain (TEIG) as the sum
across all slots S and moves mi over the course of a game of the explicit
information gain:

TEIG =
∑
mi

∑
S

DKL(PpostAct
S ∥PpreAct

S ) (8)

The total implicit information gain (TIIG) is defined analogously to
Equation (8), but using the distance from the post-action to the post-

explanation distribution, DKL(PpostExpl
S ∥PpostAct

S ), instead. The TEIG is
defined for all games, regardless of whether agents are using the TomAbduc-
tionTask function. The TIIG is defined only for games where the mentioned
function is active. For these games, we compute the percentage of information
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Table 3: Average percentage of implicit information and average score
assigned to this implicit information.

Num. players % implicit info. % implicit score
2 15.15 27.80
3 15.51 30.55
4 18.79 32.24
5 19.40 38.37

that is derived from the ToM and abduction capabilities as:

% implicit info. =
TIIG

TIIG + TEIG
· 100 (9)

Then, to quantify the contribution of each type of information to score, we
start by computing the explicit score rate (ESR) as the ratio of the score to
the TEIG, for games where agents are not using the TomAbductionTask
function. Once we have the ESR, we turn to games where agents are using this
function, and we estimate the residual score that cannot be explained away by
the explicit information that agents acquire by observing the evolution of the
system as:

residual score = score− ESRseed · TEIG (10)

where ESRseed is the ESR for the game without calls to TomAbductionTask
with the same random seed, and TEIG (TIIG) is the total explicit (implicit)
information gain for the game that employs the TomAbductionTask func-
tion. We use the ratio between the residual score in Equation (10) and the
total score as the estimation of the contribution of the implicit information to
the overall performance of the team.

The results for the average percentage of implicit information and the aver-
age percentage score that can be assigned to this explicit information appear
in Table 3, for games where agents use the TomAbductionTask function.
Across all team sizes, the information derived from the ToM and abduction
capabilities accounts for between 15% and 20% of the total information. How-
ever, this implicit information accounts for disproportionate amount of the
final score, between 27% and 40% of it. Therefore, when agents use the capa-
bilities of the TomAbd model, the information derived from these capabilities
ends up being overrepresented in the final score by a factor of between ×1.7
and ×2.0.

6 Related Work

This section compares our contribution with related approaches. Previous work
on Theory of Mind implementations in agent-oriented programming have, for
the most part, used languages based on the BDI architecture [29, 30, 56, 57].
This is a natural choice that we share, since BDI-based languages provide con-
structs for the mental states that ToM estimates and operates on. Specifically,
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some ToM implementations are, like our TomAbd agent model, developed in
Jason [29, 30, 56]. In contrast, other work uses Extended 2APL [57].

Panisson et al. [30] implement ToM for deceptive purposes. They focus on
the communicative interventions, i.e. the requesting and sharing of (possibly
untruthful) information, and provide operational semantics [56] for the effects
that these actions have of the models that agents maintain of one another.
Their approach is very much in line with the TT account of ToM. It uses
dedicated predicates to infer additional mental states, such as goals and future
actions, given prior beliefs. These inferences are made from within the agent
program, a feature which we consider qualifies as adherence to the theoretical
version of ToM.

Sarkadi et al. [29] extend the previous model by incorporating elements
of trust and modelling several agent profiles based on their attitudes. In
this extension, they distinguish between TT and ST components within their
model. They argue that the TT component handles the assignment of prior
beliefs to other agents, while the ST component handles inferences based on
those. In our work, we do not distinguish between TT and ST components, but
consider that our approach overall aligns more closely with the ST account of
ToM than with the TT account.

Harbers et al. [57] establish a different criterion for classifying ToM
approaches into TT and ST. They develop two separate ToM implementa-
tions, one identified with TT and the other with ST, for applications in virtual
training systems. Both architectures maintain knowledge bases for the beliefs,
logical rules and goals of other agents. The difference between the ST and TT
approaches is found in the reasoner that is applied to the knowledge bases
assigned to other agents. The TT architecture applies rules about how other
agents combine their beliefs, goals and plans, which are explicitly included as
part of the agent’s own knowledge. In contrast, the ST architecture uses the
agent’s native reasoner, making it more lightweight. Besides this, other advan-
tages were found for the ST architecture with respect to the TT one, namely
code reusability and flexibility to deal with non-BDI agents.

The choice to maintain belief bases for other agents, in addition to the
agent’s own belief base, is very different to the TomAbd agent model, where
we generate estimations of the beliefs of others on demand at run-time, using
the set of ToM rules as a meta-interpreter. This allows the TomAbd model
to engage in higher-order ToM by recursively applying the set of ToM rules.
In comparison, the maintenance of belief bases for other agents hinders the
use of ToM beyond first-order. For every recursive path that the agent would
like to take into account, i.e. what we refer to as the viewpoint in Defini-
tion 3, a different knowledge base would have to be initialised and updated
throughout the agent’s lifetime, resulting in a rapid combinatorial explosion
in memory requirements. This limitation to first-order ToM is also shared by
other work [29, 30].

There is an important difference in the focus of ToM between the works
reviewed in this section and the TomAbd agent model of this paper. In related
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work [29, 30, 56, 57], the purpose of the ToM functionalities is to compute
the action that best pursues the agent’s goal, whether it is to deceive an
opponent or to provide explanation to assist in staff training. Hence, ToM
is directed towards the deliberation step of the BDI reasoning cycle. In con-
trast, in our approach, ToM is directed towards the sensing step, with the
TomAbd model computationally implementing the cognitive processes to use
other agents as sensors. Accordingly, the core function of the TomAbd agent
model is TomAbductionTask, which uses abduction to compute explana-
tions either about the state of the environment or the mental state of other
agents. The execution of this function results in the agent being in a more
informed position when it comes to its own decision-making.

It should be noted that, even if at this current stage the TomAbd agent
model strongly links ToM with sensing, it provides an avenue to include these
capabilities into the agent’s deliberation stage too. The component directed
towards practical reasoning, the SelectAction function, has not thus far
received as much attention as TomAbductionTask. Nonetheless, as men-
tioned previously, this function is a customisable component of the model. This
leaves a lot of room to develop further implementations that more explicitly use
the ToM capabilities of the agent during the deliberation stage, for example by
making calls to the AdoptPerspective procedure within SelectAction.

To summarise, the publications reviewed so far orient the ToM capabili-
ties of agents towards deliberation. Nonetheless, work by Sindlar et al. [58],
similarly to ours in its goals, focuses on mental state abduction, i.e. the infer-
ence of beliefs and goals of BDI agents given a sequence of observed actions.
They use the APL agent programming language, where an agent is composed,
among others, of goals achievement rules, analogous to Jason plans. An agent
program and its observed actions are translated into an Answer Set Program-
ming (ASP) program, which is then resolved with an off-the-shelf ASP solver.
The authors argue that the ToM capabilities provided through this mode of
reasoning have potential to enhance the social awareness and creditibility of
non-player characters in role-playing games [59].

In contrast to our current work, the approach by Sindlar et al. is restricted
to first-order ToM and, in our opinion, leans heavility towards the theoretical
account of ToM (TT), presented in Section 2.1. Finally, compared with the
work we cite previously (where ToM is oriented towards action selection),
Sindlar et al. do not offer details about how the obtained explanations are
integrated into the abducing agent’s own knowledge or decision-making.

7 Conclusions

In this paper, we have presented the novel TomAbd model, an agent architec-
ture combining Theory of Mind and abductive reasoning. Its main functionality
is the ability to perceive the state of the system through the eyes of their peers,
and infer the beliefs that account for their most recent action using abduc-
tive reasoning. This core functionality is accompanied by other functions that
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handle how the abductive explanations are refined, updated and used during
practical reasoning.

There are four features that make the TomAbd agent model stand out.
First, the model is able to handle ToM of an arbitrary order without additional
memory requirements. Second, our approach has a strong preference for a
simulation account of ToM over a theory account. Third, we emphasise the
role of ToM for sensing over deliberation. The goal of ToM in our model is
to extract the information as perceived by other agents, hence using them as
proxies for obtaining data about the world. Finally, we would like to highlight
the user-friendliness and the flexibility of our implementation, which allows
customisation of many of its components.

We have tested our model in the benchmark domain of Hanabi. Our results
show that teams whose agents use ToM consistently perform better than those
that do not, both in terms of absolute score and efficiency of communication.
In terms of information gain, our analysis shows that the knowledge derived
from the abductive reasoning component of the model greatly reduces uncer-
tainty. Additionally, the information derived from the combination of ToM
and abductive reasoning contributes to the final score in a disproportionate
amount, with respect to the explicit information derived from the observation
of the evolution of the game alone.

The TomAbd agent model presented here offers several directions for
future work. First, within the Hanabi game domain, an option would be to
investigate more sophisticated action selection rules. Additionally, it would be
interesting to investigate the perception that human players have of TomAbd
teammates, for strategies of different skill levels. This research could shine
light on how well is human ToM captured by the agents, and how compatible
is human ToM and the artificial ToM we have presented here.

Second, the TomAbd agent model can be applied to other domains where
ToM capabilities may entail a potential benefit, with the goal of extracting the
common general features that a domain must have in order for ToM to result in
improved performance. This research could also expand the set of customised
functions for explanation revision and update, as well as the incorporation of
ToM in the deliberation stage. Furthermore, the application to other domains
would require the development of additional metrics to quantify the benefits
entailed by the agents’ ToM capabilities, analogous to the information gain and
information value metrics we present in this paper for Hanabi. Such metrics
would naturally need to consider the domain properties such as whether there
is a closed set of states and/or any heuristics available to quantify the value
of MAS states.

Third, the flexibility of the TomAbd model could be enhanced by extend-
ing the type of constructs for which the TomAbd agent model is able to
provide explanations. In other words, with small additional functionality,
TomAbd agents could be adapted to compute abductive explanations not
just for actions, but for mental states such as beliefs, goals and intentions.
Of course, the mental state that is taken as input to the machinery of the
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TomAbd agent model must either be the result of some observation (e.g. agent
i overhears agent j discuss its goals with a third party), or of other techniques,
such as goal recognition, that aggregate granular observations into a mental
state, i.e. a sequence of atomic actions into the goal or intention pursued by
those actions.

Regardless of the modality of the observation, the process of generating an
explanation for it would be analogous to that presented in the TomAbd agent
model for actions. In summary, as long as some agent i has an input about
another agent j (such as an action j has taken, a belief or a desire j holds, or
an intention j is pursuing) and an estimation of the inference rules that j is
using, i can provide an explanation for the input. Of course, its precision will
depend on the accuracy of the input and of the inference rules that i believes
j to have.

Last but not least, the computational requirements versus the performance
benefits of using higher-order Theory of Mind, in the Hanabi game or in
other domains, presents an interesting challenge. Note that, in the TomAbd
agent model the same mechanism that enables an agent to use first-order
ToM also enables it to use ToM of any order (i.e. querying the believes(Ag,
Fact) clauses and substituting the contents of its belief base). Here too, many
questions arise. For example, does performance plateau around a particular
recursion level npl? Is npl a domain-independent quantity? How does it com-
pare with respect to the maximum order of ToM that humans usually apply?
Does this have any evolutionary implications? In other words, did humans
develop ToM just far enough to obtain the maximum evolutionary advantage,
but not any further to save resources?

To conclude, our work presents and tests a novel model for agents with
Theory of Mind. It provides the cognitive machinery to adopt the perspective
of a peer and reason from its perspective. It is inspired by the though processes
that humans engage in when trying to understand the motivations for the
behaviour of others. Our model endows autonomous agents with essential social
abilities, that are becoming increasingly important in the current AI landscape.
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an interactional analysis of a dyadic assessment. International Journal
of Language & Communication Disorders 51(6), 685–702 (2016). https:
//doi.org/10.1111/1460-6984.12240

[10] Baron-Cohen, S., Leslie, A.M., Frith, U.: Does the autistic child have a
“theory of mind” ? Cognition 21(1), 37–46 (1985). https://doi.org/10.
1016/0010-0277(85)90022-8

[11] Tager-Flusberg, H.: Evaluating the theory-of-mind hypothesis of autism.
Current Directions in Psychological Science 16(6), 311–315 (2007). https:
//doi.org/10.1111/j.1467-8721.2007.00527.x

[12] Askham, A.V.: ‘Theory of mind’ in autism: A research field reborn.
Spectrum (2022). https://doi.org/10.53053/gxnc7576
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